AD9631_03 [ADI]

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps; 超低失真,宽带电压反馈运算放大器
AD9631_03
型号: AD9631_03
厂家: ADI    ADI
描述:

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
超低失真,宽带电压反馈运算放大器

运算放大器
文件: 总20页 (文件大小:637K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Distortion, Wide Bandwidth  
Voltage Feedback Op Amps  
a
AD9631/AD9632  
FEATURES  
Wide Bandwidth  
AD9631, G = +1  
PIN CONFIGURATION  
8-Lead PDIP (N)  
and SOIC (R) Packages  
AD9632, G = +2  
Small Signal  
320 MHz  
250 MHz  
Large Signal (4 V p-p)  
175 MHz  
AD9631/  
1
2
3
4
8
7
6
5
NC  
+V  
NC  
–INPUT  
+INPUT  
AD9632  
S
OUTPUT  
NC  
–V  
S
TOP VIEW  
180 MHz  
NC = NO CONNECT  
Ultralow Distortion (SFDR), Low Noise  
–113 dBc Typ @ 1 MHz  
–95 dBc Typ @ 5 MHz  
–72 dBc Typ @ 20 MHz  
46 dBm Third Order Intercept @ 25 MHz  
7.0 nV/÷Hz Spectral Noise Density  
High Speed  
Slew Rate 1300 V/s  
A proprietary design architecture has produced an amplifier  
that combines many of the best characteristics of both current  
feedback and voltage feedback amplifiers. The AD9631 and  
AD9632 exhibit exceptionally fast and accurate pulse response  
(16 ns to 0.01%) as well as extremely wide small signal and large  
signal bandwidth and ultralow distortion. The AD9631 achieves  
72 dBc at 20 MHz, and 320 MHz small signal and 175 MHz  
large signal bandwidths.  
Settling 16 ns to 0.01%, 2 V Step  
3 V to 5 V Supply Operation  
17 mA Supply Current  
These characteristics position the AD9631/AD9632 ideally for  
driving flash as well as high resolution ADCs. Additionally, the  
balanced high impedance inputs of the voltage feedback archi-  
tecture allow maximum flexibility when designing active filters.  
APPLICATIONS  
ADC Input Driver  
Differential Amplifiers  
IF/RF Amplifiers  
Pulse Amplifiers  
The AD9631/AD9632 are offered in the industrial (40C to  
+85C) temperature range. They are available in PDIP and SOIC.  
Professional Video  
–30  
DAC Current to Voltage  
Baseband and Video Communications  
Pin Diode Receivers  
V
= 5V  
S
R
V
= 500ꢃ  
= 2V p-p  
L
O
–50  
–70  
Active Filters/Integrators/Log Amps  
GENERAL DESCRIPTION  
–90  
The AD9631 and AD9632 are very high speed and wide band-  
width amplifiers. They are an improved performance alternative  
to the AD9621 and AD9622. The AD9631 is unity gain stable.  
The AD9632 is stable at gains of 2 or greater. Using a voltage  
feedback architecture, the AD9631/AD9632s exceptional settling  
time, bandwidth, and low distortion meet the requirements of  
many applications that previously depended on current feedback  
amplifiers. Its classical op amp structure works much more  
predictably in many designs.  
SECOND HARMONIC  
–110  
THIRD HARMONIC  
–130  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
Figure 1. AD9631 Harmonic Distortion vs.  
Frequency, G = +1  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD9631/AD9632–SPECIFICATIONS  
(؎VS = ؎5 V; RLOAD = 100 ; AV = 1 (AD9631); AV = 2 (AD9632), unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
AD9631A  
AD9632A  
Parameter  
Conditions  
Min Typ Max Min Typ Max Unit  
DYNAMIC PERFORMANCE  
Bandwidth (–3 dB)  
Small Signal  
V
OUT Յ 0.4 V p-p  
220 320  
150 175  
180 250  
155 180  
MHz  
MHz  
Large Signal1  
VOUT = 4 V p-p  
Bandwidth for 0.1 dB Flatness  
VOUT = 300 mV p-p  
AD9631, RF = 140 W;  
AD9632, RF = 425 W  
VOUT = 4 V Step  
VOUT = 0.5 V Step  
VOUT = 4 V Step  
130  
130  
MHz  
Slew Rate, Average ±  
Rise/Fall Time  
1000 1300  
1200 1500  
V/ms  
ns  
ns  
1.2  
2.5  
1.4  
2.1  
Settling Time  
To 0.1%  
To 0.01%  
VOUT = 2 V Step  
VOUT = 2 V Step  
11  
16  
11  
16  
ns  
ns  
HARMONIC/NOISE PERFORMANCE  
Second Harmonic Distortion  
2 V p-p; 20 MHz, RL = 100 W  
RL = 500 W  
–64 –57  
–54 –47  
dBc  
dBc  
dBc  
dBc  
dBm  
dB  
nV/÷Hz  
pA/÷Hz  
–72 –65  
–76 –69  
–81 –74  
46  
18  
7.0  
–72 –65  
–74 –67  
–81 –74  
41  
14  
4.3  
Third Harmonic Distortion  
2 V p-p; 20 MHz, RL = 100 W  
RL = 500 W  
Third Order Intercept  
Noise Figure  
Input Voltage Noise  
Input Current Noise  
Average Equivalent Integrated  
Input Noise Voltage  
Differential Gain Error (3.58 MHz)  
Differential Phase Error (3.58 MHz)  
Phase Nonlinearity  
25 MHz  
RS = 50 W  
1 MHz to 200 MHz  
1 MHz to 200 MHz  
2.5  
2.0  
0.1 MHz to 200 MHz  
RL = 150 W  
RL = 150 W  
DC to 100 MHz  
100  
60  
mV rms  
%
0.03 0.06  
0.02 0.04  
1.1  
0.02 0.04  
0.02 0.04 Degree  
1.1  
Degree  
DC PERFORMANCE2 RL = 150 W  
Input Offset Voltage3 ,  
3
10  
13  
2
5
8
mV  
mV  
mV/؇C  
mA  
TMIN–TMAX  
Offset Voltage Drift  
Input Bias Current  
±10  
2
±10  
2
7
10  
3
7
10  
3
TMIN–TMAX  
mA  
Input Offset Current  
0.1  
0.1  
mA  
TMIN–TMAX  
5
5
mA  
Common-Mode Rejection Ratio  
Open-Loop Gain  
VCM = ±2.5 V  
VOUT = ±2.5 V  
TMIN–TMAX  
70  
46  
40  
90  
52  
70  
46  
40  
90  
52  
dB  
dB  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
500  
1.2  
±3.4  
500  
1.2  
±3.4  
kW  
pF  
V
Input Common-Mode Voltage Range  
OUTPUT CHARACTERISTICS  
Output Voltage Range, RL = 150 W  
Output Current  
Output Resistance  
Short Circuit Current  
±3.2 ±3.9  
±3.2 ±3.9  
V
70  
70  
mA  
W
mA  
0.3  
240  
0.3  
240  
POWER SUPPLY  
Operating Range  
Quiescent Current  
±3.0 ±5.0 ±6.0 ±3.0 ±5.0 ±6.0  
V
17  
18  
21  
16  
17  
20  
mA  
mA  
dB  
TMIN–TMAX  
TMIN–TMAX  
Power Supply Rejection Ratio  
50  
60  
56  
66  
NOTES  
1See Absolute Maximum Ratings and Theory of Operation sections of this data sheet.  
2Measured at AV = 50.  
3Measured with respect to the inverting input.  
Specifications subject to change without notice.  
–2–  
REV. C  
AD9631/AD9632  
MAXIMUM POWER DISSIPATION  
ABSOLUTE MAXIMUM RATINGS1  
The maximum power that can be safely dissipated by these  
devices is limited by the associated rise in junction temperature.  
The maximum safe junction temperature for plastic encapsulated  
devices is determined by the glass transition temperature of the  
plastic, approximately 150؇C. Exceeding this limit temporarily  
may cause a shift in parametric performance due to a change in  
the stresses exerted on the die by the package. Exceeding a junc-  
tion temperature of 175؇C for an extended period can result in  
device failure.  
Supply Voltage (+VS to –VS) . . . . . . . . . . . . . . . . . . . . . 12.6 V  
Voltage Swing ¥ Bandwidth Product . . . . . . . . . . . 550 V-MHz  
Internal Power Dissipation2  
Plastic Package (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 W  
Small Outline Package (R) . . . . . . . . . . . . . . . . . . . . . . 0.9 W  
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . ±1.2 V  
Output Short Circuit Duration  
. . . . . . . . . . . . . . . . . . . . . . . Observe Power Derating Curves  
Storage Temperature Range N, R . . . . . . . . . –65؇C to +125؇C  
Operating Temperature Range (A Grade) . . . . –40؇C to +85؇C  
Lead Temperature Range (Soldering 10 sec) . . . . . . . . . 300؇C  
While the AD9631 and AD9632 are internally short circuit  
protected, this may not be sufficient to guarantee that the maxi-  
mum junction temperature (150؇C) is not exceeded under all  
conditions. To ensure proper operation, it is necessary to observe  
the maximum power derating curves.  
NOTES  
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2 Specification is for device in free air:  
2.0  
T
= +150 C  
J
8-LEAD PDIP PACKAGE  
8-Lead PDIP Package: qJA = 90C/W  
1.5  
1.0  
8-Lead SOIC Package: qJA = 140C/W  
METALLIZATION PHOTO  
Dimensions shown in inches and (millimeters)  
Connect Substrate to –VS  
8-LEAD SOIC PACKAGE  
+V  
7
S
–IN  
2
0.5  
0
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
AMBIENTTEMPERATURE – ؇C  
0.046  
(1.17)  
6
OUT  
Figure 2. Maximum Power Dissipation  
vs. Temperature  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description Option  
Package  
Model  
3
+IN  
4
–V  
AD9631  
S
AD9631AN  
AD9631AR  
AD9631AR-REEL –40C to +85C SOIC  
AD9631AR-REEL7 –40C to +85C SOIC  
–40C to +85C PDIP  
–40C to +85C SOIC  
N-8  
R-8  
R-8  
R-8  
0.050 (1.27)  
+V  
S
7
–IN  
2
AD9631CHIPS  
AD9632AN  
AD9632AR  
AD9632AR-REEL –40C to +85C SOIC  
AD9632AR-REEL7 –40C to +85C SOIC  
Die  
–40C to +85C PDIP  
–40C to +85C SOIC  
N-8  
R-8  
R-8  
R-8  
0.046  
(1.17)  
6
OUT  
3
+IN  
4
–V  
AD9632  
S
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD9631/AD9632 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
REV. C  
–3–  
AD9631/AD9632–Typical Performance Characteristics  
R
R
F
F
10F  
10F  
+V  
+V  
S
S
PULSE  
GENERATOR  
0.1F  
0.1F  
T
/T = 350ps  
F
R
267ꢃ  
PULSE  
V
IN  
GENERATOR  
R
T
V
V
AD9631  
AD9631  
OUT  
T
/T = 350ps  
F
OUT  
R
49.9ꢃ  
130ꢃ  
V
IN  
R
= 100ꢃ  
R
= 100ꢃ  
0.1F  
0.1F  
L
L
R
T
100ꢃ  
49.9ꢃ  
10F  
10F  
–V  
–V  
S
S
TPC 1. AD9631 Noninverting Configuration, G = +1  
TPC 4. AD9631 Inverting Configuration, G = –1  
5ns  
5ns  
1V  
1V  
TPC 2. AD9631 Large Signal Transient Response;  
TPC 5. AD9631 Large Signal Transient Response;  
VO = 4 V p-p, G = +1, RF = 250 W  
VO = 4 V p-p, G = –1, RF = RIN = 267 W  
5ns  
5ns  
100mV  
100mV  
TPC 3. AD9631 Small Signal Transient Response;  
TPC 6. AD9631 Small Signal Transient Response;  
VO = 400 mV p-p, G = +1, RF = 140 W  
VO = 400 mV p-p, G = –1, RF = RIN = 267 W  
–4–  
REV. C  
AD9631/AD9632  
R
R
F
F
10F  
10F  
+V  
+V  
S
S
PULSE  
PULSE  
GENERATOR  
GENERATOR  
0.1F  
0.1F  
T
/T = 350ps  
F
R
T
/T = 350ps  
F
R
R
R
IN  
IN  
V
IN  
R
49.9ꢃ  
T
V
V
AD9632  
AD9632  
OUT  
OUT  
130ꢃ  
V
IN  
R
= 100ꢃ  
R
= 100ꢃ  
0.1F  
0.1F  
L
L
R
49.9ꢃ  
T
100ꢃ  
10F  
10F  
–V  
–V  
S
S
TPC 7. AD9632 Noninverting Configuration, G = +2  
TPC 10. AD9632 Inverting Configuration, G = –1  
5ns  
5ns  
1V  
1V  
TPC 11. AD9632 Large Signal Transient Response;  
VO = 4 V p-p, G = –1, RF = RIN = 422 W, RT = 56.2 W  
TPC 8. AD9632 Large Signal Transient Response;  
VO = 4 V p-p, G = +2, RF = RIN = 422 W  
5ns  
100mV  
5ns  
100mV  
TPC 12. AD9632 Small Signal Transient Response;  
VO = 400 mV p-p, G = –1, RF = RIN = 267 W, RT = 61.9 W  
TPC 9. AD9632 Small Signal Transient Response;  
VO = 400 mV p-p, G = +2, RF = RIN = 274 W  
REV. C  
–5–  
AD9631/AD9632  
1
R
F
V
R
= 5V  
= 100ꢃ  
S
R
150ꢃ  
F
0
450  
400  
350  
300  
250  
L
GAIN = +1  
R
200ꢃ  
V
= 5V  
= 100ꢃ  
= 300mV p-p  
F
–1  
–2  
–3  
S
R
V
L
R
50ꢃ  
F
AD9631  
O
130ꢃ  
R
L
R
F
100ꢃ  
N PACKAGE  
–4  
–5  
–6  
–7  
–8  
–9  
R PACKAGE  
10M  
100M  
20  
40  
60  
80 100 120 140 160 180 200 220 240  
1M  
1G  
VALUE OF FEEDBACK RESISTOR (R ) –ꢃ  
FREQUENCY – Hz  
F
TPC 13. AD9631 Small Signal Frequency  
Response, G = +1  
TPC 16. AD9631 Small Signal –3 dB Bandwidth vs. RF  
0.1  
1
R
F
R
F
0
–0.1  
–0.2  
–0.3  
250ꢃ  
150ꢃ  
0
V
R
= 5V  
= 100ꢃ  
V
R
V
= 5V  
= 100ꢃ  
= 4V p-p  
S
S
–1  
–2  
–3  
R
F
140ꢃ  
L
L
R
= 50TO 250ꢃ  
BY 50ꢃ  
G = +1  
= 300mV p-p  
F
O
V
O
R
F
100ꢃ  
R
120ꢃ  
F
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–4  
–5  
–6  
–7  
–8  
–9  
1M  
10M  
FREQUENCY – Hz  
100M  
500M  
1M  
10M  
FREQUENCY – Hz  
100M  
500M  
TPC 14. AD9631 0.1 dB Flatness, N Package  
(for R Package Add 20 W to RF)  
TPC 17. AD9631 Large Signal Frequency  
Response, G = +1  
90  
80  
70  
60  
50  
40  
100  
80  
1
0
–1  
–2  
–3  
60  
V
R
= 5V  
= 100ꢃ  
= 300mV p-p  
S
PHASE  
L
40  
V
O
20  
0
R
267ꢃ  
F
–4  
–5  
–6  
–7  
–8  
–9  
–20  
30  
20  
GAIN  
–40  
–60  
10  
–80  
0
–100  
–120  
–10  
–20  
10k  
100k  
1M  
FREQUENCY – Hz  
100M  
1G  
10M  
1M  
10M  
100M  
1G  
FREQUENCY – Hz  
TPC 15. AD9631 Open-Loop Gain and  
Phase Margin vs. Frequency, RL = 100 W  
TPC 18. AD9631 Small Signal Frequency  
Response, G = –1  
–6–  
REV. C  
AD9631/AD9632  
0.10  
0.05  
–30  
–50  
–70  
V
R
= 5V  
= 500ꢃ  
S
L
G = +1  
= 2V p-p  
0.00  
V
O
–0.05  
–0.10  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
0.10  
0.05  
–90  
–110  
–130  
SECOND  
HARMONIC  
0.00  
THIRD  
HARMONIC  
–0.05  
–0.10  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
TPC 19. AD9631 Harmonic Distortion vs.  
TPC 22. AD9631 Differential Gain and Phase  
Frequency, RL = 500 W  
Error, G = +2, RL = 150 W  
–30  
–50  
–70  
0.3  
V
R
= 5V  
= 100ꢃ  
S
L
0.2  
0.1  
G = +1  
= 2V p-p  
V
O
SECOND  
HARMONIC  
0.0  
–0.1  
–0.2  
–0.3  
–90  
–110  
–130  
THIRD  
HARMONIC  
10k  
100k  
1M  
10M  
100M  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY – Hz  
SETTLINGTIME – ns  
TPC 20. AD9631 Harmonic Distortion vs.  
TPC 23. AD9631 Short-Term Settling Time,  
Frequency, RL = 100 W  
2 V Step, RL = 100 W  
60  
0.3  
0.2  
0.1  
55  
50  
45  
40  
35  
30  
25  
20  
0.0  
–0.1  
–0.2  
10  
20  
30  
40  
50 60 70 80 90 100  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY – MHz  
SETTLINGTIME – s  
TPC 21. AD9631 Third Order Intercept vs. Frequency  
TPC 24. AD9631 Long-Term Settling Time,  
2 V Step, RL = 100 W  
REV. C  
–7–  
AD9631/AD9632  
7
R
V
R
= 5V  
= 100ꢃ  
F
S
350  
300  
250  
200  
150  
6
325ꢃ  
L
R
425ꢃ  
GAIN = +2  
F
V
= 5V  
= 100ꢃ  
= 300mV p-p  
5
4
3
S
R
125ꢃ  
F
R
V
L
R
225ꢃ  
F
N PACKAGE  
O
2
1
R
F
R
IN  
R PACKAGE  
0
AD9632  
100ꢃ  
R
L
–1  
–2  
–3  
49.9ꢃ  
150 200  
100  
250 300 350 400 450 500 550  
VALUE OF R , R ꢃ  
10M  
100M  
1M  
1G  
F
IN  
FREQUENCY – Hz  
TPC 25. AD9632 Small Signal Frequency  
Response, G = +2  
TPC 28. AD9632 Small Signal –3 dB Bandwidth  
vs. RF, RIN  
0.1  
0
7
R
F
6
5
4
3
525ꢃ  
V
= 5V  
V
R
= 5V  
= 100ꢃ  
S
–0.1  
–0.2  
–0.3  
S
R
275ꢃ  
F
R
V
= 100ꢃ  
= 4V p-p  
L
L
G = +2  
= 300mV p-p  
R
O
F
R
= 125TO 525ꢃ  
BY 100ꢃ  
F
V
O
325ꢃ  
R
F
375ꢃ  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
2
1
R
F
425ꢃ  
0
–1  
–2  
–3  
1M  
10M  
100M  
1M  
10M  
FREQUENCY – Hz  
100M  
500M  
FREQUENCY – Hz  
TPC 26. AD9632 0.1 dB Flatness, N Package  
(for R Package Add 20 W to RF)  
TPC 29. AD9632 Large Signal Frequency  
Response, G = +2  
65  
60  
1
0
100  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 5V  
S
–1  
–2  
–3  
R
V
= 100ꢃ  
= 300mV p-p  
50  
L
PHASE  
O
0
R , R  
IN  
–50  
F
–4  
–5  
–6  
–7  
–8  
–9  
267ꢃ  
GAIN  
–100  
–150  
–200  
–250  
0
–5  
–10  
–15  
10k  
100k  
1M  
FREQUENCY – Hz  
100M  
1G  
10M  
1M  
10M  
100M  
1G  
FREQUENCY – Hz  
TPC 27. AD9632 Open-Loop Gain and Phase  
Margin vs. Frequency, RL = 100 W  
TPC 30. AD9632 Small Signal Frequency  
Response, G = –1  
–8–  
REV. C  
AD9631/AD9632  
–30  
–50  
–70  
0.04  
0.02  
V
R
= 5V  
= 500ꢃ  
S
L
G = +2  
= 2V p-p  
0.00  
V
O
–0.02  
–0.04  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
SECOND  
HARMONIC  
0.04  
0.02  
–90  
–110  
–130  
THIRD  
HARMONIC  
0.00  
–0.02  
–0.04  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
TPC 34. AD9632 Differential Gain and Phase  
Error G = +2, RL = 150 W  
TPC 31. AD9632 Harmonic Distortion vs.  
Frequency, RL = 500 W  
0.2  
0.1  
–30  
–50  
–70  
V
R
= 5V  
= 100ꢃ  
S
L
G = +2  
= 2V p-p  
V
O
SECOND  
HARMONIC  
0.0  
–0.1  
–0.2  
–0.3  
–90  
–110  
–130  
THIRD  
HARMONIC  
0
10  
20  
30  
40  
50  
60  
70  
80  
10k  
100k  
1M  
FREQUENCY – Hz  
10M  
100M  
SETTLINGTIME – ns  
TPC 32. AD9632 Harmonic Distortion vs.  
TPC 35. AD9632 Short-Term Settling Time,  
Frequency, RL = 100 W  
2 V Step, RL = 100 W  
50  
0.3  
0.2  
0.1  
45  
40  
35  
30  
25  
20  
15  
10  
0.0  
–0.1  
–0.2  
10  
20  
30  
40  
50 60 70 80 90 100  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY – MHz  
SETTLINGTIME – s  
TPC 33. AD9632 Third Order Intercept vs. Frequency  
TPC 36. AD9632 Long-Term Settling Time,  
2 V Step, RL = 100 W  
REV. C  
–9–  
AD9631/AD9632  
24  
17  
15  
V
= 5V  
V = 5V  
S
21  
S
18  
15  
12  
9
13  
11  
9
7
6
5
3
3
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 37. AD9631 Noise vs. Frequency  
TPC 40. AD9632 Noise vs. Frequency  
80  
80  
75  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
–PSRR  
+PSRR  
–PSRR  
+PSRR  
0
0
10k  
100k  
1M  
FREQUENCY – Hz  
100M  
1G  
10k  
100k  
1M  
FREQUENCY – Hz  
100M  
1G  
10M  
10M  
TPC 38. AD9631 PSRR vs. Frequency  
TPC 41. AD9632 PSRR vs. Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
V
V  
R
= 5V  
V = 5V  
S
S
= 1V  
V  
= 1V  
CM  
CM  
= 100ꢃ  
R = 100ꢃ  
L
L
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 39. AD9631 CMRR vs. Frequency  
TPC 42. AD9632 CMRR vs. Frequency  
–10–  
REV. C  
AD9631/AD9632  
1000  
100  
10  
1350  
1250  
1150  
1050  
950  
V
= 5V  
S
GAIN = +1  
+A  
OL  
AD9632  
–A  
OL  
850  
1
750  
650  
0.1  
550  
+A  
OL  
AD9631  
40  
450  
–A  
OL  
0.01  
10k  
350  
100k  
1M  
10M  
100M  
–60 –40 –20  
0
20  
60  
80  
100 120 140  
FREQUENCY – Hz  
JUNCTIONTEMPERATURE – C  
TPC 43. AD9631 Output Resistance vs. Frequency  
TPC 46. Open-Loop Gain vs. Temperature  
76  
1000  
V
= 5V  
S
74  
72  
70  
68  
66  
64  
62  
60  
58  
56  
–PSRR  
GAIN = +1  
AD9632  
100  
10  
+PSRR  
–PSRR  
AD9632  
AD9631  
1
0.1  
+PSRR  
40  
AD9631  
0.01  
10k  
–60 –40 –20  
0
20  
60  
80  
100 120 140  
100k  
1M  
10M  
100M  
JUNCTIONTEMPERATURE – C  
FREQUENCY – Hz  
TPC 44. AD9632 Output Resistance vs. Frequency  
TPC 47. PSRR vs. Temperature  
4.1  
98  
V
= 5V  
S
+V  
OUT  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
96  
94  
92  
90  
88  
86  
–V  
OUT  
R
= 150ꢃ  
L
R
= 50ꢃ  
L
+V  
OUT  
–V  
OUT  
–CMRR  
+CMRR  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
JUNCTIONTEMPERATURE – C  
JUNCTIONTEMPERATURE – C  
TPC 45. AD9631/AD9632 Output Swing vs. Temperature  
TPC 48. AD9631/AD9632 CMRR vs. Temperature  
REV. C  
–11–  
AD9631/AD9632  
21  
20  
19  
18  
17  
16  
15  
250  
240  
230  
220  
210  
200  
190  
AD9631  
AD9631  
6V  
SINK  
SOURCE  
AD9632  
AD9631  
6V  
5V  
SINK  
AD9632  
AD9632  
5V  
SOURCE  
80 100 120 140  
14  
180  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
JUNCTIONTEMPERATURE – C  
JUNCTIONTEMPERATURE – C  
TPC 49. Supply Current vs. Temperature  
TPC 52. Short Circuit Current vs. Temperature  
–1.0  
2.0  
1.5  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
AD9632  
+I  
–I  
1.0  
0.5  
B
V
V
= 5V  
= 6V  
B
S
AD9632  
AD9631  
0.0  
S
–0.5  
–1.0  
–1.5  
–2.0  
–I  
B
V
= 5V  
= 6V  
AD9631  
S
S
+I  
V
B
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
JUNCTIONTEMPERATURE – C  
JUNCTIONTEMPERATURE – C  
TPC 50. Input Offset Voltage vs. Temperature  
TPC 53. Input Bias Current vs. Temperature  
220  
180  
100  
100  
3WAFER LOTS  
COUNT = 573  
3WAFER LOTS  
COUNT = 1373  
200  
180  
160  
140  
120  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
160  
CUMULATIVE  
CUMULATIVE  
140  
120  
100  
80  
100  
80  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
FREQ. DIST  
60  
FREQ. DIST  
60  
40  
40  
20  
20  
0
0
–7 –6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
–7 –6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
INPUT OFFSETVOLTAGE – mV  
INPUT OFFSETVOLTAGE – mV  
TPC 51. AD9631 Input Offset Voltage Distribution  
TPC 54. AD9632 Input Offset Voltage Distribution  
–12–  
REV. C  
AD9631/AD9632  
THEORY OF OPERATION  
General  
When the AD9631 is used in the transimpedance (I to V) mode,  
such as in photodiode detection, the value of RF and diode capaci-  
tance (CI) are usually known. Generally, the value of RF selected  
will be in the kW range, and a shunt capacitor (CF) across RF will  
be required to maintain good amplifier stability. The value of  
CF required to maintain optimal flatness (<1 dB peaking) and  
settling time can be estimated as  
The AD9631 and AD9632 are wide bandwidth, voltage feedback  
amplifiers. Since their open-loop frequency response follows the  
conventional 6 dB/octave roll-off, their gain bandwidth product  
is basically constant. Increasing their closed-loop gain results in  
a corresponding decrease in small signal bandwidth. This can  
be observed by noting the bandwidth specification between the  
AD9631 (gain of +1) and AD9632 (gain of +2). The AD9631/  
AD9632 typically maintain 65 degrees of phase margin. This  
high margin minimizes the effects of signal and noise peaking.  
1
2
]
CF @ 2C R 1 / 2RF  
2
(
)
O
I
F
O
[
where wO is equal to the unity gain bandwidth product of the  
amplifier in rad/sec, and CI is the equivalent total input  
capacitance at the inverting input. Typically wO = 800 106  
rad/sec (see TPC 15).  
Feedback Resistor Choice  
The value of the feedback resistor is critical for optimum perfor-  
mance on the AD9631 (gain of +1) and less critical as the gain  
increases. Therefore, this section is specifically targeted at the  
AD9631.  
As an example, choosing RF = 10 kW and CI = 5 pF requires CF  
to be 1.1 pF (Note: CI includes both source and parasitic circuit  
capacitance). The bandwidth of the amplifier can be estimated  
using the CF calculated as  
At minimum stable gain (+1), the AD9631 provides optimum  
dynamic performance with RF = 140 W. This resistor acts as a  
parasitic suppressor only against damped RF oscillations that  
can occur due to lead (input, feedback) inductance and parasitic  
capacitance. This value of RF provides the best combination of  
wide bandwidth, low parasitic peaking, and fast settling time.  
1.6  
2RFCF  
f3dꢁ  
@
R
F
In fact, for the same reasons, a 100 W130 W resistor should be  
placed in series with the positive input for other AD9631 noninver-  
ting and all AD9631 inverting configurations. The correct  
connection is shown in Figures 3 and 4.  
C
F
I
I
C
I
AD9631  
V
OUT  
+V  
S
R
F
10F  
G = 1 +  
R
G
Figure 5. Transimpedance Configuration  
0.1F  
100–130ꢃ  
V
IN  
R
For general voltage gain applications, the amplifier bandwidth  
can be closely estimated as  
IN  
R
TERM  
AD9631/  
AD9632  
V
OUT  
R
F
O  
f3dB  
@
21 + R /R  
(
)
0.1F  
F
G
R
G
This estimation loses accuracy for gains of +2/1 or lower due  
to the amplifiers damping factor. For these low gaincases,  
the bandwidth will actually extend beyond the calculated value  
(see TPCs 13 and 25).  
10F  
–V  
S
Figure 3. Noninverting Operation  
As a general rule, capacitor CF will not be required if  
+V  
S
R
R
10F  
F
NG  
4O  
G = –  
R
RG ¥C £  
(
)
F
I
G
0.1F  
100–130ꢃ  
where NG is the noise gain (1 + RF/RG) of the circuit. For most  
voltage gain applications, this should be the case.  
R
IN  
AD9631/  
AD9632  
V
OUT  
R
F
R
G
V
IN  
0.1F  
R
TERM  
10F  
–V  
S
Figure 4. Inverting Operation  
REV. C  
–13–  
AD9631/AD9632  
Pulse Response  
40  
30  
20  
10  
Unlike a traditional voltage feedback amplifier, where the slew  
speed is dictated by its front end dc quiescent current and  
gain bandwidth product, the AD9631 and AD9632 provide  
on-demandcurrent that increases proportionally to the input  
stepsignal amplitude. This results in slew rates (1300 V/ms)  
comparable to wideband current feedback designs. This, combined  
with relatively low input noise current (2.0 pA/÷Hz), gives the  
AD9631 and AD9632 the best attributes of both voltage and  
current feedback amplifiers.  
Large Signal Performance  
The outstanding large signal operation of the AD9631 and AD9632  
is due to a unique, proprietary design architecture. In order to  
maintain this level of performance, the maximum 550 V-MHz  
product must be observed (e.g., @ 100 MHz, VO £ 5.5 V p-p).  
0
5
10  
15  
20  
25  
C
– pF  
L
Power Supply Bypassing  
Figure 7. Recommended RSERIES vs. Capacitive Load  
Adequate power supply bypassing can be critical when optimizing  
the performance of a high frequency circuit. Inductance in the  
power supply leads can form resonant circuits that produce  
peaking in the amplifiers response. In addition, if large current  
transients must be delivered to the load, then bypass capacitors  
(typically greater than 1 mF) will be required to provide the best  
settling time and lowest distortion. A parallel combination of at  
least 4.7 mF, and between 0.1 mF and 0.01 mF, is recommended.  
Some brands of electrolytic capacitors will require a small series  
damping resistor ª4.7 W for optimum results.  
APPLICATIONS  
The AD9631 and AD9632 are voltage feedback amplifiers well  
suited for applications such as photodetectors, active filters, and  
log amplifiers. The deviceswide bandwidth (320 MHz), phase  
margin (65), low current noise (2.0 pA/÷Hz), and slew rate  
(1300 V/ms) give higher performance capabilities to these appli-  
cations over previous voltage feedback designs.  
With a settling time of 16 ns to 0.01% and 11 ns to 0.1%, the  
devices are an excellent choice for DAC I/V conversion. The same  
characteristics along with low harmonic distortion make them  
a good choice for ADC buffering/amplification. With superb  
linearity at relatively high signal frequencies, the AD9631 and  
AD9632 are ideal drivers for ADCs up to 12 bits.  
Driving Capacitive Loads  
The AD9631 and AD9632 were designed primarily to drive  
nonreactive loads. If driving loads with a capacitive component is  
desired, the best frequency response is obtained by the addition of  
a small series resistance as shown in Figure 6. The accompany-  
ing graph shows the optimum value for RSERIES versus capacitive  
load. It is worth noting that the frequency response of the circuit  
when driving large capacitive loads will be dominated by the  
passive roll-off of RSERIES and CL.  
Operation as a Video Line Driver  
The AD9631 and AD9632 have been designed to offer outstand-  
ing performance as video line drivers. The important specifications  
of differential gain (0.02%) and differential phase (0.02) meet  
the most exacting HDTV demands for driving video loads.  
R
F
274ꢃ  
274ꢃ  
10F  
+V  
S
R
SERIES  
R
R
IN  
AD9631/  
AD9632  
0.1F  
R
L
IN  
C
L
75ꢃ  
CABLE  
1kꢃ  
75ꢃ  
AD9631/  
AD9632  
75ꢃ  
CABLE  
V
OUT  
75ꢃ  
0.1F  
10F  
V
IN  
Figure 6. Driving Capacitive Loads  
75ꢃ  
–V  
S
Figure 8. Video Line Driver  
–14–  
REV. C  
AD9631/AD9632  
Active Filters  
Choose  
The wide bandwidth and low distortion of the AD9631 and  
AD9632 are ideal for the realization of higher bandwidth active  
filters. These characteristics, while being more common in  
many current feedback op amps, are offered in the AD9631 and  
AD9632 in a voltage feedback configuration. Many active filter  
configurations are not realizable with current feedback amplifiers.  
FO = Cutoff Frequency = 20 MHz  
a = Damping Ratio = 1/Q = 2  
R4  
R1  
H = Absolute Value of Circuit Gain =  
= 1  
Then  
k = 2FO C1  
A multiple feedback active filter requires a voltage feedback  
amplifier and is more demanding of op amp performance than  
other active filter configurations, such as the Sallen-Key. In  
general, the amplifier should have a bandwidth that is at least  
10 times the bandwidth of the filter if problems due to phase shift  
of the amplifier are to be avoided.  
4C1(H + 1)  
C2 =  
R1 =  
R3 =  
2  
2HK  
Figure 9 is an example of a 20 MHz low-pass multiple feedback  
active filter using an AD9632.  
2K (H + 1)  
R4 = H (R1)  
+5V  
A/D Converter Driver  
10F  
C1  
50pF  
R4  
154ꢃ  
As A/D converters move toward higher speeds with higher resolu-  
tions, there becomes a need for high performance drivers that  
will not degrade the analog signal to the converter. It is desirable  
from a systems standpoint that the A/D be the element in the  
signal chain that ultimately limits overall distortion. This places  
new demands on the amplifiers that are used to drive fast, high  
resolution A/Ds.  
0.1F  
R1  
154ꢃ  
R3  
78.7ꢃ  
V
IN  
C2  
100pF  
V
AD9632  
OUT  
100ꢃ  
0.1F  
10F  
With high bandwidth, low distortion, and fast settling time, the  
AD9631 and AD9632 make high performance A/D drivers for  
advanced converters. Figure 10 is an example of an AD9631 used  
as an input driver for an AD872, a 12-bit, 10 MSPS A/D converter.  
–5V  
Figure 9. Active Filter Circuit  
+5V DIGITAL  
10ꢃ  
+5V ANALOG  
7
DV  
DD  
0.1F  
0.1F  
6
DGND  
+5V DIGITAL  
4
5
+5V ANALOG  
140ꢃ  
AV  
DD  
22  
23  
0.1F  
DV  
DD  
AGND  
10F  
DGND  
CLOCK INPUT  
21  
20  
CLK  
OTR  
0.1F  
AD872  
49.9ꢃ  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
1
2
MSB  
BIT2  
BIT3  
BIT4  
BIT5  
BIT6  
BIT7  
BIT8  
BIT9  
BIT10  
BIT11  
BIT12  
V
AD9631  
INA  
130ꢃ  
ANALOG  
IN  
0.1F  
V
INB  
27  
REF GND  
10F  
DIGITAL OUTPUT  
0.1F  
1F  
28  
26  
–5V ANALOG  
REF IN  
REF OUT  
8
AGND  
AV  
SS  
AV  
SS  
3
25  
0.1F  
0.1F  
–5V ANALOG  
Figure 10. AD9631 Used as Driver for an AD872, a 12-Bit, 10 MSPS A/D Converter  
REV. C  
–15–  
AD9631/AD9632  
Layout Considerations  
large (0.47 mF10 mF) tantalum electrolytic capacitor should be  
connected in parallel, though not necessarily so close, to supply  
current for fast, large signal changes at the output.  
The specified high speed performance of the AD9631 and AD9632  
requires careful attention to board layout and component  
selection. Proper RF design techniques and low-pass parasitic  
component selection are mandatory.  
The feedback resistor should be located close to the inverting input  
pin in order to keep the stray capacitance at this node to a mini-  
mum. Capacitance variations of less than 1 pF at the inverting  
input will significantly affect high speed performance.  
The PCB should have a ground plane covering all unused portions  
of the component side of the board to provide a low impedance  
path. The ground plane should be removed from the area near  
the input pins to reduce stray capacitance.  
Stripline design techniques should be used for long signal traces  
(greater than about 1 inch). These should be designed with a  
characteristic impedance of 50 W or 75 W and be properly termi-  
nated at each end.  
Chip capacitors should be used for supply bypassing (see  
Figure 10). One end should be connected to the ground plane,  
and the other within 1/8 inch of each power pin. An additional  
–16–  
REV. C  
AD9631/AD9632  
OUTLINE DIMENSIONS  
8-Lead Plastic Dual In-Line Package [PDIP]  
(N-8)  
Dimensions shown in inches and (millimeters)  
0.375 (9.53)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.98)  
4
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.015  
(0.38)  
MIN  
0.180  
(4.57)  
MAX  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
SEATING  
PLANE  
0.060 (1.52)  
0.050 (1.27)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MO-095AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
8-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45ꢂ  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8ꢂ  
0.51 (0.0201)  
0.31 (0.0122)  
01.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
REV. C  
–17–  
AD9631/AD9632  
Revision History  
Location  
Page  
7/03—Data Sheet changed from REV. B to REV. C.  
Deleted Evaluation Boards information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Deleted military CERDIP version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Change to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Change to TPC 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Change to TPC 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Change to Figure 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
1/03—Data Sheet changed from REV. A to REV. B.  
Deleted DIP (N) Inverter, SOIC (R) Inverter, and DIP (N) Noninverter Evaluation Boards in Figures 1214 . . . . . . . . . . . . . . . 17  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
–18–  
REV. C  
–19–  
–20–  

相关型号:

AD9631_15

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9632

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9632-EB

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9632AN

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9632AR

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9632AR-REEL

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9632AR-REEL7

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9632ARZ

Ultralow Distortion, Wide BandwidthVoltage Feedback Op Amps
ADI

AD9632ARZ-REEL

OP-AMP, 8000uV OFFSET-MAX, 130MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, SOIC-8
ADI

AD9632_15

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9633

Quad, 12-Bit, 80 MSPS/105 MSPS
ADI

AD9633-125EBZ

Quad, 12-Bit, 80 MSPS/105 MSPS
ADI