AD9639BCPZ-210 [ADI]

Quad, 12-Bit, 170 MSPS/210 MSPS Serial Output 1.8 V ADC; 四通道,12位, 170 MSPS / 210 MSPS串行输出1.8 V ADC
AD9639BCPZ-210
型号: AD9639BCPZ-210
厂家: ADI    ADI
描述:

Quad, 12-Bit, 170 MSPS/210 MSPS Serial Output 1.8 V ADC
四通道,12位, 170 MSPS / 210 MSPS串行输出1.8 V ADC

转换器 模数转换器 PC
文件: 总36页 (文件大小:855K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, 12-Bit, 170 MSPS/210 MSPS  
Serial Output 1.8 V ADC  
Data Sheet  
AD9639  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
PDWN  
DRVDD DRGND  
4 ADCs in one package  
JESD204 coded serial digital outputs  
On-chip temperature sensor  
−95 dB channel-to-channel crosstalk  
SNR: 65 dBFS with AIN = 85 MHz at 210 MSPS  
SFDR: 77 dBc with AIN = 85 MHz at 210 MSPS  
Excellent linearity  
DNL: 0.28 LSB (typical)  
INL: 0.7 LSB (typical)  
780 MHz full power analog bandwidth  
Power dissipation: 325 mW per channel at 210 MSPS  
1.25 V p-p input voltage range, adjustable up to 1.5 V p-p  
1.8 V supply operation  
AD9639  
VIN + A  
VIN – A  
VCM A  
VIN + B  
VIN – B  
VCM B  
DOUT + A  
DOUT – A  
PIPELINE  
ADC  
SHA  
12  
12  
12  
12  
CHANNEL A  
BUF  
BUF  
BUF  
BUF  
DOUT + B  
DOUT – B  
PIPELINE  
ADC  
SHA  
SHA  
SHA  
CHANNEL B  
CHANNEL C  
CHANNEL D  
VIN + C  
VIN – C  
VCM C  
VIN + D  
VIN – D  
VCM D  
DOUT + C  
DOUT – C  
PIPELINE  
ADC  
DOUT + D  
DOUT – D  
PIPELINE  
ADC  
Clock duty cycle stabilizer  
Serial port interface features  
Power-down modes  
Digital test pattern enable  
Programmable header  
PGM3  
PGM2  
PGM1  
PGM0  
RESET  
REFERENCE  
RBIAS  
DATA RATE  
MULTIPLIER  
SERIAL  
PORT  
TEMPOUT  
Programmable pin functions (PGMx, PDWN)  
SCLK SDI/ SDO CSB  
SDIO  
CLK+ CLK–  
APPLICATIONS  
Communication receivers  
Figure 1.  
Cable head end equipment/M-CMTS  
Broadband radios  
Wireless infrastructure transceivers  
Radar/military-aerospace subsystems  
Test equipment  
GENERAL DESCRIPTION  
The AD9639 is a quad, 12-bit, 210 MSPS analog-to-digital con-  
verter (ADC) with an on-chip temperature sensor and a high  
speed serial interface. It is designed to support the digitizing  
of high frequency, wide dynamic range signals with an input  
bandwidth of up to 780 MHz. The output data is serialized  
and presented in packet format, consisting of channel-specific  
information, coded samples, and error code correction.  
Fabricated on an advanced CMOS process, the AD9639 is avail-  
able in a Pb-free/RoHS-compliant, 72-lead LFCSP package. It is  
specified over the industrial temperature range of −40°C to +85°C.  
PRODUCT HIGHLIGHTS  
1. Four ADCs are contained in a small, space-saving package.  
2. An on-chip PLL allows users to provide a single ADC  
sampling clock; the PLL distributes and multiplies up to  
produce the corresponding data rate clock.  
3. The JESD204 coded data rate supports up to 4.2 Gbps  
per channel.  
4. The AD9639 operates from a single 1.8 V power supply.  
5. Flexible synchronization schemes and programmable  
mode pins are available.  
The ADC requires a single 1.8 V power supply. The input clock  
can be driven differentially with a sine wave, LVPECL, CMOS,  
or LVDS. A clock duty cycle stabilizer allows high performance  
at full speed with a wide range of clock duty cycles. The on-chip  
reference eliminates the need for external decoupling and can  
be adjusted by means of SPI control.  
Various power-down and standby modes are supported. The  
ADC typically consumes 150 mW per channel with the digital  
link still in operation when standby operation is enabled.  
6. An on-chip temperature sensor is included.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2009–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD9639  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 17  
Analog Input Considerations ................................................... 17  
Clock Input Considerations...................................................... 19  
Digital Outputs ........................................................................... 21  
Serial Port Interface (SPI).............................................................. 29  
Hardware Interface..................................................................... 29  
Memory Map .................................................................................. 31  
Reading the Memory Map Table.............................................. 31  
Reserved Locations .................................................................... 31  
Default Values............................................................................. 31  
Logic Levels................................................................................. 31  
Applications Information.............................................................. 35  
Power and Ground Recommendations................................... 35  
Exposed Paddle Thermal Heat Slug Recommendations ...... 35  
Outline Dimensions....................................................................... 36  
Ordering Guide .......................................................................... 36  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Specifications.......................................................................... 4  
Digital Specifications ................................................................... 5  
Switching Specifications .............................................................. 6  
Timing Diagram ........................................................................... 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 11  
Equivalent Circuits......................................................................... 15  
REVISION HISTORY  
7/13—Rev. A to Rev. B  
Change to Current Drive Parameter, Table 1................................ 3  
Updated Outline Dimensions ....................................................... 36  
2/10—Rev. 0 to Rev. A  
Changes to Differential Input Voltage Range Parameter,  
Table 1 ................................................................................................ 3  
Changes to Table 7............................................................................ 9  
Changes to Digital Outputs and Timing Section ....................... 25  
Change to Addr. (Hex) 0x01, Table 15......................................... 32  
5/09—Revision 0: Initial Version  
Rev. B | Page 2 of 36  
 
Data Sheet  
AD9639  
SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, 1.25 V p-p differential input, AIN = −1.0 dBFS, DCS enabled, unless  
otherwise noted.  
Table 1.  
AD9639BCPZ-170  
AD9639BCPZ-210  
Parameter1  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
12  
12  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Offset Matching  
Gain Error  
Full  
Guaranteed  
−2  
4
+1  
0.9  
0.28  
0.45  
Guaranteed  
−2  
4
+1  
0.9  
0.28  
0.7  
25°C  
25°C  
25°C  
25°C  
Full  
12  
12  
+4.7  
2.7  
0.6  
0.9  
12  
12  
+4.7  
2.7  
0.6  
1.3  
mV  
mV  
% FS  
% FS  
LSB  
LSB  
−2.8  
1.0  
−2.8  
1.0  
Gain Matching  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
ANALOG INPUTS  
Differential Input Voltage Range2  
Common-Mode Voltage  
Input Capacitance  
Input Resistance  
Analog Bandwidth, Full Power  
Voltage Common Mode (VCM x Pins)  
Voltage Output  
Full  
Full  
Full  
25°C  
Full  
Full  
1.25  
1.4  
2
4.3  
780  
1.5  
1.25  
1.4  
2
4.3  
780  
1.5  
V p-p  
V
pF  
kΩ  
MHz  
Full  
Full  
1.4  
1.44  
1
1.5  
1.4  
1.44  
1
1.5  
V
Current Drive  
mA  
mV/°C  
mV  
µA  
TEMPERATURE SENSOR OUTPUT  
Voltage Output  
Current Drive  
−1.12  
739  
50  
−1.12  
737  
50  
Full  
Full  
POWER SUPPLY  
AVDD  
DRVDD  
IAVDD  
IDRVDD  
Full  
Full  
Full  
Full  
Full  
1.7  
1.7  
1.8  
1.8  
535  
98  
1.139  
1.9  
1.9  
570  
105  
1.215  
1.7  
1.7  
1.8  
1.8  
610  
111  
1.298  
1.9  
1.9  
650  
120  
1.386  
V
V
mA  
mA  
W
Total Power Dissipation  
(Including Output Drivers)  
Power-Down Dissipation  
Standby Dissipation2  
CROSSTALK  
Full  
Full  
Full  
Full  
3
3
mW  
mW  
dB  
152  
−95  
−90  
173  
−95  
−90  
Overrange Condition3  
dB  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and details on how these tests were completed.  
2 AVDD/DRVDD, with link established.  
3 Overrange condition is specified as 6 dB above the full-scale input range.  
Rev. B | Page 3 of 36  
 
 
AD9639  
Data Sheet  
AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, 1.25 V p-p differential input, AIN = −1.0 dBFS, DCS enabled, unless  
otherwise noted.  
Table 2.  
AD9639BCPZ-170  
AD9639BCPZ-210  
Parameter1  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 84.3 MHz  
fIN = 240.3 MHz  
Full  
25°C  
63.5  
64.5  
64.1  
63.2  
64.2  
63.2  
dB  
dB  
SIGNAL-TO-(NOISE + DISTORTION) (SINAD) RATIO  
fIN = 84.3 MHz  
fIN = 240.3 MHz  
Full  
25°C  
63.3  
10.2  
64.4  
63.9  
62.8  
10.1  
63.9  
63  
dB  
dB  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 84.3 MHz  
fIN = 240.3 MHz  
Full  
25°C  
10.4  
10.3  
10.3  
10.2  
Bits  
Bits  
WORST HARMONIC (SECOND)  
fIN = 84.3 MHz  
fIN = 240.3 MHz  
Full  
25°C  
87.5  
82  
78.6  
74  
86  
80  
77  
dBc  
dBc  
WORST HARMONIC (THIRD)  
fIN = 84.3 MHz  
fIN = 240.3 MHz  
Full  
25°C  
79  
84  
76  
77  
72.6  
83.7  
dBc  
dBc  
WORST OTHER (EXCLUDING SECOND OR THIRD)  
fIN = 84.3 MHz  
fIN = 240.3 MHz  
Full  
25°C  
96  
88  
86  
90  
88  
dBc  
dBc  
TWO-TONE INTERMODULATION DISTORTION (IMD)  
fIN1 = 140.2 MHz, fIN2 = 141.3 MHz,  
AIN1 and AIN2 = −7.0 dBFS  
fIN1 = 170.2 MHz, fIN2 = 171.3 MHz,  
AIN1 and AIN2 = −7.0 dBFS2  
25°C  
25°C  
78  
77  
77  
dBc  
dBc  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and details on how these tests were completed.  
2 Tested at 170 MSPS and 210 MSPS.  
Rev. B | Page 4 of 36  
 
Data Sheet  
AD9639  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, 1.25 V p-p differential input, AIN = −1.0 dBFS, DCS enabled, unless  
otherwise noted.  
Table 3.  
AD9639BCPZ-170  
AD9639BCPZ-210  
Parameter1  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
Differential Input Voltage  
Input Voltage Range  
Full  
Full  
Full  
LVPECL/LVDS/CMOS  
6
LVPECL/LVDS/CMOS  
6
0.2  
AVDD −  
0.3  
0.2  
AVDD −  
0.3  
V p-p  
AVDD +  
1.6  
AVDD +  
1.6  
Internal Common-Mode Bias  
Input Common-Mode Voltage  
High Level Input Voltage (VIH)  
Low Level Input Voltage (VIL)  
High Level Input Current (IIH)  
Low Level Input Current (IIL)  
Differential Input Resistance  
Input Capacitance  
Full  
Full  
Full  
Full  
Full  
Full  
25°C  
25°C  
1.2  
1.2  
V
V
V
V
µA  
µA  
kΩ  
pF  
1.1  
1.2  
0
−10  
−10  
16  
AVDD  
3.6  
0.8  
+10  
+10  
24  
1.1  
1.2  
0
−10  
−10  
16  
AVDD  
3.6  
0.8  
+10  
+10  
24  
20  
4
20  
4
LOGIC INPUTS (PDWN, CSB, SDI/SDIO,  
SCLK, RESET, PGMx)2  
Logic 1 Voltage  
Full  
Full  
0.8 ×  
AVDD  
0.8 ×  
AVDD  
V
V
Logic 0 Voltage  
0.2 ×  
0.2 ×  
AVDD  
AVDD  
Logic 1 Input Current (CSB)  
Logic 0 Input Current (CSB)  
Logic 1 Input Current  
(PDWN, SDI/SDIO, SCLK,  
RESET, PGMx)  
Full  
Full  
Full  
0
−60  
55  
0
−60  
55  
µA  
µA  
µA  
Logic 0 Input Current  
(PDWN, SDI/SDIO, SCLK,  
RESET, PGMx)  
Full  
0
0
µA  
Input Resistance  
Input Capacitance  
LOGIC OUTPUT (SDO)  
Logic 1 Voltage  
25°C  
25°C  
30  
4
30  
4
kΩ  
pF  
Full  
Full  
1.2  
0
AVDD +  
0.3  
0.3  
1.2  
0
AVDD +  
0.3  
0.3  
V
V
Logic 0 Voltage  
DIGITAL OUTPUTS (DOUT + x, DOUT − x)  
Logic Compliance  
CML  
CML  
Differential Output Voltage  
Common-Mode Voltage  
Full  
Full  
0.8  
DRVDD/2  
0.8  
DRVDD/2  
V
V
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and details on how these tests were completed.  
2 Specified for 13 SDI/SDIO pins on the same SPI bus.  
Rev. B | Page 5 of 36  
 
AD9639  
Data Sheet  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, 1.25 V p-p differential input, AIN = −1.0 dBFS, DCS enabled, unless  
otherwise noted.  
Table 4.  
AD9639BCPZ-170  
AD9639BCPZ-210  
Parameter1  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
CLOCK  
Clock Rate  
Full  
Full  
Full  
100  
2.65  
2.65  
170  
100  
2.15  
2.15  
210  
MSPS  
ns  
ns  
Clock Pulse Width High (tEH)  
Clock Pulse Width Low (tEL)  
DATA OUTPUT PARAMETERS  
2.9  
2.9  
2.4  
2.4  
Data Output Period or UI  
(DOUT + x, DOUT − x)  
Full  
1/(20 × fCLK  
)
1/(20 × fCLK  
)
Seconds  
Data Output Duty Cycle  
Data Valid Time  
25°C  
25°C  
25°C  
25°C  
25°C  
Full  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
50  
0.8  
4
250  
50  
50  
0.8  
4
250  
50  
%
UI  
µs  
ns  
PLL Lock Time (tLOCK  
)
Wake-Up Time (Standby)  
Wake-Up Time (Power-Down)2  
Pipeline Latency  
Data Rate per Channel (NRZ)  
Deterministic Jitter  
μs  
40  
40  
CLK cycles  
Gbps  
ps  
ps rms  
Seconds  
CLK cycles  
ps  
3.4  
10  
6
0
1
50  
4.2  
10  
6
0
1
50  
Random Jitter  
Channel-to-Channel Bit Skew  
Channel-to-Channel Packet Skew3  
Output Rise/Fall Time  
TERMINATION CHARACTERISTICS  
Differential Termination Resistance  
APERTURE  
25°C  
100  
100  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter)  
OUT-OF-RANGE RECOVERY TIME  
25°C  
25°C  
25°C  
1.2  
0.2  
1
1.2  
0.2  
1
ns  
ps rms  
CLK cycles  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and details on how these tests were completed.  
2 Receiver dependent.  
3 See the Serial Data Frame section.  
Rev. B | Page 6 of 36  
 
Data Sheet  
AD9639  
TIMING DIAGRAM  
SAMPLE  
N
N + 1  
N – 40  
N – 39  
ANALOG  
INPUT SIGNAL  
N – 38  
N – 37  
SAMPLE  
RATE CLOCK  
SAMPLE  
...  
SERIA.L..CODED SAMPLES: N – 40, N – 39, N – 38, N – 37 ...  
...  
RATE CLOCK  
SERIAL  
DATA OUTPUT  
...  
...  
...  
...  
...  
Figure 2. Timing Diagram  
Rev. B | Page 7 of 36  
 
 
AD9639  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 5.  
The exposed paddle must be soldered to the ground plane for the  
LFCSP package. Soldering the exposed paddle to the printed  
circuit board (PCB) increases the reliability of the solder joints,  
maximizing the thermal capability of the package.  
Parameter  
Rating  
AVDD to AGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +0.3 V  
−2.0 V to +2.0 V  
−0.3 V to DRVDD + 0.3 V  
DRVDD to DRGND  
AGND to DRGND  
AVDD to DRVDD  
DOUT + x/DOUT − x to DRGND  
SDO, SDI/SDIO, CLK , VIN x, VCM x, −0.3 V to AVDD + 0.3 V  
TEMPOUT, RBIAS to AGND  
Table 6. Thermal Resistance  
Package Type  
θJA  
θJB  
θJC  
Unit  
72-Lead LFCSP (CP-72-3)  
16.2  
7.9  
0.6  
°C/W  
SCLK, CSB, PGMx, RESET, PDWN  
to AGND  
−0.3 V to AVDD + 0.3 V  
Typical θJA, θJB, and θJC values are specified for a 4-layer board in  
still air. Airflow increases heat dissipation, effectively reducing  
θJA. In addition, metal in direct contact with the package leads  
from metal traces, through holes, ground, and power planes  
reduces θJA.  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec) 300°C  
Junction Temperature 150°C  
−65°C to +125°C  
−40°C to +85°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. B | Page 8 of 36  
 
 
 
Data Sheet  
AD9639  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NC  
TEMPOUT  
RBIAS  
AVDD  
NC  
1
2
3
4
5
6
7
8
9
54 NC  
PIN 1  
INDICATOR  
53 PGM0  
52 PGM1  
51 PGM2  
50 PGM3  
49 NC  
48 AVDD  
47 VCM A  
46 AVDD  
45 VIN – A  
44 VIN + A  
43 AVDD  
42 AVDD  
41 AVDD  
40 CSB  
PIN 0 = EPAD = AGND  
NC  
AVDD  
VCM D  
AVDD  
TOP VIEW  
(Not to Scale)  
VIN – D 10  
VIN + D 11  
AVDD 12  
AVDD 13  
AVDD 14  
AVDD 15  
CLK– 16  
CLK+ 17  
AVDD 18  
39 SCLK  
38 SDI/SDIO  
37 SDO  
NOTES  
1. NC = NO CONNECT.  
2. THE EXPOSED PADDLE MUST BE SOLDERED TO THE GROUND PLANE  
FOR THE LFCSP PACKAGE. SOLDERING THE EXPOSED PADDLE TO  
THE PCB INCREASES THE RELIABILITY OF THE SOLDER JOINTS,  
MAXIMIZING THE THERMAL CAPABILITY OF THE PACKAGE.  
Figure 3. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
0
AGND  
Analog Ground (Exposed Paddle). The exposed paddle must be soldered to the ground  
plane. Soldering the exposed paddle to the PCB increases the reliability of the solder joints,  
maximizing the thermal capability of the package.  
1, 5, 6, 19, 36, 49, 54,  
63, 72  
NC  
No Connection.  
2
3
TEMPOUT  
RBIAS  
AVDD  
Output Voltage to Monitor Temperature.  
External Resistor to Set the Internal ADC Core Bias Current.  
1.8 V Analog Supply.  
4, 7, 9, 12, 13, 14, 15,  
18, 20, 21, 41, 42, 43,  
46, 48, 55, 57, 60, 61,  
62, 64, 65, 66, 69, 71  
8
10  
11  
16  
VCM D  
Common-Mode Output Voltage Reference.  
ADC D Analog Input Complement.  
ADC D Analog Input True.  
VIN − D  
VIN + D  
CLK−  
Clock Input Complement.  
17  
CLK+  
Clock Input True.  
22  
RESET  
Reset Enable Pin. Resets the digital output timing.  
Digital Output Driver Ground.  
1.8 V Digital Output Driver Supply.  
ADC D Digital Output True.  
ADC D Digital Output Complement.  
ADC C Digital Output True.  
ADC C Digital Output Complement.  
ADC B Digital Output True.  
ADC B Digital Output Complement.  
23, 34  
24, 33  
25  
26  
27  
28  
29  
30  
DRGND  
DRVDD  
DOUT + D  
DOUT − D  
DOUT + C  
DOUT − C  
DOUT + B  
DOUT − B  
Rev. B | Page 9 of 36  
 
AD9639  
Data Sheet  
Pin No.  
Mnemonic  
DOUT + A  
DOUT − A  
PDWN  
Description  
31  
32  
35  
ADC A Digital Output True.  
ADC A Digital Output Complement.  
Power-Down.  
37  
38  
39  
SDO  
SDI/SDIO  
SCLK  
Serial Data Output for 4-Wire SPI Interface.  
Serial Data Input/Serial Data Input/Output for 3-Wire SPI Interface.  
Serial Clock.  
40  
CSB  
Chip Select Bar.  
44  
45  
47  
VIN + A  
VIN − A  
VCM A  
PGM3, PGM2,  
PGM1, PGM0  
ADC A Analog Input True.  
ADC A Analog Input Complement.  
Common-Mode Output Voltage Reference.  
Optional Pins to be Programmed by Customer.  
50, 51, 52, 53  
56  
58  
59  
67  
68  
70  
VCM B  
VIN − B  
VIN + B  
VIN + C  
VIN − C  
VCM C  
Common-Mode Output Voltage Reference.  
ADC B Analog Input Complement.  
ADC B Analog Input True.  
ADC C Analog Input True.  
ADC C Analog Input Complement.  
Common-Mode Output Voltage Reference.  
Rev. B | Page 10 of 36  
Data Sheet  
AD9639  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
0
AIN = –1.0dBFS  
SNR = 63.13dB  
AIN = –1.0dBFS  
SNR = 64.88dB  
ENOB = 10.19 BITS  
SFDR = 76.07dBc  
ENOB = 10.49 BITS  
SFDR = 77.57dBc  
–20  
–20  
–40  
–60  
–40  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
20  
40  
60  
80  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 4. Single-Tone 32k FFT with fIN = 84.3 MHz, fSAMPLE = 170 MSPS  
Figure 7. Single-Tone 32k FFT with fIN = 240.3 MHz, fSAMPLE = 210 MSPS  
70  
69  
68  
67  
66  
65  
64  
0
AIN = –1.0dBFS  
SNR = 63.95dB  
ENOB = 10.33 BITS  
SFDR = 78.90dBc  
–20  
–40  
–60  
170MSPS  
210MSPS  
–80  
63  
62  
61  
60  
–100  
–120  
0
10  
20  
30  
40  
50  
60  
70  
80  
50  
70  
90  
110 130 150 170 190 210 230 250  
ENCODE (MSPS)  
FREQUENCY (MHz)  
Figure 5. Single-Tone 32k FFT with fIN = 240.3 MHz, fSAMPLE = 170 MSPS  
Figure 8. SNR vs. Encode, fIN = 84.3 MHz  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
0
AIN = –1.0dBFS  
SNR = 64.65dB  
ENOB = 10.44 BITS  
SFDR = 77.54dBc  
–20  
–40  
–60  
170MSPS  
–80  
210MSPS  
–100  
–120  
0
20  
40  
60  
80  
100  
50  
70  
90  
110 130 150 170 190 210 230 250  
ENCODE (MSPS)  
FREQUENCY (MHz)  
Figure 6. Single-Tone 32k FFT with fIN = 84.3 MHz, fSAMPLE = 210 MSPS  
Figure 9. SFDR vs. Encode, fIN = 84.3 MHz  
Rev. B | Page 11 of 36  
 
AD9639  
Data Sheet  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
AIN1 AND AIN2 = –7.0dBFS  
SFDR = 75.44dBc  
IMD2 = –78.34dBc  
SFDR (dBFS)  
–20  
IMD3 = –75.44dBc  
SNR (dBFS)  
–40  
–60  
SFDR (dB)  
–80  
SNR (dB)  
–100  
–120  
0
0
20  
40  
60  
80  
100  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
FREQUENCY (MHz)  
ANALOG INPUT LEVEL (dBFS)  
Figure 10. SNR/SFDR vs. Analog Input Level, fIN = 84.3 MHz, fSAMPLE = 170 MSPS  
Figure 13. Two-Tone 32k FFT with fIN1 = 140.2 MHz and fIN2 = 141.3 MHz,  
fSAMPLE = 210 MSPS  
100  
0
AIN1 AND AIN2 = –7.0dBFS  
SFDR = 76.88dBc  
IMD2 = –78.75dBc  
IMD3 = –78.68dBc  
90  
SFDR (dBFS)  
–20  
80  
70  
60  
50  
40  
30  
SNR (dBFS)  
SFDR (dB)  
–40  
–60  
–80  
SNR (dB)  
20  
10  
0
–100  
–120  
0
20  
40  
60  
80  
100  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
FREQUENCY (MHz)  
ANALOG INPUT LEVEL (dBFS)  
Figure 11. SNR/SFDR vs. Analog Input Level, fIN = 84.3 MHz, fSAMPLE = 210 MSPS  
Figure 14. Two-Tone 32k FFT with fIN1 = 170.2 MHz and fIN2 = 171.3 MHz,  
fSAMPLE = 210 MSPS  
0
95  
90  
85  
AIN1 AND AIN2 = –7.0dBFS  
SFDR = 77.26dBc  
IMD2 = –86.55dBc  
IMD3 = –77.26dBc  
–20  
80  
–40  
–60  
SFDR (dB)  
75  
70  
65  
SNR (dB)  
–80  
60  
55  
50  
45  
–100  
–120  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
50  
100 150 200 250 300 350 400 450 500  
AIN FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 15. SNR/SFDR Amplitude vs. AIN Frequency, fSAMPLE = 170 MSPS  
Figure 12. Two-Tone 32k FFT with fIN1 = 140.2 MHz and fIN2 = 141.3 MHz,  
fSAMPLE = 170 MSPS  
Rev. B | Page 12 of 36  
Data Sheet  
AD9639  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
0.8  
0.6  
0.4  
SFDR (dB)  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
SNR (dB)  
0
50  
100 150 200 250 300 350 400 450 500  
AIN FREQUENCY (MHz)  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
CODE  
Figure 16. SNR/SFDR Amplitude vs. AIN Frequency, fSAMPLE = 210 MSPS  
Figure 19. INL, fIN = 9.7 MHz, fSAMPLE = 210 MSPS  
70  
69  
68  
0.4  
0.2  
0
67  
SNR, 170MSPS  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
SNR, 210MSPS  
66  
65  
64  
63  
62  
61  
60  
–40  
–20  
0
20  
40  
60  
80  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
CODE  
TEMPERATURE (°C)  
Figure 17. SNR vs. Temperature, fIN = 84.3 MHz  
Figure 20. DNL, fIN = 9.7 MHz, fSAMPLE = 210 MSPS  
90  
85  
80  
75  
70  
40,000  
35,000  
30,000  
25,000  
20,000  
15,000  
10,000  
5000  
INPUT REFERRED NOISE: 0.72 LSB  
SFDR, 210MSPS  
SFDR, 170MSPS  
65  
60  
0
–40  
–20  
0
20  
40  
60  
80  
N – 3 N – 2 N – 1  
N
N + 1 N + 2 N + 3 MORE  
BIN  
TEMPERATURE (°C)  
Figure 18. SFDR vs. Temperature, fIN = 84.3 MHz  
Figure 21. Input-Referred Noise Histogram, fSAMPLE = 170 MSPS  
Rev. B | Page 13 of 36  
AD9639  
Data Sheet  
40,000  
35,000  
30,000  
25,000  
20,000  
15,000  
10,000  
5000  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
INPUT REFERRED NOISE: 0.70 LSB  
SFDR  
SNR  
0
N – 3 N – 2 N – 1  
N
N + 1 N + 2 N + 3 MORE  
BIN  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
Figure 22. Input-Referred Noise Histogram, fSAMPLE = 210 MSPS  
Figure 24. SNR/SFDR vs. Analog Input Common-Mode Voltage,  
fIN = 84.3 MHz, fSAMPLE = 210 MSPS  
0
–20  
–40  
–60  
–80  
0
–5  
–10  
–15  
–20  
–25  
–100  
–120  
0
20  
40  
60  
80  
100  
120  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
AIN FREQUENCY (Hz)  
Figure 23. Noise Power Ratio (NPR), fSAMPLE = 210 MSPS  
Figure 25. Full-Power Bandwidth Amplitude vs. AIN Frequency, fSAMPLE = 210 MSPS  
Rev. B | Page 14 of 36  
Data Sheet  
AD9639  
EQUIVALENT CIRCUITS  
AVDD  
AVDD  
AVDD  
1.2V  
10kΩ  
10kΩ  
CLK+  
CLK–  
250Ω  
SDI/SDIO  
30kΩ  
Figure 26. CLK Inputs  
Figure 30. Equivalent SDI/SDIO Input Circuit  
AVDD  
AVDD  
VIN + x  
BUF  
2kΩ  
AVDD  
BUF  
~1.4V  
AVDD  
2kΩ  
TEMPOUT  
VIN – x  
BUF  
Figure 27. Analog Inputs  
Figure 31. Equivalent TEMPOUT Output Circuit  
100Ω  
175Ω  
175Ω  
30kΩ  
RBIAS  
SCLK,  
PDWN,  
PGMx,  
RESET  
Figure 32. Equivalent RBIAS Input/Output Circuit  
Figure 28. Equivalent SCLK, RESET, PDWN, PGMx Input Circuit  
AVDD  
175Ω  
VCM x  
26kΩ  
1kΩ  
CSB  
Figure 33. Equivalent VCM x Output Circuit  
Figure 29. Equivalent CSB Input Circuit  
Rev. B | Page 15 of 36  
 
AD9639  
Data Sheet  
AVDD  
SDO  
DRVDD  
AVDD  
4mA  
4mA  
4mA  
4mA  
R
TERM  
V
DOUT + x  
DOUT – x  
CM  
345Ω  
Figure 35. Equivalent SDO Output Circuit  
Figure 34. Equivalent Digital Output Circuit  
Rev. B | Page 16 of 36  
Data Sheet  
AD9639  
THEORY OF OPERATION  
The AD9639 architecture consists of a differential input buffer and  
a front-end sample-and-hold amplifier (SHA) followed by a pipe-  
lined switched-capacitor ADC. The quantized outputs from each  
stage are combined into a final 12-bit result in the digital correction  
logic. The pipelined architecture permits the first stage to operate  
on a new input sample while the remaining stages operate on pre-  
ceding samples. Sampling occurs on the rising edge of the clock.  
with each input can help to reduce the peak transient current  
injected from the output stage of the driving source.  
In addition, low Q inductors or ferrite beads can be placed on  
each leg of the input to reduce high differential capacitance at  
the analog inputs and, therefore, achieve the maximum band-  
width of the ADC. The use of low Q inductors or ferrite beads is  
required when driving the converter front end at high IF  
frequencies. Either a shunt capacitor or two single-ended  
capacitors can be placed on the inputs to provide a matching  
passive network. This ultimately creates a low-pass filter at the  
input to limit unwanted broadband noise. See the AN-827  
Application Note and the Analog Dialogue article Transformer-  
Coupled Front-End for Wideband A/D Converters” (Volume 39,  
Number 2, April 2005) for more information on this subject. In  
general, the precise values depend on the application.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor DAC  
and interstage residue amplifier (for example, a multiplying  
digital-to-analog converter (MDAC)). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage simply consists of a flash ADC.  
The input stage contains a differential SHA that can be ac- or  
dc-coupled in differential or single-ended mode. The output of  
the pipeline ADC is put into its final serial format by the data  
serializer, encoder, and CML drivers block. The data rate multiplier  
creates the clock used to output the high speed serial data at the  
CML outputs.  
Maximum SNR performance is achieved by setting the ADC to  
the largest span in a differential configuration. In the case of the  
AD9639, the default input span is 1.25 V p-p. To configure the ADC  
for a different input span, see the VREF register (Address 0x18).  
For the best performance, an input span of 1.25 V p-p or greater  
should be used (see Table 15 for details).  
Differential Input Configurations  
ANALOG INPUT CONSIDERATIONS  
The AD9639 can be driven actively or passively; in either case,  
optimum performance is achieved by driving the analog input  
differentially. For example, using the ADA4937 differential ampli-  
fier to drive the AD9639 provides excellent performance and a  
flexible interface to the ADC for baseband and second Nyquist  
(~100 MHz IF) applications (see Figure 36 and Figure 37). In either  
application, use 1% resistors for good gain matching. Note that the  
dc-coupled configuration shows some degradation in spurious per-  
formance. For more information, consult the ADA4937 data sheet.  
The analog input to the AD9639 is a differential buffer. This  
input is optimized to provide superior wideband performance  
and requires that the analog inputs be driven differentially. SNR  
and SINAD performance degrades if the analog input is driven  
with a single-ended signal.  
For best dynamic performance, the source impedances driving  
VIN + x and VIN − x should be matched such that common-mode  
settling errors are symmetrical. These errors are reduced by the  
common-mode rejection of the ADC. A small resistor in series  
3.3V  
1.8V  
1.8V  
205Ω  
0.1µF  
1.25V p-p  
200Ω  
1.65V  
24Ω  
24Ω  
33Ω  
VIN + x  
AVDD DRVDD  
+V  
S
62Ω  
SIGNAL  
GENERATOR  
10kΩ  
10kΩ  
V
AD9639  
ADC INPUT  
OCM  
ADA4937  
G = UNITY  
OPTIONAL C  
C
R
0.1µF  
IMPEDANCE  
200Ω  
27Ω  
–V  
S
VIN – x  
33Ω  
0.1µF  
205Ω  
Figure 36. Differential Amplifier Configuration for AC-Coupled Baseband Applications  
3.3V  
1.8V  
1.8V  
205Ω  
1.25V p-p  
62Ω  
0.1µF  
24Ω  
33Ω  
200Ω  
VIN + x  
AVDD DRVDD  
+V  
S
AD9639  
ADC INPUT  
SIGNAL  
GENERATOR  
V
OCM  
ADA4937  
G = UNITY  
OPTIONAL C  
C
R
IMPEDANCE  
200Ω  
27Ω  
–V  
S
VCM x  
VIN – x  
24Ω  
33Ω  
205Ω  
1.4V  
Figure 37. Differential Amplifier Configuration for DC-Coupled Baseband Applications  
Rev. B | Page 17 of 36  
 
 
 
 
AD9639  
Data Sheet  
1.25V p-p  
0.1µF  
0.1µF  
BALUN  
1:1 Z  
For applications where SNR is a key parameter, differential  
transformer coupling is the recommended input configuration  
to achieve the true performance of the AD9639 (see Figure 38  
to Figure 40).  
33Ω  
VIN + x  
ADC  
AD9639  
4.7pF  
66Ω  
0.1µF  
33Ω  
VIN – x  
Regardless of the configuration, the value of the shunt capacitor, C,  
is dependent on the input frequency and may need to be reduced  
or removed.  
BALUN  
1:1 Z  
ADT1-1WT  
1:1 Z RATIO  
C
33Ω  
VIN + x  
Figure 41. Differential Balun-Coupled Configuration  
for Wideband IF Applications  
ADC  
AD9639  
0.1µF  
1.25Vp-p  
50Ω  
*C  
DIFF  
Single-Ended Input Configuration  
33Ω  
VIN – x  
AGND  
C
A single-ended input may provide adequate performance in  
cost-sensitive applications. In this configuration, SFDR and  
distortion performance can degrade due to input common-mode  
swing mismatch. If the application requires a single-ended input  
configuration, ensure that the source impedances on each input  
are well matched to achieve the best possible performance. A  
full-scale input of 1.25 V p-p can be applied to the VIN + x pin  
of the AD9639 while the VIN − x pin is terminated. Figure 42  
shows a typical single-ended input configuration.  
0.1μF  
*C  
DIFF IS OPTIONAL  
Figure 38. Differential Transformer-Coupled Configuration  
for Baseband Applications  
ADT1-1WT  
1:1 Z RATIO  
1.25Vp-p  
0.1μF  
L
L
33Ω  
VIN + x  
65Ω  
2.2pF  
ADC  
250Ω  
AD9639  
L
33Ω  
VIN – x  
C
0.1μF  
33Ω  
VIN + x  
0.1µF  
49.9Ω  
1.25V p-p  
Figure 39. Differential Transformer-Coupled Configuration  
for Wideband IF Applications  
ADC  
AD9639  
*C  
DIFF  
25Ω  
33Ω  
VIN – x  
C
0.1µF  
ADT1-1WT  
1.25Vp-p  
0.1μF  
1:1 Z RATIO  
33Ω  
33Ω  
VIN + x  
*C  
DIFF IS OPTIONAL  
ADC  
250Ω  
L
Figure 42. Single-Ended Input Configuration  
AD9639  
VIN – x  
0.1μF  
Figure 40. Differential Transformer-Coupled Configuration  
for Narrow-Band IF Applications  
Rev. B | Page 18 of 36  
 
 
 
Data Sheet  
AD9639  
CLK+ input circuit supply is AVDD (1.8 V), this input is  
designed to withstand input voltages of up to 3.3 V and,  
therefore, offers several selections for the drive logic voltage.  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, the AD9639 sample clock inputs  
(CLK+ and CLK−) should be clocked with a differential signal.  
This signal is typically ac-coupled to the CLK+ and CLK− pins  
via a transformer or capacitors. These pins are biased internally  
to 1.2 V and require no additional biasing.  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515/  
0.1µF  
AD9516/AD9518  
CLK+  
CLK  
OPTIONAL  
100Ω  
50*  
Figure 43 shows a preferred method for clocking the AD9639. The  
low jitter clock source is converted from a single-ended signal  
to a differential signal using an RF transformer. The back-to-  
back Schottky diodes across the secondary transformer limit  
clock excursions into the AD9639 to approximately 0.8 V p-p  
differential. This helps to prevent the large voltage swings of the  
clock from feeding through to other portions of the AD9639,  
and it preserves the fast rise and fall times of the signal, which  
are critical to low jitter performance.  
CMOS DRIVER  
CLK+  
0.1µF  
ADC  
AD9639  
CLK  
0.1µF  
CLK–  
0.1µF  
39kΩ  
*50Ω RESISTOR IS OPTIONAL.  
Figure 46. Single-Ended 1.8 V CMOS Sample Clock  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515/  
ADT1-1WT, 1:1Z  
0.1µF  
50Ω*  
AD9516/AD9518  
0.1µF  
0.1µF  
CLK+  
CLK  
OPTIONAL  
XFMR  
CLK+  
CLK+  
100Ω  
CMOS DRIVER  
CLK  
CLK+  
ADC  
AD9639  
50Ω  
0.1µF  
0.1µF  
0.1µF  
ADC  
AD9639  
CLK–  
0.1µF  
SCHOTTKY  
DIODES:  
HSMS-2812  
0.1µF  
CLK–  
*50Ω RESISTOR IS OPTIONAL.  
Figure 43. Transformer-Coupled Differential Clock  
Figure 47. Single-Ended 3.3 V CMOS Sample Clock  
Another option is to ac-couple a differential PECL signal to the  
sample clock input pins as shown in Figure 44. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515/AD9516/AD9518  
family of clock drivers offers excellent jitter performance.  
Clock Duty Cycle Considerations  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals. As a result, these ADCs may  
be sensitive to the clock duty cycle. Commonly, a 5% tolerance  
is required on the clock duty cycle to maintain dynamic perfor-  
mance characteristics.  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515/  
0.1µF  
0.1µF  
AD9516/AD9518  
CLK+  
CLK–  
CLK  
CLK+  
ADC  
AD9639  
100Ω  
The AD9639 contains a duty cycle stabilizer (DCS) that retimes  
the nonsampling edge, providing an internal clock signal with a  
nominal 50% duty cycle. This allows a wide range of clock input  
duty cycles without affecting the performance of the AD9639.  
When the DCS is on (default), noise and distortion performance  
are nearly flat for a wide range of duty cycles. However, some  
applications may require the DCS function to be off. If so, keep  
in mind that the dynamic range performance may be affected  
when operated in this mode. See the Memory Map section for  
more details on using this feature.  
PECL DRIVER  
0.1µF  
0.1µF  
CLK–  
CLK  
240Ω  
240Ω  
50Ω*  
50*  
*50Ω RESISTORS ARE OPTIONAL.  
Figure 44. Differential PECL Sample Clock  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515/  
0.1µF  
0.1µF  
AD9516/AD9518  
CLK+  
CLK–  
CLK  
CLK+  
ADC  
AD9639  
100Ω  
LVDS DRIVER  
CLK  
0.1µF  
0.1µF  
Jitter in the rising edge of the input is an important concern,  
and it is not reduced by the internal stabilization circuit. The  
duty cycle control loop does not function for clock rates of less  
than 50 MHz nominal. It is not recommended that this ADC  
clock be dynamic in nature. Moving the clock around dynami-  
cally requires long wait times for the back end serial capture to  
retime and resynchronize to the receiving logic. This long time  
constant far exceeds the time that it takes for the DCS and the  
PLL to lock and stabilize. Only in rare applications would it be  
necessary to disable the DCS circuitry in the clock register (see  
Address 0x09 in Table 15). Keeping the DCS circuit enabled is  
recommended to maximize ac performance.  
CLK–  
50Ω*  
50Ω*  
*50Ω RESISTORS ARE OPTIONAL.  
Figure 45. Differential LVDS Sample Clock  
In some applications, it is acceptable to drive the sample clock  
inputs with a single-ended CMOS signal. In such applications,  
CLK+ should be driven directly from a CMOS gate, and the  
CLK− pin should be bypassed to ground with a 0.1 μF capacitor  
in parallel with a 39 kΩ resistor (see Figure 46). Although the  
Rev. B | Page 19 of 36  
 
 
 
 
AD9639  
Data Sheet  
Clock Jitter Considerations  
Power Dissipation  
High speed, high resolution ADCs are sensitive to the quality of the  
clock input. The degradation in SNR at a given input frequency (fA)  
due only to aperture jitter (tJ) can be calculated as follows:  
As shown in Figure 49 and Figure 50, the power dissipated by  
the AD9639 is proportional to its clock rate. The digital power  
dissipation does not vary significantly because it is determined  
primarily by the DRVDD supply and the bias current of the  
digital output drivers.  
SNR Degradation = 20 × log 10(1/2 × π × fA × tJ)  
In this equation, the rms aperture jitter represents the root mean  
square of all jitter sources, including the clock input, analog input  
signal, and ADC aperture jitter. IF undersampling applications  
are particularly sensitive to jitter (see Figure 48).  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.7  
0.6  
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of the AD9639.  
Power supplies for clock drivers should be separated from the  
ADC output driver supplies to avoid modulating the clock signal  
with digital noise. Low jitter, crystal-controlled oscillators are  
the best clock sources. If the clock is generated from another  
type of source (by gating, dividing, or another method), it  
should be retimed by the original clock during the last step.  
I
AVDD  
0.5  
0.4  
POWER  
0.3  
0.2  
0.1  
0
I
DRVDD  
Refer to the AN-501 Application Note, the AN-756 Application  
Note, and the Analog Dialogue article, Analog-to-Digital Converter  
Clock Optimization: A Test Engineering Perspective” (Volume 42,  
Number 2, February 2008) for in-depth information about jitter  
performance as it relates to ADCs (visit www.analog.com).  
50  
70  
90  
110  
ENCODE (MSPS)  
130  
150  
170  
Figure 49. Supply Current vs. Encode for fIN = 84.3 MHz, fSAMPLE = 170 MSPS  
130  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.7  
0.6  
RMS CLOCK JITTER REQUIREMENT  
120  
110  
I
AVDD  
16 BITS  
14 BITS  
12 BITS  
100  
90  
80  
70  
60  
50  
40  
30  
0.5  
0.4  
POWER  
0.3  
0.2  
0.1  
0
10 BITS  
0.125 ps  
0.25 ps  
0.5 ps  
1.0 ps  
2.0 ps  
I
DRVDD  
1
10  
100  
1000  
50  
70  
90  
110  
130  
150  
170  
190  
210  
ANALOG INPUT FREQUENCY (MHz)  
ENCODE (MSPS)  
Figure 50. Supply Current vs. Encode for fIN = 84.3 MHz, fSAMPLE = 210 MSPS  
Figure 48. Ideal SNR vs. Input Frequency and Jitter  
Rev. B | Page 20 of 36  
 
 
 
Data Sheet  
AD9639  
The two resulting octets are optionally scrambled and encoded  
into their corresponding 10-bit code. The scrambling function  
is controlled by the JESD204 register, Address 0x033[0]. Figure 51  
shows how the 12-bit data is taken from the ADC, the tail bits are  
added, the two octets are scrambled, and the octets are encoded  
into two 10-bit symbols. Figure 52 illustrates the data format.  
DIGITAL OUTPUTS  
Serial Data Frame  
The AD9639 digital output complies with the JEDEC Standard  
No. 204 (JESD204), which describes a serial interface for data  
converters. JESD204 uses 8B/10B encoding as well as optional  
scrambling. K28.5 and K28.7 comma symbols are used for frame  
synchronization. The receiver is required to lock onto the serial  
data stream and recover the clock with the use of a PLL. (Refer  
to IEEE Std 802.3-2002, Section 3, for a complete 8B/10B and  
comma symbol description.)  
The scrambler uses a self-synchronizing polynomial-based  
algorithm defined by the equation 1 + x14 + x15. The descrambler  
in the receiver should be a self-synchronizing version of the  
scrambler polynomial. A 16-bit parallel implementation is  
shown in Figure 54.  
The 8B/10B encoding works by taking eight bits of data (an  
octet) and encoding them into a 10-bit symbol. In the AD9639,  
the 12-bit converter word is broken into two octets. Bit 11  
through Bit 4 are in the first octet. The second octet contains  
Bit 3 through Bit 0 and four tail bits. The MSB of the tail bits can  
also be used to indicate an out-of-range condition. The tail bits  
are configured using the JESD204 register, Address 0x033[3].  
Refer to JEDEC Standard No. 204-April 2006, Section 5.1, for  
complete transport layer and data format details and Section 5.2  
for a complete explanation of scrambling and descrambling.  
DATA  
FROM  
ADC  
FRAME  
ASSEMBLER  
(ADD TAIL BITS)  
SCRAMBLER  
14 15  
8B/10B  
ENCODER  
TO  
RECEIVER  
1 + x + x  
Figure 51. ADC Data Output Path  
WORD 0[11:4]  
SYMBOL 0[9:0]  
FRAME 0  
FRAME 1  
WORD 0[3:0],TAIL BITS[3:0]  
WORD 1[11:4]  
SYMBOL 1[9:0]  
SYMBOL 2[9:0]  
SYMBOL 3[9:0]  
TIME  
WORD 1[3:0], TAIL BITS[3:0]  
Figure 52. 12-Bit Data Transmission with Tail Bits  
8B/10B  
DECODER  
DESCRAMBLER  
14 15  
FRAME  
ALIGNMENT  
DATA  
OUT  
FROM  
TRANSMITTER  
1 + x + x  
Figure 53. Required Receiver Data Path  
Rev. B | Page 21 of 36  
 
 
 
 
AD9639  
Data Sheet  
S15  
S14  
S13  
S12  
S11  
S10  
S9  
LSB  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
Q
S31  
S30  
S29  
S28  
S27  
S26  
S25  
S24  
S23  
S22  
S21  
S20  
S19  
S18  
CLK  
LSB  
D31  
D30  
D29  
D28  
D27  
D26  
D25  
D24  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
Q
CLK  
Q
CLK  
S15  
S14  
S13  
S12  
S11  
S10  
S9  
Q
CLK  
Q
CLK  
Q
CLK  
Q
CLK  
S8  
Q
MSB  
LSB  
CLK  
S7  
CLK = FRAME CLK  
Q
CLK  
S6  
Q
CLK  
S8  
S5  
Q
CLK  
S7  
S4  
Q
CLK  
S6  
S3  
Q
CLK  
S5  
S2  
Q
CLK  
S4  
S1  
Q
S17  
S16  
CLK  
S3  
MSB  
S2  
MSB  
S1  
Figure 54. Parallel Descrambler Required in Receiver  
Rev. B | Page 22 of 36  
 
Data Sheet  
AD9639  
Initial Synchronization  
To minimize skew and time misalignment between each channel  
of the digital outputs, the following actions should be taken to  
ensure that each channel data frame is within 1 clock cycle of  
the sample clock. For some receiver logic, this is not required.  
The serial interface must synchronize to the frame boundaries  
before data can be properly decoded. The JESD204 standard has  
a synchronization routine to identify the frame boundary. The  
SYNC  
SYNC  
PGMx pins are used as  
pins by default. When the  
1. Full power-down through external PDWN pin.  
2. Chip reset via external RESET pin.  
3. Power-up by releasing external PDWN pin.  
pin is taken low for at least two clock cycles, the AD9639 enters  
the synchronization mode. The AD9639 transmits the K28.5  
comma symbol until the receiver can identify the frame boundary.  
SYNC  
The receiver should then deassert the sync signal (take  
high) and the ADC begins transmitting real data. The first non-  
K28.5 symbol is the MSB symbol of the 12-bit data.  
ICOUNTER = ‘0’;  
VCOUNTER = ‘0’;  
SYNC_REQUEST = ‘1’;  
IF /K28.5/ AND /VALID/ THEN  
KCOUNTER = KCOUNTER + ‘1’;  
ELSE  
RESET  
INIT  
KCOUNTER = ‘0’;  
END IF;  
KCOUNTER < 4  
KCOUNTER = 4  
ICOUNTER = ‘0’;  
ICOUNTER = 3  
SYNC_REQUEST = ‘0’;  
VCOUNTER = ‘0’;  
KCOUNTER = ‘0’;  
IF /INVALID/ THEN  
ICOUNTER = ICOUNTER + ‘1’;  
VCOUNTER = ‘0’;  
VCOUNTER = 4  
ELSE IF /VALID/ THEN  
VCOUNTER = VCOUNTER + ‘1’;  
END IF;  
CHECK  
DATA  
/VALID/  
/INVALID/  
VCOUNTER < 4 AND ICOUNTER < 3  
Figure 55. Receiver State Machine  
Table 8. Variables Used in Receiver State Machine  
Variable  
Description  
ICOUNTER  
/INVALID/  
/K28.5/  
Counter used in the CHECK phase to count the number of invalid symbols.  
Asserted by receiver to indicate that the current symbol is an invalid symbol given the current running disparity.  
Asserted when the current symbol corresponds to the K28.5 control character.  
KCOUNTER  
SYNC_REQUEST  
/VALID/  
Counter used in the INIT phase to count the number of valid K28.5 symbols.  
Asserted by receiver when loss of code group synchronization is detected.  
Asserted by receiver to indicate that the current symbol is a valid symbol given the current running disparity.  
Counter used in the CHECK phase to count the number of successive valid symbols.  
VCOUNTER  
Rev. B | Page 23 of 36  
AD9639  
Data Sheet  
Continuous Synchronization  
When scrambling is enabled, any D28.7 symbols found in the  
LSB octet of a frame are replaced with K28.7 comma symbols.  
The receiver is responsible for replacing the K28.7 comma  
symbols with D28.7 symbols when in this mode.  
Continuous synchronization is part of the JESD204 specification.  
The 12-bit word requires two octets to transmit all the data. The  
two octets (MSB and LSB) are called a frame. When scrambling  
is disabled and the LSB octets of two consecutive frames are the  
same, the second LSB octet is replaced by a K28.7 comma symbol.  
The receiver is responsible for replacing the K28.7 comma  
symbol with the LSB octet of the previous frame.  
By looking for K28.7 symbols, the receiver can ensure that it is  
still synchronized to the frame boundary.  
IF /K28.7/  
/REPLACE_K28.7/  
IF (OCOUNTER == PREVIOUS_POSITION) AND /VALID/  
/RESET_OCTET_COUNTER/  
END IF;  
IF /VALID/ | (OCOUNTER == N-1)  
PREVIOUS_POSITION = OCOUNTER  
END IF;  
END IF;  
Figure 56. Pseudocode for Data Dependent Frame Synchronization in Receiver  
Table 9. Variables and Functions in Data Dependent Frame Synchronization  
Variable  
Description  
N
Number of octets in frame (octet indexing starts from 0).  
/K28.7/  
Asserted when the current symbol corresponds to the K28.7 control character.  
Counter used to mark the position of the current octet in the frame.  
Variable that stores the position in the frame of a K28.7 symbol.  
Replace K28.7 at the decoder output as follows. When scrambling is disabled, replace K28.7 with the LSB  
octet that was decoded at the same position in the previous frame; when scrambling is enabled, replace  
K28.7 at the decoder output with D28.7.  
OCOUNTER  
PREVIOUS_POSITION  
/REPLACE_K28.7/  
/RESET_OCTET_COUNTER/ Reset octet counter to 0 at reception of next octet.  
/VALID/ Asserted by receiver to indicate that the current symbol is a valid symbol given the current running disparity.  
Rev. B | Page 24 of 36  
Data Sheet  
AD9639  
If there is no far-end receiver termination or if there is poor  
Digital Outputs and Timing  
differential trace routing, timing errors may result. To avoid  
such timing errors, it is recommended that the trace length be  
less than 6 inches and that the differential output traces be close  
together and at equal lengths.  
The AD9639 has differential digital outputs that power up  
by default. The driver current is derived on chip and sets the  
output current at each output equal to a nominal 4 mA. Each  
output presents a 100 Ω dynamic internal termination to reduce  
unwanted reflections.  
100  
DRVDD  
DIFFERENTIAL  
TRACE PAIR  
A 100 Ω differential termination resistor should be placed at  
each receiver input to result in a nominal 400 mV peak-to-peak  
swing at the receiver. Alternatively, single-ended 50 Ω termina-  
tion can be used. When single-ended termination is used, the  
termination voltage should be DRVDD/2; otherwise, ac coupling  
capacitors can be used to terminate to any single-ended voltage.  
DOUT + x  
RECEIVER  
100Ω  
DOUT – x  
V
= DRVDD/2  
OUTPUT SWING = 400mV p-p  
CM  
Figure 57. DC-Coupled Digital Output Termination Example  
The AD9639 digital outputs can interface with custom ASICs  
and FPGA receivers, providing superior switching performance  
in noisy environments. Single point-to-point network topologies  
are recommended with a single differential 100 Ω termination  
resistor placed as close to the receiver logic as possible. The  
common mode of the digital output automatically biases itself  
to half the supply of DRVDD if dc-coupled connecting is used.  
For receiver logic that is not within the bounds of the DRVDD  
supply, an ac-coupled connection should be used. Simply place  
a 0.1 μF capacitor on each output pin and derive a 100 Ω  
differential termination close to the receiver side.  
V
RXCM  
100Ω  
DIFFERENTIAL  
TRACE PAIR  
DRVDD  
0.1µF  
0.1µF  
DOUT + x  
RECEIVER  
= Rx V  
100Ω  
OR  
DOUT – x  
V
OUTPUT SWING = 400mV p-p  
CM  
CM  
Figure 58. AC-Coupled Digital Output Termination Example  
Rev. B | Page 25 of 36  
AD9639  
Data Sheet  
TJ@BERI: BATHTUB  
HEIGHT1: EYE DIAGRAM  
TIE1: HISTOGRAM  
0
10  
600  
500  
400  
(y1) –375.023m  
(y2) +409.847m  
(y) +784.671m  
1
2
3
600  
+
+
+
–2  
–4  
–6  
–8  
10  
10  
10  
10  
400  
200  
300  
200  
100  
0
0
–200  
–400  
–10  
–12  
–14  
10  
10  
10  
EYE: ALL BITS  
OFFSET: 0.015  
ULS: 5000: 40044, TOTAL: 12000: 80091  
–600  
–200  
–100  
0
100  
200  
–30  
–10  
10  
30  
–0.5  
0
0.5  
TIME (ps)  
TIME (ps)  
ULS  
Figure 59. Digital Outputs Data Eye with Trace Lengths Less Than 6 Inches on Standard FR-4, External 100 Ω Terminations at Receiver  
HEIGHT1: EYE DIAGRAM  
(y1) –402.016m  
(y2) +398.373m  
(y) +800.389m  
TIE1: HISTOGRAM  
TJ@BERI: BATHTUB  
0
10  
300  
250  
200  
1
2
3
600  
400  
+
+
+
–2  
–4  
–6  
–8  
10  
10  
10  
10  
200  
0
150  
100  
50  
–200  
–400  
–10  
–12  
–14  
10  
10  
10  
EYE: ALL BITS  
OFFSET: 0.015  
ULS: 5000: 40044, TOTAL 8000: 40044  
–600  
0
–200  
–100  
0
100  
200  
–50  
0
50  
–0.5  
0
0.5  
TIME (ps)  
TIME (ps)  
ULS  
Figure 60. Digital Outputs Data Eye with Trace Lengths Greater Than 12 Inches on Standard FR-4, External 100 Ω Terminations at Receiver  
Figure 59 shows an example of the digital output (default) data  
eye and a time interval error (TIE) jitter histogram with trace  
lengths less than 6 inches on standard FR-4 material. Figure 60  
shows an example of trace lengths exceeding 12 inches on stan-  
dard FR-4 material. Note that the TIE jitter histogram reflects  
the decrease of the data eye opening as the edge deviates from  
the ideal position. It is the users responsibility to determine  
whether the waveforms meet the timing budget of the design  
when the trace lengths exceed 6 inches.  
The format of the output data is offset binary by default.  
Table 10 provides an example of this output coding format.  
To change the output data format to twos complement or gray  
code, see the Memory Map section (Address 0x14 in Table 15).  
Table 10. Digital Output Coding  
(VIN + x) − (VIN − x),  
Input Span = 1.25 V p-p (V) Binary ([D11:D0])  
Digital Output Offset  
Code  
4095  
2048  
2047  
0
+0.625  
0.00  
−0.000305  
−0.625  
1111 1111 1111  
1000 0000 0000  
0111 1111 1111  
0000 0000 0000  
Additional SPI options allow the user to further increase the  
output driver voltage swing of all four outputs to drive longer  
trace lengths (see Address 0x15 in Table 15). Even though this  
produces sharper rise and fall times on the data edges and is less  
prone to bit errors, the power dissipation of the DRVDD supply  
increases when this option is used. See the Memory Map section  
for more details.  
The lowest typical clock rate is 100 MSPS. For clock rates slower  
than 100 MSPS, the user can set Bit 3 to 0 in the serial control  
register (Address 0x21 in Table 15). This option allows the user  
to adjust the PLL loop bandwidth to use clock rates as low as  
50 MSPS.  
Rev. B | Page 26 of 36  
 
 
 
Data Sheet  
AD9639  
Setting Bit 2 in the output mode register (Address 0x14) allows  
the user to invert the digital outputs from their nominal state.  
This is not to be confused with inverting the serial stream to an  
LSB first mode. In default mode, as shown in Figure 2, the MSB  
is first in the data output serial stream. However, this order can  
be inverted so that the LSB is first in the data output serial stream.  
The PN sequence long pattern produces a pseudorandom bit  
sequence that repeats itself every 223 − 1 (8,388,607) bits. A  
description of the PN sequence long and how it is generated can  
be found in Section 5.6 of the ITU-T O.150 (05/96) standard.  
The only differences are that the starting value must be a specific  
value instead of all 1s (see Table 11 for the initial values) and  
that the AD9639 inverts the bit stream with relation to the ITU-T  
standard.  
There are eight digital output test pattern options available that  
can be initiated through the SPI (see Table 12 for the output bit  
sequencing options). This feature is useful when validating  
receiver capture and timing. Some test patterns have two serial  
sequential words and can be alternated in various ways, depending  
on the test pattern selected. Note that some patterns do not  
adhere to the data format select option. In addition, custom  
user-defined test patterns can be assigned in the user pattern  
registers (Address 0x19 through Address 0x20).  
Table 11. PN Sequence  
Initial  
Value  
First Three Output Samples  
(MSB First)  
Sequence  
PN Sequence Short 0x0DF  
PN Sequence Long  
0xDF9, 0x353, 0x301  
0x29B80A 0x591, 0xFD7, 0x0A3  
Consult the Memory Map section for information on how to  
change these additional digital output timing features through  
the SPI.  
The PN sequence short pattern produces a pseudorandom bit  
sequence that repeats itself every 29 − 1 (511) bits. A description  
of the PN sequence short and how it is generated can be found  
in Section 5.1 of the ITU-T O.150 (05/96) recommendation.  
The only difference is that the starting value must be a specific  
value instead of all 1s (see Table 11 for the initial values).  
Table 12. Flexible Output Test Modes  
Output Test Mode  
Bit Sequence  
Subject to Data  
Format Select  
Pattern Name  
Digital Output Word 1  
N/A  
Digital Output Word 2  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Off (default)  
Midscale short  
N/A  
Same  
Same  
Same  
0101 0101 0101  
N/A  
N/A  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
1000 0000 0000  
1111 1111 1111  
0000 0000 0000  
1010 1010 1010  
N/A  
+Full-scale short  
−Full-scale short  
Checkerboard  
PN sequence long1  
PN sequence short1  
One-/zero-word toggle  
N/A  
1111 1111 1111  
0000 0000 0000  
1 All test mode options except PN sequence long and PN sequence short can support 8- to 14-bit word lengths to verify data capture to the receiver.  
Rev. B | Page 27 of 36  
 
 
AD9639  
Data Sheet  
TEMPOUT Pin  
the power-down feature is enabled, the chip continues to function  
after PDWN is pulled low without requiring a reset. The AD9639  
returns to normal operating mode when the PDWN pin is pulled  
low. This pin is only 1.8 V tolerant.  
The TEMPOUT pin can be used as a coarse temperature sensor  
to monitor the internal die temperature of the device. This pin  
typically has a 737 mV output with a clock rate of 210 MSPS  
and a negative going temperature coefficient of −1.12 mV/°C.  
The voltage response of this pin is characterized in Figure 61.  
0.85  
SDO Pin  
The SDO pin is for use in applications that require a 4-wire SPI  
mode operation. For normal operation, it should be tied low to  
AGND through a 10 kΩ resistor. Alternatively, the device pin  
can be left open, and the 345 Ω internal pull-down resistor pulls  
this pin low. This pin is only 1.8 V tolerant.  
0.83  
0.81  
0.79  
0.77  
0.75  
0.73  
0.71  
0.69  
SDI/SDIO Pin  
The SDI/SDIO pin is for use in applications that require either a  
4- or 3-wire SPI mode operation. For normal operation, it should  
be tied low to AGND through a 10 kΩ resistor. Alternatively,  
the device pin can be left open, and the 30 kΩ internal pull-  
down resistor pulls this pin low. This pin is only 1.8 V tolerant.  
0.67  
0.65  
SCLK Pin  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
For normal operation, the SCLK pin should be tied to AGND  
through a 10 kΩ resistor. Alternatively, the device pin can be left  
open, and the 30 kΩ internal pull-down resistor pulls this pin  
low. This pin is only 1.8 V tolerant.  
Figure 61. TEMPOUT Pin Voltage vs. Temperature  
RBIAS Pin  
To set the internal core bias current of the ADC, place a resistor  
(nominally equal to 10.0 kΩ) between ground and the RBIAS pin.  
The resistor current is derived on chip and sets the AVDD current  
of the ADC to a nominal 610 mA at 210 MSPS. Therefore, it is  
imperative that a 1% or less tolerance on this resistor be used to  
achieve consistent performance.  
CSB Pin  
For normal operation, the CSB pin should be tied high to AVDD  
through a 10 kΩ resistor. Alternatively, the device pin can be left  
open, and the 26 kΩ internal pull-up resistor pulls this pin high.  
Tying the CSB pin to AVDD causes all information on the SCLK  
and SDI/SDIO pins to be ignored. Tying the CSB pin low causes  
all information on the SDO and SDI/SDIO pins to be written to  
the device. This feature allows the user to reduce the number of  
traces to the device if necessary. This pin is only 1.8 V tolerant.  
VCM x Pins  
The common-mode output pins can be enabled through the SPI  
to provide an external reference bias voltage of 1.4 V for driving  
the VIN + x/VIN − x analog inputs. The VCM x pins may be  
required when connecting external devices, such as an amplifier  
or transformer, to interface to the analog inputs.  
PGMx Pins  
All PGMx pins are automatically initialized as synchronization  
pins by default. These pins are used to lock the FPGA timing and  
data capture during initial startup. These pins are respective to  
each channel (PGM3 = Channel A, PGM2 = Channel B, and so  
on). The sync (PGMx) pin should be pulled high until this pin  
receives a low signal input from the receiver, during which time  
the ADC outputs K28.5 comma symbols to indicate the frame  
boundary. When the receiver finds the frame boundary, the  
sync identification is deasserted low and the ADC outputs the  
valid data on the next packet boundary.  
RESET Pin  
The RESET pin resets the datapath and sets all SPI registers to  
their default values. To use this pin, the user must resynchronize  
the digital outputs. This pin is only 1.8 V tolerant.  
PDWN Pin  
When asserted high, the PDWN pin turns off all ADC channels,  
including the output drivers. This function can be changed to  
a standby function (see Address 0x08 in Table 15). This feature  
allows the user to place all channels into standby mode. The  
output drivers transmit pseudorandom data until the outputs  
are disabled using the output mode register (Address 0x14).  
When steady state operation for the device is achieved, these pins  
can be assigned as a standby option using the PGM mode register  
(Address 0x53 in Table 15). All other PGMx pins become global  
synchronization pins. This pin is only 1.8 V tolerant.  
When the PDWN pin is asserted high, the AD9639 is placed into  
power-down mode, shutting down the reference, reference buffer,  
PLL, and biasing networks. In this state, the ADC typically  
dissipates 3 mW. If any of the SPI features are changed before  
Rev. B | Page 28 of 36  
 
 
Data Sheet  
AD9639  
SERIAL PORT INTERFACE (SPI)  
The AD9639 serial port interface allows the user to configure the  
converter for specific functions or operations through a structured  
register space provided in the ADC. The SPI can provide the  
user with additional flexibility and customization, depending  
on the application. Addresses are accessed via the serial port  
and can be written to or read from via the port. Memory is  
organized into bytes that can be further divided into fields, as  
documented in the Memory Map section. Detailed operational  
information can be found in the Analog Devices, Inc., AN-877  
Application Note, Interfacing to High Speed ADCs via SPI.  
additional instructions. Regardless of the mode, if CSB is taken  
high in the middle of a byte transfer, the SPI state machine is  
reset and the device waits for a new instruction.  
In addition to the operation modes, the SPI port configuration  
influences how the AD9639 operates. For applications that do  
not require a control port, the CSB line can be tied high. This  
places the SDI/SDIO pin into its secondary mode, as defined in  
the SDI/SDIO Pin section. CSB can also be tied low to enable  
2-wire mode. When CSB is tied low, SCLK and SDI/SDIO are  
the only pins required for communication. Although the device  
is synchronized during power-up, the user should ensure that  
the serial port remains synchronized with the CSB line when  
using this mode. When operating in 2-wire mode, it is recom-  
mended that a 1-, 2-, or 3-byte transfer be used exclusively.  
Without an active CSB line, streaming mode can be entered but  
not exited.  
Four pins define the SPI: SCLK, SDI/SDIO, SDO, and CSB (see  
Table 13). The SCLK pin is used to synchronize the read and  
write data presented to the ADC. The SDI/SDIO pin is a dual-  
purpose pin that allows data to be sent to and read from the  
internal ADC memory map registers. The SDO pin is used in  
4-wire mode to read back data from the part. The CSB pin is an  
active low control that enables or disables the read and write cycles.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used to both program the chip and read the  
contents of the on-chip memory. If the instruction is a readback  
operation, performing a readback causes the SDI/SDIO pin to  
change from an input to an output at the appropriate point in  
the serial frame.  
Table 13. Serial Port Pins  
Pin  
Function  
SCLK  
Serial clock. Serial shift clock input. SCLK is used to  
synchronize serial interface reads and writes.  
SDI/SDIO Serial data input/output. Dual-purpose pin that  
typically serves as an input or an output, depending  
on the SPI wire mode, the instruction sent, and the  
relative position in the timing frame.  
Data can be sent in MSB first or LSB first mode. MSB first mode  
is the default at power-up and can be changed by adjusting the  
configuration register (Address 0x00). For more information  
about this and other features, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
SDO  
Serial data output. Used only in 4-wire SPI mode.  
When set, the SDO pin becomes active. When cleared,  
the SDO pin remains in three-state and all read data  
is routed to the SDI/SDIO pin.  
CSB  
Chip select bar (active low). This control gates the  
read and write cycles.  
HARDWARE INTERFACE  
The pins described in Table 13 constitute the physical interface  
between the users programming device and the serial port of  
the AD9639. The SCLK and CSB pins function as inputs when  
using the SPI. The SDI/SDIO pin is bidirectional, functioning as  
an input during write phases and as an output during readback.  
The falling edge of CSB in conjunction with the rising edge of  
SCLK determines the start of the framing sequence. During the  
instruction phase, a 16-bit instruction is transmitted, followed  
by one or more data bytes, which is determined by Bit Field W0  
and Bit Field W1. An example of the serial timing and its defini-  
tions can be found in Figure 63 and Table 14.  
If multiple SDI/SDIO pins share a common connection, ensure  
that proper VOH levels are met. Assuming the same load for each  
AD9639, Figure 62 shows the number of SDI/SDIO pins that  
can be connected together and the resulting VOH level. This  
interface is flexible enough to be controlled by either serial  
PROMs or PIC microcontrollers, providing the user with an  
alternative method, other than a full SPI controller, to program  
the ADC (see the AN-812 Application Note).  
During normal operation, CSB is used to signal to the device  
that SPI commands are to be received and processed. When  
CSB is brought low, the device processes SCLK and SDI/SDIO  
to execute instructions. Normally, CSB remains low until the  
communication cycle is complete. However, if connected to a  
slow device, CSB can be brought high between bytes, allowing  
older microcontrollers enough time to transfer data into shift  
registers. CSB can be stalled when transferring one, two, or three  
bytes of data. When W0 and W1 are set to 11, the device enters  
streaming mode and continues to process data, either reading  
or writing, until CSB is taken high to end the communication  
cycle. This allows complete memory transfers without requiring  
For users who wish to operate the ADC without using the  
SPI, remove any connections from the CSB, SCLK, SDO, and  
SDI/SDIO pins. By disconnecting these pins from the control bus,  
the ADC can function in its most basic operation. Each of these  
pins has an internal termination that floats to its respective level.  
Rev. B | Page 29 of 36  
 
 
 
AD9639  
Data Sheet  
1.800  
1.795  
1.790  
1.785  
1.780  
1.775  
1.770  
1.765  
1.760  
1.755  
1.750  
1.745  
1.740  
1.735  
1.730  
1.725  
1.720  
1.715  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
NUMBER OF SDI/SDIO PINS CONNECTED TOGETHER  
Figure 62. SDI/SDIO Pin Loading  
tDS  
tHIGH  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
DON’T  
SCLK  
DON’T  
CARE  
CARE  
SDI/  
SDIO  
DON’T  
CARE  
DON’T  
D0  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
CARE  
Figure 63. Serial Timing Details  
Table 14. Serial Timing Definitions  
Parameter  
Timing (ns min)  
Description  
tDS  
tDH  
tCLK  
tS  
5
2
40  
5
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the clock  
Setup time between CSB and SCLK  
tH  
2
Hold time between CSB and SCLK  
tHIGH  
tLOW  
tEN_SDI/SDIO  
16  
16  
10  
Minimum period that SCLK should be in a logic high state  
Minimum period that SCLK should be in a logic low state  
Minimum time for the SDI/SDIO pin to switch from an input to an output relative to the  
SCLK falling edge (not shown in Figure 63)  
tDIS_SDI/SDIO  
10  
Minimum time for the SDI/SDIO pin to switch from an output to an input relative to the  
SCLK rising edge (not shown in Figure 63)  
Rev. B | Page 30 of 36  
 
 
 
Data Sheet  
AD9639  
MEMORY MAP  
READING THE MEMORY MAP TABLE  
RESERVED LOCATIONS  
Undefined memory locations should not be written to except  
when writing the default values suggested in this data sheet.  
Blank cells in Table 15 should be considered reserved bits and  
have a 0 written into their registers during power-up.  
Each row in the memory map register table (Table 15) has eight  
bit locations. The memory map is divided into three sections: the  
chip configuration registers (Address 0x00 to Address 0x02),  
the device index and transfer registers (Address 0x05 and  
Address 0xFF), and the ADC function registers (Address 0x08  
to Address 0x53).  
DEFAULT VALUES  
When the AD9639 comes out of a reset, critical registers are  
preloaded with default values. These values are indicated in  
Table 15.  
The leftmost column of the memory map indicates the register  
address; the default value is shown in the second rightmost  
column. The Bit 7 column is the start of the default hexadecimal  
value given. For example, Address 0x09, the clock register, has a  
default value of 0x01, meaning that Bit 7 = 0, Bit 6 = 0, Bit 5 = 0,  
Bit 4 = 0, Bit 3 = 0, Bit 2 = 0, Bit 1 = 0, and Bit 0 = 1, or 0000 0001  
in binary. This setting is the default for the duty cycle stabilizer  
in the on condition. By writing a 0 to Bit 0 of this address, fol-  
lowed by 0x01 in the device update register (Address 0xFF[0],  
the transfer bit), the duty cycle stabilizer is turned off. It is  
important to follow each write sequence with a transfer bit to  
update the SPI registers. For more information about this and  
other functions, consult the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
LOGIC LEVELS  
In Table 15, “bit is set” is synonymous with “bit is set to Logic 1”  
or “writing Logic 1 for the bit.” Similarly, “bit is cleared” is synon-  
ymous with “bit is set to Logic 0” or “writing Logic 0 for the bit.”  
Rev. B | Page 31 of 36  
 
 
 
 
 
AD9639  
Data Sheet  
Table 15. Memory Map Register  
Default  
Addr. Register  
(Hex) Name  
(MSB)  
Bit 7  
(LSB)  
Bit 0  
Value  
(Hex)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Comments  
Chip Configuration Registers  
0x00  
chip_port_  
config (local,  
master)  
SDO active  
(not  
required,  
ignored if  
not used)  
LSB  
first  
Soft  
reset  
16-bit  
0x18  
address  
(default  
mode for  
ADCs)  
0x01  
0x02  
chip_id  
(global)  
8-bit chip ID, Bits[2:0]  
0x29: AD9639, 12-bit quad  
Read only.  
Read only.  
chip_grade  
(global)  
Speed grade  
010 = 170 MSPS  
100 = 210 MSPS  
Device Index and Transfer Registers  
0x05  
device_  
index_A  
(global)  
ADC A  
ADC B  
ADC C  
ADC D  
0x0F  
Bits are set to  
determine  
which device  
on chip  
receives the  
next write  
command.  
The default  
is all devices  
on chip.  
0xFF  
device_  
SW  
0x00  
Synchro-  
update (local,  
master)  
transfer  
1 = on  
0 = off  
(default)  
nously  
transfers  
data from  
the master  
shift register  
to the slave.  
ADC Function Registers  
0x08  
0x09  
0x0D  
Modes  
(local)  
External PDWN pin  
function  
00 = full power-down  
(default)  
Power-down mode  
00 = chip run  
(default)  
01 = full power-down  
10 = standby  
11 = reset  
0x00  
0x01  
0x00  
Determines  
generic  
modes  
of chip  
operation.  
01 = standby  
Clock  
(global)  
Duty  
cycle  
stabilize  
1 = on  
(default)  
0 = off  
Turns the  
internal  
duty cycle  
stabilizer  
on and off.  
test_io  
(local)  
Reset PN  
sequence sequence  
long gen  
1 = on  
0 = off  
Reset PN  
Flexible output test mode  
0000 = off (normal operation)  
0001 = midscale short  
0010 = +FS short  
When set,  
the test data  
is placed on  
the output  
pins in place  
of normal  
data.  
short gen  
1 = on  
0 = off  
0011 = −FS short  
(default)  
(default)  
0100 = checkerboard output  
0101 = PN 23 sequence  
0110 = PN 9 sequence  
0111 = 1/0 word toggle  
0x0E  
0x0F  
test_bist  
(local)  
BIST init  
1 = on  
0 = off  
BIST  
enable  
1 = on  
0 = off  
(default)  
0x00  
0x00  
When Bit 0  
is set, the  
built-in self-  
test function  
is initiated.  
(default)  
adc_input  
(local)  
Analog  
disconnect enable  
VCM  
enable  
1 = on  
1 = on  
0 = off  
0 = off  
(default)  
(default)  
Rev. B | Page 32 of 36  
 
Data Sheet  
AD9639  
Default  
Value  
(Hex)  
Addr. Register  
(Hex) Name  
(MSB)  
Bit 7  
(LSB)  
Bit 0  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Comments  
0x10  
Offset  
(local)  
6-bit device offset adjustment[5:0]  
011111 = +31 LSB  
011110 = +30 LSB  
011101 = +29 LSB  
0x00  
Device  
offset trim.  
000010 = +2 LSB  
000001 = +1 LSB  
000000 = 0 LSB  
111111 = −1 LSB  
111110 = −2 LSB  
111101 = −3 LSB  
100001 = −31 LSB  
100000 = −32 LSB  
0x14  
0x15  
0x18  
output_mode  
(local/global)  
Output  
enable bar  
(local)  
1 = off  
0 = on  
Output  
invert  
enable  
(global)  
1 = on  
0 = off  
(default)  
Data format select  
(global)  
00 = offset binary  
(default)  
01 = twos  
complement  
10 = gray code  
0x00  
0x00  
0x00  
Configures  
the outputs  
and the  
format of  
the data.  
(default)  
output_adjust  
(global)  
Output driver  
current[1:0]  
00 = 400 mV  
(default)  
01 = 500 mV  
10 = 440 mV  
11 = 320 mV  
VCM output  
adjustments.  
VREF  
Ref_Vfs[4:0]  
Select  
(global)  
Reference full-scale adjust  
10000 = 0.98 V p-p  
10001 = 1.00 V p-p  
10010 = 1.02 V p-p  
10011 = 1.04 V p-p  
adjustments  
for VREF  
.
11111 = 1.23 V p-p  
00000 = 1.25 V p-p  
00001 = 1.27 V p-p  
01110 = 1.48 V p-p  
01111 = 1.5 V p-p  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
user_  
patt1_lsb  
(local)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B1  
B9  
B1  
B9  
B1  
B9  
B0  
B8  
B0  
B8  
B0  
B8  
B0  
B8  
0xAA  
0xAA  
0xAA  
0xAA  
0xAA  
0xAA  
0xAA  
0xCC  
User-Defined  
Pattern 1  
LSB.  
user_  
patt1_msb  
(local)  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
User-Defined  
Pattern 1  
MSB.  
user_  
patt2_lsb  
(local)  
User-Defined  
Pattern 2  
LSB.  
user_  
patt2_msb  
(local)  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
User-Defined  
Pattern 2  
MSB.  
user_  
patt3_lsb  
(local)  
User-Defined  
Pattern 3  
LSB.  
user_  
patt3_msb  
(local)  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
User-Defined  
Pattern 3  
MSB.  
user_  
patt4_lsb  
(local)  
User-Defined  
Pattern 4  
LSB.  
user_  
patt4_msb  
(local)  
B15  
B14  
B13  
B12  
B11  
B10  
User-Defined  
Pattern 4  
MSB.  
Rev. B | Page 33 of 36  
AD9639  
Data Sheet  
Default  
Addr. Register  
(Hex) Name  
(MSB)  
Bit 7  
(LSB)  
Bit 0  
Value  
(Hex)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Comments  
0x21  
serial_control  
(global)  
PLL  
high  
0x08  
Serial stream  
control.  
encode  
rate  
mode  
(global)  
0 = low  
rate  
1 = high  
rate  
(default)  
0x24  
0x25  
0x33  
misr_lsb  
(local)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B0  
B8  
0x00  
0x00  
0x00  
Least  
significant  
byte of  
MISR.  
Read only.  
misr_msb  
(local)  
B15  
B14  
B13  
B12  
B11  
B10  
Most  
significant  
byte of  
MISR.  
Read only.  
JESD204  
(global)  
Over-  
range in  
LSB of  
tail bits  
0 = over-  
range  
disabled  
(default)  
1 = over-  
range  
Scram-  
bling  
enable  
0 = scram-  
bling  
disabled  
(default)  
1 = scram-  
bling  
enabled  
enabled  
0x50  
0x51  
coarse_  
gain_adj  
(local)  
Gain adjust  
enable  
1 = on  
0 = off  
(default)  
Coarse gain adjust[5:0] = output[63:0]  
000000 = 0000…0001  
000001 = 0000…0011  
000010 = 0000…0111  
111101 = 0011…1111  
111110 = 0111…1111  
111111 = 1111…1111  
0x00  
0x00  
fine_  
gain_adj  
(local)  
Fine gain adjust[3:0] = output[15:0]  
0000 = 0000000000000001  
0001 = 0000000000000010  
0010 = 0000000000000100  
1101 = 0010000000000000  
1110 = 0100000000000000  
1111 = 1000000000000000  
0x52  
0x53  
gain_cal_ctl  
Temperature  
sensor  
enable  
1 = on  
0 = off  
Gain  
quarter  
LSB  
1 = on  
0 = off  
(default)  
Gain cal  
resetb  
1 = on  
(default)  
0 = off  
Gain cal  
enable  
1 = on  
0 = off  
(default)  
0x02  
0x00  
(default)  
Dynamic  
pgm pins  
(global)  
pgm_3  
00 = sync  
01 = Standby A  
10 = Standby A and  
Standby D  
pgm_2  
00 = sync  
01 = Standby B  
10 = Standby B and  
Standby C  
pgm_1  
00 = sync  
pgm_0  
00 = sync  
01 = Standby D  
10 = Standby D and  
Standby A  
Standby =  
ADC core  
off, PN23  
enabled,  
serial  
01 = Standby C  
10 = Standby C and  
Standby B  
11 = Standby A and  
Standby B  
11 = Standby B and  
Standby A  
11 = Standby C and  
Standby D  
11 = Standby D and  
Standby C  
channel  
enabled.  
Rev. B | Page 34 of 36  
Data Sheet  
AD9639  
APPLICATIONS INFORMATION  
POWER AND GROUND RECOMMENDATIONS  
EXPOSED PADDLE THERMAL HEAT SLUG  
RECOMMENDATIONS  
When connecting power to the AD9639, it is recommended  
that two separate 1.8 V supplies be used: one for analog (AVDD)  
and one for digital (DRVDD). If only one supply is available, it  
should be routed to the AVDD pin first and then tapped off and  
isolated with a ferrite bead or a filter choke preceded by decou-  
pling capacitors for the DRVDD pin. Several different decoupling  
capacitors can be used to cover both high and low frequencies.  
Locate these capacitors close to the point of entry at the PCB  
level and close to the parts, with minimal trace lengths.  
It is required that the exposed paddle on the underside of the  
ADC be connected to analog ground (AGND) to achieve the best  
electrical and thermal performance of the AD9639. An exposed  
continuous copper plane on the PCB should mate to the AD9639  
exposed paddle, Pin 0. The copper plane should have several vias  
to achieve the lowest possible resistive thermal path for heat  
dissipation to flow through the bottom of the PCB. These vias  
should be solder-filled or plugged with nonconductive epoxy.  
A single PCB ground plane should be sufficient when using the  
AD9639. With proper decoupling and smart partitioning of the  
analog, digital, and clock sections of the PCB, optimum perfor-  
mance can easily be achieved.  
To maximize the coverage and adhesion between the ADC and  
PCB, partition the continuous copper plane into several uniform  
sections by overlaying a silkscreen on the PCB. This provides  
several tie points between the ADC and PCB during the reflow  
process, whereas using one continuous plane with no partitions  
guarantees only one tie point. See Figure 64 for a PCB layout  
example. For detailed information on packaging and the PCB  
layout of chip scale packages, see the AN-772 Application Note,  
A Design and Manufacturing Guide for the Lead Frame Chip  
Scale Package (LFCSP), at www.analog.com.  
SILKSCREEN PARTITION  
PIN 1 INDICATOR  
Figure 64. Typical PCB Layout  
Rev. B | Page 35 of 36  
 
 
 
AD9639  
Data Sheet  
OUTLINE DIMENSIONS  
10.10  
10.00 SQ  
9.90  
0.60  
0.42  
0.24  
0.30  
0.23  
0.18  
0.60  
0.42  
0.24  
PIN 1  
INDICATOR  
55  
54  
72  
1
PIN 1  
INDICATOR  
9.85  
0.50  
BSC  
9.75 SQ  
9.65  
8.35  
8.20 SQ  
8.05  
EXPOSED  
PAD  
0.50  
0.40  
0.30  
18  
37  
36  
19  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
8.50 REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
COPLANARITY  
0.08  
SEATING  
PLANE  
0.20 REF  
SECTION OF THIS DATA SHEET.  
COMPLIANT TO JEDEC STANDARDS MO-220-VNND-4  
Figure 65. 72-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
10 mm × 10 mm Body, Very Thin Quad  
(CP-72-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
CP-72-3  
CP-72-3  
CP-72-3  
CP-72-3  
AD9639BCPZ-170  
AD9639BCPZRL-170  
AD9639BCPZ-210  
AD9639BCPZRL-210  
AD9639-210KITZ  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
72-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
72-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
72-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
72-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2009–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07973-0-7/13(B)  
Rev. B | Page 36 of 36  
 
 

相关型号:

AD9639BCPZRL-170

Quad, 12-Bit, 170 MSPS/210 MSPS Serial Output 1.8 V ADC
ADI

AD9639BCPZRL-210

Quad, 12-Bit, 170 MSPS/210 MSPS Serial Output 1.8 V ADC
ADI

AD9640

14-Bit, 80/105/125/150 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9640-105EBZ

14-Bit, 80/105/125/150 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9640-125EBZ

14-Bit, 80/105/125/150 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9640-150EBZ

14-Bit, 80/105/125/150 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9640-80EBZ

14-Bit, 80/105/125/150 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9640/PCB

14-Bit, 80/105/125/150 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9640ABCPZ-105

14-Bit, 80/105/125/150 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9640ABCPZ-105

2-CH 14-BIT FLASH METHOD ADC, PARALLEL ACCESS, QCC64, 9 X 9 MM, ROHS COMPLIANT, MO-220VMMD-4, LFCSP-64
ROCHESTER

AD9640ABCPZ-125

14-Bit, 80/105/125/150 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9640ABCPZ-125

2-CH 14-BIT FLASH METHOD ADC, PARALLEL ACCESS, QCC64, 9 X 9 MM, ROHS COMPLIANT, MO-220VMMD-4, LFCSP-64
ROCHESTER