AD9642 [ADI]

14-Bit, 170 MSPS/210 MSPS/250 MSPS, 1.8 V Analog-to-Digital Converter (ADC); 14位, 170 MSPS / 210 MSPS / 250 MSPS , 1.8 V模拟数字转换器( ADC )
AD9642
型号: AD9642
厂家: ADI    ADI
描述:

14-Bit, 170 MSPS/210 MSPS/250 MSPS, 1.8 V Analog-to-Digital Converter (ADC)
14位, 170 MSPS / 210 MSPS / 250 MSPS , 1.8 V模拟数字转换器( ADC )

转换器
文件: 总28页 (文件大小:1598K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
14-Bit, 170 MSPS/210 MSPS/250 MSPS,  
1.8 V Analog-to-Digital Converter (ADC)  
AD9642  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
AVDD  
AGND  
DRVDD  
SNR = 71.0 dBFS at 185 MHz AIN and 250 MSPS  
SFDR = 83 dBc at 185 MHz AIN and 250 MSPS  
−152.0 dBFS/Hz input noise at 200 MHz, −1 dBFS AIN, 250 MSPS  
Total power consumption: 390 mW at 250 MSPS  
1.8 V supply voltages  
LVDS (ANSI-644 levels) outputs  
Integer 1-to-8 input clock divider (625 MHz maximum input)  
Sample rates of up to 250 MSPS  
VIN+  
PIPELINE  
D0±/D1±  
14  
14-BIT  
ADC  
VIN–  
VCM  
PARALLEL  
DDR LVDS  
AND  
AD9642  
D12±/D13±  
DCO±  
DRIVERS  
REFERENCE  
IF sampling frequencies of up to 350 MHz  
Internal ADC voltage reference  
Flexible analog input range  
1-TO-8  
CLOCK  
DIVIDER  
SERIAL PORT  
1.4 V p-p to 2.0 V p-p (1.75 V p-p nominal)  
ADC clock duty cycle stabilizer  
Serial port control  
SCLK  
SDIO  
CSB  
CLK+  
CLK–  
Energy saving power-down modes  
Figure 1.  
User-configurable, built-in self-test (BIST) capability  
APPLICATIONS  
Communications  
Diversity radio systems  
Multimode digital receivers (3G)  
TD-SCDMA, WiMAX, WCDMA,  
CDMA2000, GSM, EDGE, LTE  
I/Q demodulation systems  
Smart antenna systems  
General-purpose software radios  
Ultrasound equipment  
Broadband data applications  
GENERAL DESCRIPTION  
The AD9642 is a 14-bit analog-to-digital converter (ADC) with  
sampling speeds of up to 250 MSPS. The AD9642 is designed to  
support communications applications, where low cost, small  
size, wide bandwidth, and versatility are desired.  
Programming for setup and control is accomplished using a  
3-wire SPI-compatible serial interface.  
The AD9642 is available in a 32-lead LFCSP and is specified  
over the industrial temperature range of −40°C to +85°C. This  
product is protected by a U.S. patent.  
The ADC core features a multistage, differential pipelined  
architecture with integrated output error correction logic. The  
ADC features wide bandwidth inputs that can support a variety  
of user-selectable input ranges. An integrated voltage reference  
eases design considerations. A duty cycle stabilizer (DCS) is  
provided to compensate for variations in the ADC clock duty  
cycle, allowing the converter to maintain excellent performance.  
PRODUCT HIGHLIGHTS  
1. Integrated 14-bit, 170 MSPS/210 MSPS/250 MSPS ADC.  
2. Operation from a single 1.8 V supply and a separate digital  
output driver supply accommodating LVDS outputs.  
3. Proprietary differential input maintains excellent SNR  
performance for input frequencies of up to 350 MHz.  
4. 3-pin, 1.8 V SPI port for register programming and readback.  
5. Pin compatibility with the AD9634, allowing a simple migra-  
tion from 14 bits to 12 bits, and with the AD6672.  
The ADC output data is routed directly to the external  
14-bit LVDS output port.  
Flexible power-down options allow significant power savings,  
when desired.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
AD9642  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 17  
ADC Architecture ...................................................................... 17  
Analog Input Considerations ................................................... 17  
Voltage Reference ....................................................................... 19  
Clock Input Considerations...................................................... 19  
Power Dissipation and Standby Mode .................................... 20  
Digital Outputs ........................................................................... 20  
Serial Port Interface (SPI).............................................................. 22  
Configuration Using the SPI..................................................... 22  
Hardware Interface..................................................................... 22  
SPI Accessible Features.............................................................. 23  
Memory Map .................................................................................. 24  
Reading the Memory Map Register Table............................... 24  
Memory Map Register Table..................................................... 25  
Applications Information.............................................................. 27  
Design Guidelines ...................................................................... 27  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
ADC DC Specifications............................................................... 3  
ADC AC Specifications ............................................................... 4  
Digital Specifications ................................................................... 5  
Switching Specifications .............................................................. 6  
Timing Specifications .................................................................. 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Characteristics .............................................................. 8  
ESD Caution.................................................................................. 8  
Pin Configurations and Function Descriptions ........................... 9  
Typical Performance Characteristics ........................................... 10  
Equivalent Circuits......................................................................... 16  
REVISION HISTORY  
7/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
AD9642  
SPECIFICATIONS  
ADC DC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.75 V p-p full-scale input range, DCS enabled,  
unless otherwise noted.  
Table 1.  
AD9642-170  
AD9642-210  
AD9642-250  
Parameter  
Temperature  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
Full  
14  
14  
14  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Gain Error  
Full  
Full  
Full  
Full  
25°C  
Full  
25°C  
Guaranteed  
Guaranteed  
Guaranteed  
11  
11  
+3.5/−8  
0.55  
10  
mV  
+2/−11  
0.5  
+3/−7 %FSR  
Differential Nonlinearity (DNL)  
0.6  
2.5  
LSB  
LSB  
LSB  
LSB  
0.3  
0.6  
0.3  
0.32  
1.0  
Integral Nonlinearity (INL)1  
1.3  
2.0  
0.75  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Full  
Full  
7
52  
7
105  
7
75  
ppm/°C  
ppm/°C  
INPUT REFERRED NOISE  
VREF = 1.0 V  
25°C  
0.83  
0.85  
0.85  
LSB  
rms  
ANALOG INPUT  
Input Span  
Full  
Full  
Full  
Full  
1.75  
2.5  
20  
1.75  
2.5  
20  
1.75  
2.5  
20  
V p-p  
pF  
kΩ  
V
Input Capacitance2  
Input Resistance3  
Input Common-Mode Voltage  
POWER SUPPLIES  
Supply Voltage  
AVDD  
0.9  
0.9  
0.9  
Full  
Full  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
DRVDD  
Supply Current  
1
IAVDD  
Full  
Full  
123  
50  
136  
64  
129  
56  
139  
67  
136  
64  
146  
69  
mA  
mA  
1
IDRVDD  
POWER CONSUMPTION  
Sine Wave Input (DRVDD = 1.8 V) Full  
311  
50  
5
360  
333  
50  
5
371  
360  
50  
5
387  
mW  
mW  
mW  
Standby Power4  
Full  
Full  
Power-Down Power  
1 Measured with a low input frequency, full-scale sine wave.  
2 Input capacitance refers to the effective capacitance between one differential input pin and its complement.  
3 Input resistance refers to the effective resistance between one differential input pin and its complement.  
4 Standby power is measured with a dc input and the CLK pin inactive (that is, set to AVDD or AGND).  
Rev. 0 | Page 3 of 28  
 
AD9642  
ADC AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.75 V p-p full-scale input range, unless  
otherwise noted.  
Table 2.  
AD9642-170  
AD9642-210  
AD9642-250  
Parameter1  
Temperature  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 30 MHz  
fIN = 90 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
Full  
72.5  
72.2  
72.4  
72.2  
72.2  
72.0  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
70.7  
70.0  
fIN = 140 MHz  
fIN = 185 MHz  
71.8  
71.2  
71.6  
71.5  
71.8  
71.4  
68.6  
fIN = 220 MHz  
25°C  
70.7  
71.0  
70.9  
SIGNAL-TO-NOISE AND DISTORTION  
(SINAD)  
fIN = 30 MHz  
fIN = 90 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
Full  
71.5  
71.3  
71.5  
71.3  
71.2  
71.0  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
69.6  
68.7  
fIN = 140 MHz  
fIN = 185 MHz  
70.8  
70.3  
70.6  
70.5  
70.9  
70.4  
67.5  
fIN = 220 MHz  
25°C  
69.7  
70.1  
70.0  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 30 MHz  
fIN = 90 MHz  
fIN = 140 MHz  
fIN = 185 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
11.6  
11.6  
11.5  
11.4  
11.3  
11.6  
11.6  
11.4  
11.4  
11.3  
11.5  
11.5  
11.5  
11.4  
11.3  
Bits  
Bits  
Bits  
Bits  
Bits  
fIN = 220 MHz  
WORST SECOND OR THIRD HARMONIC  
fIN = 30 MHz  
fIN = 90 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
Full  
−96  
−95  
−96  
−92  
−90  
−89  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−82  
−79  
fIN = 140 MHz  
fIN = 185 MHz  
−97  
−86  
−94  
−95  
−90  
−86  
−80  
fIN = 220 MHz  
25°C  
−84  
−84  
−86  
SPURIOUS-FREE DYNAMIC RANGE  
(SFDR)  
fIN = 30 MHz  
fIN = 90 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
Full  
96  
95  
96  
92  
90  
89  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
82  
79  
fIN = 140 MHz  
fIN = 185 MHz  
97  
86  
94  
95  
90  
86  
80  
fIN = 220 MHz  
25°C  
84  
84  
86  
WORST OTHER (HARMONIC OR SPUR)  
fIN = 30 MHz  
fIN = 90 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
Full  
−99  
−95  
−98  
−97  
−95  
−98  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−87  
−81  
fIN = 140 MHz  
fIN = 185 MHz  
−98  
−96  
−96  
−97  
−97  
−96  
−81  
fIN = 220 MHz  
25°C  
−97  
−94  
88  
−95  
88  
TWO-TONE SFDR  
fIN = 184.1 MHz, 187.1 MHz (−7 dBFS) 25°C  
87  
dBc  
Rev. 0 | Page 4 of 28  
 
AD9642  
AD9642-170  
AD9642-210  
AD9642-250  
Typ  
Parameter1  
FULL POWER BANDWIDTH2  
NOISE BANDWIDTH3  
Temperature  
25°C  
Min  
Typ  
350  
Max  
Min  
Typ  
350  
Max  
Min  
Max  
Unit  
MHz  
MHz  
350  
25°C  
1000  
1000  
1000  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
2 Full power bandwidth is the bandwidth of operation where typical ADC performance can be achieved.  
3 Noise bandwidth is the −3 dB bandwidth for the ADC inputs across which noise may enter the ADC and is not attenuated internally.  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference,  
DCS enabled, unless otherwise noted.  
Table 3.  
Parameter  
Temperature  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
Internal Common-Mode Bias  
Differential Input Voltage  
Input Voltage Range  
Input Common-Mode Range  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
CMOS/LVDS/LVPECL  
0.9  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
V p-p  
V
0.3  
AGND  
0.9  
10  
−22  
3.6  
AVDD  
1.4  
22  
−10  
V
μA  
μA  
pF  
kΩ  
4
Input Resistance  
12  
15  
18  
LOGIC INPUT (CSB)1  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
50  
−5  
2.1  
0.6  
71  
V
V
μA  
μA  
kΩ  
pF  
+5  
26  
2
Input Capacitance  
LOGIC INPUT (SCLK)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
45  
−5  
2.1  
0.6  
70  
V
V
μA  
μA  
kΩ  
pF  
+5  
26  
2
Input Capacitance  
LOGIC INPUTS (SDIO)1  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
45  
−5  
2.1  
0.6  
70  
V
V
μA  
μA  
kΩ  
pF  
+5  
26  
5
Input Capacitance  
DIGITAL OUTPUTS  
LVDS Data and OR Outputs (OR+, OR−)  
Differential Output Voltage (VOD), ANSI Mode  
Output Offset Voltage (VOS), ANSI Mode  
Differential Output Voltage (VOD), Reduced Swing Mode  
Output Offset Voltage (VOS), Reduced Swing Mode  
Full  
Full  
Full  
Full  
250  
1.15  
150  
1.15  
350  
1.25  
200  
1.25  
450  
1.35  
280  
1.35  
mV  
V
mV  
V
1 Pull-up.  
2 Pull-down.  
Rev. 0 | Page 5 of 28  
 
AD9642  
SWITCHING SPECIFICATIONS  
Table 4.  
AD9642-170  
AD9642-210  
AD9642-250  
Typ Max Unit  
Parameter  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
CLOCK INPUT PARAMETERS  
Input Clock Rate  
Conversion Rate1  
Full  
Full  
Full  
625  
170  
625  
210  
625  
250  
MHz  
MSPS  
ns  
40  
5.8  
40  
4.8  
40  
4
CLK Period—Divide-by-1 Mode (tCLK  
)
CLK Pulse Width High (tCH)  
Divide-by-1 Mode, DCS Enabled  
Divide-by-1 Mode, DCS Disabled  
Divide-by-2 Mode Through  
Divide-by-8 Mode  
Full  
Full  
Full  
2.61  
2.76  
0.8  
2.9  
2.9  
3.19  
3.05  
2.16  
2.28  
0.8  
2.4  
2.4  
2.64  
2.52  
1.8  
1.9  
0.8  
2.0  
2.0  
2.2  
2.1  
ns  
ns  
ns  
Aperture Delay (tA)  
Full  
Full  
1.0  
0.1  
1.0  
0.1  
1.0  
0.1  
ns  
ps rms  
Aperture Uncertainty (Jitter, tJ)  
DATA OUTPUT PARAMETERS  
Data Propagation Delay (tPD)  
DCO Propagation Delay (tDCO  
DCO-to-Data Skew (tSKEW  
Pipeline Delay (Latency)  
Wake-Up Time (from Standby)  
Wake-Up Time (from Power-Down)  
Out-of-Range Recovery Time  
4.1  
4.7  
0.3  
4.7  
5.3  
0.5  
10  
10  
100  
3
4.1  
4.7  
0.3  
4.7  
5.3  
0.5  
10  
10  
100  
3
4.1  
4.7  
0.3  
4.7  
5.3  
0.5  
10  
10  
100  
3
Full  
Full  
Full  
Full  
Full  
Full  
Full  
5.2  
5.8  
0.7  
5.2  
5.8  
0.7  
5.2  
5.8  
0.7  
ns  
ns  
ns  
Cycles  
μs  
)
)
μs  
Cycles  
1 Conversion rate is the clock rate after the divider.  
Timing Diagram  
tA  
N – 1  
N + 4  
N + 5  
N
N + 3  
VIN  
N + 1  
N + 2  
tCH  
tCLK  
CLK+  
CLK–  
tDCO  
DCO–  
DCO+  
tSKEW  
tPD  
D0±/D1±  
D0  
N – 10  
D1  
N – 10  
D0  
N – 9  
D1  
N – 9  
D0  
N – 8  
D1  
N – 8  
D0  
N – 7  
D1  
N – 7  
D0  
N – 6  
EVEN/ODD  
(LSB)  
D12±/D13±  
(MSB)  
D12  
N – 10  
D13  
N – 10  
D12  
N – 9  
D13  
N – 9  
D12  
N – 8  
D13  
N – 8  
D12  
N – 7  
D12  
N – 7  
D12  
N – 6  
Figure 2. LVDS Data Output Timing  
Rev. 0 | Page 6 of 28  
 
 
AD9642  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Test Conditions/Comments  
Min Typ  
Max Unit  
SPI TIMING REQUIREMENTS  
See Figure 58 for SPI timing diagram  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
Minimum period that SCLK should be in a logic high state  
Minimum period that SCLK should be in a logic low state  
Time required for the SDIO pin to switch from an input to an output  
relative to the SCLK falling edge (not shown in Figure 58)  
2
2
40  
2
2
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an input  
relative to the SCLK rising edge (not shown in Figure 58)  
10  
ns  
Rev. 0 | Page 7 of 28  
 
 
AD9642  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
Parameter  
THERMAL CHARACTERISTICS  
Rating  
The exposed paddle must be soldered to the ground plane for the  
LFCSP package. Soldering the exposed paddle to the customer  
board increases the reliability of the solder joints, maximizing  
the thermal capability of the package.  
Electrical  
AVDD to AGND  
DRVDD to AGND  
VIN+, VIN− to AGND  
CLK+, CLK− to AGND  
VCM to AGND  
CSB to AGND  
SCLK to AGND  
SDIO to AGND  
D0−/D1−, D0+/D1+ Through  
D12−/D13−, D12+/D13+ to AGND  
DCO+, DCO− to AGND  
Environmental  
Operating Temperature Range  
(Ambient)  
Maximum Junction Temperature  
Under Bias  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
Table 7. Thermal Resistance  
Airflow  
Velocity  
(m/sec)  
1, 2  
1, 3  
1, 4  
Package Type  
θJA  
θJC  
3.1  
θJB  
20.7  
Unit  
°C/W  
°C/W  
°C/W  
32-Lead LFCSP  
5 mm × 5 mm  
(CP-32-12)  
0
37.1  
32.4  
29.1  
1.0  
2.0  
−0.3 V to DRVDD + 0.3 V  
1 Per JEDEC 51-7, plus JEDEC 25-5 2S2P test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per MIL-Std 883, Method 1012.1.  
−40°C to +85°C  
150°C  
4 Per JEDEC JESD51-8 (still air).  
Typical θJA is specified for a 4-layer PCB with a solid ground  
plane. As shown in Table 7, airflow increases heat dissipation,  
which reduces θJA. In addition, metal in direct contact with the  
package leads from metal traces—through holes, ground, and  
power planes—reduces the θJA.  
Storage Temperature Range  
(Ambient)  
−65°C to +125°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. 0 | Page 8 of 28  
 
 
 
AD9642  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
CLK+  
CLK–  
AVDD  
1
2
3
4
5
6
7
8
24 CSB  
23  
22 SDIO  
21 DCO+  
SCLK  
AD9642  
INTERLEAVED  
LVDS  
TOP VIEW  
(Not to Scale)  
D0–/D1– (LSB)  
D0+/D1+ (LSB)  
D2–/D3–  
20  
19  
DCO–  
D12+/D13+ (MSB)  
D2+/D3+  
DRVDD  
18 D12–/D13– (MSB)  
17 DRVDD  
NOTES  
1. THE EXPOSED THERMAL PADDLE ON THE BOTTOM OF THE  
PACKAGE PROVIDES THE ANALOG GROUND FOR THE  
PART. THIS EXPOSED PADDLE MUST BE CONNECTED TO  
GROUND FOR PROPER OPERATION.  
2. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.  
Figure 3. LFCSP Pin Configuration (Top View)  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type  
Description  
ADC Power Supplies  
8, 17  
DRVDD  
AVDD  
Supply  
Supply  
Ground  
Digital Output Driver Supply (1.8 V Nominal).  
Analog Power Supply (1.8 V Nominal).  
3, 27, 28, 31, 32  
0
AGND,  
Exposed Paddle  
Analog Ground. The exposed thermal paddle on the bottom of the package provides  
the analog ground for the part. This exposed paddle must be connected to ground for  
proper operation.  
25  
DNC  
Do Not Connect. Do not connect to this pin.  
ADC Analog  
30  
29  
26  
VIN+  
VIN−  
VCM  
Input  
Input  
Output  
Differential Analog Input Pin (+).  
Differential Analog Input Pin (−).  
Common-Mode Level Bias Output for Analog Inputs. This pin should be decoupled  
to ground using a 0.1 ꢀF capacitor.  
1
2
CLK+  
CLK−  
Input  
Input  
ADC Clock Input—True.  
ADC Clock Input—Complement.  
Digital Outputs  
5
4
7
6
10  
9
12  
11  
14  
13  
16  
15  
19  
18  
21  
20  
D0+/D1+ (LSB)  
D0−/D1− (LSB)  
D2+/D3+  
D2−/D3−  
D4+/D5+  
D4−/D5−  
D6+/D7+  
D6−/D7−  
D8+/D9+  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
DDR LVDS Output Data 0/1—True.  
DDR LVDS Output Data 0/1—Complement.  
DDR LVDS Output Data 2/3—True.  
DDR LVDS Output Data 2/3—Complement.  
DDR LVDS Output Data 4/5—True.  
DDR LVDS Output Data 4/5—Complement.  
DDR LVDS Output Data 6/7—True.  
DDR LVDS Output Data 6/7—Complement.  
DDR LVDS Output Data 8/9—True.  
D8−/D9−  
DDR LVDS Output Data 8/9—Complement.  
DDR LVDS Output Data 10/11—True.  
DDR LVDS Output Data 10/11—Complement.  
DDR LVDS Output Data 12/13—True.  
DDR LVDS Output Data 12/13—Complement.  
LVDS Data Clock Output—True.  
D10+/D11+  
D10−/D11−  
D12+/D13+ (MSB)  
D12−/D13− (MSB)  
DCO+  
DCO−  
LVDS Data Clock Output—Complement.  
SPI Control  
23  
22  
24  
SCLK  
SDIO  
CSB  
Input  
Input/output  
Input  
SPI Serial Clock.  
SPI Serial Data I/O.  
SPI Chip Select (Active Low).  
Rev. 0 | Page 9 of 28  
 
AD9642  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 1.8 V, DRVDD = 1.8 V, sample rate = maximum rate per speed grade, DCS enabled, 1.75 V p-p differential input, VIN = −1.0 dBFS,  
32k sample, TA = 25°C, unless otherwise noted.  
0
–20  
–40  
–60  
0
–20  
–40  
–60  
170MSPS  
170MSPS  
90.1MHz @ –1dBFS  
SNR = 71.82dB (72.2dBFS)  
SFDR = 93dBc  
305.1MHz @ –1dBFS  
SNR = 68.0dB (69.0dBFS)  
SFDR = 86dBc  
SECOND HARMONIC  
THIRD HARMONIC  
SECOND HARMONIC  
–80  
–100  
–120  
–80  
–100  
–120  
THIRD HARMONIC  
–140  
–140  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 4. AD9642-170 Single-Tone FFT with fIN = 90.1 MHz  
Figure 7. AD9642-170 Single-Tone FFT with fIN = 305.1 MHz  
120  
0
170MSPS  
185.1MHz @ –1dBFS  
SNR = 70.2dB (71.2dBFS)  
SFDR = 86dBc  
SFDR (dBFS)  
SNR (dBFS)  
–20  
100  
–40  
–60  
80  
60  
THIRD HARMONIC  
SFDR (dBc)  
–80  
–100  
–120  
SECOND HARMONIC  
40  
20  
0
SNR (dBc)  
–140  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 5. AD9642-170 Single-Tone FFT with fIN = 185.1 MHz  
Figure 8. AD9642-170 Single-Tone SNR/SFDR vs. Input Amplitude (AIN)  
with fIN = 90.1 MHz, fS = 170 MSPS  
0
100  
170MSPS  
220.1MHz @ –1dBFS  
SNR = 69.7dB (70.7dBFS)  
95  
–20  
SFDR (dBc)  
SFDR = 84dBc  
90  
85  
80  
–40  
–60  
THIRD HARMONIC  
–80  
SNR (dBFS)  
75  
SECOND HARMONIC  
–100  
70  
65  
60  
–120  
–140  
60  
90  
120  
150  
180  
210  
240  
270  
300  
330  
0
10  
20  
30  
40  
50  
60  
70  
80  
75  
105 135 165 195 225 255 285 315 345  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. AD9642-170 Single-Tone FFT with fIN = 220.1 MHz  
Figure 9. AD9642-170 Single-Tone SNR/SFDR vs. Input Frequency (fIN),  
fS = 170 MSPS  
Rev. 0 | Page 10 of 28  
 
 
AD9642  
0
–20  
–40  
–60  
–80  
0
–20  
–40  
–60  
170MSPS  
184.12MHz @ –7dBFS  
187.12MHz @ –7dBFS  
SFDR = 87dBc (94dBFS)  
SFDR (dBc)  
IMD3 (dBc)  
–80  
–100  
–120  
SFDR (dBFS)  
IMD3 (dBFS)  
–100  
–120  
–140  
–90.0 –81.7 –73.4 –65.1 –56.8 –48.5 –40.2 –31.9 –23.6 –15.3 –7.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 10. AD9642-170 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
fIN1 = 89.12 MHz, fIN2 = 92.12 MHz, fS = 170 MSPS  
Figure 13. AD9642-170 Two Tone FFT with fIN1 = 184.12 MHz, fIN2 = 187.12 MHz  
100  
0
SFDR (dBFS)  
95  
–20  
SFDR (dBc)  
90  
85  
80  
–40  
IMD3 (dBc)  
–60  
–80  
SFDR (dBFS)  
75  
–100  
SNR (dBc)  
IMD3 (dBFS)  
–120  
70  
40 50 60 70 80 90 100 110 120 130 140 150 160 170  
–90.0 –81.7 –73.4 –65.1 –56.8 –48.5 –40.2 –31.9 –23.6 –15.3 –7.0  
INPUT AMPLITUDE (dBFS)  
SAMPLE RATE (MSPS)  
Figure 14. AD9642-170 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 90 MHz  
Figure 11. AD9642-170 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
with fIN1 = 184.12 MHz, fIN2 = 187.12 MHz, fS = 170 MSPS  
6000  
0
170MSPS  
0.830 LSB rms  
89.12MHz @ –7dBFS  
92.12MHz @ –7dBFS  
16,384 TOTAL HITS  
–20  
5000  
SFDR = 88dBc (95dBFS)  
–40  
4000  
3000  
–60  
–80  
–100  
–120  
2000  
1000  
0
–140  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (MHz)  
OUTPUT CODE  
Figure 12. AD9642-170 Two-Tone FFT with fIN1 = 89.12 MHz, fIN2 = 92.12 MHz  
Figure 15. AD9642-170 Grounded Input Histogram, fS = 170 MSPS  
Rev. 0 | Page 11 of 28  
AD9642  
0
0
210MSPS  
210MSPS  
90.1MHz @ –1dBFS  
SNR = 71.2dB (72.2dBFS)  
SFDR = 92dBc  
305.1MHz @ –1dBFS  
SNR = 68.7dB (69.7dBFS)  
SFDR = 83dBc  
–20  
–20  
–40  
–60  
–40  
–60  
SECOND HARMONIC  
THIRD HARMONIC  
THIRD HARMONIC  
–80  
–80  
SECOND HARMONIC  
–100  
–120  
–100  
–120  
–140  
–140  
0
15  
30  
45  
60  
75  
90  
105  
0
15  
30  
45  
60  
75  
90  
105  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. AD9642-210 Single-Tone FFT with fIN = 90.1 MHz  
Figure 19. AD9642-210 Single-Tone FFT with fIN = 305.1 MHz  
120  
0
210MSPS  
SFDR (dBFS)  
SNR (dBFS)  
185.1MHz @ –1dBFS  
SNR = 70.5dB (71.5dBFS)  
SFDR = 93dBc  
–20  
100  
–40  
–60  
80  
60  
SECOND HARMONIC  
THIRD HARMONIC  
SFDR (dBc)  
–80  
40  
20  
0
–100  
–120  
–140  
SNR (dBc)  
0
15  
30  
45  
60  
75  
90  
105  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 17. AD9642-210 Single-Tone FFT with fIN = 185.1 MHz  
Figure 20. AD9642-210 Single-Tone SNR/SFDR vs. Input Amplitude (AIN)  
with fIN = 90.1 MHz, fS = 210 MSPS  
0
100  
210MSPS  
220.1MHz @ –1dBFS  
SNR = 70dB (71dBFS)  
SFDR = 84dBc  
95  
–20  
SFDR (dBc)  
90  
85  
80  
75  
–40  
–60  
SECOND HARMONIC  
THIRD HARMONIC  
–80  
SNR (dBFS)  
–100  
–120  
–140  
70  
65  
60  
0
15  
30  
45  
60  
75  
90  
105  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 21. AD9642-210 Single-Tone SNR/SFDR vs. Input Frequency (fIN),  
fS = 210 MSPS  
Figure 18. AD9642-210 Single-Tone FFT with fIN = 220.1 MHz  
Rev. 0 | Page 12 of 28  
AD9642  
0
–20  
0
–20  
210MSPS  
184.12MHz AT –7dBFS  
187.12MHz AT –7dBFS  
SFDR = 88dBc (95dBFS)  
SFDR (dBc)  
–40  
–40  
IMD3 (dBc)  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
SFDR (dBFS)  
IMD3 (dBFS)  
–100  
–120  
–90.0 –81.7 –73.4 –65.1 –56.8 –48.5 –40.2 –31.9 –23.6 –15.3 –7.0  
INPUT AMPLITUDE (dBFS)  
0
15  
30  
45  
60  
75  
90  
105  
FREQUENCY (MHz)  
Figure 22. AD9642-210 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN)  
with fIN1 = 89.12 MHz, fIN2 = 92.12 MHz, fS = 210 MSPS  
Figure 25. AD9642-210 Two-Tone FFT with fIN1 = 184.12 MHz, fIN2 = 187.12 MHz  
100  
0
SFDR (dBc)  
95  
–20  
SFDR (dBc)  
90  
85  
80  
–40  
IMD3 (dBc)  
–60  
–80  
SFDR (dBFS)  
75  
–100  
SNR (dBFS)  
IMD3 (dBFS)  
70  
–120  
–90.0 –81.7 –73.4 –65.1 –56.8 –48.5 –40.2 –31.9 –23.6 –15.3 –7.0  
INPUT AMPLITUDE (dBFS)  
SAMPLE RATE (MSPS)  
Figure 23. AD9642-210 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
Figure 26. AD9642-210 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 90 MHz  
with fIN1 = 184.12 MHz, fIN2 = 187.12 MHz, fS = 210 MSPS  
0
6000  
210MSPS  
89.12MHz @ –7dBFS  
92.12MHz @ –7dBFS  
SFDR = 89dBc (96dBFS)  
0.852 LSB rms  
16,384 TOTAL HITS  
–20  
5000  
–40  
4000  
3000  
–60  
–80  
2000  
1000  
0
–100  
–120  
–140  
0
15  
30  
45  
60  
75  
90  
105  
FREQUENCY (MHz)  
OUTPUT CODE  
Figure 24. AD9642-210 Two-Tone FFT with fIN1 = 89.12 MHz, fIN2 = 92.12 MHz  
Figure 27. AD9642-210 Grounded Input Histogram, fS = 210 MSPS  
Rev. 0 | Page 13 of 28  
AD9642  
0
–20  
–40  
–60  
0
–20  
–40  
–60  
250MSPS  
250MSPS  
90.1MHz @ –1dBFS  
SNR = 71dB (72dBFS)  
SFDR = 89dBc  
305.1MHz @ –1dBFS  
SNR = 68.5dB (69.5dBFS)  
SFDR = 82dBc  
THIRD HARMONIC  
SECOND HARMONIC  
THIRD HARMONIC  
SECOND HARMONIC  
–80  
–100  
–120  
–80  
–100  
–120  
–140  
0
–140  
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 28. AD9642-250 Single-Tone FFT with fIN = 90.1 MHz  
Figure 31. AD9642-250 Single-Tone FFT with fIN = 305.1 MHz  
120  
0
250MSPS  
185.1MHz @ –1dBFS  
SFDR (dBFS)  
–20  
SNR = 70.4dB (71.4dBFS)  
SFDR = 86dBc  
100  
–40  
–60  
80  
SNR (dBFS)  
THIRD HARMONIC  
60  
SECOND HARMONIC  
SFDR (dBc)  
–80  
–100  
–120  
40  
SNR (dBc)  
20  
–140  
0
0
25  
50  
75  
100  
125  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 32. AD9642-250 Single-Tone SNR/SFDR vs. Input Amplitude (AIN)  
with fIN = 90.1 MHz, fS = 250 MSPS  
Figure 29. AD9642-250 Single-Tone FFT with fIN = 185.1 MHz  
100  
0
250MSPS  
220.1MHz @ 1.0dBFS  
SNR = 69.9dB (70.9dBFS)  
SFDR = 91dBc  
95  
–20  
SFDR (dBFS)  
90  
85  
80  
75  
–40  
–60  
THIRD HARMONIC  
SECOND HARMONIC  
–80  
–100  
–120  
–140  
70  
SNR (dBc)  
65  
60  
0
25  
50  
75  
100  
125  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 30. AD9642-250 Single-Tone FFT with fIN = 220.1 MHz  
Figure 33. AD9642-250 Single-Tone SNR/SFDR vs. Input Frequency (fIN),  
fS = 250 MSPS  
Rev. 0 | Page 14 of 28  
AD9642  
0
–20  
0
–20  
250MSPS  
184.12MHz AT –7dBFS  
187.12MHz AT –7dBFS  
SFDR = 87dBc (94dBFS)  
SFDR (dBc)  
–40  
–40  
IMD3 (dBc)  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
SFDR (dBFS)  
–100  
–120  
IMD3 (dBFS)  
0
25  
50  
75  
100  
125  
–90.0 –81.7 –73.4 –65.1 –56.8 –48.5 –40.2 –31.9 –23.6 –15.3 –7.0  
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 34. AD9642-250 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN)  
with fIN1 = 89.12 MHz, fIN2 = 92.12 MHz, fS = 250 MSPS  
Figure 37. AD9642-250 Two Tone FFT with fIN1 = 184.12 MHz, fIN2 = 187.12 MHz  
0
100  
95  
–20  
SFDR (dBc)  
90  
–40  
SFDR  
IMD3 (dBc)  
–60  
85  
80  
–80  
SFDR (dBFS)  
75  
–100  
SNR  
IMD3 (dBFS)  
–120  
70  
–90.0 –81.7 –73.4 –65.1 –56.8 –48.5 –40.2 –31.9 –23.6 –15.3 –7.0  
INPUT AMPLITUDE (dBFS)  
SAMPLE RATE (MSPS)  
Figure 35. AD9642-250 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
Figure 38. AD9642-250 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 90 MHz  
with fIN1 = 184.12 MHz, fIN2 = 187.12 MHz, fS = 250 MSPS  
0
5000  
0.847LSB rms  
16,384 TOTAL HITS  
250MSPS  
89.12MHz @ –7.0dBFS  
92.12MHz @ –7.0dBFS  
SFDR = 88dBc (95dBFS)  
4500  
4000  
–20  
–40  
–60  
–80  
3500  
3000  
2500  
2000  
1500  
1000  
500  
–100  
–120  
–140  
0
0
25  
50  
75  
100  
125  
N – 4 N – 3 N – 2 N – 1  
N
N + 1 N + 2 N + 3 N + 4 N + 5  
FREQUENCY (MHz)  
OUTPUT CODE  
Figure 36. AD9642-250 Two-Tone FFT with fIN1 = 89.12 MHz, fIN2 = 92.12 MHz  
Figure 39. AD9642-250 Grounded Input Histogram, fS = 250 MSPS  
Rev. 0 | Page 15 of 28  
AD9642  
EQUIVALENT CIRCUITS  
DRVDD  
AVDD  
VIN  
350  
SDIO  
26kΩ  
Figure 43. Equivalent SDIO Circuit  
Figure 40. Equivalent Analog Input Circuit  
AVDD  
AVDD  
AVDD  
0.9V  
350  
SCLK  
15k  
15kΩ  
CLK+  
CLK–  
26kΩ  
Figure 41. Equivalent Clock Input Circuit  
Figure 44. Equivalent SCLK Input Circuit  
DRVDD  
AVDD  
26kΩ  
350Ω  
CSB  
V+  
DATAOUT–  
V–  
V–  
DATAOUT+  
V+  
Figure 45. Equivalent CSB Input Circuit  
Figure 42. Equivalent LVDS Output Circuit  
Rev. 0 | Page 16 of 28  
 
AD9642  
THEORY OF OPERATION  
The AD9642 can sample any fS/2 frequency segment from dc to  
250 MHz using appropriate low-pass or band-pass filtering at  
the ADC inputs with little loss in ADC performance.  
Transformer-Coupled Front-End for Wideband A/D Converters,”  
for more information on this subject.  
BIAS  
Programming and control of the AD9642 are accomplished  
using a 3-pin, SPI-compatible serial interface.  
S
S
C
C
FB  
S
VIN+  
VIN–  
ADC ARCHITECTURE  
C
C
PAR1  
PAR2  
H
The AD9642 architecture consists of a front-end sample-and-  
hold circuit, followed by a pipelined switched-capacitor ADC.  
The quantized outputs from each stage are combined into a  
final 14-bit result in the digital correction logic. The pipelined  
architecture permits the first stage to operate on a new input  
sample and the remaining stages to operate on the preceding  
samples. Sampling occurs on the rising edge of the clock.  
S
S
S
C
S
C
C
FB  
C
PAR1  
PAR2  
S
BIAS  
Figure 46. Switched-Capacitor Input  
For best dynamic performance, match the source impedances  
driving VIN+ and VIN− and differentially balance the inputs.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor digital-  
to-analog converter (DAC) and an interstage residue amplifier  
(MDAC). The MDAC magnifies the difference between the  
reconstructed DAC output and the flash input for the next stage  
in the pipeline. One bit of redundancy is used in each stage to  
facilitate digital correction of flash errors. The last stage simply  
consists of a flash ADC.  
Input Common Mode  
The analog inputs of the AD9642 are not internally dc biased.  
In ac-coupled applications, the user must provide this bias  
externally. Setting the device so that VCM = 0.5 × AVDD (or  
0.9 V) is recommended for optimum performance. An on-  
board common-mode voltage reference is included in the  
design and is available from the VCM pin. Using the VCM  
output to set the input common mode is recommended.  
Optimum performance is achieved when the common-mode  
voltage of the analog input is set by the VCM pin voltage  
(typically 0.5 × AVDD). The VCM pin must be decoupled to  
ground by a 0.1 μF capacitor, as described in the Applications  
Information section. Place this decoupling capacitor close to the  
pin to minimize the series resistance and inductance between  
the part and this capacitor.  
The input stage of the AD9642 contains a differential sampling  
circuit that can be ac- or dc-coupled in differential or single-  
ended modes. The output staging block aligns the data, corrects  
errors, and passes the data to the output buffers. The output  
buffers are powered from a separate supply, allowing digital  
output noise to be separated from the analog core. During  
power-down, the output buffers go into a high impedance state.  
ANALOG INPUT CONSIDERATIONS  
The analog input to the AD9642 is a differential switched-  
capacitor circuit that has been designed to attain optimum  
performance when processing a differential input signal.  
Differential Input Configurations  
Optimum performance can be achieved when driving the AD9642  
in a differential input configuration. For baseband applications,  
the AD8138, ADA4937-1, and ADA4930-1 differential drivers  
provide excellent performance and a flexible interface to the ADC.  
The clock signal alternatively switches the input between  
sample mode and hold mode (see the configuration shown in  
Figure 46). When the input is switched into sample mode, the  
signal source must be capable of charging the sampling  
capacitors and settling within 1/2 clock cycle.  
The output common-mode voltage of the ADA4930-1 is easily  
set with the VCM pin of the AD9642 (see Figure 47), and the  
driver can be configured in a Sallen-Key filter topology to  
provide band-limiting of the input signal.  
15pF  
A small resistor in series with each input can help reduce the  
peak transient current required from the output stage of the  
driving source. A shunt capacitor can be placed across the  
inputs to provide dynamic charging currents. This passive  
network creates a low-pass filter at the ADC input; therefore,  
the precise values are dependent on the application.  
200  
33Ω  
5pF  
15Ω  
90Ω  
VIN–  
VIN+  
AVDD  
ADC  
VCM  
76.8Ω  
VIN  
ADA4930-1  
In intermediate frequency (IF) undersampling applications, the  
shunt capacitors should be reduced. In combination with the  
driving source impedance, the shunt capacitors limit the input  
bandwidth. Refer to the AN-742 Application Note, Frequency  
Domain Response of Switched-Capacitor ADCs; the AN-827  
Application Note, A Resonant Approach to Interfacing Amplifiers  
to Switched-Capacitor ADCs; and the Analog Dialogue article,  
0.1µF  
33Ω  
15Ω  
120Ω  
15pF  
200Ω  
0.1µF  
Figure 47. Differential Input Configuration Using the ADA4930-1  
Rev. 0 | Page 17 of 28  
 
 
 
AD9642  
For baseband applications where SNR is a key parameter,  
differential transformer coupling is the recommended input  
configuration. An example is shown in Figure 48. To bias the  
analog input, connect the VCM voltage to the center tap of the  
secondary winding of the transformer.  
adjusted or some components may need to be removed. Table 9  
displays recommended values to set the RC network for different  
input frequency ranges. However, these values are dependent on  
the input signal and bandwidth and should be used only as a  
starting guide. Note that the values given in Table 9 are for each  
R1, R2, C2, and R3 component shown in Figure 48 and Figure 50.  
C2  
R3  
R2  
Table 9. Example RC Network  
VIN+  
R1  
Frequency R1  
C1  
R2  
C2  
R3  
2V p-p  
49.9  
Range  
(MHz)  
Series Differential Series  
Shunt  
(pF)  
Shunt  
(Ω)  
C1  
R1  
ADC  
VCM  
(Ω)  
(pF)  
8.2  
(Ω)  
0
R2  
VIN–  
0 to 100  
100 to 300 15  
33  
15  
8.2  
49.9  
49.9  
3.9  
0
0.1µF  
R3  
0.1µF  
C2  
An alternative to using a transformer-coupled input at  
Figure 48. Differential Transformer-Coupled Configuration  
frequencies in the second Nyquist zone is to use an amplifier  
with variable gain. The AD8375 digital variable gain amplifier  
(DVGA) provides good performance for driving the AD9642.  
Figure 49 shows an example of the AD8375 driving the AD9642  
through a band-pass antialiasing filter.  
The signal characteristics must be considered when selecting  
a transformer. Most RF transformers saturate at frequencies  
below a few megahertz. Excessive signal power can also cause  
core saturation, which leads to distortion.  
1000pF 180nH 220nH  
At input frequencies in the second Nyquist zone and above, the  
noise performance of most amplifiers is not adequate to achieve  
the true SNR performance of the AD9642. For applications where  
SNR is a key parameter, differential double balun coupling is  
the recommended input configuration (see Figure 50). In this  
configuration, the input is ac-coupled and the VCM voltage is  
provided to each input through a 33 Ω resistor. This resistor  
compensates for losses in the input baluns to provide a 50 Ω  
impedance to the driver.  
1µH  
165  
165Ω  
15pF  
VPOS  
1nF  
AD9642  
AD8375  
5.1pF  
3.9pF  
VCM  
1nF  
2.5kΩ║2pF  
301Ω  
1µH  
68nH  
180nH 220nH  
®
1000pF  
NOTES  
1. ALL INDUCTORS ARE COILCRAFT 0603CS COMPONENTS WITH THE  
EXCEPTION OF THE 1µH CHOKE INDUCTORS (COIL CRAFT 0603LS).  
2. FILTER VALUES SHOWN ARE FOR A 20MHz BANDWIDTH FILTER  
CENTERED AT 140MHz.  
In the double balun and transformer configurations, the value  
of the input capacitors and resistors is dependent on the input  
frequency and source impedance. Based on these parameters,  
the value of the input resistors and capacitors may need to be  
Figure 49. Differential Input Configuration Using the AD8375  
C2  
R3  
0.1µF  
0.1µF  
0.1µF  
R1  
R2  
R2  
VIN+  
VIN–  
2V p-p  
33  
33Ω  
P
A
S
S
P
C1  
R1  
ADC  
0.1µF  
VCM  
R3  
0.1µF  
C2  
Figure 50. Differential Double Balun Input Configuration  
Rev. 0 | Page 18 of 28  
 
 
 
 
AD9642  
VOLTAGE REFERENCE  
25  
25Ω  
A stable and accurate voltage reference is built into the AD9642.  
The full-scale input range can be adjusted by varying the reference  
voltage via SPI. The input span of the ADC tracks reference voltage  
changes linearly.  
ADC  
CLK+  
390pF  
1nF  
390pF  
390pF  
CLOCK  
INPUT  
CLK–  
SCHOTTKY  
DIODES:  
HSMS2822  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, the AD9642 sample clock inputs,  
CLK+ and CLK−, should be clocked with a differential signal.  
The signal is typically ac-coupled into the CLK+ and CLK− pins  
via a transformer or via capacitors. These pins are biased internally  
(see Figure 51) and require no external bias. If the inputs are  
floated, the CLK− pin is pulled low to prevent spurious clocking.  
AVDD  
Figure 53. Balun-Coupled Differential Clock (Up to 625 MHz)  
If a low jitter clock source is not available, another option is to  
ac-couple a differential PECL signal to the sample clock input  
pins as shown in Figure 54. The AD9510, AD9511, AD9512,  
AD9513, AD9514, AD9515, AD9516, AD9517, AD9518, AD9520,  
AD9522, AD9523, AD9524, and ADCLK905/ADCLK907/  
ADCLK925 clock drivers offer excellent jitter performance.  
0.9V  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
AD9642  
CLK+  
CLK–  
AD95xx,  
100  
ADCLK9xx  
4pF  
4pF  
PECL DRIVER  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
240Ω  
240Ω  
50kΩ  
50kΩ  
Figure 51. Simplified Equivalent Clock Input Circuit  
Figure 54. Differential PECL Sample Clock (Up to 625 MHz)  
Clock Input Options  
A third option is to ac-couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 55. The AD9510,  
AD9511, AD9512, AD9513, AD9514, AD9515, AD9516, AD9517,  
AD9518, AD9520, AD9522, AD9523, and AD9524 clock drivers  
offer excellent jitter performance.  
The AD9642 has a very flexible clock input structure. Clock input  
can be a CMOS, LVDS, LVPECL, or sine wave signal. Regardless  
of the type of signal being used, clock source jitter is of the most  
concern, as described in the Jitter Considerations section.  
Figure 52 and Figure 53 show two preferable methods for  
clocking the AD9642 (at clock rates of up to 625 MHz). A low  
jitter clock source is converted from a single-ended signal to a  
differential signal using an RF balun or RF transformer.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
AD9642  
AD95xx  
LVDS DRIVER  
100  
0.1µF  
0.1µF  
CLOCK  
INPUT  
The RF balun configuration is recommended for clock  
frequencies between 125 MHz and 625 MHz, and the RF  
transformer is recommended for clock frequencies from  
10 MHz to 200 MHz. The back-to-back Schottky diodes across  
the secondary winding of the transformer limit clock excursions  
into the AD9642 to approximately 0.8 V p-p differential. This  
limit helps prevent the large voltage swings of the clock from  
feeding through to other portions of the AD9642 while  
preserving the fast rise and fall times of the signal, which are  
critical for low jitter performance.  
CLK–  
50kΩ  
50kΩ  
Figure 55. Differential LVDS Sample Clock (Up to 625 MHz)  
Input Clock Divider  
The AD9642 contains an input clock divider with the ability to  
divide the input clock by integer values between 1 and 8. The  
duty cycle stabilizer (DCS) is enabled by default on power-up.  
Clock Duty Cycle  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals and, as a result, may be  
sensitive to clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic  
performance characteristics.  
®
Mini-Circuits  
ADT1-1WT, 1:1Z  
ADC  
390pF  
390pF  
390pF  
XFMR  
CLOCK  
INPUT  
CLK+  
CLK–  
100  
50Ω  
The AD9642 contains a DCS that retimes the nonsampling (falling)  
edge, providing an internal clock signal with a nominal 50% duty  
cycle. This allows the user to provide a wide range of clock input  
duty cycles without affecting the performance of the AD9642.  
SCHOTTKY  
DIODES:  
HSMS2822  
Figure 52. Transformer-Coupled Differential Clock (Up to 200 MHz)  
Jitter on the rising edge of the input clock is still of paramount  
concern and is not reduced by the duty cycle stabilizer. The duty  
Rev. 0 | Page 19 of 28  
 
 
 
 
 
 
AD9642  
cycle control loop does not function for clock rates less than  
40 MHz nominally. The loop has a time constant associated  
with it that must be considered when the clock rate may change  
dynamically. A wait time of 1.5 μs to 5 μs is required after a  
dynamic clock frequency increase or decrease before the DCS  
loop is relocked to the input signal. During the time that the loop  
is not locked, the DCS loop is bypassed, and internal device timing  
is dependent on the duty cycle of the input clock signal. In such  
applications, it may be appropriate to disable the duty cycle  
stabilizer. In all other applications, enabling the DCS circuit is  
recommended to maximize ac performance.  
using the same operating conditions as those used for the  
Typical Performance Characteristics section.  
0.4  
0.3  
0.2  
0.1  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
TOTAL POWER  
IAVDD  
IDRVDD  
Jitter Considerations  
High speed, high resolution ADCs are sensitive to the quality of  
the clock input. The degradation in SNR at a given input  
frequency (fIN) due to jitter (tJ) can be calculated by  
40 55 70 85 100 115 130 145 160 175 190 205 220 235 250  
ENCODE FREQUENCY (MSPS)  
SNRHF = −10 log[(2π × fIN × tJRMS)2 + 10 (SNR /10)  
]
LF  
Figure 57. AD9642-250 Power and Current vs. Sample Rate  
By setting the internal power-down mode bits (Bits[1:0]) in the  
power modes register (Address 0x08) to 01, the AD9642 is  
placed in power-down mode. In this state, the ADC typically  
dissipates 2.5 mW. During power-down, the output drivers are  
placed in a high impedance state.  
In the equation, the rms aperture jitter represents the root-  
mean-square of all jitter sources, which include the clock input,  
the analog input signal, and the ADC aperture jitter specification.  
IF undersampling applications are particularly sensitive to jitter,  
as shown in Figure 56.  
80  
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
and clock. Internal capacitors are discharged when entering  
power-down mode and then must be recharged when returning  
to normal operation. As a result, the wake-up time is related to  
the time spent in power-down mode, and shorter power-down  
cycles result in proportionally shorter wake-up times.  
75  
70  
65  
60  
When using the SPI port interface, the user can place the ADC  
in power-down mode or standby mode. Standby mode allows  
the user to keep the internal reference circuitry powered when  
faster wake-up times are required. To put the part into standby  
mode, set the internal power-down mode bits (Bits[1:0]) in the  
power modes register (Address 0x08) to 10. See the Memory  
Map section and the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI, for additional details.  
0.05ps  
0.2ps  
0.5ps  
55  
50  
1ps  
1.5ps  
MEASURED  
1
10  
100  
1000  
INPUT FREQUENCY (MHz)  
Figure 56. AD9642-250 SNR vs. Input Frequency and Jitter  
In cases where aperture jitter may affect the dynamic range of the  
AD9642, treat the clock input as an analog signal. In addition,  
use separate power supplies for the clock drivers and the ADC  
output driver to avoid modulating the clock signal with digital  
noise. Low jitter, crystal controlled oscillators provide the best  
clock sources. If the clock is generated from another type of source  
(by gating, dividing, or another method), it should be retimed  
by the original clock during the last step.  
DIGITAL OUTPUTS  
The AD9642 output drivers can be configured for either ANSI  
LVDS or reduced swing LVDS using a 1.8 V DRVDD supply.  
As detailed in the AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI, the data format can be selected for offset  
binary, twos complement, or gray code when using the SPI control.  
Digital Output Enable Function (OEB)  
Refer to the AN-501 Application Note, Aperture Uncertainty and  
ADC System Performance, and the AN-756 Application Note,  
Sampled Systems and the Effects of Clock Phase Noise and Jitter, for  
more information about jitter performance as it relates to ADCs.  
The AD9642 has a flexible three-state ability for the digital  
output pins. The three-state mode is enabled using the SPI  
interface. The data outputs can be three-stated by using the  
output enable bar bit (Bit 4) in Register 0x14. This OEB  
function is not intended for rapid access to the data bus.  
POWER DISSIPATION AND STANDBY MODE  
As shown in Figure 57, the power dissipated by the AD9642 is  
proportional to its sample rate. The data in Figure 57 was taken  
Rev. 0 | Page 20 of 28  
 
 
 
 
AD9642  
Timing  
The lowest typical conversion rate of the AD9642 is 40 MSPS.  
At clock rates below 40 MSPS, dynamic performance may  
degrade.  
The AD9642 provides latched data with a pipeline delay of  
10 input sample clock cycles. Data outputs are available one  
propagation delay (tPD) after the rising edge of the clock signal.  
Data Clock Output (DCO)  
Minimize the length of the output data lines as well as the loads  
placed on these lines to reduce transients within the AD9642.  
These transients may degrade converter dynamic performance.  
The AD9642 also provides the data clock output (DCO) intended  
for capturing the data in an external register. Figure 2 shows a  
timing diagram of the AD9642 output modes.  
Table 10. Output Data Format  
VIN+ − VIN−,  
Input Span = 1.75 V p-p (V)  
Input (V)  
Offset Binary Output Mode  
Twos Complement Mode (Default)  
10 0000 0000 0000  
10 0000 0000 0000  
00 0000 0000 0000  
01 1111 1111 1111  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
<–0.875  
−0.875  
0
+0.875  
>+0.875  
00 0000 0000 0000  
00 0000 0000 0000  
10 0000 0000 0000  
11 1111 1111 1111  
11 1111 1111 1111  
01 1111 1111 1111  
Rev. 0 | Page 21 of 28  
AD9642  
SERIAL PORT INTERFACE (SPI)  
The AD9642 serial port interface (SPI) allows the user to  
configure the converter for specific functions or operations  
through a structured register space provided inside the ADC.  
The SPI offers added flexibility and customization, depending  
on the application. Addresses are accessed via the serial port  
and can be written to or read from via the port. Memory is  
organized into bytes that can be further divided into fields.  
These fields are documented in the Memory Map section. For  
detailed operational information, see the AN-877 Application  
Note, Interfacing to High Speed ADCs via SPI.  
All data is composed of 8-bit words. The first bit of each  
individual byte of serial data indicates whether a read or write  
command is issued. This allows the serial data input/output  
(SDIO) pin to change direction from an input to an output.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read the  
contents of the on-chip memory. If the instruction is a readback  
operation, performing a readback causes the serial data input/  
output (SDIO) pin to change direction from an input to an output  
at the appropriate point in the serial frame.  
CONFIGURATION USING THE SPI  
Data can be sent in MSB first mode or in LSB first mode. MSB first  
mode is the default on power-up and can be changed via the SPI  
port configuration register. For more information about this and  
other features, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
Three pins define the SPI of this ADC: the SCLK pin, the SDIO pin,  
and the CSB pin (see Table 11). The SCLK (serial clock) pin is  
used to synchronize the read and write data presented from and  
to the ADC. The SDIO (serial data input/output) pin is a dual-  
purpose pin that allows data to be sent and read from the internal  
ADC memory map registers. The CSB (chip select bar) pin is an  
active low control that enables or disables the read and write cycles.  
HARDWARE INTERFACE  
The pins described in Table 11 comprise the physical interface  
between the user programming device and the serial port of the  
AD9642. The SCLK pin and the CSB pin function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
Table 11. Serial Port Interface Pins  
Pin  
Function  
SCLK Serial clock. The serial shift clock input, which is used to  
synchronize serial interface reads and writes.  
SDIO Serial data input/output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. One method for SPI configuration  
is described in detail in the AN-812 Application Note, Micro-  
controller-Based Serial Port Interface (SPI) Boot Circuit.  
CSB  
Chip select bar. An active low control that gates the read  
and write cycles.  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used for  
other devices, it may be necessary to provide buffers between  
this bus and the AD9642 to prevent these signals from transi-  
tioning at the converter inputs during critical sampling periods.  
The falling edge of CSB, in conjunction with the rising edge of  
SCLK, determines the start of the framing. An example of the  
serial timing and its definitions can be found in Figure 58 and  
Table 5.  
Other modes involving the CSB are available. The CSB can be  
held low indefinitely, which permanently enables the device;  
this is called streaming. The CSB can stall high between bytes  
to allow for additional external timing. When CSB is tied high,  
SPI functions are placed in a high impedance mode. This mode  
turns on any SPI pin secondary functions.  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase, and its length is determined  
by the W0 and W1 bits.  
Rev. 0 | Page 22 of 28  
 
 
AD9642  
SPI ACCESSIBLE FEATURES  
Table 12 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in the AN-877 Application Note, Interfacing to High Speed  
ADCs via SPI.  
Table 12. Features Accessible Using the SPI  
Feature Name  
Description  
Mode  
Clock  
Offset  
Test I/O  
Output Mode  
Output Phase  
Output Delay  
VREF  
Allows the user to set either power-down mode or standby mode  
Allows the user to access the DCS via the SPI  
Allows the user to digitally adjust the converter offset  
Allows the user to set test modes to have known data on output bits  
Allows the user to set up outputs  
Allows the user to set the output clock polarity  
Allows the user to vary the DCO delay  
Allows the user to set the reference voltage  
Allows the user to enable the synchronization features  
Digital Processing  
tHIGH  
tDS  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
DON’T  
CARE  
DON’T  
SCLK  
CARE  
DON’T  
CARE  
DON’T  
CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
SDIO  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 58. Serial Port Interface Timing Diagram  
Rev. 0 | Page 23 of 28  
 
 
 
AD9642  
MEMORY MAP  
Address 0x18). If the entire address location is open (for example,  
Address 0x13), this address location should not be written.  
READING THE MEMORY MAP REGISTER TABLE  
Each row in the memory map register table has eight bit locations.  
The memory map is roughly divided into three sections: the  
chip configuration registers (Address 0x00 to Address 0x02); the  
transfer register (Address 0xFF); and the ADC functions registers,  
including setup, control, and test (Address 0x08 to Address 0x25).  
Default Values  
After the AD9642 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
the memory map register table (Table 13).  
The memory map register table (Table 13) documents the  
default hexadecimal value for each hexadecimal address shown.  
The Bit 7 (MSB) column is the start of the default hexadecimal  
value given. For example, Address 0x14, the output mode register,  
has a hexadecimal default value of 0x01. This means that Bit 0 = 1  
and the remaining bits are 0s. This setting is the default output  
format value, which is twos complement. For more information  
on this function and others, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI. This document details  
the functions controlled by Register 0x00 to Register 0x25.  
Logic Levels  
An explanation of logic level terminology follows:  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
Transfer Register Map  
Address 0x08 to Address 0x20 are shadowed. Writes to these  
addresses do not affect part operation until a transfer command  
is issued by writing 0x01 to Address 0xFF, setting the transfer  
bit. This allows these registers to be updated internally and  
simultaneously when the transfer bit is set. The internal update  
takes place when the transfer bit is set, and then the bit autoclears.  
Open Locations  
All address and bit locations that are not included in Table 13 are  
not currently supported for this device. Write 0s to unused bits  
of a valid address location. Writing to these locations is required  
only when part of an address location is open (for example,  
Rev. 0 | Page 24 of 28  
 
 
AD9642  
MEMORY MAP REGISTER TABLE  
All address and bit locations that are not included in Table 13 are not currently supported for this device.  
Table 13. Memory Map Registers  
Default Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Chip Configuration Registers  
0x00  
SPI port  
0
LSB first  
Soft reset  
1
1
Soft reset  
LSB first  
0
0x18  
Nibbles  
configuration  
are mirrored  
so that LSB  
first mode  
or MSB first  
mode is set  
correctly,  
regardless  
of shift  
mode.  
0x01  
0x02  
Chip ID  
8-bit chip ID[7:0]  
(AD9642 = 0x86)  
(default)  
0x86  
Read only.  
Chip grade  
Open  
Open  
Open  
Open  
Speed grade ID  
00 = 250 MSPS  
01 = 210 MSPS  
11 = 170 MSPS  
Open  
Open  
Open  
Open  
Open  
Open  
Speed  
grade ID  
used to  
differentiate  
devices;  
read only.  
Transfer Register  
0xFF  
Transfer  
Open  
Open  
Open  
Transfer  
0x00  
0x00  
Synchro-  
nously  
transfers  
data from  
the master  
shift register  
to the slave.  
ADC Functions Registers  
0x08  
Power modes  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Internal power-down mode  
00 = normal operation  
01 = full power-down  
10 = standby  
Determines  
various  
generic  
modes  
of chip  
11 = reserved  
operation.  
0x09  
0x0B  
Global clock  
Clock divide  
Open  
Open  
Open  
Open  
Open  
Duty cycle  
stabilizer  
(default)  
0x01  
0x00  
Input clock divider phase adjust  
000 = no delay  
Clock divide ratio  
000 = divide by 1  
001 = divide by 2  
010 = divide by 3  
011 = divide by 4  
100 = divide by 5  
101 = divide by 6  
110 = divide by 7  
111 = divide by 8  
Clock  
divide  
values  
001 = 1 input clock cycle  
010 = 2 input clock cycles  
011 = 3 input clock cycles  
100 = 4 input clock cycles  
101 = 5 input clock cycles  
110 = 6 input clock cycles  
111 = 7 input clock cycles  
other than  
000 auto-  
matically  
cause the  
duty cycle  
stabilizer to  
become  
active.  
0x0D  
Test mode  
User test  
mode  
control  
0 = con-  
tinuous/  
repeat  
pattern  
1 = single  
pattern,  
then 0s  
Open  
Reset PN  
long gen  
Reset PN  
short gen  
Output test mode  
0000 = off (default)  
0001 = midscale short  
0010 = positive FS  
0011 = negative FS  
0100 = alternating checkerboard  
0101 = PN long sequence  
0110 = PN short sequence  
0111 = one/zero word toggle  
1000 = user test mode  
0x00  
When this  
register is  
set, the test  
data is  
placed on  
the output  
pins in place  
of normal  
data.  
1001 to 1110 = unused  
1111 = ramp output  
Rev. 0 | Page 25 of 28  
 
 
AD9642  
Default Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0x0E  
0x10  
0x14  
BIST enable  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Reset BIST  
sequence  
Open  
BIST enable  
0x00  
0x00  
0x01  
Offset adjust  
Output mode  
Open  
Open  
Offset adjust in LSBs from +31 to −32  
(twos complement format)  
Open  
Open  
Output  
enable bar  
Open  
Output  
invert  
0 = normal  
(default)  
1 = inverted  
Output format  
Configures  
the outputs  
and the  
format of  
the data.  
00 = offset binary  
01 = twos complement  
(default)  
10 = gray code  
11 = reserved  
0 = on  
(default)  
1 = off  
0x15  
Output adjust  
Open  
Open  
Open  
LVDS output drive current adjust  
0x01  
0000 = 3.72 mA output drive current  
0001 = 3.5 mA output drive current (default)  
0010 = 3.30 mA output drive current  
0011 = 2.96 mA output drive current  
0100 = 2.82 mA output drive current  
0101 = 2.57 mA output drive current  
0110 = 2.27 mA output drive current  
0111 = 2.0 mA output drive current (reduced range)  
1000 to 1111 = reserved  
0x16  
0x17  
Clock phase  
control  
Invert  
DCO clock  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
0x00  
0x00  
DCO output  
delay  
Enable  
DCO  
clock  
delay  
DCO clock delay  
[delay = (3100 ps × register value/31 + 100)]  
00000 = 100 ps  
00001 = 200 ps  
00010 = 300 ps  
11110 = 3100 ps  
11111 = 3200 ps  
0x18  
Input span  
select  
Open  
Open  
Open  
Full-scale input voltage selection  
01111 = 2.087 V p-p  
00001 = 1.772 V p-p  
00000 = 1.75 V p-p (default)  
11111 = 1.727 V p-p  
0x00  
Full-scale  
input  
adjustment  
in 0.022 V  
steps.  
10000 = 1.383 V p-p  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x24  
0x25  
User Test  
Pattern 1 LSB  
User Test Pattern 1[7:0]  
User Test Pattern 1[15:8]  
User Test Pattern 2[7:0]  
User Test Pattern 2[15:8]  
User Test Pattern 3[7:0]  
User Test Pattern 3[15:8]  
User Test Pattern 4[7:0]  
User Test Pattern 4[15:8]  
BIST signature[7:0]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
User Test  
Pattern 1 MSB  
User Test  
Pattern 2 LSB  
User Test  
Pattern 2 MSB  
User Test  
Pattern 3 LSB  
User Test  
Pattern 3 MSB  
User Test  
Pattern 4 LSB  
User Test  
Pattern 4 MSB  
BIST signature  
LSB  
Read only.  
Read only.  
BIST signature  
MSB  
BIST signature[15:8]  
Rev. 0 | Page 26 of 28  
AD9642  
APPLICATIONS INFORMATION  
DESIGN GUIDELINES  
VCM  
Decouple the VCM pin to ground with a 0.1 ꢀF capacitor, as  
shown in Figure 48.  
Before starting system level design and layout of the AD9642,  
it is recommended that the designer become familiar with these  
guidelines, which discuss the special circuit connections and  
layout requirements for certain pins.  
SPI Port  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter  
performance. If the on-board SPI bus is used for other devices,  
it may be necessary to provide buffers between this bus and the  
AD9642 to keep these signals from transitioning at the  
Power and Ground Recommendations  
When connecting power to the AD9642, it is recommended that  
two separate 1.8 V supplies be used: use one supply for analog  
(AVDD) and a separate supply for the digital outputs (DRVDD).  
The designer can employ several different decoupling capacitors  
to cover both high and low frequencies. Locate these capacitors  
close to the point of entry at the PC board level and close to the  
pins of the part with minimal trace length.  
converter input pins during critical sampling periods.  
A single PCB ground plane should be sufficient when using the  
AD9642. With proper decoupling and smart partitioning of the  
PCB analog, digital, and clock sections, optimum performance  
can be easily achieved.  
Exposed Paddle Thermal Heat Slug Recommendations  
It is mandatory that the exposed paddle on the underside of the  
ADC be connected to analog ground (AGND) to achieve the  
best electrical and thermal performance. A continuous, exposed  
(no solder mask) copper plane on the PCB should mate to the  
AD9642 exposed paddle, Pin 0.  
The copper plane should have several vias to achieve the lowest  
possible resistive thermal path for heat dissipation to flow  
through the bottom of the PCB. These vias should be filled or  
plugged with nonconductive epoxy.  
To maximize the coverage and adhesion between the ADC  
and the PCB, overlay a silkscreen to partition the continuous  
plane on the PCB into several uniform sections. This provides  
several tie points between the ADC and the PCB during the  
reflow process. Using one continuous plane with no partitions  
guarantees only one tie point between the ADC and the PCB.  
See the evaluation board for a PCB layout example. For detailed  
information about the packaging and PCB layout of chip scale  
packages, refer to the AN-772 Application Note, A Design and  
Manufacturing Guide for the Lead Frame Chip Scale Package  
(LFCSP).  
Rev. 0 | Page 27 of 28  
 
 
AD9642  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
25  
32  
24  
1
0.50  
BSC  
*
3.75  
EXPOSED  
PAD  
3.60 SQ  
3.55  
17  
8
16  
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5  
WITH EXCEPTION TO EXPOSED PAD DIMENSION.  
Figure 59. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
5 mm × 5 mm Body, Very Thin Quad  
(CP-32-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
CP-32-12  
CP-32-12  
CP-32-12  
CP-32-12  
AD9642BCPZ-170  
AD9642BCPZ-210  
AD9642BCPZ-250  
AD9642BCPZRL7-170  
AD9642BCPZRL7-210  
AD9642BCPZRL7-250  
AD9642-170EBZ  
AD9642-210EBZ  
AD9642-250EBZ  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
Evaluation Board with AD9642 and Software  
CP-32-12  
CP-32-12  
Evaluation Board with AD9642 and Software  
Evaluation Board with AD9642 and Software  
1 Z = RoHS Compliant Part.  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09995-0-7/11(0)  
Rev. 0 | Page 28 of 28  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY