AD9613-170EBZ [ADI]

12-Bit, 170 MSPS/210 MSPS/250 MSPS,1.8 V Dual Analog-to-Digital Converter (ADC); 12位, 170 MSPS / 210 MSPS / 250 MSPS , 1.8 V双通道模拟数字转换器( ADC )
AD9613-170EBZ
型号: AD9613-170EBZ
厂家: ADI    ADI
描述:

12-Bit, 170 MSPS/210 MSPS/250 MSPS,1.8 V Dual Analog-to-Digital Converter (ADC)
12位, 170 MSPS / 210 MSPS / 250 MSPS , 1.8 V双通道模拟数字转换器( ADC )

转换器
文件: 总36页 (文件大小:1074K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit, 170 MSPS/210 MSPS/250 MSPS,  
1.8 V Dual Analog-to-Digital Converter (ADC)  
AD9613  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
AGND  
DRVDD  
SNR = 69.6 dBFS at 185 MHz fIN and 250 MSPS  
SFDR = 86 dBc at 185 MHz fIN and 250 MSPS  
−149.9 dBFS/Hz input noise at 185 MHz, −1 dBFS AIN and  
250 MSPS  
Total power consumption: 770 mW at 250 MSPS  
1.8 V supply voltages  
VIN+A  
PIPELINE  
12-BIT  
ADC  
12  
D0±  
.
.
.
.
.
VIN–A  
VCM  
PARALLEL  
DDR LVDS  
AND  
AD9613  
VIN+B  
PIPELINE  
12-BIT  
ADC  
12  
D11±  
DRIVERS  
LVDS (ANSI-644 levels) outputs  
VIN–B  
Integer 1-to-8 input clock divider (625 MHz maximum input)  
Sample rates of up to 250 MSPS  
IF sampling frequencies of up to 400 MHz  
Internal ADC voltage reference  
Flexible analog input range  
1.4 V p-p to 2.0 V p-p (1.75 V p-p nominal)  
ADC clock duty cycle stabilizer  
DCO±  
OR±  
REFERENCE  
1 TO 8  
CLOCK  
DIVIDER  
SERIAL PORT  
OEB  
PDWN  
SCLK SDIO  
CSB  
CLK+  
CLK– SYNC  
95 dB channel isolation/crosstalk  
Serial port control  
NOTES  
1. THE D0± TO D11± PINS REPRESENT BOTH THE CHANNEL A  
AND CHANNEL B LVDS OUTPUT DATA.  
Energy-saving power-down modes  
Figure 1.  
APPLICATIONS  
Communications  
Diversity radio systems  
Multimode digital receivers (3G)  
TD-SCDMA, WiMAX, W-CDMA, CDMA2000, GSM, EDGE, LTE  
I/Q demodulation systems  
Smart antenna systems  
General-purpose software radios  
Ultrasound equipment  
Broadband data applications  
GENERAL DESCRIPTION  
The AD9613 is a dual 12-bit, analog-to-digital converter (ADC)  
with sampling speeds of up to 250 MSPS. The AD9613 is designed  
to support communications applications where low cost, small  
size, wide bandwidth, and versatility are desired.  
Programming for setup and control is accomplished using a  
3-wire SPI-compatible serial interface.  
The AD9613 is available in a 64-lead LFCSP and is specified  
over the industrial temperature range of −40°C to +85°C. This  
product is protected by a U.S. patent.  
The dual ADC cores feature a multistage, differential pipelined  
architecture with integrated output error correction logic. Each  
ADC features wide bandwidth inputs supporting a variety of user-  
selectable input ranges. An integrated voltage reference eases design  
considerations. A duty cycle stabilizer (DCS) is provided to  
compensate for variations in the ADC clock duty cycle,  
PRODUCT HIGHLIGHTS  
1. Integrated dual, 12-bit, 170 MSPS/210 MSPS/250 MSPS ADCs.  
2. Fast overrange and threshold detect.  
3. Proprietary differential input maintains excellent SNR  
performance for input frequencies of up to 400 MHz.  
4. SYNC input allows synchronization of multiple devices.  
5. 3-pin, 1.8 V SPI port for register programming and register  
readback.  
allowing the converters to maintain excellent performance.  
The ADC output data is routed directly to the two external 12-bit  
LVDS output ports and formatted as either interleaved or channel  
multiplexed.  
6. Pin compatibility with the AD9643, allowing a simple  
migration up to 14 bits, and with the AD6649 and the AD6643.  
Flexible power-down options allow significant power savings,  
when desired.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2011–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
AD9613  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Analog Input Considerations ................................................... 23  
Voltage Reference ....................................................................... 25  
Clock Input Considerations...................................................... 25  
Power Dissipation and Standby Mode .................................... 27  
Digital Outputs ........................................................................... 27  
ADC Overrange (OR)................................................................ 27  
Channel/Chip Synchronization.................................................... 28  
Serial Port Interface (SPI).............................................................. 29  
Configuration Using the SPI..................................................... 29  
Hardware Interface..................................................................... 29  
SPI Accessible Features.............................................................. 30  
Memory Map .................................................................................. 31  
Reading the Memory Map Register Table............................... 31  
Memory Map Register Table..................................................... 32  
Memory Map Register Description ......................................... 34  
Applications Information .............................................................. 35  
Design Guidelines ...................................................................... 35  
Outline Dimensions....................................................................... 36  
Ordering Guide .......................................................................... 36  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
ADC DC Specifications............................................................... 3  
ADC AC Specifications ............................................................... 4  
Digital Specifications ................................................................... 6  
Switching Specifications .............................................................. 8  
Timing Specifications .................................................................. 9  
Absolute Maximum Ratings.......................................................... 11  
Thermal Characteristics ............................................................ 11  
ESD Caution................................................................................ 11  
Pin Configurations and Function Descriptions ......................... 12  
Typical Performance Characteristics ........................................... 16  
Equivalent Circuits ......................................................................... 22  
Theory of Operation ...................................................................... 23  
ADC Architecture ...................................................................... 23  
Changes to Figure 5 and Pin 7 and Pin 8 Descriptions............. 14  
Changes to Pin 42 and Pin 43, Output Enable Bar and Power-  
Down Pin Type, and Pin 47 Descriptions................................... 15  
Changes to Typical Performance Characteristics Conditions.. 16  
Changes to Fiugre 43...................................................................... 22  
Added ADC Overrange (OR) Section......................................... 27  
Changes to Channel/Chip Synchronization Section ................. 28  
Changes to Reading the Memory Map Register Table  
Section and Transfer Register Map Section ................................ 31  
Changes to Register 0x02, Bits[5:4].............................................. 32  
Changes to Register 0x16, Bit 5 .................................................... 33  
Added Register 0x3A ..................................................................... 34  
Deleted Register 0x59 .................................................................... 34  
Changes to Bit 0—Master Sync Buffer Enable Section ............. 34  
Deleted SYNC Pin Control (Register 0x59) Section.................. 34  
REVISION HISTORY  
1/13—Rev. B to Rev. C  
Changes to Features...........................................................................1  
Changes to Table 1.............................................................................3  
Changes to Table 2 ............................................................................5  
Change to Logic Inputs (SDIO) Paramter, Table 3........................6  
Changes to Table 4.............................................................................8  
Change to Reading the Memory Map Register Table Section........31  
Changes to Table 14.........................................................................33  
Change to Memory Map Register Description Section..............34  
Updated Outline Dimensions........................................................36  
9/11—Rev. A to Rev. B  
Changes to Figure 1.......................................................................... 1  
Changes to Temperature Drift Parameters ................................... 3  
Changes Output Offset Voltage (VOS), ANSI Mode Typ  
5/11—Rev. 0 to Rev. A  
Parameter and Output Offset Voltage (VOS), Reduced Swing  
Mode Parameter................................................................................ 7  
Changes DCO to Data Skew (tSKEW) Parameters .......................... 8  
Changes to Output Enable Bar and Power-Down Pin Type  
and Pin 47 Description .................................................................. 13  
Changes to Table 2, AD9613-170: Worst Second or Third  
Harmonic and Worst Other (Harmonic or Spur) Max Values  
and Spurious Free Dynamic Range Min Value .............................4  
4/11—Revision 0: Initial Version  
Rev. C | Page 2 of 36  
Data Sheet  
AD9613  
SPECIFICATIONS  
ADC DC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.75 V p-p full scale input range, DCS enabled,  
unless otherwise noted.  
Table 1.  
AD9613-170  
Temp Min Typ Max  
AD9613-210  
Min Typ Max  
AD9613-250  
Min Typ Max  
Parameter  
Unit  
RESOLUTION  
Full  
12  
12  
12  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Gain Error  
Full  
Full  
Full  
Full  
25°C  
Full  
25°C  
Guaranteed  
±10  
Guaranteed  
Guaranteed  
±10  
+3/−5  
±0.5  
±10  
±±  
±0.5  
mV  
+2/−6  
±0.5  
%FSR  
LSB  
LSB  
LSB  
LSB  
Differential Nonlinearity (DNL)  
±0.25  
±0.20  
±0.25  
±0.25  
±0.25  
±0.28  
Integral Nonlinearity (INL)1  
±0.5  
±0.6  
±0.8  
MATCHING CHARACTERISTIC  
Offset Error  
Gain Error  
Full  
Full  
±13  
±2.5  
±13  
+3.5/−2  
±13  
mV  
+3.5/−2.5 %FSR  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Full  
Full  
±5  
±70  
±5  
±80  
±5  
±100  
ppm/°C  
ppm/°C  
LSB rms  
INPUT-REFERRED NOISE  
VREF = 1.75 V  
25°C  
0.39  
0.39  
0.39  
ANALOG INPUT  
Input Span  
Full  
Full  
Full  
Full  
1.75  
2.5  
20  
1.75  
2.5  
20  
1.75  
2.5  
20  
V p-p  
pF  
kΩ  
V
Input Capacitance2  
Input Resistance3  
Input Common-Mode Voltage  
POWER SUPPLIES  
Supply Voltage  
AVDD  
0.9  
0.9  
0.9  
Full  
Full  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
DRVDD  
Supply Current  
1
IAVDD  
Full  
Full  
230  
1±2  
250  
160  
2±1  
159  
265  
185  
252  
176  
275  
210  
mA  
mA  
1
IDRVDD  
POWER CONSUMPTION  
Sine Wave Input1 (DRVDD = 1.8 V)  
Standby Power±  
Full  
Full  
Full  
670  
90  
10  
738  
720  
90  
10  
810  
770  
90  
10  
873  
mW  
mW  
mW  
Power-Down Power  
1 Measured with a low input frequency, full-scale sine wave.  
2 Input capacitance refers to the effective capacitance between one differential input pin and its complement.  
3 Input resistance refers to the effective resistance between one differential input pin and its complement.  
± Standby power is measured with a dc input and the CLK± pin inactive (that is, set to AVDD or AGND).  
Rev. C | Page 3 of 36  
AD9613  
Data Sheet  
ADC AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.75 V p-p full scale input range, unless  
otherwise noted.  
Table 2.  
AD9613-170  
AD9613-210  
AD9613-250  
Parameter1  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
SIGNAL-TO-NOISE-RATIO (SNR)  
fIN = 30 MHz  
fIN = 90 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
Full  
70.1  
70.0  
70.1  
70.0  
70.0  
69.8  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
69.3  
69.2  
fIN = 1±0 MHz  
fIN = 185 MHz  
69.8  
69.5  
69.8  
69.5  
69.6  
69.2  
67.8  
fIN = 220 MHz  
25°C  
69.±  
69.3  
69.0  
SIGNAL-TO-NOISE AND DISTORTION (SINAD)  
fIN = 30 MHz  
fIN = 90 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
Full  
69.1  
69.0  
69.1  
69.0  
69.0  
68.8  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
68.2  
68  
fIN = 1±0 MHz  
fIN = 185 MHz  
68.8  
68.5  
68.8  
68.5  
68.6  
68.2  
66.5  
68.±  
68.3  
68.0  
fIN = 220 MHz  
25°C  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 30 MHz  
fIN = 90 MHz  
fIN = 1±0 MHz  
fIN = 185 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
11.2  
11.2  
11.1  
11.1  
11.1  
11.2  
11.2  
11.1  
11.1  
11.0  
11.2  
11.1  
11.1  
11.0  
11.0  
Bits  
Bits  
Bits  
Bits  
Bits  
fIN = 220 MHz  
WORST SECOND OR THIRD HARMONIC  
fIN = 30 MHz  
fIN = 90 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
Full  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−9±  
−92  
−9±  
−9±  
−90  
−89  
−78  
−80  
fIN = 1±0 MHz  
fIN = 185 MHz  
−87  
−89  
−88  
−83  
−86  
−86  
−80  
25°C  
fIN = 220 MHz  
−80  
−83  
−85  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 30 MHz  
fIN = 90 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
Full  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
9±  
92  
90  
90  
92  
89  
78  
80  
fIN = 1±0 MHz  
fIN = 185 MHz  
87  
89  
88  
83  
86  
86  
80  
25°C  
fIN = 220 MHz  
83  
83  
85  
WORST OTHER (HARMONIC OR SPUR)  
fIN = 30 MHz  
fIN = 90 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
Full  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−97  
−96  
−95  
−95  
−93  
−92  
−78  
−80  
fIN = 1±0 MHz  
fIN = 185 MHz  
−97  
−91  
−97  
−96  
−91  
−91  
−80  
25°C  
fIN = 220 MHz  
−93  
−9±  
−89  
Rev. C | Page ± of 36  
Data Sheet  
AD9613  
AD9613-170  
AD9613-210  
AD9613-250  
Parameter1  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
TWO-TONE SFDR  
25°C  
dBc  
fIN = 18±.12 MHz (−7 dBFS),  
187.12 MHz (−7 dBFS)  
88  
88  
88  
CROSSTALK2  
95  
95  
95  
Full  
dB  
FULL POWER BANDWIDTH3  
25°C  
1000  
1000  
1000  
MHz  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
2 Crosstalk is measured at 100 MHz with −1.0 dBFS on one channel and no input on the alternate channel.  
3 Full power bandwidth is the bandwidth of operation where typical ADC performance can be achieved.  
Rev. C | Page 5 of 36  
 
 
AD9613  
Data Sheet  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.75 V p-p full-scale input range, DCS enabled,  
unless otherwise noted.  
Table 3.  
Parameter  
Temp  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS/LVDS/LVPECL  
Internal Common-Mode Bias  
Differential Input Voltage  
Input Voltage Range  
Input Common-Mode Range  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
Full  
Full  
Full  
Full  
0.9  
3.6  
V
V p-p  
V
0.3  
AGND  
0.9  
AVDD  
1.±  
V
Full  
Full  
Full  
Full  
10  
−22  
22  
−10  
µA  
µA  
pF  
kΩ  
±
8
10  
12  
Input Resistance  
SYNC INPUT  
Logic Compliance  
Internal Bias  
CMOS/LVDS  
0.9  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
Input Voltage Range  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
AGND  
1.2  
AGND  
−5  
AVDD  
AVDD  
0.6  
V
V
V
+5  
+5  
µA  
µA  
pF  
kΩ  
−5  
1
16  
Input Resistance  
12  
20  
LOGIC INPUT (CSB)1  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
−5  
2.1  
0.6  
+5  
V
V
µA  
µA  
kΩ  
pF  
−80  
+±5  
26  
2
Input Capacitance  
LOGIC INPUT (SCLK)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
±5  
−5  
2.1  
0.6  
70  
V
V
µA  
µA  
kΩ  
pF  
+5  
26  
2
Input Capacitance  
LOGIC INPUTS (SDIO)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
±5  
−5  
2.1  
0.6  
70  
V
V
µA  
µA  
kΩ  
pF  
+5  
26  
5
Input Capacitance  
Rev. C | Page 6 of 36  
Data Sheet  
AD9613  
Parameter  
Temp  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS (OEB, PDWN)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Input Capacitance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
±5  
−5  
2.1  
0.6  
70  
V
V
µA  
µA  
kΩ  
pF  
+5  
26  
5
DIGITAL OUTPUTS  
LVDS Data and OR Outputs  
Differential Output Voltage (VOD), ANSI Mode  
Output Offset Voltage (VOS), ANSI Mode  
Differential Output Voltage (VOD), Reduced Swing Mode  
Output Offset Voltage (VOS), Reduced Swing Mode  
Full  
Full  
Full  
Full  
250  
1.15  
150  
1.15  
350  
1.22  
200  
1.22  
±50  
1.35  
280  
1.35  
mV  
V
mV  
V
1 Pull up.  
2 Pull down.  
Rev. C | Page 7 of 36  
 
AD9613  
Data Sheet  
SWITCHING SPECIFICATIONS  
Table 4.  
AD9613-170  
AD9613-210  
AD9613-250  
Parameter  
Temp Min Typ Max Min  
Typ Max Min Typ Max Unit  
CLOCK INPUT PARAMETERS  
Input Clock Rate  
Conversion Rate1  
Full  
Full  
Full  
625  
170  
625  
210  
625  
250  
MHz  
MSPS  
ns  
±0  
5.8  
±0  
±.8  
±0  
±
CLK Period, Divide-by-1 Mode (tCLK  
)
CLK Pulse Width High (tCH  
)
Divide-by-1 Mode, DCS Enabled  
Divide-by-1 Mode, DCS Disabled  
Divide-by-2 Mode Through Divide-by-8 Mode  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
DATA OUTPUT PARAMETERS  
LVDS Mode  
Full  
Full  
Full  
Full  
Full  
2.61 2.9  
2.76 2.9  
0.8  
3.19  
3.05  
2.16  
2.28  
0.8  
2.±  
2.±  
2.6±  
2.52  
1.8  
1.9  
0.8  
2.0  
2.0  
2.2  
2.1  
ns  
ns  
ns  
ns  
1.0  
0.1  
1.0  
0.1  
1.0  
0.1  
ps rms  
Data Propagation Delay (tPD  
DCO Propagation Delay (tDCO  
)
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
6.0  
6.7  
0.7  
10  
1.0  
0.1  
10  
6.0  
6.7  
0.7  
10  
1.0  
0.1  
10  
6.0  
6.7  
0.7  
10  
1.0  
0.1  
10  
ns  
ns  
ns  
Cycles  
ns  
ps rms  
µs  
µs  
)
DCO to Data Skew (tSKEW  
Pipeline Delay (Latency)  
Aperture Delay (tA)  
)
0.±  
1.0  
0.±  
1.0  
0.±  
1.0  
Aperture Uncertainty (Jitter, tJ)  
Wake-Up Time (from Standby)  
Wake-Up Time (from Power Down)  
Out-of-Range Recovery Time  
250  
250  
3
250  
3
3
Cycles  
1 Conversion rate is the clock rate after the divider.  
Rev. C | Page 8 of 36  
 
Data Sheet  
AD9613  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Test Conditions/Comments  
Min Typ Max Unit  
SYNC TIMING REQUIREMENTS  
See Figure 3 for timing details  
tSSYNC  
tHSYNC  
SYNC to the rising edge of CLK setup time  
SYNC to the rising edge of CLK hold time  
See Figure 58 for SPI timing diagram  
0.3  
0.±  
ns  
ns  
SPI TIMING REQUIREMENTS  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
Minimum period that SCLK should be in a logic high state  
Minimum period that SCLK should be in a logic low state  
Time required for the SDIO pin to switch from an input to an output  
relative to the SCLK falling edge (not shown in Figure 58)  
2
2
±0  
2
2
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an input  
relative to the SCLK rising edge (not shown in Figure 58)  
10  
ns  
Rev. C | Page 9 of 36  
 
AD9613  
Data Sheet  
Timing Diagrams  
tA  
N – 1  
N + 4  
N + 5  
N
N + 3  
VIN  
N + 1  
N + 2  
tCH  
tCLK  
CLK+  
CLK–  
tDCO  
DCO–  
DCO+  
tSKEW  
tPD  
PARALLEL INTERLEAVED  
D0±  
(LSB)  
CH A  
N – 10  
CH B  
N – 10  
CH A  
N – 9  
CH B  
N – 9  
CH A  
N – 8  
CH B  
N – 8  
CH A  
N – 7  
CH B  
N – 7  
CH A  
N – 6  
.
.
CHANNEL A AND  
.
CHANNEL B  
D11±  
(MSB)  
CH A  
N – 10  
CH B  
N – 10  
CH A  
N – 9  
CH B  
N – 9  
CH A  
N – 8  
CH B  
N – 8  
CH A  
N – 7  
CH B  
N – 7  
CH A  
N – 6  
CHANNEL MULTIPLEXED  
(EVEN/ODD) MODE  
D0±/D1±  
(LSB)  
CH A0  
N – 10  
CH A1  
N – 10  
CH A0  
N – 9  
CH A1  
N – 9  
CH A0  
N – 8  
CH A1  
N – 8  
CH A0  
N – 7  
CH A1  
N – 7  
CH A0  
N – 6  
.
.
.
CHANNEL A  
D10±/D11±  
CH A10 CH A11  
CH A10 CH A11 CH A10 CH A11  
CH A10 CH A11 CH A10  
(MSB)  
N – 10  
N – 10  
N – 9  
N – 9  
N – 8  
N – 8  
N – 7  
N – 7  
N – 6  
CHANNEL MULTIPLEXED  
(EVEN/ODD) MODE  
D0±/D1±  
(LSB)  
CH B0  
N – 10  
CH B1  
N – 10  
CH B0  
N – 9  
CH B1  
N – 9  
CH B0  
N – 8  
CH B1  
N – 8  
CH B0  
N – 7  
CH B1  
N – 7  
CH B0  
N – 6  
.
.
.
CHANNEL B  
D10±/D11±  
CH B10 CH B11  
N – 10 N – 10  
CH B10 CH B11 CH B10 CH B11  
N – 9 N – 9 N – 8 N – 8  
CH B10 CH B11 CH B10  
N – 7 N – 7 N – 6  
(MSB)  
Figure 2. Interleaved LVDS Mode Data Output Timing  
CLK+  
SYNC  
tSSYNC  
tHSYNC  
Figure 3. SYNC Timing Inputs  
Rev. C | Page 10 of 36  
 
 
Data Sheet  
AD9613  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 6.  
The exposed paddle must be soldered to the ground plane for  
the LFCSP package. Soldering the exposed paddle to the  
printed circuit board (PCB) increases the reliability of the  
solder joints, maximizing the thermal capability of the package.  
Parameter  
Rating  
Electrical  
AVDD to AGND  
DRVDD to AGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
VIN+A/VIN+B, VIN−A/VIN−B to AGND −0.3 V to AVDD + 0.2 V  
Typical θJA is specified for a 4-layer PCB with solid ground  
plane. As shown in Figure 40, airflow increases heat dissipation,  
which reduces θJA. In addition, metal in direct contact with the  
package leads from metal traces, through holes, ground, and  
power planes reduces the θJA.  
CLK+, CLK− to AGND  
SYNC to AGND  
VCM to AGND  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
CSB to AGND  
SCLK to AGND  
SDIO to AGND  
OEB to AGND  
PDWN to AGND  
OR+/OR− to AGND  
Table 7. Thermal Resistance  
Airflow  
Velocity  
(m/sec)  
1, 2  
1, 3  
1, 4  
Package Type  
θJA  
θJC  
θJB  
10.±  
Unit  
°C/W  
°C/W  
°C/W  
6±-Lead LFCSP  
9 mm × 9 mm  
(CP-6±-±)  
0
26.8 1.1±  
21.6  
D0−/D0+ Through D11−/D11+ to  
AGND  
1.0  
DCO+/DCO− to AGND  
Environmental  
−0.3 V to DRVDD + 0.3 V  
2.0  
20.2  
1 Per JEDEC 51-7, plus JEDEC 25-5 2S2P test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per MIL-Std 883, Method 1012.1.  
Operating Temperature Range  
(Ambient)  
Maximum Junction Temperature  
Under Bias  
−±0°C to +85°C  
150°C  
± Per JEDEC JESD51-8 (still air).  
Storage Temperature Range  
(Ambient)  
−65°C to +125°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. C | Page 11 of 36  
 
AD9613  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
CLK+  
CLK–  
SYNC  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
1
2
3
4
5
6
7
8
9
48 PDWN  
47 OEB  
46 CSB  
45 SCLK  
44 SDIO  
43 OR+  
AD9613  
PARALLEL LVDS  
TOP VIEW  
42 OR–  
41 D11+ (MSB)  
40 D11– (MSB)  
39 D10+  
38 D10–  
37 DRVDD  
36 D9+  
(Not to Scale)  
DRVDD 10  
DNC 11  
DNC 12  
D0– (LSB) 13  
D0+ (LSB) 14  
D1– 15  
35 D9–  
34 D8+  
D1+ 16  
33 D8–  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.  
2. THE EXPOSED THERMAL PADDLE ON THE BOTTOM OF THE PACKAGE  
PROVIDES THE ANALOG GROUND FOR THE PART. THIS EXPOSED PADDLE  
MUST BE CONNECTED TO GROUND FOR PROPER OPERATION.  
Figure 4. Pin Configuration (Top View) for the LFCSP Interleaved Parallel LVDS Mode  
Table 8. Pin Function Descriptions for the LFCSP Interleaved Parallel LVDS Mode  
Pin No.  
Mnemonic  
Type  
Description  
ADC Power Supplies  
0
AGND,  
Exposed Paddle  
Ground  
Analog Ground. The exposed thermal paddle on the bottom of the  
package provides the analog ground for the part. This exposed paddle  
must be connected to ground for proper operation.  
4 to 9, 11, 12, 55, 56, 58  
DNC  
Do not connect. Do not connect to these pins.  
Digital Output Driver Supply (1.8 V Nominal).  
Analog Power Supply (1.8 V Nominal).  
10, 19, 28, 37  
DRVDD  
AVDD  
Supply  
Supply  
49, 50, 53, 54, 59, 60, 63, 64  
ADC Analog  
1
2
51  
52  
57  
CLK+  
CLK−  
VIN+A  
VIN−A  
VCM  
Input  
Input  
Input  
Input  
Output  
ADC Clock Input—True.  
ADC Clock Input—Complement.  
Differential Analog Input Pin (+) for Channel A.  
Differential Analog Input Pin (−) for Channel A.  
Common-Mode Level Bias Output for Analog Inputs. This pin should  
be decoupled to ground using a 0.1 μF capacitor.  
61  
62  
VIN−B  
VIN+B  
Input  
Input  
Differential Analog Input Pin (−) for Channel B.  
Differential Analog Input Pin (+) for Channel B.  
Digital Input  
3
SYNC  
Input  
Digital Synchronization Pin. Slave mode only.  
Rev. C | Page 12 of 36  
Data Sheet  
AD9613  
Pin No.  
Mnemonic  
Type  
Description  
Digital Outputs  
1±  
13  
16  
15  
18  
17  
21  
20  
23  
22  
27  
26  
30  
29  
32  
31  
3±  
33  
36  
35  
39  
38  
±1  
±0  
±3  
D0+ (LSB)  
D0− (LSB)  
D1+  
D1−  
D2+  
D2−  
D3+  
D3−  
D±+  
D±−  
D5+  
D5−  
D6+  
D6−  
D7+  
D7−  
D8+  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Channel A/Channel B LVDS Output Data 0—True.  
Channel A/Channel B LVDS Output Data 0—Complement.  
Channel A/Channel B LVDS Output Data 1—True.  
Channel A/Channel B LVDS Output Data 1—Complement.  
Channel A/Channel B LVDS Output Data 2—True.  
Channel A/Channel B LVDS Output Data 2—Complement.  
Channel A/Channel B LVDS Output Data 3—True.  
Channel A/Channel B LVDS Output Data 3—Complement.  
Channel A/Channel B LVDS Output Data ±—True.  
Channel A/Channel B LVDS Output Data ±—Complement.  
Channel A/Channel B LVDS Output Data 5—True.  
Channel A/Channel B LVDS Output Data 5—Complement.  
Channel A/Channel B LVDS Output Data 6—True.  
Channel A/Channel B LVDS Output Data 6—Complement.  
Channel A/Channel B LVDS Output Data 7—True.  
Channel A/Channel B LVDS Output Data 7—Complement.  
Channel A/Channel B LVDS Output Data 8—True.  
Channel A/Channel B LVDS Output Data 8—Complement.  
Channel A/Channel B LVDS Output Data 9—True.  
Channel A/Channel B LVDS Output Data 9—Complement.  
Channel A/Channel B LVDS Output Data 10—True.  
D8−  
D9+  
D9−  
D10+  
D10−  
D11+ (MSB)  
D11− (MSB)  
OR+  
OR−  
DCO+  
DCO−  
Channel A/Channel B LVDS Output Data 10—Complement.  
Channel A/Channel B LVDS Output Data 11—True.  
Channel A/Channel B LVDS Output Data 11—Complement.  
Channel A/Channel B LVDS Overrange—True.  
Channel A/Channel B LVDS Overrange—Complement.  
Channel A/Channel B LVDS Data Clock Output—True.  
Channel A/Channel B LVDS Data Clock Output—Complement.  
±2  
25  
2±  
SPI Control  
±5  
±±  
SCLK  
SDIO  
CSB  
Input  
SPI Serial Clock.  
Input/Output SPI Serial Data I/O.  
Input  
±6  
SPI Chip Select (Active Low).  
Output Enable Bar and  
Power-Down  
±7  
±8  
OEB  
PDWN  
Input/Output Output Enable Bar Input (Active Low).  
Input/Output Power-Down Input (Active High). Operation depends upon SPI mode;  
this input can be configured as power-down or standby. For further  
description, refer to Table 1±.  
Rev. C | Page 13 of 36  
AD9613  
Data Sheet  
PIN 1  
INDICATOR  
CLK+  
CLK–  
SYNC  
DNC  
1
2
3
4
5
6
7
8
9
48 PDWN  
47 OEB  
46 CSB  
45 SCLK  
44 SDIO  
43 ORA+  
42 ORA–  
41 A D10+/D11+ (MSB)  
40 A D10–/D11– (MSB)  
39 A D8+/D9+  
38 A D8–/D9–  
37 DRVDD  
36 A D6+/D7+  
35 A D6–/D7–  
34 A D4+/D5+  
33 A D4–/D5–  
DNC  
AD9613  
CHANNEL  
MULTIPLEXED  
(EVEN/ODD)  
LVDS  
ORB–  
ORB+  
DNC  
DNC  
DRVDD 10  
B D0–/D1– (LSB) 11  
B D0+/D1+ (LSB) 12  
B D2–/D3– 13  
TOP VIEW  
(Not to Scale)  
B D2+/D3+ 14  
B D4–/D5– 15  
B D4+/D5+ 16  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.  
2. THE EXPOSED THERMAL PADDLE ON THE BOTTOM OF THE PACKAGE PROVIDES THE  
ANALOG GROUND FOR THE PART. THIS EXPOSED PADDLE MUST BE CONNECTED TO  
GROUND FOR PROPER OPERATION.  
Figure 5. Pin Configuration (Top View) for the LFCSP Channel Multiplexed (Even/Odd) LVDS Mode  
Table 9. Pin Function Descriptions for the LFCSP Channel Multiplexed (Even/Odd) LVDS Mode  
Pin No.  
Mnemonic  
Type  
Description  
ADC Power Supplies  
10, 19, 28, 37  
DRVDD  
AVDD  
DNC  
Supply  
Supply  
Digital Output Driver Supply (1.8 V Nominal).  
Analog Power Supply (1.8 V Nominal).  
49, 50, 53, 54, 59, 60, 63, 64  
4 to 9, 26, 27, 55, 56, 58  
0
Do Not Connect. Do not connect to these pins.  
AGND, Exposed  
Paddle  
Ground  
The exposed thermal paddle on the bottom of the package provides  
the analog ground for the part. This exposed paddle must be connected  
to ground for proper operation.  
ADC Analog  
51  
52  
62  
61  
57  
VIN+A  
VIN−A  
VIN+B  
VIN−B  
VCM  
Input  
Input  
Input  
Input  
Output  
Differential Analog Input Pin (+) for Channel A.  
Differential Analog Input Pin (−) for Channel A.  
Differential Analog Input Pin (+) for Channel B.  
Differential Analog Input Pin (−) for Channel B.  
Common-Mode Level Bias Output for Analog Inputs. This pin should be  
decoupled to ground using a 0.1 μF capacitor.  
1
2
CLK+  
CLK−  
Input  
Input  
ADC Clock Input—True.  
ADC Clock Input—Complement.  
Digital Input  
3
SYNC  
Input  
Digital Synchronization Pin. Slave mode only.  
Digital Outputs  
7
ORB+  
ORB−  
Output  
Output  
Channel B LVDS Overrange Output—True. The overrange indication is  
valid on the rising edge of the DCO.  
Channel B LVDS Overrange Output—Complement. The overrange  
indication is valid on the rising edge of the DCO.  
6
Rev. C | Page 14 of 36  
Data Sheet  
AD9613  
Pin No.  
11  
12  
13  
1±  
15  
16  
17  
18  
20  
21  
22  
23  
29  
30  
31  
32  
33  
3±  
35  
36  
38  
39  
±0  
±1  
±3  
Mnemonic  
B D0−/D1− (LSB)  
B D0+/D1+ (LSB)  
B D2−/D3−  
B D2+/D3+  
B D±−/D5−  
B D±+/D5+  
B D6−/D7−  
B D6+/D7+  
B D8−/D9−  
B D8+/D9+  
B D10−/D11−  
B D10+/D11+  
Type  
Description  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Channel B LVDS Output Data 1/Data 0—Complement.  
Channel B LVDS Output Data 1/Data 0—True.  
Channel B LVDS Output Data 3/Data 2—Complement.  
Channel B LVDS Output Data 3/Data 2—True.  
Channel B LVDS Output Data 5/Data ±—Complement.  
Channel B LVDS Output Data 5/Data ±—True.  
Channel B LVDS Output Data 7/Data 6—Complement.  
Channel B LVDS Output Data 7/Data 6—True.  
Channel B LVDS Output Data 9/Data 8—Complement.  
Channel B LVDS Output Data 9/Data 8—True.  
Channel B LVDS Output Data 11/Data 10—Complement.  
Channel B LVDS Output Data 11/Data 10—True.  
Channel A LVDS Output Data 1/Data 0—Complement.  
Channel A LVDS Output Data 1/Data 0—True.  
Channel A LVDS Output Data 3/Data 2—Complement.  
Channel A LVDS Output Data 3/Data 2—True.  
Channel A LVDS Output Data 5/Data ±—Complement.  
Channel A LVDS Output Data 5/Data ±—True.  
Channel A LVDS Output Data 7/Data 6—Complement.  
Channel A LVDS Output Data 7/Data 6—True.  
Channel A LVDS Output Data 9/Data 8—Complement.  
Channel A LVDS Output Data 9/Data 8—True.  
Channel A LVDS Output Data 11/Data 10—Complement.  
Channel A LVDS Output Data 11/Data 10—True.  
A D0−/D1− (LSB) Output  
A D0+/D1+ (LSB) Output  
A D2−/D3−  
A D2+/D3+  
A D±−/D5−  
A D±+/D5+  
A D6−/D7−  
A D6+/D7+  
A D8−/D9−  
A D8+/D9+  
A D10−/D11−  
A D10+/D11+  
ORA+  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Channel A LVDS Overrange Output—True. The overrange indication is  
valid on the rising edge of the DCO.  
±2  
ORA−  
Output  
Channel A LVDS Overrange Output—Complement. The overrange  
indication is valid on the rising edge of the DCO.  
25  
2±  
DCO+  
DCO−  
Output  
Output  
Channel A/Channel B LVDS Data Clock Output—True.  
Channel A/Channel B LVDS Data Clock Output—Complement.  
SPI Control  
±5  
±±  
±6  
SCLK  
SDIO  
CSB  
Input  
SPI Serial Clock.  
Input/Output SPI Serial Data I/O.  
Input  
SPI Chip Select (Active Low).  
Output Enable Bar and  
Power-Down  
±7  
±8  
OEB  
PDWN  
Input  
Input  
Output Enable Bar Input (Active Low).  
Power-Down Input (Active High). Operation depends upon SPI mode;  
this input can be configured as power-down or standby. For further  
description, refer to Table 1±.  
Rev. C | Page 15 of 36  
AD9613  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 1.8 V, DRVDD = 1.8 V, sample rate = maximum sample rate per speed grade, DCS enabled, 1.75 V p-p differential input, VIN =  
−1.0 dBFS, 32k sample, TA = 25°C, unless otherwise noted.  
0
–20  
–40  
–60  
120  
170MSPS  
90.1MHz @ –1dBFS  
SNR = 69.7dB (70.7dBFS)  
SFDR = 88dBc  
SFDR (dBFS)  
SNR (dBFS)  
100  
80  
60  
SECOND HARMONIC  
THIRD HARMONIC  
–80  
–100  
–120  
SFDR (dBc)  
40  
20  
0
SNR (dBc)  
–140  
0
10  
20  
30  
40  
50  
60  
70  
80  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 6. AD9613-170 Single-Tone FFT with fIN = 90.1 MHz  
Figure 9. AD9613-170 Single-Tone SNR/SFDR vs.  
Input Amplitude (AIN) with fIN = 90.1 MHz  
0
100  
170MSPS  
185.1MHz @ –1dBFS  
SNR = 68.9dB (69.9dBFS)  
SFDR = 80dBc  
SFDR (dBc)  
95  
90  
–20  
–40  
–60  
85  
80  
75  
70  
65  
60  
THIRD HARMONIC  
–80  
–100  
–120  
SNR (dBFS)  
–140  
0
10  
20  
30  
40  
50  
60  
70  
80  
60 90 120 150 180 210 240 270 300 330 360 390  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. AD9613-170 Single-Tone FFT with fIN = 185.1 MHz  
Figure 10. AD9613-170 Single-Tone SNR/SFDR vs. Input Frequency (fIN)  
0
0
170MSPS  
305.1MHz @ –1dBFS  
SNR = 67dB (68dBFS)  
–20  
–20  
SFDR = 79dBc  
SFDR (dBc)  
–40  
–40  
SECOND HARMONIC  
–60  
IMD3 (dBc)  
THIRD HARMONIC  
–60  
–80  
–80  
–100  
SFDR (dBFS)  
–100  
–120  
–140  
IMD3 (dBFS)  
–120  
–90.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
–78.5  
–67.0  
–55.5  
–44.0  
–32.5  
–21.0  
–7.0  
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 8. AD9613-170 Single-Tone FFT with fIN = 305.1 MHz  
Figure 11. AD9613-170 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
IN1 = 89.12, fIN2 = 92.12 MHz, fS = 170 MSPS  
f
Rev. C | Page 16 of 36  
 
Data Sheet  
AD9613  
100  
0
–20  
–40  
–60  
–80  
95  
90  
85  
80  
SFDR (dBc)  
IMD3 (dBc)  
SNR, CHANNEL B  
SFDR, CHANNEL B  
SNR, CHANNEL A  
SFDR, CHANNEL A  
75  
70  
65  
SFDR (dBFS)  
IMD3 (dBFS)  
–100  
–120  
–90.0  
–78.5  
–67.0  
–55.5  
–44.0  
–32.5  
–21.0  
–7.0  
40 50 60 70 80 90 100 110 120 130 140 150 160 170  
INPUT AMPLITUDE (dBFS)  
SAMPLE RATE (MSPS)  
Figure 12. AD9613-170 Two-Tone SFDR/IMD3 vs.  
Input Amplitude (AIN) with fIN1 = 184.12, fIN2 = 187.12 MHz, fS = 170 MSPS  
Figure 15. AD9613-170 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 90 MHz  
0
16,000  
170MSPS  
89.12MHz @ –7dBFS  
92.12MHz @ –7dBFS  
0.38LSB rms  
16,384 TOTAL HITS  
14,000  
–20  
SFDR = 87dBc (94dBFS)  
12,000  
–40  
10,000  
8000  
6000  
4000  
–60  
–80  
–100  
–120  
2000  
0
–140  
0
10  
20  
30  
40  
50  
60  
70  
80  
N – 1  
N
N + 1  
FREQUENCY (MHz)  
OUTPUT CODE  
Figure 13. AD9613-170 Two-Tone FFT with fIN1 = 89.12, fIN2 = 92.12 MHz,  
fS = 170 MSPS  
Figure 16. AD9613-170 Grounded Input Histogram  
0
0
–20  
–40  
–60  
170MSPS  
184.12MHz @ –7dBFS  
187.12MHz @ –7dBFS  
SFDR = 84dBc (91dBFS)  
210MSPS  
90.1MHz @ –1dBFS  
SNR = 69.5dB (70.5dBFS)  
SFDR = 88dBc  
–20  
–40  
–60  
THIRD HARMONIC  
–80  
–100  
–120  
–80  
–100  
–120  
–140  
–140  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 14. AD9613-170 Two-Tone FFT with fIN1 = 184.12, fIN2 = 187.12 MHz,  
fS = 170 MSPS  
Figure 17. AD9613-210 Single-Tone FFT with fIN = 90.1 MHz  
Rev. C | Page 17 of 36  
AD9613  
Data Sheet  
0
–20  
–40  
–60  
100  
95  
210MSPS  
185.1MHz @ –1dBFS  
SNR = 68.5dB (69.5dBFS)  
SFDR = 88dBc  
SFDR (dBc)  
90  
85  
80  
75  
70  
65  
60  
THIRD HARMONIC  
–80  
–100  
–120  
SNR (dBFS)  
–140  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
60 90 120 150 180 210 240 270 300 330 360 390  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 18. AD9613-210 Single-Tone FFT with fIN = 185.1 MHz  
Figure 21. AD9613-210 Single-Tone SNR/SFDR vs. Input Frequency (fIN  
)
0
0
210MSPS  
305.1MHz @ –1dBFS  
SNR = 66.5dB (67.5dBFS)  
–20  
–20  
SFDR = 75dBc  
SFDR (dBc)  
–40  
–40  
THIRD HARMONIC  
–60  
IMD3 (dBc)  
–60  
SECOND HARMONIC  
–80  
–80  
–100  
–120  
–140  
SFDR (dBFS)  
–100  
IMD3 (dBFS)  
–120  
–90.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
–78.5  
–67.0  
–55.5  
–44.0  
–32.5  
–21.0  
–7.0  
90  
100  
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 19. AD9613-210 Single-Tone FFT with fIN = 305.1 MHz  
Figure 22. AD9613-210 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
f
IN1 = 89.12 , fIN2 = 92.12 MHz, fS = 210 MSPS  
120  
0
–20  
–40  
–60  
–80  
SFDR (dBFS)  
100  
SFDR (dBc)  
IMD3 (dBc)  
80  
SNR (dBFS)  
60  
SFDR (dBc)  
40  
SNR (dBc)  
SFDR (dBFS)  
IMD3 (dBFS)  
–100  
–120  
20  
0
–90.0  
–78.5  
–67.0  
–55.5  
–44.0  
–32.5  
–21.0  
–7.0  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
INPUT AMPLITUDE (dBFS)  
0
INPUT AMPLITUDE (dBFS)  
Figure 20. AD9613-210 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
Figure 23. AD9613-210 Two-Tone SFDR/IMD3 vs.  
Input Amplitude (AIN) with fIN1 = 184.12, fIN2 = 187.12 MHz, fS = 210 MSPS  
f
IN = 90.1 MHz  
Rev. C | Page 18 of 36  
Data Sheet  
AD9613  
14,000  
12,000  
10,000  
8000  
0
210MSPS  
0.437LSB rms  
16,384 TOTAL HITS  
89.12MHz @ –7dBFS  
92.12MHz @ –7dBFS  
SFDR = 90dBc (97dBFS)  
–20  
–40  
–60  
6000  
–80  
–100  
–120  
4000  
2000  
0
–140  
0
10  
20  
30  
40  
50  
60  
70  
80  
N – 2 N – 1  
N
N + 1  
90  
100  
FREQUENCY (MHz)  
OUTPUT CODE  
Figure 27. AD9613-210 Grounded Input Histogram  
Figure 24. AD9613-210 Two-Tone FFT with fIN1 = 89.12, fIN2 = 92.12 MHz,  
fS = 210 MSPS  
0
–20  
–40  
–60  
0
250MSPS  
210MSPS  
184.12MHz @ –7dBFS  
187.12MHz @ –7dBFS  
SFDR = 88dBc (95dBFS)  
90.1MHz @ –1dBFS  
SNR = 68.9dB (69.9dBFS)  
SFDR = 88dBc  
–20  
–40  
SECOND HARMONIC  
THIRD HARMONIC  
–60  
–80  
–100  
–120  
–80  
–100  
–120  
–140  
–140  
0
10 20 30 40 50 60 70 80 90 100 110 120  
FREQUENCY (MHz)  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (MHz)  
Figure 28. AD9613-250 Single-Tone FFT with fIN = 90.1 MHz  
Figure 25. AD9613-210 Two-Tone FFT with fIN1 = 184.12, fIN2 = 187.12 MHz,  
fS = 210 MSPS  
0
100  
250MSPS  
185.1MHz @ –1dBFS  
SNR = 68.1dB (69.1dBFS)  
–20  
95  
SFDR = 85dBc  
–40  
90  
–60  
85  
THIRD HARMONIC  
SNR, CHANNEL B  
SECOND HARMONIC  
SFDR, CHANNEL B  
SNR, CHANNEL A  
80  
–80  
SFDR, CHANNEL A  
–100  
75  
–120  
–140  
70  
65  
40  
60  
80  
100  
120  
140  
160  
180  
200  
0
10 20 30 40 50 60 70 80 90 100 110 120  
FREQUENCY (MHz)  
SAMPLE RATE (MSPS)  
Figure 26. AD9613-210 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 90 MHz  
Figure 29. AD9613-250 Single-Tone FFT with fIN = 185.1 MHz  
Rev. C | Page 19 of 36  
AD9613  
Data Sheet  
0
–20  
–40  
–60  
0
–20  
–40  
–60  
–80  
250MSPS  
305.1MHz @ –1dBFS  
SNR = 66.5dB (67.5dBFS)  
SFDR = 83dBc  
SFDR (dBc)  
IMD3 (dBc)  
SECOND HARMONIC  
THIRD HARMONIC  
–80  
–100  
–120  
SFDR (dBFS)  
IMD3 (dBFS)  
–100  
–120  
–140  
0
–90.0  
–78.5  
–67.0  
–55.5  
–44.0  
–32.5  
–21.0  
–7.0  
10 20 30 40 50 60 70 80 90 100 110 120  
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 30. AD9613-250 Single-Tone FFT with fIN = 305.1 MHz  
Figure 33. AD9613-250 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
f
IN1 = 89.12, fIN2 = 92.12 MHz, fS = 250 MSPS  
120  
0
–20  
–40  
–60  
–80  
SFDR (dBFS)  
100  
SFDR (dBc)  
IMD3 (dBc)  
80  
SNR (dBFS)  
60  
SFDR (dBc)  
40  
SFDR (dBFS)  
IMD3 (dBFS)  
SNR (dBc)  
20  
–100  
–120  
0
–90.0  
–78.5  
–67.0  
–55.5  
–44.0  
–32.5  
–21.0  
–7.0  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
INPUT AMPLITUDE (dBFS)  
INPUT AMPLITUDE (dBFS)  
Figure 34. AD9613-250 Two-Tone SFDR/IMD3 vs.  
Input Amplitude (AIN) with fIN1 = 184.12, fIN2 = 187.12 MHz, fS = 250 MSPS  
Figure 31. AD9613-250 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
f
IN = 90.1 MHz  
0
100  
95  
250MSPS  
89.12MHz @ –7dBFS  
92.12MHz @ –7dBFS  
–20  
SFDR = 86dBc (93dBFS)  
SFDR (dBc)  
90  
85  
80  
75  
70  
65  
60  
–40  
–60  
–80  
–100  
–120  
SNR (dBFS)  
–140  
0
10 20 30 40 50 60 70 80 90 100 110 120  
FREQUENCY (MHz)  
60  
80 100 120 140 160 180 200 220 240 260  
FREQUENCY (MHz)  
Figure 35. AD9613-250 Two-Tone FFT with fIN1 = 89.12, fIN2 = 92.12 MHz,  
fS = 250 MSPS  
Figure 32. AD9613-250 Single-Tone SNR/SFDR vs. Input Frequency (fIN  
)
Rev. C | Page 20 of 36  
Data Sheet  
AD9613  
16,000  
14,000  
12,000  
0
250MSPS  
184.12MHz @ –7dBFS  
187.12MHz @ –7dBFS  
SFDR = 86dBc (93dBFS)  
0.39LSB rms  
16,384 TOTAL HITS  
–20  
–40  
–60  
10,000  
8000  
6000  
4000  
–80  
–100  
–120  
2000  
0
–140  
N – 1  
N
N + 1  
0
10 20 30 40 50 60 70 80 90 100 110 120  
FREQUENCY (MHz)  
OUTPUT CODE  
Figure 38. AD9613-250 Grounded Input Histogram  
Figure 36. AD9613-250 Two-Tone FFT with fIN1 = 184.12, fIN2 = 187.12 MHz,  
fS = 250 MSPS  
100  
95  
90  
85  
SNR, CHANNEL B  
SFDR, CHANNEL B  
SNR, CHANNEL A  
80  
SFDR, CHANNEL A  
75  
70  
65  
40  
60  
80 100 120 140 160 180 200 220 240  
SAMPLE RATE (MSPS)  
Figure 37. AD9613-250 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 90.1 MHz  
Rev. C | Page 21 of 36  
AD9613  
Data Sheet  
EQUIVALENT CIRCUITS  
AVDD  
350  
26kΩ  
SCLK  
OR  
PDWN  
OR OEB  
VIN  
Figure 39. Equivalent Analog Input Circuit  
Figure 43. Equivalent SCLK, PDWN, or OEB Input Circuit  
AVDD  
AVDD  
AVDD  
AVDD  
26kΩ  
350Ω  
0.9V  
CSB  
15kΩ  
15kΩ  
CLK+  
CLK–  
Figure 40. Equivalent Clock lnput Circuit  
Figure 44. Equivalent CSB Input Circuit  
DRVDD  
AVDD  
AVDD  
V+  
V–  
DATAOUT–  
V–  
DATAOUT+  
V+  
SYNC  
0.9V  
16kΩ  
0.9V  
Figure 41. Equivalent LVDS Output Circuit  
Figure 45. Equivalent SYNC Input Circuit  
DRVDD  
350Ω  
SDIO  
26kΩ  
Figure 42. Equivalent SDIO Circuit  
.
Rev. C | Page 22 of 36  
 
Data Sheet  
AD9613  
THEORY OF OPERATION  
A small resistor in series with each input can help reduce the  
The AD9613 has two analog input channels, two filter channels,  
and two digital output channels. The intermediate frequency (IF)  
input signal passes through several stages before appearing at the  
output port(s) as a filtered, and optionally, decimated digital signal.  
peak transient current required from the output stage of the  
driving source. A shunt capacitor can be placed across the  
inputs to provide dynamic charging currents. This passive  
network creates a low-pass filter at the ADC input; therefore,  
the precise values are dependent on the application.  
The dual ADC design can be used for diversity reception of signals,  
where the ADCs operate identically on the same carrier but from  
two separate antennae. The ADCs can also be operated with  
independent analog inputs. The user can sample frequencies  
from dc to 300 MHz using appropriate low-pass or band-pass  
filtering at the ADC inputs with little loss in ADC performance.  
Operation to 400 MHz analog input is permitted but occurs at  
the expense of increased ADC noise and distortion.  
In intermediate frequency (IF) undersampling applications, the  
shunt capacitors should be reduced. In combination with the  
driving source impedance, the shunt capacitors limit the input  
bandwidth. Refer to the AN-742 Application Note, Frequency  
Domain Response of Switched-Capacitor ADCs; the AN-827  
Application Note, A Resonant Approach to Interfacing Amplifiers to  
Switched-Capacitor ADCs; and the Analog Dialogue article,  
Transformer-Coupled Front-End for Wideband A/D Converters,”  
for more information on this subject.  
Synchronization capability is provided to allow synchronized  
timing between multiple devices.  
BIAS  
Programming and control of the AD9613 are accomplished  
using a 3-pin, SPI-compatible serial interface.  
S
S
C
C
FB  
S
ADC ARCHITECTURE  
VIN+  
VIN–  
The AD9613 architecture consists of a dual front-end sample-  
and-hold circuit, followed by a pipelined, switched-capacitor  
ADC. The quantized outputs from each stage are combined into  
a final 12-bit result in the digital correction logic. The pipelined  
architecture permits the first stage to operate on a new input  
sample and the remaining stages to operate on the preceding  
samples. Sampling occurs on the rising edge of the clock.  
C
C
PAR1  
PAR2  
H
S
S
S
C
S
C
C
FB  
C
PAR1  
PAR2  
S
BIAS  
Figure 46. Switched-Capacitor Input  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor digital-  
to-analog converter (DAC) and an interstage residue amplifier  
(MDAC). The MDAC magnifies the difference between the  
reconstructed DAC output and the flash input for the next stage  
in the pipeline. One bit of redundancy is used in each stage to  
facilitate digital correction of flash errors. The last stage simply  
consists of a flash ADC.  
For best dynamic performance, the source impedances driving  
VIN+ and VIN− should be matched, and the inputs should be  
differentially balanced.  
Input Common Mode  
The analog inputs of the AD9613 are not internally dc biased.  
In ac-coupled applications, the user must provide this bias  
externally. Setting the device so that VCM = 0.5 × AVDD (or  
0.9 V) is recommended for optimum performance. An on-board  
common-mode voltage reference is included in the design and  
is available from the VCM pin. Using the VCM output to set the  
input common mode is recommended. Optimum performance  
is achieved when the common-mode voltage of the analog input  
is set by the VCM pin voltage (typically 0.5 × AVDD). The VCM  
pin must be decoupled to ground by a 0.1 µF capacitor, as described  
in the Applications Information section. Place this decoupling  
capacitor close to the pin to minimize the series resistance and  
inductance between the part and this capacitor.  
The input stage of each channel contains a differential sampling  
circuit that can be ac- or dc-coupled in differential or single-ended  
modes. The output staging block aligns the data, corrects errors,  
and passes the data to the output buffers. The output buffers are  
powered from a separate supply, allowing digital output noise to be  
separated from the analog core. During power-down, the output  
buffers go into a high impedance state.  
ANALOG INPUT CONSIDERATIONS  
The analog input to the AD9613 is a differential switched-capacitor  
circuit that has been designed for optimum performance while  
processing a differential input signal.  
The clock signal alternatively switches the input between sample  
mode and hold mode (see the configuration shown in Figure 46).  
When the input is switched into sample mode, the signal source  
must be capable of charging the sampling capacitors and settling  
within 1/2 clock cycle.  
Rev. C | Page 23 of 36  
 
AD9613  
Data Sheet  
Differential Input Configurations  
The signal characteristics must be considered when selecting  
a transformer. Most RF transformers saturate at frequencies  
below a few megahertz. Excessive signal power can also cause  
core saturation, which leads to distortion.  
Optimum performance is achieved while driving the AD9613  
in a differential input configuration. For baseband applications, the  
AD8138, ADA4937-2, ADA4938-2, and ADA4930-2 differential  
drivers provide excellent performance and a flexible interface to  
the ADC.  
At input frequencies in the second Nyquist zone and above, the  
noise performance of most amplifiers is not adequate to achieve  
the true SNR performance of the AD9613. For applications where  
SNR is a key parameter, differential double balun coupling is  
the recommended input configuration (see Figure 49). In this  
configuration, the input is ac-coupled, and the CML is provided  
to each input through a 33 Ω resistor. These resistors compensate  
for losses in the input baluns to provide a 50 Ω impedance to  
the driver.  
The output common-mode voltage of the ADA4930-2 is easily  
set with the VCM pin of the AD9613 (see Figure 47), and the  
driver can be configured in a Sallen-Key filter topology to  
provide band limiting of the input signal.  
15pF  
200Ω  
33Ω  
5pF  
15Ω  
90Ω  
VIN–  
VIN+  
AVDD  
76.8Ω  
VIN  
In the double balun and transformer configurations, the value  
of the input capacitors and resistors is dependent on the input  
frequency and source impedance. Based on these parameters,  
the value of the input resistors and capacitors may need to be  
adjusted or some components may need to be removed. Table 10  
displays recommended values to set the RC network for different  
input frequency ranges. However, these values are dependent  
on the input signal and bandwidth and should be used only as  
a starting guide. Note that the values given in Table 10 are for  
each R1, R2, C2, and R3 component shown in Figure 48 and  
Figure 49.  
ADC  
ADA4930-2  
0.1µF  
33Ω  
15pF  
15Ω  
VCM  
120Ω  
200Ω  
33Ω  
0.1µF  
Figure 47. Differential Input Configuration Using the ADA4938-2  
For baseband applications where SNR is a key parameter,  
differential transformer coupling is the recommended input  
configuration. An example is shown in Figure 48. To bias the  
analog input, the VCM voltage can be connected to the center  
tap of the secondary winding of the transformer.  
An alternative to using a transformer-coupled input at frequencies  
in the second Nyquist zone is to use an amplifier with variable  
gain. The AD8375 or AD8376 digital variable gain amplifier  
(DVGAs) provides good performance for driving the AD9613.  
Figure 50 shows an example of the AD8376 driving the AD9613  
through a band-pass antialiasing filter.  
C2  
R3  
R2  
VIN+  
R1  
2V p-p  
49.9Ω  
C1  
R1  
ADC  
R2  
VCM  
VIN–  
33Ω  
R3  
0.1µF  
0.1µF  
C2  
Figure 48. Differential Transformer-Coupled Configuration  
Table 10. Example RC Network  
Frequency Range (MHz)  
0 to 100  
R1 Series (Ω)  
C1 Differential (pF)  
R2 Series (Ω)  
C2 Shunt (pF)  
R3 Shunt (Ω)  
±9.9  
±9.9  
33  
15  
8.2  
3.9  
0
0
15  
8.2  
100 to 300  
C2  
R3  
0.1µF  
0.1µF  
R1  
R2  
R2  
VIN+  
2V p-p  
33Ω  
P
S
S
P
C1  
R1  
ADC  
A
0.1µF  
33Ω  
0.1µF  
VCM  
VIN–  
33Ω  
R3  
0.1µF  
C2  
Figure 49. Differential Double Balun Input Configuration  
Rev. C | Page 2± of 36  
 
 
 
 
Data Sheet  
AD9613  
1000pF 180nH 220nH  
1µH  
165Ω  
VPOS  
15pF  
AD9613  
AD8376  
5.1pF 3.9pF  
301Ω  
VCM  
1nF  
2.5kΩ║2pF  
165Ω  
1nF  
1µH  
68nH  
180nH 220nH  
1000pF  
NOTES  
1. ALL INDUCTORS ARE COILCRAFT 0603CS COMPONENTS  
WITH THE EXCEPTION OF THE 1µH CHOKE INDUCTORS (0603LS).  
2. FILTER VALUES SHOWN FOR A 20MHz BANDWIDTH FILTER  
CENTERED AT 140MHz.  
Figure 50. Differential Input Configuration Using the AD8376 (Filter Values Shown for a 20 MHz Bandwidth Filter Centered at 140 MHz)  
the clock from feeding through to other portions of the AD9613,  
while preserving the fast rise and fall times of the signal, which are  
critical to low jitter performance.  
VOLTAGE REFERENCE  
A stable and accurate voltage reference is built into the AD9613.  
The full-scale input range can be adjusted by varying the reference  
voltage via SPI. The input span of the ADC tracks reference  
voltage changes linearly.  
®
Mini-Circuits  
ADT1-1WT, 1:1Z  
ADC  
390pF  
390pF  
XFMR  
CLOCK  
INPUT  
CLOCK INPUT CONSIDERATIONS  
CLK+  
CLK–  
100Ω  
50Ω  
For optimum performance, the AD9613 sample clock inputs,  
CLK+ and CLK−, should be clocked with a differential signal. The  
signal is typically ac-coupled into the CLK+ and CLK− pins via  
a transformer or via capacitors. These pins are biased internally  
(see Figure 51) and require no external bias. If the inputs are  
floated, the CLK− pin is pulled low to prevent spurious clocking.  
AVDD  
390pF  
SCHOTTKY  
DIODES: HSMS2822  
Figure 52. Transformer Coupled Differential Clock (Up to 200 MHz)  
25Ω  
ADC  
390pF  
390pF  
390pF  
CLOCK  
INPUT  
CLK+  
0.9V  
CLK–  
SCHOTTKY  
DIODES:  
HSMS2822  
25Ω  
CLK+  
CLK–  
Figure 53. Balun-Coupled Differential Clock (Up to 625 MHz)  
4pF  
4pF  
If a low jitter clock source is not available, another option is to  
ac-couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 54. The AD9510, AD9511, AD9512,  
AD9513, AD9514, AD9515, AD9516, AD9517, AD9518, AD9520,  
AD9522, AD9523, AD9524, and ADCLK905/ADCLK907/  
ADCLK925 clock drivers offer excellent jitter performance.  
Figure 51. Simplified Equivalent Clock Input Circuit  
Clock Input Options  
The AD9613 has a very flexible clock input structure. Clock  
input can be a CMOS, LVDS, LVPECL, or sine wave signal.  
Regardless of the type of signal being used, clock source jitter  
is of the most concern, as described in the Jitter Considerations  
section.  
ADC  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
AD95xx  
100Ω  
Figure 52 and Figure 53 show two preferable methods for clocking  
the AD9613 (at clock rates of up to 625 MHz). A low jitter clock  
source is converted from a single-ended signal to a differential  
signal using an RF balun or RF transformer.  
PECL DRIVER  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
240Ω  
240Ω  
50kΩ  
50kΩ  
Figure 54. Differential PECL Sample Clock (Up to 625 MHz)  
The RF balun configuration is recommended for clock frequencies  
between 125 MHz and 625 MHz, and the RF transformer is  
recommended for clock frequencies from 10 MHz to 200 MHz.  
The back-to-back Schottky diodes across the transformer secondary  
limit clock excursions into the AD9613 to approximately 0.8 V p-p  
differential. This limit helps prevent the large voltage swings of  
Rev. C | Page 25 of 36  
 
 
 
 
 
AD9613  
Data Sheet  
A third option is to ac-couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 55. The AD9510,  
AD9511, AD9512, AD9513, AD9514, AD9515, AD9516, AD9517,  
AD9518, AD9520, AD9522, AD9523, and AD9524 clock drivers  
offer excellent jitter performance.  
Jitter Considerations  
High speed, high resolution ADCs are sensitive to the quality of  
the clock input. The degradation in SNR at a given input frequency  
(fIN) due to jitter (tJ) can be calculated by  
SNRHF = −10 log[(2π × fIN × tJRMS)2 + 10 (/SNR /10)  
]
LF  
In the equation, the rms aperture jitter represents the root-  
mean-square of all jitter sources, which include the clock input,  
the analog input signal, and the ADC aperture jitter specification.  
IF undersampling applications are particularly sensitive to jitter,  
as shown in Figure 56.  
ADC  
CLK+  
0.1µF  
0.1µF  
CLOCK  
INPUT  
AD95xx  
LVDS DRIVER  
100Ω  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
50kΩ  
50kΩ  
80  
Figure 55. Differential LVDS Sample Clock (Up to 625 MHz)  
75  
70  
65  
Input Clock Divider  
The AD9613 contains an input clock divider with the ability to  
divide the input clock by integer values between 1 and 8. The  
duty cycle stabilizer (DCS) is enabled by default on power-up.  
The AD9613 clock divider can be synchronized using the external  
SYNC input. Bit 1 and Bit 2 of Register 0x3A allow the clock  
divider to be resynchronized on every SYNC signal or only on  
the first SYNC signal after the register is written. A valid SYNC  
causes the clock divider to reset to its initial state. This synchro-  
nization feature allows multiple parts to have their clock dividers  
aligned to guarantee simultaneous input sampling.  
60  
55  
50  
0.05ps  
0.2ps  
0.5ps  
1ps  
1.5ps  
MEASURED  
1
10  
100  
1000  
INPUT FREQUENCY (MHz)  
Figure 56. AD9613-250 SNR vs. Input Frequency and Jitter  
Clock Duty Cycle  
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of the AD9613.  
Power supplies for clock drivers should be separated from the  
ADC output driver supplies to avoid modulating the clock signal  
with digital noise. Low jitter, crystal-controlled oscillators make  
the best clock sources. If the clock is generated from another type  
of source (by gating, dividing, or another method), it should be  
retimed by the original clock at the last step.  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals and, as a result, may be sensitive to  
clock duty cycle. Commonly, a 5% tolerance is required on the  
clock duty cycle to maintain dynamic performance characteristics.  
The AD9613 contains a duty-cycle stabilizer (DCS) that retimes  
the nonsampling (falling) edge, providing an internal clock  
signal with a nominal 50% duty cycle. This allows the user to  
provide a wide range of clock input duty cycles without affecting  
the performance of the AD9613.  
Refer to the AN-501 Application Note, Aperture Uncertainty and  
ADC System Performance, and the AN-756 Application Note,  
Sample Systems and the Effects of Clock Phase Noise and Jitter,  
for more information about jitter performance as it relates to  
ADCs.  
Jitter on the rising edge of the input clock is still of paramount  
concern and is not reduced by the duty cycle stabilizer. The  
duty cycle control loop does not function for clock rates less  
than 40 MHz nominally. The loop has a time constant associated  
with it that must be considered when the clock rate can change  
dynamically. A wait time of 1.5 µs to 5 µs is required after a  
dynamic clock frequency increase or decrease before the DCS  
loop is relocked to the input signal. During the period that the  
loop is not locked, the DCS loop is bypassed, and internal  
device timing is dependent on the duty cycle of the input clock  
signal. In such applications, it may be appropriate to disable the  
duty cycle stabilizer. In all other applications, enabling the DCS  
circuit is recommended to maximize ac performance.  
Rev. C | Page 26 of 36  
 
 
 
Data Sheet  
AD9613  
POWER DISSIPATION AND STANDBY MODE  
DIGITAL OUTPUTS  
As shown in Figure 57, the power dissipated by the AD9613 is  
proportional to its sample rate. The data in Figure 57 was taken  
using the same operating conditions as those used for the Typical  
Performance Characteristics section.  
The AD9613 output drivers can be configured for either ANSI  
LVDS or reduced drive LVDS using a 1.8 V DRVDD supply.  
As detailed in Application Note AN-877, Interfacing to High  
Speed ADCs via SPI, the data format can be selected for offset  
binary, twos complement, or gray code when using the SPI  
control.  
0.8  
0.5  
0.4  
0.3  
0.2  
0.7  
0.6  
0.5  
0.4  
0.3  
TOTAL POWER  
Digital Output Enable Function (OEB)  
The AD9613 has a flexible three-state ability for the digital output  
pins. The three-state mode is enabled using the OEB pin or  
through the SPI interface. If the OEB pin is low, the output data  
drivers are enabled. If the OEB pin is high, the output data drivers  
are placed in a high impedance state. This OEB function is not  
intended for rapid access to the data bus. Note that OEB is  
referenced to the digital output driver supply (DRVDD) and  
should not exceed that supply voltage.  
I
AVDD  
I
DRVDD  
0.2  
0.1  
0
0.1  
0
When using the SPI interface, the data outputs of each channel  
can be independently three-stated by using the output enable bar  
bit (Bit 4) in Register 0x14. Because the output data is interleaved,  
if only one of the two channels is disabled, the output data of  
the remaining channel is repeated in both the rising and falling  
output clock cycles.  
40  
60  
80 100 120 140 160 180 200 220 240  
ENCODE FREQUENCY (MSPS)  
Figure 57. AD9613-250 Power and Current vs. Sample Rate  
By asserting PDWN (either through the SPI port or by asserting  
the PDWN pin high), the AD9613 is placed in power-down mode.  
In this state, the ADC typically dissipates 10 mW. During power-  
down, the output drivers are placed in a high impedance state.  
Asserting the PDWN pin low returns the AD9613 to its normal  
operating mode. Note that PDWN is referenced to the digital  
output driver supply (DRVDD) and should not exceed that  
supply voltage.  
Timing  
The AD9613 provides latched data with a pipeline delay of 10 input  
sample clock cycles. Data outputs are available one propagation  
delay (tPD) after the rising edge of the clock signal.  
Minimize the length of the output data lines and loads placed  
on them to reduce transients within the AD9613. These  
transients can degrade converter dynamic performance.  
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
and clock. Internal capacitors are discharged when entering  
power-down mode and then must be recharged when returning  
to normal operation. As a result, wake-up time is related to the  
time spent in power-down mode, and shorter power-down  
cycles result in proportionally shorter wake-up times.  
The lowest typical conversion rate of the AD9613 is 40 MSPS. At  
clock rates below 40 MSPS, dynamic performance can degrade.  
Data Clock Output (DCO)  
The AD9613 also provides data clock output (DCO) intended for  
capturing the data in an external register. Figure 2 shows a timing  
diagram of the AD9613 output modes.  
When using the SPI port interface, the user can place the ADC  
in power-down mode or standby mode. Standby mode allows  
the user to keep the internal reference circuitry powered when  
faster wake-up times are required. See the Memory Map Register  
Description section and the AN-877 Application Note,  
ADC OVERRANGE (OR)  
The ADC overrange indicator is asserted when an overrange is  
detected on the input of the ADC. The overrange condition is  
determined at the output of the ADC pipeline and, therefore, is  
subject to a latency of 10 ADC clock. An overrange at the input is  
indicated by this bit 10 clock cycles after it.  
Interfacing to High Speed ADCs via SPI, for additional details.  
Table 11. Output Data Format  
VIN+ − VIN−,  
Input Span = 1.75 V p-p (V)  
Input (V)  
Offset Binary Output Mode  
0000 0000 0000  
0000 0000 0000  
1000 0000 0000  
1111 1111 1111  
Twos Complement Mode (Default)  
1000 0000 0000  
1000 0000 0000  
0000 0000 0000  
0111 1111 1111  
OR  
1
0
0
0
VIN+ − VIN–  
VIN+ − VIN–  
VIN+ − VIN–  
VIN+ − VIN–  
VIN+ − VIN–  
Less than –0.875  
–0.875  
0
+0.875  
Greater than +0.875  
1111 1111 1111  
0111 1111 1111  
1
Rev. C | Page 27 of 36  
 
AD9613  
Data Sheet  
CHANNEL/CHIP SYNCHRONIZATION  
The AD9613 has a SYNC input that allows the user flexible  
synchronization options for synchronizing the internal blocks.  
The sync feature is useful for guaranteeing synchronized operation  
across multiple ADCs. The input clock divider can be synchronized  
using the SYNC input. The divider can be enabled to synchronize  
on a single occurrence of the SYNC signal or on every occurrence  
by setting the appropriate bits in Register 0x3A.  
The SYNC input is internally synchronized to the sample clock.  
However, to ensure that there is no timing uncertainty between  
multiple parts, the SYNC input signal should be synchronized  
to the input clock signal. The SYNC input should be driven  
using a single-ended CMOS type signal.  
Rev. C | Page 28 of 36  
Data Sheet  
AD9613  
SERIAL PORT INTERFACE (SPI)  
The AD9613 SPI allows the user to configure the converter for  
specific functions or operations through a structured register  
space provided inside the ADC. The SPI gives the user added  
flexibility and customization, depending on the application.  
Addresses are accessed via the serial port and can be written to  
or read from via the port. Memory is organized into bytes that can  
be further divided into fields. These fields are documented in the  
Memory Map section. For detailed operational information, see  
the AN-877 Application Note, Interfacing to High Speed ADCs  
via SPI.  
All data is composed of 8-bit words. The first bit of each individual  
byte of serial data indicates whether a read or write command is  
issued. This allows the serial data input/output (SDIO) pin to  
change direction from an input to an output.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. If the instruction is a readback  
operation, performing a readback causes the serial data input/  
output (SDIO) pin to change direction from an input to an output  
at the appropriate point in the serial frame.  
CONFIGURATION USING THE SPI  
Data can be sent in MSB-first mode or in LSB-first mode. MSB  
first is the default on power-up and can be changed via the SPI  
port configuration register. For more information about this  
and other features, see the AN-877 Application Note, Interfacing  
to High Speed ADCs via SPI.  
Three pins define the SPI of this ADC: the SCLK pin, the SDIO  
pin, and the CSB pin (see Table 12). The SCLK (serial clock) pin  
is used to synchronize the read and write data presented from/to  
the ADC. The SDIO (serial data input/output) pin is a dual-  
purpose pin that allows data to be sent and read from the internal  
ADC memory map registers. The CSB (chip select bar) pin is an  
active-low control that enables or disables the read and write cycles.  
HARDWARE INTERFACE  
The pins described in Table 12 comprise the physical interface  
between the user programming device and the serial port of the  
AD9613. The SCLK pin and the CSB pin function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
Table 12. Serial Port Interface Pins  
Pin  
Function  
SCLK Serial Clock. The serial shift clock input, which is used to  
synchronize serial interface reads and writes.  
SDIO Serial Data Input/Output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. One method for SPI configuration  
is described in detail in the AN-812 Application Note,  
CSB  
Chip Select Bar. An active-low control that gates the read  
and write cycles.  
Microcontroller-Based Serial Port Interface (SPI) Boot Circuit.  
The falling edge of CSB, in conjunction with the rising edge of  
SCLK, determines the start of the framing. An example of the  
serial timing and its definitions can be found in Figure 58 and  
Table 5.  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used for  
other devices, it may be necessary to provide buffers between this  
bus and the AD9613 to prevent these signals from transitioning  
at the converter inputs during critical sampling periods.  
Other modes involving the CSB are available. The CSB can be  
held low indefinitely, which permanently enables the device;  
this is called streaming. The CSB can stall high between bytes  
to allow for additional external timing. When CSB is tied high,  
SPI functions are placed in a high impedance mode. This mode  
turns on any SPI pin secondary functions.  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase and its length is determined  
by the W0 and W1 bits.  
Rev. C | Page 29 of 36  
 
AD9613  
Data Sheet  
SPI ACCESSIBLE FEATURES  
Table 13 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in the AN-877 Application Note, Interfacing to High Speed ADCs  
via SPI. The AD9613 part-specific features are described in the  
Memory Map Register Description section.  
Table 13. Features Accessible Using the SPI  
Feature Name  
Description  
Mode  
Clock  
Offset  
Test I/O  
Output Mode  
Output Phase  
Output Delay  
VREF  
Allows the user to set either power-down mode or standby mode  
Allows the user to access the DCS via the SPI  
Allows the user to digitally adjust the converter offset  
Allows the user to set test modes to have known data on output bits  
Allows the user to set up outputs  
Allows the user to set the output clock polarity  
Allows the user to vary the DCO delay  
Allows the user to set the reference voltage  
Allows the user to enable the synchronization features  
Digital Processing  
tHIGH  
tDS  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 58. Serial Port Interface Timing Diagram  
Rev. C | Page 30 of 36  
 
 
Data Sheet  
AD9613  
MEMORY MAP  
Logic Levels  
READING THE MEMORY MAP REGISTER TABLE  
An explanation of logic level terminology follows:  
Each row in the memory map register table has eight bit locations.  
The memory map is roughly divided into four sections: the chip  
configuration registers (Address 0x00 to Address 0x02); the  
channel index and transfer registers (Address 0x05 and  
Address 0xFF); and the ADC functions registers, including  
setup, control, and test (Address 0x08 to Address 0x3A).  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
Transfer Register Map  
The memory map register table (see Table 14) documents the  
default hexadecimal value for each hexadecimal address shown.  
The column with the heading Bit 7 (MSB) is the start of the default  
hexadecimal value given. For example, Address 0x14, the output  
mode register, has a hexadecimal default value of 0x05. This  
means that Bit 0 = 1 and Bit 2 = 1, and the remaining bits are  
0s. This setting is the default output format value, which is twos  
complement. For more information on this function and others,  
see the AN-877 Application Note, Interfacing to High Speed ADCs  
via SPI. This document details the functions controlled by  
Register 0x00 to Register 0x20. The remaining register, Register  
0x3A, is documented in the Memory Map Register Description  
section.  
Address 0x08 to Address 0x20 and Address 0x3A are shadowed.  
Writes to these addresses do not affect part operation until a  
transfer command is issued by writing 0x01 to Address 0xFF,  
setting the transfer bit. This allows these registers to be updated  
internally and simultaneously when the transfer bit is set. The  
internal update takes place when the transfer bit is set and the  
bit autoclears.  
Channel Specific Registers  
Some channel setup functions, such as the signal monitor  
thresholds, can be programmed to a different value for each  
channel. In these cases, channel address locations are internally  
duplicated for each channel. These registers and bits are designated  
in Table 14 as local. These local registers and bits can be accessed  
by setting the appropriate Channel A or Channel B bits in Register  
0x05. If both bits are set, the subsequent write affects the registers  
of both channels. In a read cycle, only Channel A or Channel B  
should be set to read one of the two registers. If both bits are set  
during an SPI read cycle, the part returns the value for Channel A.  
Registers and bits designated as global in Table 14 affect the entire  
part and the channel features for which independent settings are  
not allowed between channels. The settings in Register 0x05 do  
not affect the global registers and bits.  
Open and Reserved Locations  
All address and bit locations that are not included in Table 14  
are not currently supported for this device. Unused bits of a  
valid address location should be written with 0s. Writing to these  
locations is required only when part of an address location is  
open (for example, Address 0x18). If the entire address location  
is open (for example, Address 0x13), this address location should  
not be written.  
Default Values  
After the AD9613 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
the memory map register table (see Table 14).  
Rev. C | Page 31 of 36  
 
AD9613  
Data Sheet  
MEMORY MAP REGISTER TABLE  
All address and bit locations that are not included in Table 14 are not currently supported for this device.  
Table 14. Memory Map Registers  
Default Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Chip Configuration Registers  
0x00  
SPI port  
0
LSB first  
Soft reset  
1
1
Soft reset  
LSB first  
0
0x18  
The nibbles  
are mirrored  
so that LSB-  
first mode  
or MSB-first  
mode  
configuration  
(global)1  
registers  
correctly,  
regardless  
of shift  
mode  
0x01  
0x02  
Chip ID  
(global)  
8-bit chip ID[7:0] (AD9613 = 0x83)  
(default)  
0x83  
Read only  
Chip grade  
(global)  
Open  
Open  
Open  
Speed grade ID  
00 = 250 MSPS  
Open  
Open  
Open  
Open  
Speed  
grade ID  
used to  
differentiate  
devices;  
read only  
01 = 210 MSPS  
11 = 170 MSPS  
Channel Index and Transfer Registers  
0x05  
Channel index Open  
(global)  
Open  
Open  
Open  
Open  
ADC B  
(default)  
ADC A  
(default)  
0x03  
Bits are set  
to  
determine  
which  
device on  
the chip  
receives the  
next write  
command;  
applies to  
local  
registers  
only  
0xFF  
Transfer  
(global)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Transfer  
0x00  
0x00  
Synchron-  
ously  
transfers  
data from  
the master  
shift register  
to the slave  
ADC Functions  
0x08  
Power modes  
(local)  
External  
power-  
down pin  
function  
(local)  
0 = power-  
down  
1 = standby  
Open  
Open  
Open  
Open  
Open  
Open  
Internal power-down mode  
(local)  
00 = normal operation  
01 = full power-down  
10 = standby  
Determines  
various  
generic  
modes of  
chip  
operation  
11 = reserved  
0x09  
0x0B  
Global clock  
(global)  
Open  
Open  
Open  
Open  
Open  
Open  
Duty cycle  
stabilizer  
(default)  
0x01  
0x00  
Clock divide  
(global)  
Input clock divider phase adjust  
000 = no delay  
Clock divide ratio  
000 = divide by 1  
001 = divide by 2  
010 = divide by 3  
011 = divide by ±  
100 = divide by 5  
101 = divide by 6  
110 = divide by 7  
111 = divide by 8  
Clock divide  
values other  
than 000  
auto-  
matically  
cause the  
duty cycle  
stabilizer to  
become  
001 = 1 input clock cycle  
010 = 2 input clock cycles  
011 = 3 input clock cycles  
100 = ± input clock cycles  
101 = 5 input clock cycles  
110 = 6 input clock cycles  
111 = 7 input clock cycles  
active  
Rev. C | Page 32 of 36  
 
Data Sheet  
AD9613  
Default Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0x0D  
Test mode  
(local)  
User test  
mode  
control  
Open  
Reset PN  
long gen  
Reset PN  
short gen  
Output test mode  
0000 = off (default)  
0001 = midscale short  
0010 = positive FS  
0011 = negative FS  
0x00  
When this  
register is  
set, the test  
data is  
placed on  
the output  
pins in  
0 =  
continuou  
s/repeat  
pattern  
1 = single  
pattern,  
then 0s  
0100 = alternating checkerboard  
0101 = PN long sequence  
0110 = PN short sequence  
0111 = one/zero word toggle  
1000 = user test mode  
place of  
normal data  
1001 to 1110 = unused  
1111 = ramp output  
0x10  
0x1±  
Offset adjust  
(local)  
Open  
Open  
Open  
Open  
Offset adjust in LSBs from +31 to −32  
(twos complement format)  
0x00  
0x05  
Output mode  
Open  
Open  
Output  
enable bar  
(local)  
Open  
Output invert  
(local)  
1 = normal  
(default)  
Output format  
00 = offset binary  
01 = twos complement  
(default)  
Configures  
the outputs  
and the  
format of  
the data  
0 = inverted  
10 = gray code  
11 = reserved  
(local)  
0x15  
Output Adjust  
(Global)  
Open  
Open  
Open  
LVDS output drive current adjust  
0000 = 3.72 mA output drive current  
0001 = 3.5 mA output drive current (default)  
0010 = 3.30 mA output drive current  
0011 = 2.96 mA output drive current  
0100 = 2.82 mA output drive current  
0101 = 2.57 mA output drive current  
0110 = 2.27 mA output drive current  
0x01  
0111 = 2.0 mA output drive current (reduced range)  
1000 – 1111 = reserved  
0x16  
Clock phase  
control  
(global)  
Invert  
DCO clock  
Open  
Open  
Open  
Open  
Open  
Open  
0x00  
Odd/Even  
Mode  
Output  
Enable  
0 =  
disabled  
1 =  
enabled  
0x17  
0x18  
DCO output  
delay (global)  
Enable  
DCO  
clock  
Open  
Open  
Open  
DCO clock delay  
[delay = (3100 ps × register value/31 +100)]  
00000 = 100 ps  
0x00  
0x00  
delay  
00001 = 200 ps  
00010 = 300 ps  
11110 = 3100 ps  
11111 = 3200 ps  
Input span  
select (global)  
Open  
Open  
Full-scale input voltage selection  
01111 = 2.087 V p-p  
00001 = 1.772 V p-p  
00000 = 1.75 V p-p (default)  
11111 = 1.727 V p-p  
Full-scale  
input  
adjustment  
in 0.022 V  
steps  
10000 = 1.383 V p-p  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
User Test  
Pattern 1 LSB  
(global)  
User Test Pattern 1[7:0]  
User Test Pattern 1[15:8]  
User Test Pattern 2[7:0]  
User Test Pattern 2[15:8]  
User Test Pattern 3[7:0]  
0x00  
0x00  
0x00  
User Test  
Pattern 1 MSB  
(global)  
User Test  
Pattern 2 LSB  
(global)  
User Test  
Pattern 2 MSB  
(global)  
0x00  
0x00  
User Test  
Pattern 3 LSB  
(global)  
Rev. C | Page 33 of 36  
AD9613  
Data Sheet  
Default Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0x1E  
0x1F  
0x3A  
User Test  
Pattern 3 MSB  
(global)  
User Test Pattern 3[15:8]  
0x00  
User Test  
Pattern ± LSB  
(global)  
User Test Pattern ±[7:0]  
0x00  
0x00  
Sync control  
(global)  
Open  
Open  
Open  
Open  
Open  
Clock  
Clock  
divider  
sync  
Master sync  
buffer enable  
divider  
next sync  
only  
enable  
1 The channel index register at Address 0x05 should be set to 0x03 (default) when writing to Address 0x00.  
it receives and to ignore the rest. The clock divider sync enable  
bit (Address 0x3A, Bit 1) resets after it syncs.  
MEMORY MAP REGISTER DESCRIPTION  
For more information on functions controlled in Register 0x00  
to Register 0x20, see the AN-877 Application Note, Interfacing  
to High Speed ADCs via SPI.  
Bit 1—Clock Divider Sync Enable  
Bit 1 gates the sync pulse to the clock divider. The sync signal is  
enabled when Bit 1 is high and Bit 0 is high. This is continuous  
sync mode.  
Sync Control (Register 0x3A)  
Bits[7:3]—Reserved  
Bit 0—Master Sync Buffer Enable  
Bit 2—Clock Divider Next Sync Only  
Bit 0 must be set high to enable any of the sync functions. If  
the sync capability is not used, this bit should remain low to  
conserve power.  
If the master sync buffer enable bit (Address 0x3A, Bit 0) and  
the clock divider sync enable bit (Address 0x3A, Bit 1) are high,  
Bit 2 allows the clock divider to sync to the first sync pulse that  
Rev. C | Page 3± of 36  
 
Data Sheet  
AD9613  
APPLICATIONS INFORMATION  
DESIGN GUIDELINES  
To maximize the coverage and adhesion between the ADC  
and the PCB, a silkscreen should be overlaid to partition the  
continuous plane on the PCB into several uniform sections.  
This provides several tie points between the ADC and the PCB  
during the reflow process. Using one continuous plane with no  
partitions guarantees only one tie point between the ADC and  
the PCB. See the evaluation board for a PCB layout example.  
For detailed information about the packaging and PCB layout  
of chip-scale packages, refer to the AN-772 Application Note, A  
Design and Manufacturing Guide for the Lead Frame Chip Scale  
Package (LFCSP).  
Before starting system-level design and layout of the AD9613,  
it is recommended that the designer become familiar with these  
guidelines, which discuss the special circuit connections and  
layout requirements needed for certain pins.  
Power and Ground Recommendations  
When connecting power to the AD9613, it is recommended  
that two separate 1.8 V supplies be used: one supply should be  
used for analog (AVDD), and a separate supply should be used  
for the digital outputs (DRVDD). The designer can employ  
several different decoupling capacitors to cover both high and  
low frequencies. These capacitors should be located close to the  
point of entry at the PC board level and close to the pins of the  
part with minimal trace length.  
VCM  
The VCM pin should be decoupled to ground with a 0.1 µF  
capacitor, as shown in Figure 48. For optimal channel-to-channel  
isolation, a 33 Ω resistor should be included between the AD9613  
VCM pin and the Channel A analog input network connection,  
as well as between the AD9613 VCM pin and the Channel B  
analog input network connection.  
A single PCB ground plane should be sufficient when using the  
AD9613. With proper decoupling and smart partitioning of the  
PCB analog, digital, and clock sections, optimum performance  
is easily achieved.  
SPI Port  
Exposed Paddle Thermal Heat Slug Recommendations  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter  
performance. If the on-board SPI bus is used for other devices,  
it may be necessary to provide buffers between this bus and the  
AD9613 to keep these signals from transitioning at the converter  
input pins during critical sampling periods.  
It is mandatory that the exposed paddle on the underside of the  
ADC be connected to analog ground (AGND) to achieve the  
best electrical and thermal performance. A continuous, exposed  
(no solder mask) copper plane on the PCB should mate to the  
AD9613 exposed paddle, Pin 0.  
The copper plane should have several vias to achieve the lowest  
possible resistive thermal path for heat dissipation to flow through  
the bottom of the PCB. These vias should be filled or plugged with  
nonconductive epoxy.  
Rev. C | Page 35 of 36  
 
AD9613  
Data Sheet  
OUTLINE DIMENSIONS  
9.10  
9.00 SQ  
8.90  
0.30  
0.25  
0.18  
0.60 MAX  
0.60  
MAX  
PIN 1  
INDICATOR  
1
49  
48  
64  
PIN 1  
INDICATOR  
8.85  
8.75 SQ  
8.65  
0.50  
BSC  
EXPOSED  
PAD  
6.35  
6.20 SQ  
6.05  
0.50  
0.40  
0.30  
33  
32  
16  
17  
0.25 MIN  
BOTTOM VIEW  
7.50 REF  
TOP VIEW  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SEATING  
PLANE  
0.20 REF  
SECTION OF THIS DATA SHEET.  
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
Figure 59. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 mm × 9 mm Body, Very Thin Quad  
(CP-64-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
CP-6±-±  
CP-6±-±  
CP-6±-±  
CP-6±-±  
AD9613BCPZ-170  
AD9613BCPZ-210  
AD9613BCPZ-250  
AD9613BCPZRL7-170  
AD9613BCPZRL7-210  
AD9613BCPZRL7-250  
AD9613-170EBZ  
AD9613-210EBZ  
AD9613-250EBZ  
−±0°C to +85°C  
−±0°C to +85°C  
−±0°C to +85°C  
−±0°C to +85°C  
−±0°C to +85°C  
−±0°C to +85°C  
6±-Lead Lead Frame Chip Scale Package [LFCSP_VQ], 170 MSPS  
6±-Lead Lead Frame Chip Scale Package [LFCSP_VQ], 210 MSPS  
6±-Lead Lead Frame Chip Scale Package [LFCSP_VQ], 250 MSPS  
6±-Lead Lead Frame Chip Scale Package [LFCSP_VQ], 170 MSPS  
6±-Lead Lead Frame Chip Scale Package [LFCSP_VQ], 210 MSPS  
6±-Lead Lead Frame Chip Scale Package [LFCSP_VQ], 250 MSPS  
Evaluation Board with AD9613, 170 MSPS  
CP-6±-±  
CP-6±-±  
Evaluation Board with AD9613, 210 MSPS  
Evaluation Board with AD9613, 250 MSPS  
1 Z = RoHS Compliant Part.  
©2011–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09637-0-1/13(C)  
Rev. C | Page 36 of 36  
 

相关型号:

AD9613-210EBZ

12-Bit, 170 MSPS/210 MSPS/250 MSPS,1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9613-250EBZ

12-Bit, 170 MSPS/210 MSPS/250 MSPS,1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9613BCPZ-170

12-Bit, 170 MSPS/210 MSPS/250 MSPS,1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9613BCPZ-210

12-Bit, 170 MSPS/210 MSPS/250 MSPS,1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9613BCPZ-250

12-Bit, 170 MSPS/210 MSPS/250 MSPS,1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9613BCPZRL7-170

12-Bit, 170 MSPS/210 MSPS/250 MSPS,1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9613BCPZRL7-210

12-Bit, 170 MSPS/210 MSPS/250 MSPS,1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9613BCPZRL7-250

12-Bit, 170 MSPS/210 MSPS/250 MSPS,1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9615BH

AD9615BH
ADI

AD9615TH

AD9615TH
ADI

AD9617

Low Distortion, Precision, Wide Bandwidth Op Amp
ADI

AD9617AQ

IC OP-AMP, 2200 uV OFFSET-MAX, CDIP8, CERDIP-8, Operational Amplifier
ADI