AD9644CCPZRL7-80 [ADI]

14-Bit, 80 MSPS/155 MSPS, 1.8V Dual, Serial Output A/D Converter;
AD9644CCPZRL7-80
型号: AD9644CCPZRL7-80
厂家: ADI    ADI
描述:

14-Bit, 80 MSPS/155 MSPS, 1.8V Dual, Serial Output A/D Converter

转换器
文件: 总44页 (文件大小:1886K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
14-Bit, 80 MSPS/155 MSPS, 1.8 V Dual  
Serial Output Analog-to-Digital Converter (ADC)  
Data Sheet  
AD9644  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
AGND  
DRVDD  
DRGND  
JESD204A coded serial digital outputs  
SNR = 73.7 dBFS at 70 MHz and 80 MSPS  
SNR = 71.7 dBFS at 70 MHz and 155 MSPS  
SFDR = 92 dBc at 70 MHz and 80 MSPS  
SFDR = 92 dBc at 70 MHz and 155 MSPS  
Low power: 423 mW at 80 MSPS, 567 mW at 155 MSPS  
1.8 V supply operation  
AD9644  
DOUT+A  
DOUT–A  
VIN+A  
14  
PIPELINE  
14-BIT ADC  
DSYNC+A  
DSYNC–A  
VIN–A  
VCMA  
DOUT+B  
DOUT–B  
14  
VIN+B  
VIN–B  
VCMB  
PIPELINE  
14-BIT ADC  
Integer 1-to-8 input clock divider  
IF sampling frequencies to 250 MHz  
DSYNC+B  
DSYNC–B  
−148.6 dBFS/Hz input noise at 180 MHz and 80 MSPS  
−150.3 dBFS/Hz input noise at 180 MHz and 155 MSPS  
Programmable internal ADC voltage reference  
Flexible analog input range: 1.4 V p-p to 2.1 V p-p  
ADC clock duty cycle stabilizer  
REFERENCE  
PLL  
SERIAL PORT  
1 TO 8  
CLOCK  
DIVIDER  
PDWN  
(SPI)  
Serial port control  
User-configurable, built-in self-test (BIST) capability  
Energy-saving power-down modes  
SCLK SDIO CSB  
CLK+ CLK– SYNC  
Figure 1. 48-Lead 7 mm × 7 mm LFCSP  
APPLICATIONS  
Communications  
PRODUCT HIGHLIGHTS  
Diversity radio systems  
1. An on-chip PLL allows users to provide a single ADC  
sampling clock; the PLL multiplies the ADC sampling  
clock to produce the corresponding JESD204A data rate  
clock.  
2. The configurable JESD204A output block supports up to  
1.6 Gbps per channel data rate when using a dedicated  
data link per ADC or 3.2 Gbps data rate when using a  
single shared data link for both ADCs.  
3. Proprietary differential input that maintains excellent SNR  
performance for input frequencies up to 250 MHz.  
4. Operation from a single 1.8 V power supply.  
5. Standard serial port interface (SPI) that supports various  
product features and functions, such as data formatting  
(offset binary, twos complement, or gray coding),  
controlling the clock DCS, power-down, test modes,  
voltage reference mode, and serial output configuration.  
Multimode digital receivers (3G and 4G)  
GSM, EDGE, W-CDMA, LTE,  
CDMA2000, WiMAX, TD-SCDMA  
I/Q demodulation systems  
Smart antenna systems  
General-purpose software radios  
Broadband data applications  
Ultrasound equipment  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2010–2020 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD9644  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Voltage Reference ...................................................................... 22  
Clock Input Considerations ..................................................... 22  
Channel/Chip Synchronization ............................................... 24  
Power Dissipation and Standby Mode.................................... 24  
Digital Outputs........................................................................... 24  
Built-In Self-Test (BIST) and Output Test ................................. 29  
Built-In Self-Test (BIST) ........................................................... 29  
Output Test Modes.................................................................... 29  
Serial Port Interface (SPI) ............................................................. 31  
Configuration Using the SPI .................................................... 31  
Hardware Interface .................................................................... 32  
SPI Accessible Features ............................................................. 32  
Memory Map .................................................................................. 33  
Reading the Memory Map Register Table.............................. 33  
Memory Map Register Table.................................................... 34  
Memory Map Register Descriptions ....................................... 38  
Applications Information ............................................................. 42  
Design Guidelines ...................................................................... 42  
Outline Dimensions....................................................................... 43  
Ordering Guide .......................................................................... 43  
Applications ...................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights........................................................................... 1  
Revision History ............................................................................... 2  
General Description......................................................................... 3  
Specifications .................................................................................... 4  
ADC DC Specifications............................................................... 4  
ADC AC Specifications ............................................................... 5  
Digital Specifications ................................................................... 6  
Switching Specifications.............................................................. 8  
Timing Specifications .................................................................. 9  
Absolute Maximum Ratings ......................................................... 10  
Thermal Characteristics ................................................................ 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions .......................... 11  
Typical Performance Characteristics........................................... 13  
Equivalent Circuits......................................................................... 19  
Theory of Operation ...................................................................... 20  
ADC Architecture ...................................................................... 20  
Analog Input Considerations ................................................... 20  
REVISION HISTORY  
9/2020—Rev. C to Rev. D  
4/2011—Rev. 0 to Rev. A  
Changed CP-48-8 to CP-48-9......................................Throughout  
Updated Outline Dimensions....................................................... 43  
Changes to Ordering Guide.......................................................... 43  
Added Model -155 ........................................................ Throughout  
Changes to Features Section and Figure 1.....................................1  
Changes to General Description Section .......................................3  
Changes to Table 1............................................................................4  
Changes to Table 2............................................................................5  
Changes to Table 4............................................................................8  
Additions to TPC Introductory Statement................................. 13  
Changes to Speed Grade ID Bits in Table 17 ............................. 31  
Changes to Ordering Guide.......................................................... 40  
1/2012—Rev. B to Rev. C  
Change to General Description Section........................................ 3  
6/2011—Rev. A to Rev. B  
Added Figure 23 to Figure 40; Renumbered Sequentially........ 16  
Changes to Clock Input Considerations Section....................... 22  
Added Figure 61 ............................................................................. 24  
Changes to Digital Outputs and Timing Section....................... 27  
Added Figure 69 ............................................................................. 28  
Changes to Output Test Modes Section...................................... 29  
Changes to SPI Accessible Features Section............................... 32  
6/2010—Revision 0: Initial Version  
Rev. D | Page 2 of 44  
 
Data Sheet  
AD9644  
GENERAL DESCRIPTION  
The AD9644 is a dual, 14-bit, analog-to-digital converter (ADC)  
with a high speed serial output interface and sampling speeds  
of either 80 MSPS or 155 MSPS.  
By default, the ADC output data is routed directly to the two  
external JESD204A serial output ports. These outputs are at CML  
voltage levels. Two modes are supported such that output  
coded data is either sent through one data link or two. (L = 1; F  
= 4 or  
L = 2; F = 2). Independent synchronization inputs (DSYNC)  
are provided for each channel.  
The AD9644 is designed to support communications appli-  
cations where high performance, combined with low cost, small  
size, and versatility, is desired. The JESD204A high speed serial  
interface reduces board routing requirements and lowers pin count  
requirements for the receiving device.  
Flexible power-down options allow significant power savings,  
when desired.  
The dual ADC core features a multistage, differential pipelined  
architecture with integrated output error correction logic. Each  
ADC features wide bandwidth differential sample-and-hold  
analog input amplifiers that support a variety of user-selectable  
input ranges. An integrated voltage reference eases design consid-  
erations. A duty cycle stabilizer is provided to compensate for  
variations in the ADC clock duty cycle, allowing the converters  
to maintain excellent performance.  
Programming for setup and control is accomplished using a 3-wire  
SPI-compatible serial interface.  
The AD9644 is available in a 48-lead LFCSP and is specified over  
the industrial temperature range of −40°C to +85°C.  
This product is protected by a U.S. patent.  
Rev. D | Page 3 of 44  
 
AD9644  
Data Sheet  
SPECIFICATIONS  
ADC DC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, 1.75 V p-p differential input, VIN = −1.0 dBFS differential input, DCS enabled,  
unless otherwise noted.  
Table 1.  
AD9644-80  
Typ  
AD9644-155  
Typ  
Parameter  
Temperature Min  
Max  
Min  
Max  
Unit  
RESOLUTION  
Full  
14  
14  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Gain Error  
Full  
Full  
Full  
Full  
±5°C  
Full  
±5°C  
Guaranteed  
±±  
−±.5  
Guaranteed  
±±.±  
−1.5  
±1ꢀ  
+1  
±ꢀ.55  
±11  
+4  
±ꢀ.55  
mV  
% FSR  
LSB  
LSB  
LSB  
−7  
−6  
Differential Nonlinearity (DNL)1  
±ꢀ.3  
±ꢀ.5  
±ꢀ.3  
Integral Nonlinearity (INL)1  
±1.1  
±1.±5  
±ꢀ.55  
LSB  
MATCHING CHARACTERISTIC  
Offset Error  
Gain Error  
Full  
Full  
−7  
−1.5  
+1.5  
+ꢀ.6  
+1ꢀ  
+±.75  
−6  
−3.1  
+1.5  
+ꢀ.75  
+9  
+5  
mV  
% FSR  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Full  
Full  
±5°C  
±±  
±35  
ꢀ.7  
±±  
±144  
ꢀ.7  
ppm/°C  
ppm/°C  
LSB rms  
INPUT REFERRED NOISE  
ANALOG INPUT  
Input Span  
Input Capacitance±  
Input Resistance  
VCM OUTPUT LEVEL  
POWER SUPPLIES  
Supply Voltage  
AVDD  
Full  
Full  
Full  
Full  
1.383  
ꢀ.88  
1.75  
7
±ꢀ  
±.ꢀ87  
ꢀ.9±  
1.383  
ꢀ.87  
1.75  
5
±ꢀ  
±.ꢀ87  
ꢀ.93  
V p-p  
pF  
kΩ  
V
ꢀ.9  
ꢀ.9  
Full  
Full  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
DRVDD  
Supply Current  
IAVDD1  
IDRVDD1  
Full  
Full  
175  
6ꢀ  
19ꢀ  
67  
±±6  
89  
±4±  
97  
mA  
mA  
POWER CONSUMPTION  
Sine Wave Input1  
Standby Power3  
Power-Down Power  
Full  
Full  
Full  
4±3  
85  
15  
46ꢀ  
±7  
567  
168  
18  
61ꢀ  
±7  
mW  
mW  
mW  
1 Measured with a low input frequency, full-scale sine wave.  
± Input capacitance refers to the effective capacitance between one differential input pin and AGND.  
3 Standby power is measured with a dc input and with the CLK pins inactive (set to AVDD or AGND).  
Rev. D | Page 4 of 44  
 
 
Data Sheet  
AD9644  
ADC AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, 1.75 V p-p differential input, VIN = −1.0 dBFS differential input, DCS enabled,  
unless otherwise noted.  
Table 2.  
AD9644-80  
Typ  
AD9644-155  
Parameter1  
Temperature  
Min  
Max  
Min  
Typ  
Max  
Unit  
SIGNAL-TO-NOISE-RATIO (SNR)  
fIN = 1ꢀ MHz  
fIN = 7ꢀ MHz  
±5°C  
±5°C  
±5°C  
Full  
73.8  
73.7  
7±.6  
71.9  
71.7  
71.4  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 18ꢀ MHz  
71.8  
7ꢀ.ꢀ  
AD9644BCPZ-8ꢀ  
AD9644CCPZ-8ꢀ  
AD9644BCPZ-155  
fIN = ±±ꢀ MHz  
Full  
Full  
69.8  
±5°C  
7±.ꢀ  
71.ꢀ  
SIGNAL-TO-NOISE AND DISTORTION (SINAD)  
fIN = 1ꢀ MHz  
fIN = 7ꢀ MHz  
±5°C  
±5°C  
±5°C  
Full  
7±.7  
7±.6  
71.5  
7ꢀ.8  
7ꢀ.7  
7ꢀ.3  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 18ꢀ MHz  
7ꢀ.4  
68.6  
AD9644BCPZ-8ꢀ  
AD9644CCPZ-8ꢀ  
AD9644BCPZ-155  
fIN = ±±ꢀ MHz  
Full  
Full  
68.7  
±5°C  
71.1  
69.9  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 1ꢀ MHz  
fIN = 7ꢀ MHz  
fIN = 18ꢀ MHz  
fIN = ±±ꢀ MHz  
±5°C  
±5°C  
±5°C  
±5°C  
11.8  
11.8  
11.6  
11.5  
11.5  
11.5  
11.4  
11.3  
Bits  
Bits  
Bits  
Bits  
WORST SECOND OR THIRD HARMONIC  
fIN = 1ꢀ MHz  
fIN = 7ꢀ MHz  
±5°C  
±5°C  
±5°C  
Full  
−94  
−9±  
−87  
−94  
−9±  
−9±  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 18ꢀ MHz  
−8ꢀ  
−73  
AD9644BCPZ-8ꢀ  
AD9644CCPZ-8ꢀ  
AD9644BCPZ-155  
fIN = ±±ꢀ MHz  
Full  
Full  
−8ꢀ  
±5°C  
−85  
−9ꢀ  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 1ꢀ MHz  
fIN = 7ꢀ MHz  
±5°C  
±5°C  
±5°C  
Full  
94  
9±  
87  
94  
9±  
9±  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 18ꢀ MHz  
8ꢀ  
73  
AD9644BCPZ-8ꢀ  
AD9644CCPZ-8ꢀ  
AD9644BCPZ-155  
fIN = ±±ꢀ MHz  
Full  
Full  
8ꢀ  
±5°C  
85  
9ꢀ  
WORST OTHER (HARMONIC OR SPUR)  
fIN = 1ꢀ MHz  
fIN = 7ꢀ MHz  
±5°C  
±5°C  
±5°C  
Full  
−98  
−98  
−96  
−97  
−97  
−95  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 18ꢀ MHz  
−9ꢀ  
−87  
AD9644BCPZ-8ꢀ  
AD9644CCPZ-8ꢀ  
AD9644BCPZ-155  
fIN = ±±ꢀ MHz  
Full  
Full  
−89  
±5°C  
−95  
−94  
Rev. D | Page 5 of 44  
 
 
 
 
AD9644  
Data Sheet  
AD9644-80  
Typ  
AD9644-155  
Parameter1  
Temperature  
Min  
Max  
Min  
Typ  
Max  
Unit  
TWO-TONE SFDR  
fIN = +3ꢀ MHz (−7 dBFS ), +33 MHz (−7 dBFS )  
fIN = +169 MHz (−7 dBFS ), +17± MHz (−7 dBFS )  
CROSSTALK±  
±5°C  
±5°C  
Full  
93  
89  
9ꢀ  
89  
dBc  
dBc  
dB  
−1ꢀ5  
78ꢀ  
−1ꢀ5  
78ꢀ  
ANALOG INPUT BANDWIDTH3  
±5°C  
MHz  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
± Crosstalk is measured at 1ꢀꢀ MHz with −1.ꢀ dBFS on one channel and no input on the alternate channel.  
3 Analog input bandwidth specifies the −3 dB input BW of the AD9644 input. The usable full-scale BW of the part with good performance is ±5ꢀ MHz.  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, 1.75 V p-p differential input, VIN = −1.0 dBFS differential input, and DCS enabled,  
unless otherwise noted.  
Table 3.  
AD9644-80/AD9644-155  
Parameter  
Temperature  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS/LVDS/LVPECL  
ꢀ.9  
Internal Common-Mode Bias  
Differential Input Voltage  
Input Voltage Range  
Input Common-Mode Range  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
ꢀ.3  
AGND  
ꢀ.9  
−1ꢀꢀ  
−1ꢀꢀ  
3.6  
AVDD  
1.4  
V p-p  
V
V
+1ꢀꢀ  
+1ꢀꢀ  
μA  
μA  
pF  
kΩ  
4
1ꢀ  
Input Resistance  
8
1±  
SYNC INPUT  
Logic Compliance  
Internal Bias  
CMOS  
ꢀ.9  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
Input Voltage Range  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
AGND  
1.±  
AGND  
−1ꢀꢀ  
−1ꢀꢀ  
AVDD  
AVDD  
ꢀ.6  
V
V
V
+1ꢀꢀ  
+1ꢀꢀ  
μA  
μA  
pF  
kΩ  
1
16  
Input Resistance  
1±  
±ꢀ  
DSYNC INPUT  
Logic Compliance  
Internal Bias  
CMOS/LVDS  
ꢀ.9  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
Input Voltage Range  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
AGND  
1.±  
AGND  
−1ꢀꢀ  
−1ꢀꢀ  
AVDD  
AVDD  
ꢀ.6  
V
V
V
+1ꢀꢀ  
+1ꢀꢀ  
μA  
μA  
pF  
kΩ  
1
16  
Input Resistance  
1±  
±ꢀ  
Rev. D | Page 6 of 44  
 
Data Sheet  
AD9644  
AD9644-80/AD9644-155  
Parameter  
LOGIC INPUT (CSB)1  
Temperature  
Min  
Typ  
Max  
Unit  
Logic Compliance  
CMOS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.±±  
−1ꢀ  
4ꢀ  
±.1  
ꢀ.6  
+1ꢀ  
13±  
V
V
μA  
μA  
kΩ  
pF  
±6  
±
Input Capacitance  
LOGIC INPUT (SCLK, PDWN)±  
Logic Compliance  
CMOS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current (VIN = 1.8 V)  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.±±  
−9±  
−1ꢀ  
±.1  
ꢀ.6  
−135  
+1ꢀ  
V
V
μA  
μA  
kΩ  
pF  
±6  
±
Input Capacitance  
LOGIC INPUT/OUTPUT (SDIO)1  
Logic Compliance  
CMOS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.±±  
−1ꢀ  
38  
±.1  
ꢀ.6  
+1ꢀ  
1±8  
V
V
μA  
μA  
kΩ  
pF  
±6  
5
Input Capacitance  
DIGITAL OUTPUTS  
Logic Compliance  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Full  
Full  
Full  
CML  
ꢀ.8  
DRVDD/±  
ꢀ.6  
ꢀ.75  
1.1  
1.ꢀ5  
V
V
1 Pull up.  
± Pull down.  
Rev. D | Page 7 of 44  
AD9644  
Data Sheet  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, 1.75 V p-p differential input, VIN = −1.0 dBFS differential input, and DCS enabled,  
unless otherwise noted.  
Table 4.  
AD9644-80  
Typ  
AD9644-155  
Typ  
Parameter  
Temperature Min  
Max Min  
Max  
Unit  
CLOCK INPUT PARAMETERS  
Input Clock Rate  
Full  
Full  
Full  
64ꢀ  
8ꢀ  
64ꢀ  
155  
MHz  
MSPS  
ns  
Conversion Rate1  
4ꢀ  
1±.5  
4ꢀ  
6.45  
CLK Period—Divide-by-1 Mode (tCLK  
)
CLK Pulse Width High (tCH)  
Divide-by-1 Mode, DCS Enabled  
Divide-by-1 Mode, DCS Disabled  
Divide-by-± Mode Through Divide-by-8  
Mode  
Full  
Full  
Full  
3.75  
5.95  
ꢀ.8  
6.±5  
6.±5  
8.75  
6.55  
1.935  
3.ꢀ65  
ꢀ.8  
3.±±5  
3.±±5  
4.515 ns  
3.385 ns  
ns  
Aperture Delay (tA)  
Full  
Full  
ꢀ.78  
ꢀ.1±5  
ꢀ.78  
ꢀ.1±5  
ns  
ps rms  
Aperture Uncertainty (Jitter, tJ)  
DATA OUTPUT PARAMETERS  
Data Output Period or UI (Unit Interval)  
Data Output Duty Cycle  
Data Valid Time  
PLL Lock Time (tLOCK  
Wake Up Time (Standby)  
Wake Up Time (Power-Down)±  
Pipeline Delay (Latency)  
Full  
1/(±ꢀ × fCLK  
)
1/(±ꢀ × fCLK  
)
Seconds  
%
UI  
μs  
μs  
ms  
5ꢀ  
ꢀ.78  
4
±5°C  
±5°C  
±5°C  
±5°C  
±5°C  
Full  
5ꢀ  
ꢀ.74  
4
5
±.5  
)
5
±.5  
±3  
±4  
±3  
±4  
CLK  
cycles  
Data Rate per Channel (NRZ)  
Deterministic Jitter  
Random Jitter at 1.6 Gbps  
Random Jitter at 3.± Gbps  
Output Rise/Fall Time  
±5°C  
±5°C  
±5°C  
±5°C  
±5°C  
1.6  
4ꢀ  
9.5  
5.±  
5ꢀ  
3.1  
4ꢀ  
Gbps  
ps  
ps rms  
ps rms  
ps  
5.±  
5ꢀ  
TERMINATION CHARACTERISTICS  
Differential Termination Resistance  
OUT-OF-RANGE RECOVERY TIME  
±5°C  
±5°C  
1ꢀꢀ  
±
1ꢀꢀ  
±
Ω
CLK  
cycles  
1 Conversion rate is the clock rate after the divider.  
± Wake-up time is defined as the time required to return to normal operation from power-down mode.  
Rev. D | Page 8 of 44  
 
 
Data Sheet  
AD9644  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Conditions  
Limit  
SYNC TIMING REQUIREMENTS  
tSSYNC  
tHSYNC  
SYNC to rising edge of CLK+ setup time  
SYNC to rising edge of CLK+ hold time  
ꢀ.3ꢀ ns typ  
ꢀ.3ꢀ ns typ  
SPI TIMING REQUIREMENTS  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
SCLK pulse width high  
± ns min  
± ns min  
4ꢀ ns min  
± ns min  
± ns min  
1ꢀ ns min  
1ꢀ ns min  
1ꢀ ns min  
SCLK pulse width low  
Time required for the SDIO pin to switch from an input to an output relative to the SCLK  
falling edge  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an input relative to the SCLK  
rising edge  
1ꢀ ns min  
Timing Diagrams  
SAMPLE  
N
N – 23  
ANALOG  
N – 22  
N + 1  
INPUT  
N – 21  
SIGNAL  
N – 1  
N – 20  
CLK–  
CLK+  
CLK–  
CLK+  
DOUT+  
DOUT–  
SAMPLE N – 23  
ENCODED INTO 2  
8b/10b SYMBOLS  
SAMPLE N – 22  
ENCODED INTO 2  
8b/10b SYMBOLS  
SAMPLE N – 21  
ENCODED INTO 2  
8b/10b SYMBOLS  
Figure 2. Data Output Timing  
CLK+  
SYNC  
tSSYNC  
tHSYNC  
Figure 3. SYNC Input Timing Requirements  
Rev. D | Page 9 of 44  
 
 
 
 
AD9644  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 6.  
The exposed paddle must be soldered to the ground plane for  
the LFCSP package. Soldering the exposed paddle to the PCB  
increases the reliability of the solder joints and maximizes the  
thermal capability of the package.  
Parameter  
Rating  
ELECTRICAL  
AVDD to AGND  
DRVDD to AGND  
−ꢀ.3 V to +±.ꢀ V  
−ꢀ.3 V to +±.ꢀV  
VIN+A/VIN+B, VIN−A/VIN−B to AGND −ꢀ.3 V to AVDD + ꢀ.± V  
Table 7. Thermal Resistance  
CLK+, CLK− to AGND  
SYNC to AGND  
VCMA, VCMB to AGND  
CSB to AGND  
SCLK to AGND  
SDIO to AGND  
PDWN to AGND  
DOUT+A, DOUTꢀ−A, DOUTꢀ+B,  
DOUT−B to AGND  
−ꢀ.3 V to AVDD + ꢀ.± V  
−ꢀ.3 V to AVDD + ꢀ.± V  
−ꢀ.3 V to AVDD + ꢀ.± V  
−ꢀ.3 V to DRVDD + ꢀ.± V  
−ꢀ.3 V to DRVDD + ꢀ.± V  
−ꢀ.3 V to DRVDD + ꢀ.± V  
−ꢀ.3 V to DRVDD + ꢀ.± V  
−ꢀ.3 V to DRVDD + ꢀ.± V  
Airflow  
Velocity  
(m/sec)  
1, 2  
1, 3  
1, 4  
Package Type  
θJA  
±5  
±±  
±ꢀ  
θJC  
θJB  
Unit  
°C/W  
°C/W  
°C/W  
48-Lead LFCSP  
7 mm × 7 mm  
(CP-48-9)  
±
14  
1.ꢀ  
±.5  
1 Per JEDEC 51-7, plus JEDEC ±5-5 ±S±P test board.  
± Per JEDEC JESD51-± (still air) or JEDEC JESD51-6 (moving air).  
3 Per MIL-STD 883, Method 1ꢀ1±.1.  
4 Per JEDEC JESD51-8 (still air).  
DSYNC+A, DSYNC−A, DSYNC+B,  
DSYNC−B to AGND  
−ꢀ.3 V to DRVDD + ꢀ.± V  
Typical θJA is specified for a 4-layer PCB with a solid ground  
plane. As shown Table 7, airflow improves heat dissipation,  
which reduces θJA. In addition, metal in direct contact with the  
package leads from metal traces, through holes, ground, and  
power planes, reduces θJA.  
ENVIRONMENTAL  
Operating Temperature Range  
(Ambient)  
Maximum Junction Temperature  
Under Bias  
−4ꢀ°C to +85°C  
15ꢀ°C  
Storage Temperature Range  
(Ambient)  
−65°C to +15ꢀ°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. D | Page 1ꢀ of 44  
 
 
 
 
Data Sheet  
AD9644  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
36 VCMA  
DNC  
34 DNC  
VCMB  
AVDD  
DNC  
35  
4
5
6
7
8
9
10  
11  
12  
AVDD  
CLK+  
CLK–  
AVDD  
SYNC  
AVDD  
DRGND  
DRVDD  
DNC  
33 PDWN  
AD9644  
TOP  
VIEW  
32  
31  
30  
29  
DNC  
CSB  
SCLK  
SDIO  
(Not to Scale)  
28 DRVDD  
27 DRVDD  
26  
DRGND  
25 DNC  
NOTES  
1. DNC = DO NOT CONNECT.  
2. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE PACKAGE  
PROVIDES THE ANALOG GROUND FOR THE PART. THIS EXPOSED PAD  
MUST BE CONNECTED TO GROUND FOR PROPER OPERATION.  
Figure 4. LFCSP Pin Configuration (Top View)  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type  
Description  
ADC Power Supplies  
11, 15, ±±, ±7, ±8  
±, 4, 7, 9, 37, 38, 41,  
4±, 43, 44, 47, 48  
DRVDD  
AVDD  
Supply  
Supply  
Digital Output Driver Supply (1.8 V Nominal).  
Analog Power Supply (1.8 V Nominal).  
3, 1±, ±5, 3±, 34, 35  
1ꢀ, 16, ±1, ±6  
DNC  
DRGND  
Do Not Connect.  
Digital Driver Supply Ground.  
Driver  
Ground  
AGND,  
Exposed Pad  
Ground  
The exposed thermal pad on the bottom of the package provides the analog  
ground for the part. This exposed pad must be connected to ground for  
proper operation.  
ADC Analog  
4ꢀ  
39  
45  
46  
36  
1
5
6
VIN+A  
VIN−A  
VIN+B  
VIN−B  
VCMA  
VCMB  
CLK+  
Input  
Input  
Input  
Input  
Output  
Output  
Input  
Input  
Differential Analog Input Pin (+) for Channel A.  
Differential Analog Input Pin (−) for Channel A.  
Differential Analog Input Pin (+) for Channel B.  
Differential Analog Input Pin (−) for Channel B.  
Common-Mode Level Bias Output for Channel A Analog Input.  
Common-Mode Level Bias Output for Channel B Analog Input.  
ADC Clock Input—True.  
CLK−  
ADC Clock Input—Complement.  
Digital Input  
8
±4  
SYNC  
DSYNC+A  
Input  
Input  
Input Clock Divider Synchronization Pin.  
Active Low JESD±ꢀ4A LVDS Channel A SYNC Input—True/JESD±ꢀ4A CMOS  
Channel A SYNC Input.  
±3  
14  
DSYNC−A  
DSYNC+B  
Input  
Input  
Active Low JESD±ꢀ4A LVDS Channel A SYNC Input—Complement.  
Active Low JESD±ꢀ4A LVDS Channel B SYNC Input—True/JESD±ꢀ4A CMOS  
Channel A SYNC Input.  
13  
DSYNC−B  
Input  
Active Low JESD±ꢀ4A LVDS Channel B SYNC Input—Complement.  
Rev. D | Page 11 of 44  
 
 
 
AD9644  
Data Sheet  
Pin No.  
Mnemonic  
Type  
Description  
Digital Outputs  
±ꢀ  
19  
18  
17  
DOUT+A  
DOUT−A  
DOUT+B  
DOUT−B  
Output  
Output  
Output  
Output  
Channel A CML Output Data—True.  
Channel A CML Output Data—Complement.  
Channel B CML Output Data—True.  
Channel B CML Output Data—Complement.  
SPI Control  
3ꢀ  
±9  
31  
SCLK  
SDIO  
CSB  
Input  
SPI Serial Clock.  
Input/Output SPI Serial Data Input/Output.  
Input  
Input  
SPI Chip Select (Active Low).  
ADC Configuration  
33  
PDWN  
Power-Down Input. Using the SPI interface, this input can be configured as  
power-down or standby.  
Rev. D | Page 1± of 44  
Data Sheet  
AD9644  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 1.8 V, DRVDD = 1.8 V, DCS enabled, 1.75 V p-p differential input, VIN = −1.0 dBFS, and 32k sample,  
TA = 25°C, unless otherwise noted.  
0
–20  
0
80MSPS  
80MSPS  
10.1MHz @ –1dBFS  
SNR = 73.0dB (74.0dBFS)  
SFDR = 95dBc  
140.3MHz @ –1dBFS  
SNR = 72.2dB (73.2dBFS)  
SFDR = 94.0dBc  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
THIRD HARMONIC  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
40  
40  
0
10  
20  
FREQUENCY (MHz)  
30  
40  
FREQUENCY (MHz)  
Figure 5. AD9644-80 Single-Tone FFT with fIN = 10.1 MHz  
Figure 8. AD9644-80 Single-Tone FFT with fIN = 140.1 MHz  
0
0
80MSPS  
80MSPS  
30.1MHz @ –1dBFS  
SNR = 72.7dB (73.7dBFS)  
SFDR = 94dBc  
180.1MHz @ –1dBFS  
SNR = 71.6dB (72.6dBFS)  
SFDR = 93dBc  
–20  
–40  
–20  
–40  
–60  
–60  
SECOND HARMONIC  
SECOND HARMONIC  
THIRD HARMONIC  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
FREQUENCY (MHz)  
30  
0
10  
20  
FREQUENCY (MHz)  
30  
40  
Figure 6. AD9644-80 Single-Tone FFT with fIN = 30.1 MHz  
Figure 9. AD9644-80 Single-Tone FFT with fIN = 180.1 MHz  
0
0
80MSPS  
80MSPS  
70.1MHz @ –1dBFS  
SNR = 72.5dB (73.5dBFS)  
SFDR = 94.0dBc  
220.1MHz @ –1dBFS  
SNR = 71.1dB (72.1dBFS)  
SFDR = 92dBc  
–20  
–40  
–20  
–40  
–60  
–60  
THIRD HARMONIC  
SECOND HARMONIC  
SECOND HARMONIC  
THIRD HARMONIC  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
FREQUENCY (MHz)  
30  
0
10  
20  
FREQUENCY (MHz)  
30  
40  
Figure 7. AD9644-80 Single-Tone FFT with fIN = 70.1 MHz  
Figure 10. AD9644-80 Single-Tone FFT with fIN = 220.1 MHz  
Rev. D | Page 13 of 44  
 
 
 
AD9644  
Data Sheet  
100  
95  
90  
85  
80  
75  
70  
65  
120  
100  
80  
60  
40  
20  
0
SNR @ –40°C  
SFDR @ –40°C  
SNR @ +25°C  
SFDR @ +25°C  
SNR @ +85°C  
SFDR @ +85°C  
SFDR (dBFS)  
SFDR (dBc)  
SNR (dBFS)  
SNR (dBc)  
0
50  
100  
150  
200  
250  
INPUT FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 14. AD9644-80 Single-Tone SNR/SFDR vs. Input Frequency (fIN) and  
Temperature with 2.0 V p-p Full-Scale, fS = 80 MSPS  
Figure 11. AD9644-80 Single-Tone SNR/SFDR vs. Input Amplitude (AIN  
)
with fIN = 10.1 MHz, fS = 80 MSPS  
0
120  
100  
80  
–20  
–40  
SFDR (dBFS)  
SFDR (dBc)  
SNR (dBFS)  
SNR (dBc)  
–60  
–80  
SFDR (dBc)  
IMD3 (dBc)  
SFDR (dBFS)  
IMD3 (dBFS)  
60  
40  
20  
–100  
–120  
0
–90  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
INPUT AMPLITUDE (dBFS)  
INPUT AMPLITUDE (dBFS)  
Figure 12. AD9644-80 Single-Tone SNR/SFDR vs. Input Amplitude (AIN  
)
Figure 15. AD9644-80 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
with fIN = 180 MHz, fS = 80 MSPS  
with fIN1 = 29.9 MHz, fIN2 = 32.9 MHz, fS = 80 MSPS  
100  
95  
0
–20  
–40  
90  
SNR @ –40°C  
SFDR @ –40°C  
85  
SNR @ +25°C  
SFDR @ +25°C  
SNR @ +85°C  
SFDR @ +85°C  
–60  
–80  
SFDR (dBc)  
IMD3 (dBc)  
SFDR (dBFS)  
IMD3 (dBFS)  
80  
75  
70  
65  
–100  
–120  
0
50  
100  
150  
200  
250  
–90  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
INPUT FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 13. AD9644-80 Single-Tone SNR/SFDR vs. Input Frequency (fIN) and  
Temperature with 1.75 V p-p Full-Scale, fS = 80 MSPS  
Figure 16. AD9644-80 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
with fIN1 = 169.1 MHz, fIN2 = 172.1 MHz, fS = 80 MSPS  
Rev. D | Page 14 of 44  
Data Sheet  
AD9644  
0
14,000  
12,000  
10,000  
8000  
80MSPS  
29.9MHz @ –7dBFS  
32.9MHz @ –7dBFS  
SFDR = 94.4dBc (101.4dBFS)  
–20  
–40  
–60  
6000  
–80  
4000  
–100  
–120  
–140  
2000  
0
0
10  
20  
FREQUENCY (MHz)  
30  
40  
N – 4 N – 3 N – 2 N – 1  
N
N + 1 N + 2 N + 3 N + 4  
OUTPUT CODE  
Figure 17. AD9644-80 Two-Tone FFT with fIN1 = 29.9 MHz and fIN2 = 32.9 MHz  
Figure 20. AD9644-80 Grounded Input Histogram  
0
1.0  
0.8  
80MSPS  
169.1MHz @ –7dBFS  
–20  
–40  
172.1MHz @ –7dBFS  
SFDR = 91.9dBc (98.9dBFS)  
0.6  
0.4  
0.2  
–60  
0
–80  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–100  
–120  
–140  
0
10  
20  
FREQUENCY (MHz)  
30  
40  
0
200  
400  
600  
800  
1000 1200 1400 1600  
OUTPUT CODE  
Figure 18. AD9644-80 Two-Tone FFT with fIN1 = 169.1 MHz and  
fIN2 = 172.1 MHz  
Figure 21. AD9644-80 INL with fIN = 30.3 MHz  
100  
0.50  
0.25  
0
95  
90  
85  
80  
75  
70  
SNR CHANNEL B  
SFDR CHANNEL B  
SNR CHANNEL A  
SFDR CHANNEL A  
–0.25  
–0.50  
45  
50  
55  
60  
65  
70  
75  
80  
0
2000 4000 6000 8000 10,000 12,000 14,000 16,000  
OUTPUT CODE  
SAMPLE RATE (MSPS)  
Figure 19. AD9644-80 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 70. MHz  
Figure 22. AD9644-80 DNL with fIN = 30.3 MHz  
Rev. D | Page 15 of 44  
AD9644  
Data Sheet  
0
–20  
–40  
–60  
0
–20  
–40  
–60  
155MSPS  
155MSPS  
10.1MHz @ –1dBFS  
SNR = 70.9dB (71.9dBFS)  
SFDR = 94dBc  
140.1MHz @ –1dBFS  
SNR = 70.5dB (71.5dBFS)  
SFDR = 92dBc  
SECOND HARMONIC  
THIRD HARMONIC  
THIRD HARMONIC  
–80  
–100  
–120  
–80  
–100  
–120  
–140  
–140  
0
7.75 15.50 23.25 31.00 38.75 46.50 54.25 62.00 69.75 77.50  
FREQUENCY (MHz)  
0
7.75 15.50 23.25 31.00 38.75 46.50 54.25 62.00 69.75 77.50  
FREQUENCY (MHz)  
Figure 23. AD9644-155 Single-Tone FFT with fIN = 10.1 MHz  
Figure 26. AD9644-155 Single-Tone FFT with fIN = 140.1 MHz  
0
0
155MSPS  
155MSPS  
30.1MHz @ –1dBFS  
SNR = 70.8dB (71.8dBFS)  
SFDR = 93dBc  
180.1MHz @ –1dBFS  
SNR = 70.4dB (71.4dBFS)  
SFDR = 92dBc  
–20  
–20  
–40  
–60  
–40  
–60  
THIRD  
HARMONIC  
THIRD HARMONIC  
SECOND  
HARMONIC  
–80  
–100  
–120  
–140  
–80  
–100  
–120  
–140  
0
7.75 15.50 23.25 31.00 38.75 46.50 54.25 62.00 69.75 77.50  
FREQUENCY (MHz)  
0
7.75 15.50 23.25 31.00 38.75 46.50 54.25 62.00 69.75 77.50  
FREQUENCY (MHz)  
Figure 24. AD9644-155 Single-Tone FFT with fIN = 30.1 MHz  
Figure 27. AD9644-155 Single-Tone FFT with fIN = 180.1 MHz  
0
0
155MSPS  
155MSPS  
70.1MHz @ –1dBFS  
SNR = 70.7dB (71.7dBFS)  
SFDR = 92dBc  
220.1MHz @ –1dBFS  
SNR = 70.0dB (71.0dBFS)  
SFDR = 90dBc  
–20  
–20  
–40  
–60  
–40  
–60  
THIRD HARMONIC  
–80  
–100  
–120  
–140  
–80  
–100  
–120  
–140  
0
7.75 15.50 23.25 31.00 38.75 46.50 54.25 62.00 69.75 77.50  
FREQUENCY (MHz)  
0
7.75 15.50 23.25 31.00 38.75 46.50 54.25 62.00 69.75 77.50  
FREQUENCY (MHz)  
Figure 25. AD9644-155 Single-Tone FFT with fIN = 70.1 MHz  
Figure 28. AD9644-155 Single-Tone FFT with fIN = 220.1 MHz  
Rev. D | Page 16 of 44  
Data Sheet  
AD9644  
120  
100  
80  
60  
40  
20  
0
100  
95  
SNR @ –40°C  
SFDR (dBFS)  
SNR (dBFS)  
SFDR @ –40°C  
SNR @ +25°C  
SFDR @ +25°C  
SNR @ +85°C  
SFDR @ +85°C  
90  
85  
SFDR (dBc)  
80  
75  
70  
65  
SNR (dBc)  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
0
50  
100  
150  
200  
250  
300  
INPUT AMPLITUDE (dBFS)  
INPUT FREQUENCY (MHz)  
Figure 29. AD9644-155 Single-Tone SNR/SFDR vs. Input Amplitude (AIN  
)
Figure 32. AD9644-155 Single-Tone SNR/SFDR vs. Input Frequency (fIN) and  
Temperature with 2.0 V p-p Full-Scale, fS = 80 MSPS  
with fIN = 10.1 MHz, fS = 80 MSPS  
120  
0
–20  
–40  
SFDR (dBFS)  
100  
80  
SNR (dBFS)  
SFDR (dBc)  
60  
–60  
SFDR (dBc)  
IMD3 (dBc)  
40  
–80  
SNR (dBc)  
20  
–100  
SFDR (dBFS)  
IMD3 (dBFS)  
0
–90  
–120  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
–78  
–66  
–54  
–42  
–30  
–18  
–6  
INPUT AMPLITUDE (dBFS)  
INPUT AMPLITUDE (dBFS)  
Figure 30. AD9644-155 Single-Tone SNR/SFDR vs. Input Amplitude (AIN  
)
Figure 33. AD9644-155 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
with fIN = 180 MHz, fS = 80 MSPS  
with fIN1 = 29.9 MHz, fIN2 = 32.9 MHz, fS = 80 MSPS  
100  
95  
0
–20  
–40  
90  
SNR @ –40°C  
SFDR @ –40°C  
SNR @ +25°C  
SFDR @ +25°C  
SNR @ +85°C  
SFDR @ +85°C  
85  
SFDR (dBc)  
–60  
IMD3 (dBc)  
80  
75  
70  
65  
–80  
SFDR (dBFS)  
IMD3 (dBFS)  
–100  
–120  
–90  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
0
50  
100  
150  
200  
250  
300  
INPUT AMPLITUDE (dBFS)  
INPUT FREQUENCY (MHz)  
Figure 34. AD9644-155 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
Figure 31. AD9644-155 Single-Tone SNR/SFDR vs. Input Frequency (fIN) and  
Temperature with 1.75 V p-p Full-Scale, fS = 80 MSPS  
with fIN1 = 169.1 MHz, fIN2 = 172.1 MHz, fS = 80 MSPS  
Rev. D | Page 17 of 44  
AD9644  
Data Sheet  
0
–20  
–40  
–60  
4000  
3500  
155MSPS  
29.9MHz @ –7dBFS  
32.9MHz @ –7dBFS  
SFDR = 89.8dBc (96.8dBFS)  
3000  
2500  
2000  
1500  
–80  
–100  
–120  
1000  
500  
0
–140  
0
7.75 15.50 23.25 31.00 38.75 46.50 54.25 62.00 69.75 77.50  
FREQUENCY (MHz)  
N – 5 N – 4 N – 3 N – 2 N – 1  
N
N + 1 N + 2 N + 3 N + 4 N + 5  
OUTPUT CODE  
Figure 35. AD9644-155 Two-Tone FFT with fIN1 = 29.9 MHz and fIN2 = 32.9 MHz  
Figure 38. AD9644-155 Grounded Input Histogram  
0
1
0.8  
155MSPS  
169.1MHz @ –7dBFS  
–20  
–40  
–60  
172.1MHz @ –7dBFS  
SFDR = 89.1dBc (96.1dBFS)  
0.6  
0.4  
0.2  
0
–80  
–100  
–120  
–140  
–0.2  
–0.4  
–0.6  
–0.8  
–1  
0
7.75 15.50 23.25 31.00 38.75 46.50 54.25 62.00 69.75 77.50  
FREQUENCY (MHz)  
0
2000 4000 6000  
8000 10000 12000 14000 16000  
OUTPUT CODE  
Figure 36. AD9644-155 Two-Tone FFT with fIN1 = 169.1 MHz and  
fIN2 = 172.1 MHz  
Figure 39. AD9644-155 INL with fIN = 30.3 MHz  
100  
0.5  
0.25  
0
95  
90  
85  
SNR, CHANNEL B  
SFDR, CHANNEL B  
SNR, CHANNEL A  
80  
SFDR, CHANNEL A  
–0.25  
–0.5  
75  
70  
50  
65  
80  
95  
110  
125  
140  
155  
0
2000 4000 6000  
8000 10000 12000 14000 16000  
SAMPLE RATE (MSPS)  
OUTPUT CODE  
Figure 37. AD9644-155 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 70. MHz  
Figure 40. AD9644-155 DNL with fIN = 30.3 MHz  
Rev. D | Page 18 of 44  
Data Sheet  
AD9644  
EQUIVALENT CIRCUITS  
AVDD  
350Ω  
30kΩ  
SCLK  
OR  
PDWN  
VIN  
Figure 41. Equivalent Analog Input Circuit  
Figure 45. Equivalent SCLK or PDWN Input Circuit  
AVDD  
AVDD  
AVDD  
AVDD  
30kΩ  
350Ω  
0.9V  
CSB  
15kΩ  
15kΩ  
CLK+  
CLK–  
Figure 42. Equivalent Clock Input Circuit  
Figure 46. Equivalent CSB Input Circuit  
DRVDD  
AVDD  
AVDD  
4mA  
4mA  
4mA  
4mA  
R
TERM  
V
DOUT±A/B  
DOUT±A/B  
DSYNC±A/B  
OR SYNC  
CM  
0.9V  
16kΩ  
0.9V  
Figure 43. Digital CML Output  
Figure 47. Equivalent SYNC and DSYNC Input Circuit  
DRVDD  
350Ω  
30kΩ  
SDIO  
Figure 44. Equivalent SDIO Circuit  
Rev. D | Page 19 of 44  
 
AD9644  
Data Sheet  
THEORY OF OPERATION  
A small resistor in series with each input can help reduce the  
peak transient current required from the output stage of the  
driving source. A shunt capacitor can be placed across the  
inputs to provide dynamic charging currents. This passive  
network creates a low-pass filter at the ADC input; therefore,  
the precise values are dependent on the application.  
The AD9644 dual-core analog-to-digital converter (ADC) can  
be used for diversity reception of signals, in which the ADCs are  
operating identically on the same carrier but from two separate  
antennae. The ADCs can also be operated with independent  
analog inputs. The user can sample any fS/2 frequency segment  
from dc to 250 MHz, using appropriate low-pass or band-pass  
filtering at the ADC inputs with little loss in ADC performance.  
In intermediate frequency (IF) undersampling applications, any  
shunt capacitors or series resistors should be reduced since the  
input sample capacitor is unbuffered. In combination with the  
driving source impedance, the shunt capacitors limit the input  
bandwidth. Refer to the AN-742 Application Note, Frequency  
Domain Response of Switched-Capacitor ADCs; the AN-827  
Application Note, A Resonant Approach to Interfacing Amplifiers  
to Switched-Capacitor ADCs; and the Analog Dialog article,  
“Transformer-Coupled Front-End for Wideband A/D  
Converters,” for more information on this subject (refer to  
www.analog.com).  
In nondiversity applications, the AD9644 can be used as a base-  
band or direct downconversion receiver, in which one ADC is  
used for I input data, and the other is used for Q input data.  
Synchronization capability is provided to allow synchronized  
timing between multiple devices.  
Programming and control of the AD9644 are accomplished  
using a 3-wire SPI-compatible serial interface.  
ADC ARCHITECTURE  
The AD9644 architecture consists of a dual front-end sample-  
and-hold circuit, followed by a pipelined, switched-capacitor  
ADC. The quantized outputs from each stage are combined into  
a final 14-bit result in the digital correction logic. The pipelined  
architecture permits the first stage to operate on a new input  
sample and the remaining stages to operate on the preceding  
samples. Sampling occurs on the rising edge of the clock.  
BIAS  
S
S
C
FB  
C
S
VIN+  
VIN–  
C
PAR1  
C
PAR2  
H
S
S
S
C
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor digital-  
to-analog converter (DAC) and an interstage residue amplifier  
(MDAC). The MDAC magnifies the difference between the  
recon-structed DAC output and the flash input for the next  
stage in the pipeline. One bit of redundancy is used in each stage  
to facilitate digital correction of flash errors. The last stage simply  
consists of a flash ADC.  
S
C
FB  
C
C
PAR1  
PAR2  
S
BIAS  
Figure 48. Switched-Capacitor Input  
For best dynamic performance, the source impedances driving  
VIN+ and VIN− should be matched, and the inputs should be  
differentially balanced.  
The input stage of each channel contains a differential sampling  
circuit that can be ac- or dc-coupled in differential or single-  
ended modes. The output staging block aligns the data, corrects  
errors, and passes the data to the output buffers. The output buffers  
are powered from a separate supply, allowing digital output noise  
to be separated from the analog core. During power-down, the  
output buffers go into a high impedance state.  
Input Common Mode  
The analog inputs of the AD9644 are not internally dc biased.  
In ac-coupled applications, the user must provide this bias  
externally. Setting the device so that VCM = 0.5 × AVDD (or  
0.9 V) is recommended for optimum performance. An on-  
board common-mode voltage reference is included in the  
design and is available from the VCMA and VCMB pins. Using  
the VCMA and VCMB outputs to set the input common mode  
is recommended. Optimum performance is achieved when the  
common-mode voltage of the analog input is set by the VCMA  
and VCMB pin voltages (typically 0.5 × AVDD). The VCMA  
and VCMB pins must be decoupled to ground by a 0.1 μF  
capacitor. This decoupling capacitor should be placed close  
to the pin to minimize the series resistance and inductance  
between the part and this capacitor.  
ANALOG INPUT CONSIDERATIONS  
The analog input to the AD9644 is a differential switched-  
capacitor circuit that has been designed for optimum performance  
while processing a differential input signal.  
The clock signal alternatively switches the input between sample  
mode and hold mode (see Figure 48). When the input is switched  
into sample mode, the signal source must be capable of charging  
the sample capacitors and settling within ½ of a clock cycle.  
Rev. D | Page ±ꢀ of 44  
 
 
 
 
Data Sheet  
AD9644  
The signal characteristics must be considered when selecting  
Differential Input Configurations  
a transformer. Most RF transformers saturate at frequencies  
below a few megahertz (MHz). Excessive signal power can also  
cause core saturation, which leads to distortion.  
Optimum performance is achieved while driving the AD9644 in a  
differential input configuration. For baseband applications, the  
AD8138, ADA4937-2, and ADA4938-2 differential drivers provide  
excellent performance and a flexible interface to the ADC.  
At input frequencies in the second Nyquist zone and above, the  
noise performance of most amplifiers is not adequate to achieve  
the true SNR performance of the AD9644. For applications in  
which SNR is a key parameter, differential double balun coupling  
is the recommended input configuration (see Figure 51). In this  
configuration, the input is ac-coupled and the VCM is provided  
to each input through a 33 Ω resistor. These resistors compensate  
for losses in the input baluns to provide a 50 Ω impedance to  
the driver.  
The output common-mode voltage of the ADA4938-2 is easily  
set with the VCM pin of the AD9644 (see Figure 49), and the  
driver can be configured in a Sallen-Key filter topology to  
provide band limiting of the input signal.  
15pF  
200Ω  
33Ω  
5pF  
15Ω  
90Ω  
VIN–  
VIN+  
AVDD  
ADC  
VCM  
76.8Ω  
VIN  
In the double balun and transformer configurations, the value of  
the input capacitors and resistors is dependent on the input fre-  
quency and source impedance. Based on these parameters the  
value of the input resistors and capacitors may need to be  
adjusted or some components may need to be removed. Table 9  
displays recommended values to set the RC network for different  
input frequency ranges. However, these values are dependent  
on the input signal and bandwidth and should be used only as a  
starting guide. Note that the values given in Table 9 are for each  
R1, R2, C2, and R3 component shown in Figure 50 and Figure 51.  
ADA4938-2  
0.1µF  
33Ω  
15pF  
15Ω  
120Ω  
200Ω  
Figure 49. Differential Input Configuration Using the ADA4938-2  
For baseband applications in which SNR is a key parameter,  
differential transformer coupling is the recommended input  
configuration. An example is shown in Figure 50. To bias the  
analog input, the VCM voltage can be connected to the center  
tap of the secondary winding of the transformer.  
Table 9. Example RC Network  
C2  
Frequency  
Range  
(MHz)  
R1  
Series  
(Ω)  
C1  
R2  
Series  
(Ω)  
C2  
Shunt  
(pF)  
R3  
Shunt  
(Ω)  
R3  
Differential  
(pF)  
R2  
VIN+  
R1  
ꢀ to 1ꢀꢀ  
33  
15  
8.±  
3.9  
8.±  
49.9  
2V p-p  
49.9Ω  
C1  
R1  
ADC  
VCM  
1ꢀꢀ to ±5ꢀ  
Open  
Open  
R2  
VIN–  
An alternative to using a transformer-coupled input at frequencies  
in the second Nyquist zone is to use the AD8376 variable gain  
amplifier. An example drive circuit including a band-pass filter  
is shown in Figure 52. See the AD8376 data sheet for more  
information.  
0.1µF  
R3  
C2  
Figure 50. Differential Transformer-Coupled Configuration  
C2  
R3  
0.1µF  
0.1µF  
0.1µF  
R1  
R2  
R2  
VIN+  
VIN–  
2V p-p  
33Ω  
33Ω  
P
S
S
P
C1  
R1  
ADC  
A
0.1µF  
VCM  
R3  
C2  
Figure 51. Differential Double Balun Input Configuration  
Rev. D | Page ±1 of 44  
 
 
 
 
AD9644  
Data Sheet  
1000pF 180nH 220nH  
1µH  
165Ω  
VPOS  
15pF  
VCM  
1nF  
AD8376  
5.1pF 3.9pF  
165Ω  
301Ω  
1nF  
1µH  
68nH  
AD9644  
180nH 220nH  
1000pF  
NOTES  
1. ALL INDUCTORS ARE COILCRAFT 0603CS COMPONENTS  
WITH THE EXCEPTION OF THE 1µH CHOKE INDUCTORS (0603LS).  
Figure 52. Differential Input Configuration Using the AD8376 (Filter Values Shown Are for a 20 MHz Bandwidth Filter Centered at 140 MHz)  
secondary limit clock excursions into the AD9644 to  
approximately 0.8 V p-p differential.  
VOLTAGE REFERENCE  
A stable and accurate voltage reference is built into the AD9644.  
The input full scale range can be adjusted through the SPI port by  
adjusting Bit 0 through Bit 4 of Register 0x18. These bits can be  
used to change the full scale between 1.383 V p-p and 2.087 V p-p  
in 0.022 V steps, as shown in Table 17.  
This limit helps prevent the large voltage swings of the clock  
from feeding through to other portions of the AD9644 while  
preserving the fast rise and fall times of the signal that are critical  
to a low jitter performance.  
CLOCK INPUT CONSIDERATIONS  
®
Mini-Circuits  
ADC  
ADT1-1WT, 1:1Z  
For optimum performance, the AD9644 sample clock inputs,  
CLK+ and CLK−, should be clocked with a differential signal.  
The signal is typically ac-coupled into the CLK+ and CLK− pins by  
means of a transformer or a passive component configuration.  
These pins are biased internally (see Figure 53) and require no  
external bias. If the inputs are floated, the CLK− pin is pulled low  
to prevent inadvertent clocking.  
0.1µF  
50Ω  
0.1µF  
XFMR  
CLOCK  
INPUT  
CLK+  
CLK–  
100Ω  
0.1µF  
SCHOTTKY  
DIODES:  
HSMS2822  
0.1µF  
Figure 54. Transformer-Coupled Differential Clock (Up to 200 MHz)  
AVDD  
ADC  
0.9V  
1nF  
50Ω  
1nF  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
CLK–  
CLK+  
CLK–  
2pF  
2pF  
SCHOTTKY  
DIODES:  
HSMS2822  
Figure 55. Balun-Coupled Differential Clock (Up to 640 MHz)  
Figure 53. Equivalent Clock Input Circuit  
If a low jitter clock source is not available, another option is to  
ac couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 56. The AD9510/AD9511/AD9512/  
AD9513/AD9514/AD9515/AD9516/AD9517/AD9518/AD9520  
/AD9522 clock drivers offer excellent jitter performance.  
Clock Input Options  
The AD9644 has a very flexible clock input structure. Clock input  
can be a CMOS, LVDS, LVPECL, or sine wave signal. Regardless  
of the type of signal being used, clock source jitter is of the most  
concern, as described in the Jitter Considerations section. The  
minimum conversion rate of the AD9644 is 40 MSPS. At clock  
rates below 40 MSPS, dynamic performance of the AD9644 can  
degrade.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
AD95xx  
PECL DRIVER  
100Ω  
0.1µF  
50kΩ  
0.1µF  
Figure 54 and Figure 55 show two preferred methods for clocking  
the AD9644 (at clock rates up to 640 MHz). A low jitter clock  
source is converted from a single-ended signal to a differential  
signal using either an RF balun or an RF transformer.  
CLOCK  
INPUT  
CLK–  
240Ω  
240Ω  
50kΩ  
Figure 56. Differential PECL Sample Clock (Up to 640 MHz)  
The RF balun configuration is recommended for clock frequencies  
between 125 MHz and 640 MHz, and the RF transformer is  
recommended for clock frequencies from 40 MHz to 200 MHz.  
The back-to-back Schottky diodes across the transformer/balun  
Rev. D | Page ±± of 44  
 
 
 
 
 
 
 
Data Sheet  
AD9644  
A third option is to ac-couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 57. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515/AD9516/AD9517/  
AD9518/AD9520/AD9522 clock drivers offer excellent jitter  
performance.  
Jitter in the rising edge of the input is still of paramount concern  
and is not easily reduced by the internal stabilization circuit. The  
loop has a time constant associated with it that must be considered  
in applications in which the clock rate can change dynamically.  
A wait time of 1.5 μs to 5 μs is required after a dynamic clock  
frequency increase or decrease before the DCS loop is relocked to  
the input signal. During the time period that the loop is not  
locked, the DCS loop is bypassed, and internal device timing is  
dependent on the duty cycle of the input clock signal. In such  
applications, it may be appropriate to disable the duty cycle  
stabilizer. In all other applications, enabling the DCS circuit is  
recommended to maximize ac performance.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
AD95xx  
LVDS DRIVER  
100Ω  
0.1µF  
0.1µF  
50kΩ  
CLOCK  
INPUT  
CLK–  
50kΩ  
Figure 57. Differential LVDS Sample Clock (Up to 640 MHz)  
Jitter Considerations  
High speed, high resolution ADCs are sensitive to the quality  
of the clock input. For inputs near full scale, the degradation in  
SNR from the low frequency SNR (SNRLF) at a given input  
frequency (fINPUT) due to jitter (tJRMS) can be calculated by  
In some applications, it may be acceptable to drive the sample  
clock inputs with a single-ended CMOS signal. In such applica-  
tions, the CLK+ pin should be driven directly from a CMOS gate,  
and the CLK− pin should be bypassed to ground with a 0.1 ꢀF  
capacitor (see Figure 58).  
SNRHF = −10 log[(2π × fINPUT × tJRMS)2 + 10 (SNR /10)  
]
LF  
V
In the equation, the rms aperture jitter represents the clock  
input jitter specification. IF undersampling applications are  
particularly sensitive to jitter, as illustrated in Figure 59. The  
measured curve in Figure 59 was taken using an ADC clock source  
with approxi-mately 65 fs of jitter, which combines with the 125 fs  
of jitter inherent in the AD9644 to produce the result shown.  
75  
CC  
OPTIONAL  
100Ω  
0.1µF  
0.1µF  
1kΩ  
1kΩ  
AD95xx  
CMOS DRIVER  
CLOCK  
INPUT  
CLK+  
ADC  
1
50Ω  
CLK–  
0.1µF  
1
50Ω RESISTOR IS OPTIONAL.  
Figure 58. Single-Ended 1.8 V CMOS Input Clock (Up to 200 MHz)  
70  
Input Clock Divider  
The AD9644 contains an input clock divider with the ability to  
divide the input clock by integer values between 1 and 8. For  
divide ratios other than 1 the duty cycle stabilizer is automatically  
enabled.  
0.05ps  
0.2ps  
0.5ps  
1ps  
1.5ps  
65  
60  
55  
50  
MEASURED  
The AD9644 clock divider can be synchronized using the external  
SYNC input. Bit 1 and Bit 2 of Register 0x3A allow the clock  
divider to be resynchronized on every SYNC signal or only on  
the first SYNC signal after the register is written. A valid SYNC  
causes the clock divider to reset to its initial state. This synchro-  
nization feature allows multiple parts to have their clock dividers  
aligned to guarantee simultaneous input sampling.  
1
10  
100  
1000  
INPUT FREQUENCY (MHz)  
Figure 59. SNR vs. Input Frequency and Jitter  
The clock input should be treated as an analog signal in cases in  
which aperture jitter may affect the dynamic range of the AD9644.  
Power supplies for clock drivers should be separated from the  
ADC output driver supplies to avoid modulating the clock signal  
with digital noise. Low jitter, crystal-controlled oscillators make  
the best clock sources. If the clock is generated from another type  
of source (by gating, dividing, or another method), it should be  
retimed by the original clock at the last step.  
Clock Duty Cycle  
Typical high speed ADCs use both clock edges to generate  
a variety of internal timing signals and, as a result, may be  
sensitive to clock duty cycle. The AD9644 requires a tight  
tolerance on the clock duty cycle to maintain dynamic  
performance characteristics.  
The AD9644 contains a duty cycle stabilizer (DCS) that retimes  
the nonsampling (falling) edge, providing an internal clock signal  
with a nominal 50% duty cycle. This allows the user to provide  
a wide range of clock input duty cycles without affecting the  
perfor-mance of the AD9644. Noise and distortion  
performance are nearly flat for a wide range of duty cycles with  
the DCS enabled.  
Refer to the AN-501 Application Note and the AN-756  
Application Note (visit www.analog.com) for more information  
about jitter performance as it relates to ADCs.  
Rev. D | Page ±3 of 44  
 
 
 
 
AD9644  
Data Sheet  
By asserting PDWN (either through the SPI port or by asserting  
the PDWN pin high), the AD9644 is placed in power-down mode.  
In this state, the ADC typically dissipates 15 mW. During power-  
down, the output drivers are placed in a high impedance state.  
Asserting the PDWN pin low returns the AD9644 to its normal  
operating mode.  
CHANNEL/CHIP SYNCHRONIZATION  
The AD9644 has a SYNC input that offers the user flexible  
synchronization options for synchronizing the clock divider.  
The clock divider sync feature is useful for guaranteeing synchro-  
nized sample clocks across multiple ADCs. The input clock  
divider can be enabled to synchronize on a single occurrence of  
the SYNC signal or on every occurrence.  
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
clock, and JESD204A outputs . Internal capacitors are discharged  
when entering power-down mode and then must be recharged  
when returning to normal operation.  
The SYNC input is internally synchronized to the sample clock;  
however, to ensure that there is no timing uncertainty between  
multiple parts, the SYNC input signal should be externally syn-  
chronized to the input clock signal, meeting the setup and hold  
times shown in Table 5. The SYNC input should be driven  
using a single-ended CMOS-type signal.  
When using the SPI port interface, the user can place the ADC  
in power-down mode or standby mode. Standby mode allows  
the user to keep the internal reference circuitry powered and  
the JESD204A outputs running when faster wake-up times are  
required.  
POWER DISSIPATION AND STANDBY MODE  
As shown in Figure 60 and Figure 61, the power dissipated by  
the AD9644 varies with its sample rate (AD9644-80 shown).  
DIGITAL OUTPUTS  
JESD204A Transmit Top Level Description  
The data in Figure 60 and Figure 61 was taken in JESD204A  
serial output mode, using the same operating conditions as those  
used for the Typical Performance Characteristics.  
The AD9644 digital output complies with the JEDEC Standard  
No. 204A (JESD204A), which describes a serial interface for  
data converters. JESD204A uses 8B/10B encoding as well as  
optional scrambling. K28.5 and K28.7 comma symbols are used  
for frame synchronization and the K28.3 control symbol is used  
for lane synchronization. The receiver is required to lock onto  
the serial data stream and recover the clock with the use of a  
PLL. For details on the output interface, users are encouraged  
to refer to the JESD204A standard.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
TOTAL POWER  
IAVDD  
The JESD204A transmit block is used to multiplex data from  
the two analog-to-digital converters onto two independent  
JESD204A Links. Each JESD204A Link is considered a separate  
instance of the JESD204A specification, has an independent  
DSYNC signal, and contains one or more lanes. Note that the  
JESD204 specification only allows one lane per link, while the  
JESD204A specification adds multilane support through an  
alignment procedure.  
IDRVDD  
40  
50  
60  
70  
80  
ENCODE FREQUENCY (MSPS)  
Figure 60. AD9644-80 Power and Current vs. Encode Frequency with fIN  
10.1 MHz  
=
Each JESD204A Link is described according to the following  
nomenclature:  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
TOTAL POWER  
S = samples transmitted/single converter/frame cycle  
M = number of converters/converter device (link)  
L = number of lanes/converter device (link)  
N = converter resolution  
N’ = total number of bits per sample  
CF = number of control words/frame clock  
cycle/converter device (link)  
I
AVDD  
I
DRVDD  
CS = number of control bits/conversion sample  
K = number of frames per multiframe  
HD = high density mode  
F = octets/frame  
C = control bit (overrange, overflow, underflow)  
T = tail bit  
80  
90  
100  
110  
120  
130  
140  
150  
ENCODE FREQUENCY (MSPS)  
Figure 61. AD9644-155 Power and Current vs. Encode Frequency  
with fIN = 10.1 MHz  
SCR = scrambler enable/disable  
FCHK = checksum  
Rev. D | Page ±4 of 44  
 
 
 
 
 
Data Sheet  
AD9644  
Figure 62 shows a simplified block diagram of the AD9644  
JESD204A links. The two links each have a primary and a  
secondary converter input and lane output. By default, the  
primary Input 0 of Link A is ADC Converter A and its primary  
lane Output 0 is sent on output Lane A. The primary Input 0 of  
Link B is ADC Converter B and its primary lane Output 0 is  
sent on output Lane B. Muxes throughout the design are used  
to enable secondary inputs/outputs and swap lane outputs for  
other configurations. The JESD204A block for AD9644 is  
designed to support the configurations described in Table 10  
via a quick configuration register at Address 0x5E accessible via  
the SPI bus.  
AD9644, the 14-bit converter word is broken into two octets.  
Bit 13 through Bit 6 are in the first octet. The second octet  
contains Bit 5 through Bit 0 and two tail bits. The MSB of the tail  
bits can also be used to indicate an out-of-range condition. The  
tail bits are configured using the JESD204A link control  
Register 1, Address 0x60, Bit 6.  
The two resulting octets are optionally scrambled and encoded  
into their corresponding 10-bit code. The scrambling function  
is controlled by the JESD204A scrambling and lane configuration  
register, Address 0x06E, Bit 7. Figure 63 shows how the 14-bit  
data is taken from the ADC, the tail bits are added, the two  
octets are scrambled, and how the octets are encoded into two  
10-bit symbols. Figure 63 illustrates the default data format.  
In addition to the default mode, the user can program the AD9644  
to output both ADC channels on a single lane (F = 4). This mode  
allows use of a single high speed data lane, which simplifies board  
layout and connector requirements. In Figure 64 the ADC A  
output is represented by Word 0 and the ADC B output by Word  
1. The third output mode utilizes a single link to support both  
channels. In single link mode, the DSYNCA pin is used to support  
both outputs. This mode is useful for optimal alignment between  
the output channels.  
The scrambler uses a self-synchronizing polynomial-based  
algorithm defined by the equation 1 + x14 + x15. The descrambler  
in the receiver should be a self-synchronizing version of the  
scrambler polynomial. Figure 65 shows the corresponding  
receiver data path.  
Refer to JEDEC Standard No. 204A-April 2008, Section 5.1, for  
complete transport layer and data format details and Section  
5.2 for a complete explanation of scrambling and descrambling.  
The 8B/10B encoding works by taking eight bits of data (an octet)  
and encoding them into a 10-bit symbol. By default in the  
AD9644  
DUAL ADC  
LINK A  
~SYNC  
CONVERTER A  
INPUT  
CONVERTER A  
SAMPLE  
LANE 0  
LANE 1  
LANE 1  
LANE 0  
PRIMARY  
PRIMARY  
LANE  
A
B
LANE A  
CONVERTER A  
CONVERTER  
INPUT [0]  
OUTPUT [0]  
JESD204A LINK A  
(M = 0, 1, 2; L = 0, 1, 2)  
SECONDARY  
CONVERTER  
INPUT [1]  
SECONDARY  
LANE  
OUTPUT [1]  
LANE  
MUX  
(SPI  
REGISTER  
0x5F)  
A
B
SECONDARY  
CONVERTER  
INPUT [1]  
SECONDARY  
LANE  
OUTPUT [1]  
JESD204A LINK B  
(M = 0, 1, 2; L = 0, 1, 2)  
CONVERTER B  
INPUT  
LANE B  
PRIMARY  
CONVERTER  
INPUT [0]  
PRIMARY  
LANE  
OUTPUT [0]  
CONVERTER B  
CONVERTER B  
SAMPLE  
LINK B  
~SYNC  
Figure 62. AD9644 Transmit Link Simplified Block Diagram  
Rev. D | Page ±5 of 44  
 
AD9644  
Data Sheet  
Table 10. AD9644 JESD204A Typical Configurations  
AD9644 Configuration  
JESK204A Link A Settings  
M = 1; L = 1; S = 1; F = ±  
N’ = 16; CF = ꢀ  
JESD204A Link B Settings  
M = 1; L = 1; S = 1; F = ±  
N’ = 16; CF = ꢀ  
Comments  
Maximum sample rate = 8ꢀ MSPS or 155 MSPS  
Two Converters  
Two JESD±ꢀ4A Links  
One Lane Per Link  
CS = ꢀ, 1, ±; K = N/A  
SCR = ꢀ, 1; HD = ꢀ  
M = ±; L = ±; S = 1; F = ±  
N’ = 16  
CS = ꢀ, 1, ±; K = N/A  
SCR = ꢀ, 1; HD = ꢀ  
Disabled  
Maximum sample rate = 8ꢀ MSPS or 155 MSPS  
Required for applications needing two aligned  
samples (I/Q applications)  
Two Converters  
One JESD±ꢀ4A Link  
Two Lanes Per Link  
CF = ꢀ; CS = ꢀ, 1, ±  
K = 16; SCR = ꢀ, 1;  
HD = ꢀ  
M = ±; L = 1; S = 1; F = 4  
N’ = 16  
Disabled  
Maximum sample rate = 8ꢀ MSPS  
Two Converters  
One JESD±ꢀ4A Link  
One Lane Per Link  
CF = ꢀ; CS = ꢀ, 1, ±  
K = 8; SCR = ꢀ, 1; HD = ꢀ  
DATA  
FROM  
ADC  
FRAME  
ASSEMBLER  
(ADD TAIL BITS)  
OPTIONAL  
8B/10B  
ENCODER  
TO  
RECEIVER  
SCRAMBLER  
14  
15  
1 + x + x  
Figure 63. AD9644 ADC Output Data Path  
WORD 0[13:6]  
SYMBOL 0[9:0]  
FRAME 0  
FRAME 1  
WORD 0[5:0],TAIL BITS[1:0]  
WORD 1[13:6]  
SYMBOL 1[9:0]  
SYMBOL 2[9:0]  
SYMBOL 3[9:0]  
TIME  
WORD 1[5:0], TAIL BITS[1:0]  
Figure 64. AD9644 14-Bit Data Transmission with Tail Bits  
OPTIONAL  
8B/10B  
DECODER  
FRAME  
ALIGNMENT  
DATA  
OUT  
FROM  
TRANSMITTER  
DESCRAMBLER  
14 15  
1 + x + x  
Figure 65. Required Receiver Data Path  
Initial Frame Synchronization  
The DSYNC input can be driven either from a differential  
LVDS source or by using a single-ended CMOS driver circuit.  
The DSYNC input default to LVDS mode but can be set to  
CMOS mode by setting Bit 4 in SPI Address 0x61. If it is driven  
differentially from an LVDS source, then an external 100 Ω  
termination resistor should be provided. If the DSYNC input is  
driven single-ended then the CMOS signal should be connected  
to the DSYNC+ signal and the DSYNC− signal should be left  
disconnected.  
The serial interface must synchronize to the frame boundaries  
before data can be properly decoded. The JESD204A standard  
has a synchronization routine to identify the frame boundary.  
When the DSYNC pin is taken low for at least two clock cycles,  
the AD9644 enters the code group synchronization mode. The  
AD9644 transmits the K28.5 comma symbol until the receiver  
achieves synchronization. The receiver should then deassert the  
sync signal (take DSYNC high) and the AD9644 begins the initial  
lane alignment sequence (when enabled through Bits[3:2] of  
Address 0x60) and subsequently begins transmitting sample  
data. The first non-K28.5 symbol corresponds to the first octet  
in a frame.  
Rev. D | Page ±6 of 44  
 
 
 
 
Data Sheet  
AD9644  
Table 11. AD9644 JESD204A Frame Alignment Monitoring and Correction Replacement Characters  
Last Octet in  
Multiframe  
Scrambling Lane Synchronization Character to be Replaced  
Replacement Character  
K±8.7 (ꢀxFC)  
K±8.3 (ꢀx7C)  
Off  
Off  
Off  
On  
On  
On  
On  
On  
Off  
On  
On  
Off  
Last octet in frame repeated from previous frame  
Last octet in frame repeated from previous frame  
Last octet in frame repeated from previous frame  
Last octet in frame equals D±8.7 (ꢀxFC)  
Last octet in frame equals D±8.3 (ꢀx7C)  
Last octet in frame equals D±8.7 (ꢀx7C)  
No  
Yes  
Not applicable K±8.7 (ꢀxFC)  
No  
Yes  
K±8.7 (ꢀxFC)  
K±8.3 (ꢀx7C)  
Not applicable K±8.7 (ꢀxFC)  
common mode of the digital output automatically biases itself  
to half the supply of the receiver (that is, the common-mode  
voltage is 0.9 V for a receiver supply of 1.8 V) if dc-coupled  
connecting is used (see Figure 67). For receiver logic that is not  
within the bounds of the DRVDD supply, an ac-coupled  
connection should be used. Simply place a 0.1 μF capacitor on  
each output pin and derive a 100 Ω differential termination  
close to the receiver side.  
Frame and Lane Alignment Monitoring and Correction  
Frame alignment monitoring and correction is part of the  
JESD204A specification. The 14-bit word requires two octets to  
transmit all the data. The two octets (MSB and LSB), where  
F = 2, make up a frame. During normal operating conditions  
frame alignment is monitored via alignment characters, which  
are inserted under certain conditions at the end of a frame.  
Table 11 summarizes the conditions for character insertion  
along with the expected characters under the various operation  
modes. If lane synchronization is enabled, the replacement  
character value depends on whether the octet is at the end of a  
frame or at the end of a multiframe.  
If there is no far-end receiver termination or if there is poor  
differential trace routing, timing errors may result. To avoid  
such timing errors, it is recommended that the trace length be  
less than six inches and that the differential output traces be  
close together and at equal lengths.  
Based on the operating mode, the receiver can ensure that it is  
still synchronized to the frame boundary by correctly receiving  
the replacement characters.  
V
RXCM  
100Ω  
DIFFERENTIAL  
DRVDD  
Digital Outputs and Timing  
TRACE PAIR  
0.1µF  
0.1µF  
DOUT+x  
DOUT–x  
The AD9644 has differential digital outputs that power up  
by default. The driver current is derived on chip and sets the  
output current at each output equal to a nominal 4 mA. Each  
output presents a 100 Ω dynamic internal termination to  
reduce unwanted reflections.  
RECEIVER  
= Rx V  
100Ω  
OR  
V
OUTPUT SWING = 400mV p-p  
CM  
CM  
A 100 Ω differential termination resistor should be placed at  
each receiver input to result in a nominal 400 mV peak-to-peak  
swing at the receiver (see Figure 66). Alternatively, single-  
ended 50 Ω termina-tion can be used. When single-ended  
termination is used, the termination voltage should be  
DRVDD/2; otherwise, ac coupling capacitors can be used to  
terminate to any single-ended voltage.  
Figure 66. AC-Coupled Digital Output Termination Example  
100Ω  
DIFFERENTIAL  
TRACE PAIR  
DRVDD  
DOUT+x  
RECEIVER  
100Ω  
DOUT–x  
V
= DRVDD/2  
OUTPUT SWING = 400mV p-p  
The AD9644 digital outputs can interface with custom ASICs  
and FPGA receivers, providing superior switching performance  
in noisy environments. Single point-to-point network topologies  
are recommended with a single differential 100 Ω termination  
resistor placed as close to the receiver logic as possible. The  
CM  
Figure 67. DC-Coupled Digital Output Termination Example  
Rev. D | Page ±7 of 44  
 
 
 
AD9644  
Data Sheet  
WIDTH@BER1: BATHTUB  
HEIGHT1: EYE DIAGRAM  
PERIOD1: HISTOGRAM  
0
10  
1
4
3
25,000  
20,000  
15,000  
10,000  
5000  
+
+
–2  
–4  
–6  
–8  
10  
10  
10  
10  
400  
200  
0
–200  
–400  
–10  
–12  
–14  
10  
10  
10  
0.781  
EYE: TRANSITION BITS  
OFFSET: –0.004  
ULS: 8000; 639999, TOTAL: 8000; 639999  
0
–600 –400 –200  
0
200 400 600  
610 615 620 625 630 635  
TIME (ps)  
–0.5  
0
0.5  
TIME (ps)  
ULS  
Figure 68. AD9644-80 Digital Outputs Data Eye, Histogram and Bathtub, External 100 Ω Terminations  
WIDTH@BER1: BATHTUB  
HEIGHT1: EYE DIAGRAM  
PERIOD1: HISTOGRAM  
0
10  
1
4
3
500  
400  
300  
50,000  
45,000  
40,000  
–2  
–4  
–6  
–8  
10  
10  
10  
10  
200  
100  
0
35,000  
30,000  
25,000  
20,000  
15,000  
10,000  
–100  
–200  
–300  
–10  
–12  
–14  
10  
10  
10  
0.742  
–400  
–500  
EYE: TRANSITION BITS  
OFFSET: –0.004  
ULS: 8000; 124,0001, TOTAL: 8000; 124,0001  
5000  
0
–300 –200 –100  
0
100 200 300  
305 310 315 320 325 330 335  
TIME (ps)  
–0.5  
0
0.5  
TIME (ps)  
ULS  
Figure 69. AD9644-155 Digital Outputs Data Eye, Histogram and Bathtub, External 100 Ω Terminations  
Figure 68 and Figure 69 shows an example of the digital output  
(default) data eye and a time interval error (TIE) jitter histogram.  
Table 12. Digital Output Coding  
Digital Output  
Twos Complement  
([D13:D0])  
(VIN+ ) − (VIN− ),  
Input Span = 1.75 V p-p (V)  
Additional SPI options allow the user to further increase the  
output driver voltage swing of all four outputs to drive longer  
trace lengths (see Address 0x15 in Table 17). Even though this  
produces sharper rise and fall times on the data edges and is  
less prone to bit errors, the power dissipation of the DRVDD  
supply increases when this option is used. See the Memory Map  
section for more details.  
Code  
8191  
+ꢀ.875  
ꢀ.ꢀꢀ  
ꢀ1 1111 1111 1111  
ꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
11 1111 1111 1111  
1ꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
−1  
−ꢀ.ꢀꢀꢀ1ꢀ7  
−819± −ꢀ.875  
The lowest typical clock rate is 40 MSPS. For clock rates slower  
than 60 MSPS, the user should set Bit 3 to 0 in the serial control  
register (Address 0x21 in Table 17). This option sets the PLL  
loop bandwidth to use clock rates between 40 MSPS and  
60 MSPS.  
The format of the output data is twos complement by default.  
Table 12 provides an example of this output coding format.  
To change the output data format to offset binary or gray code,  
see the Memory Map section (Address 0x14 in Table 17).  
Setting Bit 2 in the output mode register (Address 0x14) allows  
the user to invert the digital samples from their nominal state.  
As shown in Figure 64, the MSB is transmitted first in the data  
output serial stream.  
Rev. D | Page ±8 of 44  
 
 
 
Data Sheet  
AD9644  
BUILT-IN SELF-TEST (BIST) AND OUTPUT TEST  
The AD9644 includes built-in test features designed to enable  
verification of the integrity of each channel as well as facilitate  
board level debugging. A BIST (built-in self-test) feature is  
included that verifies the integrity of the digital datapath of the  
AD9644. Various output test options are also provided to place  
predictable values on the outputs of the AD9644.  
For more information, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
There are nine digital output test pattern options available that  
can be initiated through the SPI (see Table 14 for the output bit  
sequencing options). This feature is useful when validating  
receiver capture and timing. Some test patterns have two serial  
sequential words and can be alternated in various ways,  
BUILT-IN SELF-TEST (BIST)  
depending on the test pattern selected. Note that some patterns  
do not adhere to the data format select option. In addition,  
custom user-defined test patterns can be assigned in the user  
pattern registers (Address 0x19 through Address 0x20).  
The BIST is a thorough test of the digital portion of the selected  
AD9644 signal path. When enabled, the test runs from an internal  
pseudorandom noise (PN) source through the digital datapath  
starting at the ADC block output. The BIST sequence runs for  
512 cycles and stops. The BIST signature value for Channel A  
and/or Channel B is placed in Register 0x24 and Register 0x25.  
The outputs are not disconnected during this test, so the PN  
sequence can be observed as it runs. The PN sequence can be  
continued from its last value or reset from the beginning, based  
on the value programmed in Register 0x0E, Bit 2. The BIST  
signature result varies based on the channel configuration.  
The PN sequence short pattern produces a pseudorandom bit  
sequence that repeats itself every 29 − 1 (511) bits. A description  
of the PN sequence short and how it is generated can be found  
in Section 5.1 of the ITU-T O.150 (05/96) recommendation.  
The only difference is that the starting value must be a specific  
value instead of all 1s (see Table 13 for the initial values).  
The PN sequence long pattern produces a pseudorandom bit  
sequence that repeats itself every 223 − 1 (8,388,607) bits. A  
description of the PN sequence long and how it is generated  
can be found in Section 5.6 of the ITU-T O.150 (05/96)  
standard. The only differences are that the starting value must be  
a specific value instead of all 1s (see Table 13 for the initial  
values) and that the AD9644 inverts the bit stream with relation  
to the ITU-T standard.  
OUTPUT TEST MODES  
Digital Test patterns can be inserted at various points along the  
signal path within the AD9644 as shown in Figure 70. The  
ability to inject these signals at several locations facilitates  
debugging of the JESD204A serial communication link.  
The Register 0x0D allows test signals generated at the output of  
the ADC core to be fed directly into the input of the serial Link.  
The output test options available from Register 0x0D are shown  
in Table 17. When an output test mode is enabled, the analog  
section of the ADC is disconnected from the digital back end  
blocks and the test pattern is run through the output formatting  
block. Some of the test patterns are subject to output formatting,  
and some are not. The seed value for the PN sequence tests can  
be forced if the PN reset bits are used to hold the generator in reset  
mode by setting Bit 4 or Bit 5 of Register 0x0D. These tests can  
be performed with or without an analog signal (if present, the  
analog signal is ignored), but they do require an encode clock.  
Table 13. PN Sequence  
Initial  
Value  
First Three Output Samples  
(MSB First)  
Sequence  
PN Sequence Short  
PN Sequence Long  
ꢀxꢀꢀ9±  
ꢀx3AFF  
ꢀx1±5B, ꢀx3C9A, ꢀx±66ꢀ  
ꢀx3FD7, ꢀxꢀꢀꢀ±, ꢀx36Eꢀ  
The Register 0x62 allows patterns similar to those described in  
Table 14 to be input at different points along the data path.  
This allows the user to provide predictable output data on the  
serial link without it having been manipulated by the internal  
formatting logic. Refer to Table 17 for additional information  
on the test modes available in Register 0x62.  
Rev. D | Page ±9 of 44  
 
 
 
 
AD9644  
Data Sheet  
Table 14. Flexible Output Test Modes from SPI Register 0x0D  
Digital Output Word 1  
(Default Twos Complement  
Format)  
Digital Output Word 2  
(Default Twos Complement  
Format)  
Output Test Mode  
Bit Sequence  
Subject to Data  
Format Select  
Pattern Name  
ꢀꢀꢀꢀ  
ꢀꢀꢀ1  
ꢀꢀ1ꢀ  
ꢀꢀ11  
ꢀ1ꢀꢀ  
ꢀ1ꢀ1  
ꢀ11ꢀ  
ꢀ111  
1ꢀꢀꢀ  
Off (default)  
Midscale short  
Not applicable  
Not applicable  
Same  
Same  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
ꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
ꢀ1 1111 1111 1111  
1ꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
1ꢀ 1ꢀ1ꢀ 1ꢀ1ꢀ 1ꢀ1ꢀ  
Not applicable  
Not applicable  
1111 1111 1111  
User data from Register ꢀx19 to  
Register ꢀx±ꢀ  
+Full-scale short  
−Full-scale short  
Checkerboard  
PN sequence long  
PN sequence short  
One-/zero-word toggle  
User test mode  
Same  
ꢀ1 ꢀ1ꢀ1 ꢀ1ꢀ1 ꢀ1ꢀ1  
Not applicable  
Not applicable  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
User data from Register ꢀx19 to  
Register ꢀx±ꢀ  
Yes  
1ꢀꢀ1 to 111ꢀ  
1111  
Not used  
Ramp output  
Not applicable  
N
Not applicable  
N + 1  
No  
JESD204A TEST PATTERNS  
10-BIT  
SPI REGISTER 0x62 BITS 5:4 =  
01 AND BITS 2:0 ≠ 000  
ADC TEST PATTERNS  
14-BIT  
SPI REGISTER 0x0D  
BITS 3:0 ≠ 0000  
JESD204A TEST PATTERNS  
16-BIT  
SPI REGISTER 0x62 BITS 5:4 =  
00 AND BITS 2:0 ≠ 000  
SERALIZER  
OUTPUT  
FRAME  
CONSTRUCTION  
SCRAMBLER  
(OPTIONAL)  
8-BIT/10-BIT  
ENCODER  
JESD204A  
SAMPLE  
CONSTRUCTION  
ADC CORE  
FRAMER  
TAIL BITS  
Figure 70. Block Diagram Showing Digital Test Modes  
Rev. D | Page 3ꢀ of 44  
 
 
Data Sheet  
AD9644  
SERIAL PORT INTERFACE (SPI)  
The AD9644 serial port interface (SPI) allows the user to configure  
the converter for specific functions or operations through a  
structured register space provided inside the ADC. The SPI  
gives the user added flexibility and customization, depending on  
the application. Addresses are accessed via the serial port and can  
be written to or read from via the port. Memory is organized into  
bytes that can be further divided into fields, which are documented  
in the Memory Map section. For detailed operational  
information, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
The falling edge of the CSB, in conjunction with the rising edge  
of the SCLK, determines the start of the framing. An example  
of the serial timing and its definitions can be found in Figure 71  
and Table 5.  
Other modes involving the CSB are available. The CSB can be  
held low indefinitely, which permanently enables the device;  
this is called streaming. The CSB can stall high between bytes to  
allow for additional external timing. When CSB is tied high,  
SPI functions are placed in high impedance mode.  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase, and its length is determined  
by the W0 and W1 bits.  
CONFIGURATION USING THE SPI  
Three pins define the SPI of this ADC: the SCLK pin, the SDIO  
pin, and the CSB pin (see Table 15). The SCLK (a serial clock)  
is used to synchronize the read and write data presented from  
and to the ADC. The SDIO (serial data input/output) is a dual-  
purpose pin that allows data to be sent to and read from the  
internal ADC memory map registers. The CSB (chip select bar)  
is an active-low control that enables or disables the read and  
write cycles.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. The first bit of the first byte in  
a multibyte serial data transfer frame indicates whether a read  
command or a write command is issued. If the instruction is a  
readback operation, performing a readback causes the serial  
data input/output (SDIO) pin to change direction from an input  
to an output at the appropriate point in the serial frame.  
Table 15. Serial Port Interface Pins  
Pin  
Function  
SCLK Serial Clock. The serial shift clock input is used to  
synchronize serial interface reads and writes.  
SDIO Serial Data Input/Output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
All data is composed of 8-bit words. Data can be sent in MSB-  
first mode or in LSB-first mode. MSB first is the default on  
power-up and can be changed via the SPI port configuration  
register. For more information about this and other features,  
see the AN-877 Application Note, Interfacing to High Speed  
ADCs via SPI.  
CSB  
Chip Select Bar. An active-low control that gates the read  
and write cycles.  
tHIGH  
tDS  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 71. Serial Port Interface Timing Diagram  
Rev. D | Page 31 of 44  
 
 
 
 
AD9644  
Data Sheet  
HARDWARE INTERFACE  
SPI ACCESSIBLE FEATURES  
The pins described in Table 15 comprise the physical interface  
between the user programming device and the serial port of the  
AD9644. The SCLK pin and the CSB pin function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
Table 16 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in the AN-877 Application Note, Interfacing to High Speed ADCs  
via SPI. The AD9644 part-specific features are described in detail  
in the Memory Map Register Descriptions section.  
Table 16. Features Accessible Using the SPI  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. One method for SPI configuration  
is described in detail in the AN-812 Application Note, Micro-  
controller-Based Serial Port Interface (SPI) Boot Circuit.  
Feature Name  
Description  
Mode  
Allows the user to set either power-down mode  
or standby mode  
Clock  
Allows the user to access the DCS, set the  
clock divider, set the clock divider phase, and  
enable the sync  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used for  
other devices, it may be necessary to provide buffers between  
this bus and the AD9644 to prevent these signals from transi-  
tioning at the converter inputs during critical sampling periods.  
Offset  
Allows the user to digitally adjust the  
converter offset  
Test I/O  
Full Scale  
JESD±ꢀ4A  
Allows the user to set test modes to have  
known data on output bits  
Allows the user to set the input full scale  
voltage  
Allows user to configure the JESD±ꢀ4A output  
Rev. D | Page 3± of 44  
 
 
 
Data Sheet  
AD9644  
MEMORY MAP  
Logic Levels  
READING THE MEMORY MAP REGISTER TABLE  
An explanation of logic level terminology follows:  
Each row in the memory map register table has eight bit locations.  
The memory map is roughly divided into four sections: the chip  
configuration registers (Address 0x00 to Address 0x02); the  
channel index and transfer registers (Address 0x05 and  
Address 0xFF); the ADC functions registers, including setup,  
control, and test (Address 0x08 to Address 0x3A); and the  
JESD204A configuration registers (Address 0x5E to Address 0x79).  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
Transfer Register Map  
Address 0x08 through Address 0x79 are shadowed. Writes to  
these addresses do not affect part operation until a transfer  
command is issued by writing 0x01 to Address 0xFF, setting the  
transfer bit. This allows these registers to be updated internally  
and simultaneously when the transfer bit is set. The internal  
update takes place when the transfer bit is set, and the bit  
autoclears.  
The memory map register table (see Table 17) lists the default  
hexadecimal value for each hexadecimal address shown. The  
column with the heading Bit 7 (MSB) is the start of the default  
hexadecimal value given. For example, Address 0x18, the input  
span select register, has a hexadecimal default value of 0x00. This  
means that Bit 0 through Bit 4 = 0, and the remaining bits are 0s.  
This setting is the default reference selection setting. The default  
value uses a 1.75 V p-p reference. For more information on this  
function and others, see the AN-877 Application Note, Interfacing  
to High Speed ADCs via SPI. This application note details the  
functions con-trolled by Register 0x00 to Register 0xFF.  
Channel-Specific Registers  
Some channel setup functions, such as the channel output  
mode, can be programmed differently for each ADC or link  
channel. In these cases, channel address locations are internally  
duplicated for each channel. These registers and bits are  
designated in Table 17 as local. These local registers and bits  
can be accessed by setting the appropriate Channel A/Link A or  
Channel B/Link B bits in Register 0x05.  
Open Locations  
All address and bit locations that are not included in Table 17  
are not currently supported for this device. Unused bits of a  
valid address location should be written with 0s. Writing to these  
locations is required only when part of an address location is open  
(for example, Address 0x18). If the entire address location is  
open (for example, Address 0x13), this address location should not  
be written.  
If both bits are set in register 0x05, the subsequent write affects  
the registers of both channels/links. In a SPI read cycle, only  
Channel A/Link A or Channel B/Link B should be set to read  
one of the two registers. If both bits are set during an SPI read  
cycle, the part returns the value for Channel A/Link A. Registers  
and bits designated as global in Table 17 affect the entire part or  
the channel features for which independent settings are not  
allowed between channels. The settings in Register 0x05 do not  
affect the global registers and bits.  
Default Values  
After the AD9644 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
the memory map register table, Table 17.  
Rev. D | Page 33 of 44  
 
 
AD9644  
Data Sheet  
MEMORY MAP REGISTER TABLE  
All address and bit locations that are not included in Table 17 are not currently supported for this device.  
Table 17. Memory Map Registers  
Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Default/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Chip Configuration Registers  
ꢀxꢀꢀ  
SPI port  
configuration  
(global)1  
LSB first  
Soft reset  
1
1
Soft reset  
LSB first  
ꢀx18  
Nibbles are  
mirrored so  
that LSB-first  
or MSB-first  
mode is set  
correctly,  
regardless of  
shift mode.  
To control  
this register,  
all channel  
index bits in  
Register  
ꢀxꢀ5 must  
be set.  
ꢀxꢀ1  
ꢀxꢀ±  
Chip ID  
(global)  
8-bit chip ID[7:ꢀ]  
(AD9644 = ꢀx7E)  
(default)  
ꢀx7E  
Read only  
Chip grade  
(global)  
Open  
Open  
Open  
Speed grade ID  
Open  
Open  
Open  
Open  
Open  
Speed grade  
ID  
differentiates  
devices;  
ꢀꢀ = 8ꢀ MSPS  
1ꢀ = 155 MSPS  
read only  
Channel Index and Transfer Registers  
ꢀxꢀ5  
Channel index Open  
(global)  
Open  
Open  
Open  
ADC B and ADC A and  
Link B  
(default)  
ꢀxꢀ3  
Bits set to  
determine  
which  
Link A  
(default)  
device on  
the chip  
receives  
next write  
command;  
local  
registers  
only  
ꢀxFF  
Transfer  
(global)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Transfer  
ꢀxꢀꢀ  
Synchro-  
nously  
transfers  
data from  
master shift  
register to  
slave  
ADC Functions  
ꢀxꢀ8  
Power modes  
(local)  
Open  
Open  
Open  
Open  
External power-  
down pin  
function (local)  
ꢀ = power-  
down  
Open  
Internal power-down mode  
(local)  
ꢀꢀ = normal operation  
ꢀ1 = full power-down  
1ꢀ = standby  
ꢀxꢀꢀ  
ꢀxꢀ1  
Determines  
various  
generic  
modes of  
chip  
operation  
1 = standby  
11 = reserved  
ꢀxꢀ9  
Global clock  
(global)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Duty cycle  
stabilizer  
(default)  
ꢀxꢀA  
ꢀxꢀB  
PLL status  
(global)  
PLL  
Locked  
Open  
Open  
Open  
Open  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
Read Only  
Clock divide  
(global)  
Open  
Input clock divider phase adjust  
ꢀꢀꢀ = no delay  
Clock divide ratio  
ꢀꢀꢀ = divide by 1  
ꢀꢀ1 = divide by ±  
ꢀ1ꢀ = divide by 3  
ꢀ11 = divide by 4  
1ꢀꢀ = divide by 5  
1ꢀ1 = divide by 6  
11ꢀ = divide by 7  
111 = divide by 8  
Clock divide  
values other  
than ꢀꢀꢀ  
automatically  
causes duty  
cycle  
stabilizer to  
become  
active  
ꢀꢀ1 = 1 input clock cycle  
ꢀ1ꢀ = ± input clock cycles  
ꢀ11 = 3 input clock cycles  
1ꢀꢀ = 4 input clock cycles  
1ꢀ1 = 5 input clock cycles  
11ꢀ = 6 input clock cycles  
111 = 7 input clock cycles  
Rev. D | Page 34 of 44  
 
 
Data Sheet  
AD9644  
Default  
Value  
(Hex)  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Default/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
ꢀxꢀD  
Test mode  
(local)  
User test  
mode  
control  
Open  
Reset PN long  
generator  
Reset  
PN  
short  
generat  
or  
Output test mode  
ꢀꢀꢀꢀ = off (default)  
ꢀꢀꢀ1 = midscale short  
ꢀꢀ1ꢀ = positive FS  
ꢀꢀ11 = negative FS  
ꢀxꢀꢀ  
When this  
register is  
set, test data  
is used in  
place of  
normal ADC  
data  
ꢀ =  
continuo  
us/repeat  
pattern  
1 = single  
pattern  
ꢀ1ꢀꢀ = alternating checkerboard  
ꢀ1ꢀ1 = PN long sequence  
ꢀ11ꢀ = PN short sequence  
ꢀ111 = one/zero word toggle  
1ꢀꢀꢀ = user test mode  
1ꢀꢀ1 to 111ꢀ = unused  
1111 = ramp output  
ꢀxꢀE  
ꢀx1ꢀ  
ꢀx14  
BIST enable  
(global)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Reset BIST  
sequence  
Open  
BIST enable  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀ1  
Offset adjust  
(local)  
Offset adjust in LSBs from +31 to −3±  
(twos complement format)  
Output mode  
Output  
disable  
(local)  
Open  
Output  
invert  
(local)  
Output format  
ꢀꢀ = offset binary  
ꢀ1 = twos complement  
(default)  
Configures  
outputs and  
the format  
of the data  
1ꢀ = gray code  
11 = offset binary  
(local)  
ꢀx15  
ꢀx18  
Output adjust  
(global)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Output drive level  
adjust  
11 = 3±ꢀ mV  
ꢀꢀ = 4ꢀꢀ mV  
1ꢀ = 44ꢀ mV  
ꢀ1 = 5ꢀꢀ mV  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
Input span  
select  
(global)  
Full-scale input voltage selection  
ꢀ1111 = ±.ꢀ87 V p-p  
Full-scale  
input  
adjustment  
in ꢀ.ꢀ±± V  
steps  
ꢀꢀꢀꢀ1 = 1.77± V p-p  
ꢀꢀꢀꢀꢀ = 1.75 V p-p (default)  
11111 = 1.7±7 V p-p  
1ꢀꢀꢀꢀ = 1.383 V p-p  
ꢀx19  
ꢀx1A  
ꢀx1B  
ꢀx1C  
ꢀx1D  
ꢀx1E  
ꢀx1F  
ꢀx±ꢀ  
ꢀx±1  
User Test  
Pattern 1 LSB  
(global)  
User Test Pattern 1 [7:ꢀ]  
User Test Pattern 1 [15:8]  
User Test Pattern ± [7:ꢀ]  
User Test Pattern ± [15:8]  
User Test Pattern 3 [7:ꢀ]  
User Test Pattern 3 [15:8]  
User Test Pattern 4 [7:ꢀ]  
User Test Pattern 4 [15:8]  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
User Test  
Pattern 1 MSB  
(global)  
User Test  
Pattern ± LSB  
(global)  
User Test  
Pattern ± MSB  
(global)  
User Test  
Pattern 3 LSB  
(global)  
User Test  
Pattern 3 MSB  
(global)  
User Test  
Pattern 4 LSB  
(global)  
User Test  
Pattern 4 MSB  
(global)  
PLL Control  
(global)  
Open  
Open  
Open  
Open  
PLL Low  
encode  
rate  
Open  
Open  
Open  
Bit 3 must be  
enabled if  
ADC clock  
enable  
rate is less  
than 6ꢀ MSPS  
Rev. D | Page 35 of 44  
AD9644  
Data Sheet  
Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Default/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
ꢀx±4  
ꢀx±5  
ꢀx3A  
BIST signature  
LSB (local)  
BIST signature[7:ꢀ]  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
Read only  
BIST signature  
MSB (local)  
BIST signature[15:8]  
Read only  
Sync control  
(global)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Clock  
Clock  
divider  
sync  
Master sync  
buffer  
enable  
divider  
next sync  
only  
enable  
JESD±ꢀ4A Configuration Registers  
ꢀx5E  
JESD±ꢀ4A  
quick  
configure  
Open  
ꢀꢀꢀ = default—configuration  
determined by other registers  
ꢀꢀ1 = two converters using two links  
with one lane per link  
ꢀ1ꢀ = two converters using one link with  
two lanes per link  
ꢀxꢀꢀ  
Changes  
settings of  
Address  
ꢀx5F to  
Address  
ꢀx6ꢀ and  
Address  
ꢀx6E to  
Address  
ꢀx7±  
(global)  
ꢀ11 = two converters using one link and  
a single lane  
1ꢀꢀ to 111: reserved  
(self  
clearing)  
ꢀx5F  
JESD±ꢀ4A  
lane  
assignment  
Open  
Open  
Open  
Open  
JESD±ꢀ4A serial lane control  
ꢀꢀꢀꢀ = one lane per link. Link A: Lane ꢀ sent on Lane A,  
Link B: Lane ꢀ Sent on Lane B  
ꢀxꢀꢀ  
(global)  
ꢀꢀꢀ1 = one lane per link. Link A: Lane ꢀ sent on Lane B,  
Link B: Lane ꢀ Sent on Lane A.  
ꢀꢀ1ꢀ = two lanes per link. Link A: Lane ꢀ, Lane 1 sent on  
Lane A, Lane B. Link B disabled.  
ꢀꢀ11 = two lanes per link. Link A: Lane ꢀ, Lane 1 sent on  
Lane B, Lane A. Link B disabled.  
ꢀ1ꢀꢀ = two lanes per link. Link B: Lane ꢀ, Lane 1 sent on  
Lane A, Lane B. Link A disabled.  
ꢀ1ꢀ1 = two lanes per link. Link B: Lane ꢀ, 1 sent on  
Lane B, Lane A. Link A disabled.  
ꢀ11ꢀ to 1111: reserved  
ꢀx6ꢀ  
ꢀx61  
ꢀx6±  
JESD±ꢀ4A  
Link Control  
Register 1  
(local)  
Open  
Serial  
tail bit  
enable  
Serial test  
sample enable  
Serial  
lane  
synchro  
nization  
enable  
Serial lane alignment  
sequence mode  
ꢀꢀ = disabled  
ꢀ1 = enabled  
1ꢀ = reserved  
11 = always on test  
mode  
Frame  
Serial  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
alignment  
character  
insertion  
disable  
transmit link  
powered  
down  
JESD±ꢀ4A  
Link Control  
Register ±  
(local)  
Local DSYNC mode  
ꢀꢀ = individual mode  
ꢀ1 = global mode  
1ꢀ = DSYNC active  
mode  
DSYNC pin  
input inverted  
CMOS  
DSYNC  
input  
ꢀ =  
LVDS  
1 =  
Open  
Bypass  
8b/1ꢀb  
encoding  
Invert  
transmit  
bits  
Mirror serial  
output bits  
11 = DSYNC pin  
disabled  
CMOS  
JESD±ꢀ4A  
Link Control  
Register 3  
(local)  
Disable  
CHKSUM  
Open  
Link test generation input  
selection  
Open  
Link test generation mode  
ꢀꢀꢀ = normal operation  
ꢀꢀ = 16-bit data injected at  
sample input to the link  
ꢀ1 = 1ꢀ-bit data injected at  
output of 8b/1ꢀb encoder  
1ꢀ = reserved  
ꢀꢀ1 = alternating checker board  
ꢀ1ꢀ = 1/ꢀ word toggle  
ꢀ11 = PN sequence—long  
1ꢀꢀ = PN sequence—short  
1ꢀ1 = user test pattern data continuous  
11ꢀ = user test pattern data single  
111 = ramp output  
11 = reserved  
ꢀx63  
ꢀx64  
JESD±ꢀ4A  
Link Control  
Register 4  
(local)  
Initial lane assignment sequence repeat count  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
JESD±ꢀ4A  
device  
JESD±ꢀ4A serial device identification (DID) number  
identification  
number (DID)  
(local)  
Rev. D | Page 36 of 44  
Data Sheet  
AD9644  
Default  
Value  
(Hex)  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Default/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
ꢀx65  
JESD±ꢀ4A  
bank  
Open  
Open  
Open  
Open  
JESD±ꢀ4A serial bank identification number (BID)  
ꢀxꢀꢀ  
identification  
number (BID)  
(local)  
ꢀx66  
JESD±ꢀ4A  
lane  
identification  
number (LID)  
for Lane ꢀ  
(local)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
JESD±ꢀ4A serial lane identification (LID) number for Lane ꢀ  
JESD±ꢀ4A serial lane identification (LID) number for Lane 1  
ꢀxꢀꢀ  
ꢀx67  
ꢀx6E  
JESD±ꢀ4A  
lane  
identification  
number (LID)  
for Lane 1  
(local)  
Open  
ꢀxꢀ1  
ꢀx8ꢀ  
JESD±ꢀ4A  
scrambler  
Enable  
serial  
Open  
Open  
Open  
Open  
Lane control  
(global)  
(SCR) and lane scrambler  
ꢀ = one lane  
per link (L = 1)  
1 = two lanes  
per link (L = ±)  
(L)  
mode  
(SCR)  
(local)  
configuration  
register  
ꢀx6F  
ꢀx7ꢀ  
ꢀx71  
JESD±ꢀ4A  
number of  
octets per  
frame (F)  
(global)  
JESD±ꢀ4A number of octets per frame (F)—these bits are calculated based on the equation: F = M × (± ÷ L)  
ꢀxꢀ1  
ꢀxꢀF  
ꢀxꢀꢀ  
Read only  
JESD±ꢀ4A  
number of  
frames per  
multiframe (K)  
(local)  
Open  
Open  
Open  
Open  
Open  
Open  
JESD±ꢀ4A number of frames per multiframe (K)  
JESD±ꢀ4A  
number of  
converters per  
link (M)  
Open  
Open  
Open  
Open  
Number of  
converters  
per link (M)  
ꢀ = link  
(global)  
connected  
to one ADC  
(M = 1)  
1 = link  
connected  
to two ADCs  
(M = ±)  
ꢀx7±  
JESD ±ꢀ4A  
ADC  
resolution (N)  
and control  
bits per  
Number of control bits Open  
per sample (CS)  
ꢀꢀ = no control bits  
(CS = ꢀ)  
ꢀ1 = one control bit  
(CS = 1)  
Converter resolution (N) (read only)  
ꢀx4D  
sample (CS)  
(local)  
1ꢀ = two control bits  
(CS = ±)  
11 = unused  
ꢀx73  
ꢀx74  
JESD±ꢀ4A  
total bits per  
sample (N’)  
(global)  
Open  
Open  
Open  
Open  
Total bits per sample (N’) (read only)  
ꢀxꢀF  
ꢀxꢀꢀ  
Read only  
Read only  
JESD±ꢀ4A  
samples per  
converter (S)  
frame cycle  
(global)  
Open  
Open  
Samples per converter (S) frame cycle (read only)  
Always 1 for the AD9644  
ꢀx75  
JESD±ꢀ4A HD  
and CF  
Enable  
high  
Open  
Open  
Number of control words per frame clock cycle per Link (CF) –  
always ꢀ for the AD9644 (read only)  
ꢀxꢀꢀ  
Read only  
configuration  
(global)  
density  
format  
(HD = ꢀ,  
read only)  
Rev. D | Page 37 of 44  
AD9644  
Data Sheet  
Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Default/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
ꢀx76  
ꢀx77  
ꢀx78  
JESD±ꢀ4A  
serial reserved  
Field 1 (RES1)  
Serial Reserved Field 1 (RES1) – these registers are available for customer use  
Serial Reserved Field ± (RES±) – these registers are available for customer use  
Serial checksum value for Lane ꢀ (FCHK)  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
JESD±ꢀ4A  
serial reserved  
Field ± (RES±)  
JESD±ꢀ4A  
checksum  
value (FCHK)  
for Lane ꢀ  
(local)  
Read only  
Read only  
ꢀx79  
JESD±ꢀ4A  
checksum  
value (FCHK)  
for lane 1  
(local)  
Serial checksum value for Lane 1 (FCHK)  
ꢀxꢀꢀ  
1 The channel index register at Address ꢀxꢀ5 should be set to ꢀxꢀ3 (default) when writing to Address ꢀxꢀꢀ.  
000: default—configuration determined by other registers  
MEMORY MAP REGISTER DESCRIPTIONS  
001: two converters using two links with one lane per link  
(maximum sample rate = 80 MHz or 155 MHz) Each link  
configuration:  
For additional information about functions controlled in  
Register 0x00 to Register 0x25, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
M = 1; N’ = 16; CF = 0; K = 16; S = 1; F = 2; L = 1; HD = 0;  
Sync Control (Register 0x3A)  
Bits[7:3]—Open  
010 = two converters using one link with two lanes per link  
(Maximum sample rate = 80 MHz or 155 MHz). Each link  
configuration:  
Bit 2—Clock Divider Next Sync Only  
If the master sync buffer enable bit (Address 0x3A, Bit 0) and  
the clock divider sync enable bit (Address 0x3A, Bit 1) are high, Bit  
2 allows the clock divider to sync to the first sync pulse it receives  
and to ignore the rest. The clock divider sync enable bit (Address  
0x3A, Bit 1) resets after it syncs.  
M = 2; N’ = 16; CF = 0; K = 16; S = 1; F = 2; L = 2; HD = 0;  
uses DSYNCA pin for synchronization. Setting this mode sets  
Address 0x5F = 0x02 and sets Address 0x60 = 0x14 for Link A  
and sets Address 0x60 = 0x01 for Link B.  
011 = two converters using one link and a single lane (maxi-  
mum sample rate = 78.125 MHz). Each link configuration: M = 2;  
N’ = 16; CF = 0; K = 8;S = 1; F = 4; L = 1; HD = 0; uses DSYNCA  
pin for synchronization and DOUTA for output signals.  
Bit 1—Clock Divider Sync Enable  
Bit 1 gates the sync pulse to the clock divider. The sync signal is  
enabled when Bit 1 is high and Bit 0 is high. This is continuous  
sync mode.  
100 to 111: reserved.  
Bit 0—Master Sync Buffer Enable  
JESD204A Lane Assignment (Register 0x5F)  
Bits[7:4]—Reserved  
Bit 0 must be high to enable any of the sync functions. If the  
sync capability is not used this bit should remain low to  
conserve power.  
Bits[3:0]—JESD204A Serial Lane Control  
These bits set the lane usage. See Figure 62.  
JESD204A Quick Configure (Register 0x5E)  
Bits[7:3]—Reserved  
0000: one lane per link. Link A: Lane 0 sent on Lane A,  
Link B: Lane 0 sent on Lane B.  
Bits[2:0]—Register Quick Configuration  
0001: one lane per link. Link A: Lane 0 sent on Lane B,  
Link B: Lane 0 sent on Lane A.  
Writes to Bits[2:0] of this register configure the part for the  
most popular modes of operation for the JESD204A link. The  
intent of this register is to simplify the part setup for typical  
serial link operation modes. Writing values other than 0x0 to  
this register causes registers throughout the JESD204A memory  
map to be updated. Once these registers have been written the  
affected JESD204A configuration register reads back with their  
new values and can be updated. These bits are self clearing and  
always read back as 0b000.  
0010: two lanes per link. Link A: Lane 0, one sent on Lane A,  
Link B disabled.  
0011: two lanes per link. Link A: Lane 0, one sent on Lane B,  
Lane A. Link B disabled.  
0100: two lanes per link. Link B: Lane 0, one sent on Lane A,  
Lane B. Link A disabled.  
0101: two lanes per link. Link B: Lane 0, one sent on Lane B,  
Lane A. Link A disabled.  
0110 to 1111: reserved for future use.  
Rev. D | Page 38 of 44  
 
Data Sheet  
AD9644  
JESD204A Link Control Register 1 (Register 0x60)  
Bit 7—Reserved  
Bit 3—Open  
Bit 2—Bypass 8b/10b Encoding  
Bit 6—Serial Tail Bit Enable  
If this bit is set the 8b/10b encoding is bypassed and the most  
significant bits are set to 0.  
If this bit is set, the unused tail bits are padded with a pseudo  
random number sequence from a 31-bit LFSR (see JESD204A  
5.1.4).  
Bit 1—Invert Transmit Bits  
Setting this bit inverts the 10 serial output bits. This effectively  
inverts the output signals.  
Bit 5—Serial Test Sample Enable  
If this bit is set, JESD204A test samples are enabled—transport  
layer test sample sequence (as specified in JESD204A section  
5.1.6.2) is sent on all link lanes.  
Bit 0—Mirror Serial Output Bits  
Setting this bit reverses the order of the 10b outputs.  
JESD204A Link Control Register 3 (Register 0x62)  
Bit 4—Serial Lane Synchronization Enable  
Bit 7—Disable CHKSUM  
If this bit is set, lane synchronization is enabled. Both sides  
perform lane sync. Frame alignment character insertion uses  
either /K28.3/ or /K28.7/ control characters (see JESD204A  
5.3.3.4).  
Setting this bit high disables the CHKSUM configuration  
parameter (for testing purposes only).  
Bit 6—Open  
Bits[3:2]—Serial Lane Alignment Sequence Mode  
00: initial lane alignment sequence disabled.  
01: initial lane alignment sequence enabled.  
10: reserved.  
Bits[5:4]—Link Test Generation Input Selection  
00: 16-bit test generation data injected at sample input to  
the link.  
01: 10-bit test generation data injected at output of 8b/10b  
encoder (at input to PHY).  
11: initial lane alignment sequence always on test mode—  
JESD204A data link layer test mode where repeated lane alignment  
sequence is sent on all lanes.  
10: reserved.  
11: reserved.  
Bit 1—Frame Alignment Character Insertion Disable  
Bit 3—Open  
Bits[2:0]—Link Test Generation Mode  
000: normal operation (test mode disabled).  
001: alternating checker board.  
010: 1/0 word toggle.  
If Bit 1 is set, the frame alignment character insertion is  
disabled per JESD204A section 5.3.3.4.  
Bit 0—Serial Transmit Link Powered Down  
If Bit 0 is set high, the serial transmit link is held in reset with  
its clock gated off. The JESD204A transmitter should be  
powered down when changing any of the link configuration  
bits.  
011: PN sequence—long.  
100: PN sequence—short.  
101: continuous/repeat user test mode—most significant bits  
from user pattern (1, 2, 3, 4) placed on the output for 1 clock  
cycle and then repeat. (output user pattern 1, 2, 3, 4, 1, 2, 3, 4, 1,  
2, 3, 4…).  
JESD204A Link Control Register 2 (Register 0x61)  
Bits[7:6]—Local DSYNC Mode  
00: individual/separate mode. Each link is controlled by a  
separate DSYNC pin that independently controls code group  
synchronization.  
110: single user test mode—most significant bits from user  
pattern (1, 2, 3, 4) placed on the output for 1 clock cycle and  
then output all zeros. (output user pattern 1, 2, 3, 4, then output  
all zeros).  
01: global mode. Any DSYNC signal causes the link to begin  
code group synchronization.  
10: sync active mode. DSYNC signal is active—force code group  
synchronization.  
111: ramp output.  
JESD204A Link Control Register 4 (Register 0x63)  
11: DSYNC pin disabled.  
Bits[7:0]—Initial Lane Alignment Sequence Repeat Count  
Bit 5—DSYNC Pin Input Inverted  
If this bit is set, the DSYNC pin of the link is inverted (active high).  
Bit 4—CMOS DSYNC Input  
Specifies the number of times the initial lane alignment  
sequence (ILAS) is repeated. If 0 is programmed the ILAS does  
not repeat. If 1 is programmed the ILAS repeat one time and so  
on. See Register 0x60, Bits[3:2] to enable the ILAS and for a test  
mode to continuously enable the initial lane alignment  
sequence.  
0: LVDS differential pair DSYNC input (default)  
1: CMOS single ended DSYNC input  
Rev. D | Page 39 of 44  
AD9644  
Data Sheet  
JESD204A Device Identification Number (DID)  
(Register 0x64)  
JESD204A Number of Converters Per Link (M)  
(Register 0x71)  
Bits[7:0]—Serial Device Identification (DID) Number  
Bits[7:1]—Reserved  
JESD204A Bank Identification Number (BID)  
(Register 0x65)  
Bit 0—Number of Converters per Link per Device (M).  
0: link connected to one ADC. Only primary input used (M = 1).  
Bits[7:4]—Open  
1: link connected to two ADCs. Primary and secondary inputs  
used (M = 2).  
Bits[3:0]—Serial Bank Identification (DID) Number  
JESD204A Lane Identification Number (LID) for Lane 0  
(Register 0x66)  
JESD204A ADC Resolution (N) and Control Bits Per  
Sample (CS) (Register 0x72)  
Bits[7:5]—Open  
Bits[7:6]—Number of Control Bits per Sample (CS)  
Bits[4:0]—Serial Lane Identification (LID) Number for  
Lane 0.  
00: no control bits sent per sample (CS = 0).  
01: one control bits sent per sample—overrange bit enabled.  
(CS = 1).  
JESD204A Lane Identification Number (LID) for Lane 1  
(Register 0x67)  
10: two control bits sent per sample—overflow/underflow bits  
enabled (CS = 2).  
Bits[7:5]—Open  
Bits[4:0]—Serial Lane Identification (LID) Number for  
Lane 1.  
11: unused.  
Bit 5—Open  
JESD204A Scrambler (SCR) and Lane Configuration  
Registers (Register 0x6E)  
Bits[4:0]—Converter Resolution (N)  
Bit 7—Enable Serial Scrambler Mode  
Setting this bit high enables the scrambler (SCR = 1).  
Bits[6:1]—Open  
Read only bits showing the converter resolution (reads back 13  
(0xD) for 14-bit resolution).  
JESD204A Total Bits Per Sample (N’) (Register 0x73)  
Bits[7:5]—Open  
Bit[0]—Serial Lane Control.  
00000: one lane per link (L = 1).  
00001: two lanes per link (L = 2).  
00010: 11111—reserved.  
Bits[4:0]—Total Number of Bits per Sample (N’)  
Read only bits showing the total number of bits per sample—1  
(reads back 15 (0xF) for 16 bits per sample).  
JESD204A Samples Per Converter (S) Frame Cycle  
(Register 0x74)  
JESD204A Number of Octets Per Frame (F)  
(Register 0x6F—Read Only)  
Bits[7:5]—Open  
Bits[7:0]—Number of Octets per Frame (F)  
Bits[4:0]—Samples per Converter Frame Cycle (S)  
The readback from this register is calculated from the following  
equation: F = (M × 2)/L  
Read only bits showing the number of samples per converter  
frame cycle −1 (reads back 0 (0x0) for 1 sample per converter  
frame).  
Valid values for F for the AD9644 are:  
F = 2, with M = 1 and L = 1  
F = 4, with M = 2 and L = 1  
F = 2, with M = 2 and L = 2  
JESD204A HD and CF Configuration (Register 0x75)  
Bit 7—Enable High Density Format (Read Only)  
Read only bit—always 0 in the AD9644.  
JESD204A Number of Frames Per Multiframe  
(Register 0x70)  
Bits[6:5]—Reserved  
Bits[4:0]—Number of Control Words per Frame Clock  
Cycle per Link (CF)  
Bits[7:5]—Reserved  
Bits[4:0]—Number of Frames per Multiframe (K).  
Read only bits—reads back 0x0 for the AD9644.  
Rev. D | Page 4ꢀ of 44  
Data Sheet  
AD9644  
JESD204A Serial Reserved Field 1 (Register 0x76)  
JESD204A Serial Checksum Value for Lane 0  
(Register 0x78)  
Bits[7:0]—Serial Reserved Field 1 (RES1)  
Bits[7:0]—Serial Checksum Value for Lane 0  
This read/write register is available for customer use.  
This read only register is automatically calculated for each lane.  
Sum (all link configuration parameters for Lane 0) mode 256.  
JESD204A Serial Reserved Field 2 (Register 0x77)  
Bits[7:0]—Serial Reserved Field 2 (RES2)  
JESD204A Serial Checksum Value for Lane 1  
(Register 0x79)  
This read/write register is available for customer use.  
Bits[7:0]—Serial Checksum Value for Lane 1  
This read only register is automatically calculated for each lane.  
Sum (all link configuration parameters for Lane 1) mode 256.  
Rev. D | Page 41 of 44  
AD9644  
Data Sheet  
APPLICATIONS INFORMATION  
The copper plane should have several vias to achieve the lowest  
possible resistive thermal path for heat dissipation to flow through  
the bottom of the PCB. These vias should be filled or plugged to  
prevent solder wicking through the vias, which can compromise  
the connection.  
DESIGN GUIDELINES  
Before starting design and layout of the AD9644 as a system,  
it is recommended that the designer become familiar with these  
guidelines, which discuss the special circuit connections and  
layout requirements that are needed for certain pins.  
To maximize the coverage and adhesion between the ADC and  
the PCB, a silkscreen should be overlaid to partition the  
Power and Ground Recommendations  
When connecting power to the AD9644, it is recommended  
that two separate 1.8 V supplies be used. Use one supply for  
analog (AVDD); use a separate supply for the digital outputs  
(DRVDD). For both AVDD and DRVDD several different  
decoupling capa-citors should be used to cover both high and  
low frequencies. Place these capacitors close to the point of entry  
at the PCB level and close to the pins of the part, with minimal  
trace length.  
continuous plane on the PCB into several uniform sections.  
This provides several tie points between the ADC and the PCB  
during the reflow process. Using one continuous plane with no  
partitions guarantees only one tie point between the ADC and the  
PCB. For detailed information about packaging and PCB layout  
of chip scale packages, see the AN-772 Application Note, A  
Design and Manufacturing Guide for the Lead Frame Chip Scale  
Package (LFCSP), at www.analog.com.  
A single PCB ground plane should be sufficient when using the  
AD9644. With proper decoupling and smart partitioning of the  
PCB analog, digital, and clock sections, optimum performance  
is easily achieved.  
VCMA and VCMB  
The VCMA and VCMB pins should be decoupled to ground  
with a 0.1 ꢀF capacitor, as shown in Figure 50.  
SPI Port  
Exposed Paddle Thermal Heat Slug Recommendations  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter  
performance. If the on-board SPI bus is used for other devices,  
it may be necessary to provide buffers between this bus and the  
AD9644 to keep these signals from transitioning at the converter  
inputs during critical sampling periods.  
It is mandatory that the exposed paddle on the underside of the  
ADC be connected to analog ground (AGND) to achieve the  
best electrical and thermal performance. A continuous, exposed  
(no solder mask) copper plane on the PCB should mate to the  
AD9644 exposed paddle, Pin 0.  
Rev. D | Page 4± of 44  
 
 
Data Sheet  
AD9644  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
7.10  
0.30  
0.23  
0.18  
7.00 SQ  
6.90  
PIN 1  
INDICATOR  
AREA  
PIN 1  
INDICATOR AR EA  
(SEE DETAIL A)  
O
P TIONS  
37  
36  
48  
1
0.50  
BSC  
5.65  
EXPOSED  
PAD  
5.50 SQ  
5.35  
24  
13  
0.45  
0.40  
0.35  
0.20 MIN  
BOTTOM VIEW  
5.50 REF  
TOP VIEW  
END VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WKKD  
Figure 72. 48-Lead Lead Frame Chip Scale Package [LFCSP]  
7 mm × 7 mm Body and 0.75 mm Package Height  
(CP-48-9)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
AD9644BCPZ-8ꢀ  
AD9644BCPZRL7-8ꢀ  
AD9644CCPZ-8ꢀ  
AD9644CCPZRL7-8ꢀ  
AD9644BCPZ-155  
AD9644BCPZRL7-155  
AD9644-8ꢀKITZ  
AD9644-155KITZ  
−4ꢀ°C to +85°C  
−4ꢀ°C to +85°C  
−4ꢀ°C to +85°C  
−4ꢀ°C to +85°C  
−4ꢀ°C to +85°C  
−4ꢀ°C to +85°C  
48-Lead Lead Frame Chip Scale Package [LFCSP]  
48-Lead Lead Frame Chip Scale Package [LFCSP]  
48-Lead Lead Frame Chip Scale Package [LFCSP]  
48-Lead Lead Frame Chip Scale Package [LFCSP]  
48-Lead Lead Frame Chip Scale Package [LFCSP]  
48-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
CP-48-9  
CP-48-9  
CP-48-9  
CP-48-9  
CP-48-9  
CP-48-9  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. D | Page 43 of 44  
 
 
AD9644  
NOTES  
Data Sheet  
©2010–2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09180-9/20(D)  
Rev. D | Page 44 of 44  
 

相关型号:

AD9644_17

Serial Output Analog-to-Digital Converter
ADI

AD9645

Dual, 14-Bit, 80 MSPS/125 MSPS, Serial LVDS
ADI

AD9645-125EBZ

Dual, 14-Bit, 80 MSPS/125 MSPS, Serial LVDS
ADI

AD9645BCPZ-125

Dual, 14-Bit, 80 MSPS/125 MSPS, Serial LVDS
ADI

AD9645BCPZ-80

Dual, 14-Bit, 80 MSPS/125 MSPS, Serial LVDS
ADI

AD9645BCPZRL7-125

Dual, 14-Bit, 80 MSPS/125 MSPS, Serial LVDS
ADI

AD9645BCPZRL7-80

Dual, 14-Bit, 80 MSPS/125 MSPS, Serial LVDS
ADI

AD9648

14-Bit, 125 MSPS/105 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9648-125EBZ

14-Bit, 125 MSPS/105 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9648BCPZ-105

14-Bit, 125 MSPS/105 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9648BCPZ-125

14-Bit, 125 MSPS/105 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9648BCPZRL7-105

14-Bit, 125 MSPS/105 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI