AD9649BCPZ-40 [ADI]

14-Bit, 20/40/65/80 MSPS 1.8 V Analog-to-Digital Converter; 14位20/40/65/80 MSPS, 1.8 V模拟数字转换器
AD9649BCPZ-40
型号: AD9649BCPZ-40
厂家: ADI    ADI
描述:

14-Bit, 20/40/65/80 MSPS 1.8 V Analog-to-Digital Converter
14位20/40/65/80 MSPS, 1.8 V模拟数字转换器

转换器 模数转换器 PC
文件: 总32页 (文件大小:1285K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
14-Bit, 20/40/65/80 MSPS,  
1.8 V Analog-to-Digital Converter  
AD9649  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
GND  
SDIO SCLK CSB  
DRVDD  
1.8 V analog supply operation  
1.8 V to 3.3 V output supply  
SNR  
74.3 dBFS at 9.7 MHz input  
71.5 dBFS at 200 MHz input  
SFDR  
93 dBc at 9.7 MHz input  
80 dBc at 200 MHz input  
Low power  
45 mW at 20 MSPS  
RBIAS  
VCM  
SPI  
OR  
PROGRAMMING DATA  
D13 (MSB)  
VIN+  
VIN–  
ADC  
CORE  
D0 (LSB)  
DCO  
VREF  
SENSE  
AD9649  
REF  
SELECT  
87 mW at 80 MSPS  
Differential input with 700 MHz bandwidth  
On-chip voltage reference and sample-and-hold circuit  
2 V p-p differential analog input  
DNL = 0.35 LSB  
MODE  
DIVIDE BY  
1, 2, 4  
CONTROLS  
CLK+ CLK–  
PDWN DFS MODE  
Serial port control options  
Offset binary, gray code, or twos complement data format  
Integer 1, 2, or 4 input clock divider  
Built-in selectable digital test pattern generation  
Energy-saving power-down modes  
Data clock out (DCO) with programmable clock and data  
alignment  
Figure 1.  
PRODUCT HIGHLIGHTS  
1. The AD9649 operates from a single 1.8 V analog power  
supply and features a separate digital output driver supply  
to accommodate 1.8 V to 3.3 V logic families.  
2. The patented sample-and-hold circuit maintains excellent  
performance for input frequencies up to 200 MHz and is  
designed for low cost, low power, and ease of use.  
3. A standard serial port interface (SPI) supports various  
product features and functions, such as data output format-  
ting, internal clock divider, power-down, DCO, data output  
(D13 to D0) timing and offset adjustments, and voltage  
reference modes.  
4. The AD9649 is packaged in a 32-lead RoHS-compliant LFCSP  
that is pin compatible with the AD9629 12-bit ADC and  
the AD9609 10-bit ADC, enabling a simple migration path  
between 10-bit and 14-bit converters sampling from 20 MSPS  
to 80 MSPS.  
APPLICATIONS  
Communications  
Diversity radio systems  
Multimode digital receivers  
GSM, EDGE, W-CDMA, LTE, CDMA2000, WiMAX, TD-SCDMA  
Smart antenna systems  
Battery-powered instruments  
Handheld scope meters  
Portable medical imaging  
Ultrasound  
Radar/LIDAR  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
AD9649  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Voltage Reference ....................................................................... 19  
Clock Input Considerations...................................................... 20  
Power Dissipation and Standby Mode .................................... 21  
Digital Outputs ........................................................................... 22  
Timing ......................................................................................... 22  
Built-In Self-Test (BIST) and Output Test .................................. 23  
Built-In Self-Test (BIST)............................................................ 23  
Output Test Modes..................................................................... 23  
Serial Port Interface (SPI).............................................................. 24  
Configuration Using the SPI..................................................... 24  
Hardware Interface..................................................................... 25  
Configuration Without the SPI ................................................ 25  
SPI Accessible Features.............................................................. 25  
Memory Map .................................................................................. 26  
Reading the Memory Map Register Table............................... 26  
Open Locations .......................................................................... 26  
Default Values............................................................................. 26  
Memory Map Register Table..................................................... 27  
Memory Map Register Descriptions........................................ 29  
Applications Information.............................................................. 30  
Design Guidelines ...................................................................... 30  
Outline Dimensions....................................................................... 31  
Ordering Guide .......................................................................... 31  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
General Description......................................................................... 3  
Specifications..................................................................................... 4  
DC Specifications ......................................................................... 4  
AC Specifications.......................................................................... 5  
Digital Specifications ................................................................... 6  
Switching Specifications .............................................................. 7  
Timing Specifications .................................................................. 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Characteristics .............................................................. 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 11  
AD9649-80 .................................................................................. 11  
AD9649-65 .................................................................................. 13  
AD9649-40 .................................................................................. 14  
AD9649-20 .................................................................................. 15  
Equivalent Circuits......................................................................... 16  
Theory of Operation ...................................................................... 17  
Analog Input Considerations.................................................... 17  
REVISION HISTORY  
10/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 32  
 
AD9649  
GENERAL DESCRIPTION  
deterministic and pseudorandom patterns, along with custom  
user-defined test patterns entered via the serial port interface (SPI).  
The AD9649 is a monolithic, single channel 1.8 V supply, 14-bit,  
20/40/65/80 MSPS analog-to-digital converter (ADC). It features  
a high performance sample-and-hold circuit and an on-chip volt-  
age reference.  
A differential clock input with optional 1, 2, or 4 divide ratios  
controls all internal conversion cycles.  
The product uses multistage differential pipeline architecture  
with output error correction logic to provide 14-bit accuracy at  
80 MSPS data rates and to guarantee no missing codes over the  
full operating temperature range.  
The digital output data is presented in offset binary, gray code, or  
twos complement format. A data output clock (DCO) is provided  
to ensure proper latch timing with receiving logic. Both 1.8 V and  
3.3 V CMOS levels are supported.  
The ADC contains several features designed to maximize  
flexibility and minimize system cost, such as programmable  
clock and data alignment and programmable digital test pattern  
generation. The available digital test patterns include built-in  
The AD9649 is available in a 32-lead RoHS-compliant LFCSP and  
is specified over the industrial temperature range (−40°C to  
+85°C).  
Rev. 0 | Page 3 of 32  
 
AD9649  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, unless otherwise noted.  
Table 1.  
AD9649-20/AD9649-40  
Temp Min Typ Max  
AD9649-65  
AD9649-80  
Parameter  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
Full  
14  
14  
14  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Full  
Full  
Full  
Full  
25°C  
Full  
25°C  
Guaranteed  
Guaranteed  
Guaranteed  
−0.40 +0.05  
−1.5  
+0.50  
−0.40 +0.05 +0.50 −0.40 +0.05 +0.50 % FSR  
Gain Error1  
−1.5  
0.3  
−1.5  
0.35  
% FSR  
0.ꢀ5 LSB  
LSB  
1.ꢁ5 LSB  
LSB  
Differential Nonlinearity (DNL)2  
0.50  
+0.55  
1.30  
0.25  
0.50  
2
Integral Nonlinearity (INL)2  
1.30  
0.50  
0.ꢀ0  
2
TEMPERATURE DRIFT  
Offset Error  
Full  
2
ppm/°C  
INTERNAL VOLTAGE REFERENCE  
Output Voltage (1 V Mode)  
Load Regulation Error at 1.0 mA  
INPUT-REFERRED NOISE  
VREF = 1.0 V  
Full  
Full  
0.984 0.99ꢀ  
2
1.008  
0.984 0.99ꢀ 1.008 0.984 0.99ꢀ 1.008  
V
mV  
2
2
25°C  
0.98  
0.98  
0.98  
LSB rms  
ANALOG INPUT  
Input Span, VREF = 1.0 V  
Input Capacitance3  
Input Common-Mode Voltage  
Input Common-Mode Range  
REFERENCE INPUT RESISTANCE  
POWER SUPPLIES  
Supply Voltage  
AVDD  
DRVDD  
Full  
Full  
Full  
Full  
Full  
2
0.9  
2
0.9  
2
0.9  
V p-p  
pF  
V
0.5  
1.3  
0.5  
1.3  
0.5  
1.3  
V
ꢁ.5  
ꢁ.5  
1.8  
ꢁ.5  
1.8  
kΩ  
Full  
Full  
1.ꢁ  
1.ꢁ  
1.8  
1.9  
3.ꢀ  
1.ꢁ  
1.ꢁ  
1.9  
3.ꢀ  
1.ꢁ  
1.ꢁ  
1.9  
3.ꢀ  
V
V
Supply Current  
IAVDD2  
Full  
Full  
Full  
25.0/31.3 2ꢁ.3/33.ꢁ  
1.ꢀ/2.9  
3.0/5.3  
41.0  
4.ꢁ  
8.4  
44.0  
4ꢁ.0  
5.ꢀ  
10.2  
50.0  
mA  
mA  
mA  
IDRVDD2 (1.8 V)  
IDRVDD2 (3.3 V)  
POWER CONSUMPTION  
DC Input  
Sine Wave Input2 (DRVDD = 1.8 V)  
Sine Wave Input2 (DRVDD = 3.3 V)  
Standby Power4  
Full  
Full  
Full  
Full  
Full  
45.2/5ꢁ.2  
4ꢁ.9/ꢀ1.ꢀ 51.8/ꢀ5.8  
54.9/ꢁ3.8  
34/34  
ꢁ5.2  
82.3  
101.5  
34  
8ꢀ.8  
94.ꢁ  
118.3  
34  
mW  
mW  
mW  
mW  
mW  
8ꢁ.5  
100  
Power-Down Power  
0.5  
0.5  
0.5  
1 Measured with 1.0 V external reference.  
2 Measured with a 10 MHz input frequency at rated sample rate, full-scale sine wave, with approximately 5 pF loading on each output bit.  
3 Input capacitance refers to the effective capacitance between one differential input pin and ground.  
4 Standby power is measured with a dc input and the CLK+, CLK− active.  
Rev. 0 | Page 4 of 32  
 
 
 
AD9649  
AC SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, unless otherwise noted.  
Table 2.  
AD9649-20/AD9649-40  
AD9649-65  
Min Typ Max Min Typ  
AD9649-80  
Parameter1  
Temp Min  
Typ  
Max  
Max Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 9.ꢁ MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
25°C  
ꢁ4.ꢁ  
ꢁ4.4  
ꢁ4.5  
ꢁ4.3  
ꢁ4.3  
ꢁ4.1  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
ꢁ3.1  
ꢁ3.0  
ꢁ3.ꢀ  
ꢁ3.5  
fIN = ꢁ0 MHz  
ꢁ3.ꢁ  
ꢁ1.5  
ꢁ3.ꢁ  
ꢁ1.5  
ꢁ3.ꢀ  
ꢁ1.5  
ꢁ2.ꢁ  
ꢁ2.ꢀ  
fIN = 200 MHz  
SIGNAL-TO-NOISE-AND-DISTORTION (SINAD)  
fIN = 9.ꢁ MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
ꢁ4.ꢀ  
ꢁ4.3  
ꢁ4.4  
ꢁ4.2  
ꢁ4.1  
ꢁ4.0  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = ꢁ0 MHz  
ꢁ3.ꢀ  
ꢁ0.0  
ꢁ3.ꢀ  
ꢁ0.0  
ꢁ3.5  
ꢁ0.0  
fIN = 200 MHz  
25°C  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 9.ꢁ MHz  
fIN = 30.5 MHz  
fIN = ꢁ0 MHz  
fIN = 200 MHz  
25°C  
25°C  
25°C  
25°C  
12.0  
12.0  
11.9  
11.3  
12.0  
12.0  
11.9  
11.3  
12.0  
12.0  
11.9  
11.3  
Bits  
Bits  
Bits  
Bits  
WORST SECOND OR THIRD HARMONIC  
fIN = 9.ꢁ MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
−95  
−95  
−95  
−95  
−93  
−93  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−82  
−83  
fIN = ꢁ0 MHz  
−94  
−80  
−94  
−80  
−92  
−80  
−82  
fIN = 200 MHz  
25°C  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 9.ꢁ MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
95  
94  
95  
94  
93  
93  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
82  
83  
fIN = ꢁ0 MHz  
93  
80  
93  
80  
92  
80  
82  
fIN = 200 MHz  
25°C  
WORST OTHER (HARMONIC OR SPUR)  
fIN = 9.ꢁ MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
−100  
−100  
−100  
−100  
−100  
−100  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−90  
−90  
fIN = ꢁ0 MHz  
−100  
−95  
−100  
−95  
−100  
−95  
−90  
fIN = 200 MHz  
25°C  
TWO-TONE SFDR  
fIN = 30.5 MHz (−ꢁ dBFS), 32.5 MHz (−ꢁ dBFS)  
ANALOG INPUT BANDWIDTH  
25°C  
25°C  
90  
90  
90  
dBc  
ꢁ00  
ꢁ00  
ꢁ00  
MHz  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
Rev. 0 | Page 5 of 32  
 
 
AD9649  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, unless otherwise noted.  
Table 3.  
AD9649-20/AD9649-40/AD9649-65/AD9649-80  
Parameter  
Temp  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS/LVDS/LVPECL  
0.9  
Internal Common-Mode Bias  
Differential Input Voltage  
Input Voltage Range  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
0.2  
GND − 0.3  
−10  
−10  
8
3.6  
AVDD + 0.2  
+10  
+10  
12  
V p-p  
V
μA  
μA  
kΩ  
pF  
10  
4
Input Capacitance  
LOGIC INPUTS (SCLK/DFS, MODE, SDIO/PDWN)1  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−50  
−10  
DRVDD + 0.3  
0.8  
−75  
+10  
V
V
μA  
μA  
kΩ  
pF  
30  
2
Input Capacitance  
LOGIC INPUTS (CSB)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−10  
40  
DRVDD + 0.3  
0.8  
+10  
135  
V
V
μA  
μA  
kΩ  
pF  
26  
2
Input Capacitance  
DIGITAL OUTPUTS  
DRVDD = 3.3 V  
High Level Output Voltage (IOH)  
IOH = 50 μA  
IOH = 0.5 mA  
Full  
Full  
3.29  
3.25  
V
V
Low Level Output Voltage (IOL)  
IOL = 1.6 mA  
IOL = 50 μA  
Full  
Full  
0.2  
0.05  
V
V
DRVDD = 1.8 V  
High Level Output Voltage (IOH)  
IOH = 50 μA  
IOH = 0.5 mA  
Full  
Full  
1.79  
1.75  
V
V
Low Level Output Voltage (IOL)  
IOL = 1.6 mA  
IOL = 50 μA  
Full  
Full  
0.2  
0.05  
V
V
1 Internal 30 kΩ pull-down.  
2 Internal 30 kΩ pull-up.  
Rev. 0 | Page 6 of 32  
 
 
AD9649  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, unless otherwise noted.  
Table 4.  
AD9649-20/AD9649-40  
AD9649-65  
AD9649-80  
Max Min Typ Max Unit  
Parameter  
Temp Min  
Typ  
Max  
Min  
Typ  
CLOCK INPUT PARAMETERS  
Input Clock Rate  
Conversion Rate1  
Full  
Full  
Full  
80/1ꢀ0  
20/40  
2ꢀ0  
ꢀ5  
320  
80  
MHz  
MSPS  
ns  
3
3
3
12.5  
50/25  
CLK Period, Divide-by-1 Mode (tCLK  
)
15.38  
CLK Pulse Width High (tCH  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
DATA OUTPUT PARAMETERS  
)
25.0/12.5  
1.0  
0.1  
ꢁ.ꢀ9  
1.0  
0.1  
ꢀ.25  
1.0  
0.1  
ns  
ns  
ps rms  
Full  
Full  
Data Propagation Delay (tPD  
DCO Propagation Delay (tDCO  
DCO to Data Skew (tSKEW  
Pipeline Delay (Latency)  
Wake-Up Time2  
Standby  
)
Full  
Full  
Full  
Full  
Full  
Full  
Full  
3
3
0.1  
8
350  
ꢀ00/400  
2
3
3
3
3
ns  
ns  
ns  
Cycles  
μs  
)
)
0.1  
8
350  
300  
2
0.1  
8
350  
2ꢀ0  
2
ns  
OUT-OF-RANGE RECOVERY TIME  
Cycles  
1 Conversion rate is the clock rate after the CLK divider.  
2 Wake-up time is dependent on the value of the decoupling capacitors.  
N – 1  
N + 4  
tA  
N + 5  
N
N + 3  
VIN  
N + 1  
N + 2  
tCH  
tCLK  
CLK+  
CLK–  
tDCO  
DCO  
tSKEW  
N – 8  
DATA  
N – 7  
N – 6  
N – 5  
N – 4  
tPD  
Figure 2. CMOS Output Data Timing  
Rev. 0 | Page ꢁ of 32  
 
 
 
 
AD9649  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SPI TIMING REQUIREMENTS  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
SCLK pulse width high  
SCLK pulse width low  
Time required for the SDIO pin to switch from an input to an  
output relative to the SCLK falling edge  
2
2
40  
2
2
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an  
input relative to the SCLK rising edge  
10  
ns  
Rev. 0 | Page 8 of 32  
 
 
AD9649  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 6.  
Parameter  
Rating  
The exposed paddle is the only ground connection for the chip  
and must be soldered to the analog ground plane of the user’s  
PCB. Soldering the exposed paddle to the users board also  
increases the reliability of the solder joints and maximizes the  
thermal capability of the package.  
AVDD to AGND1  
−0.3 V to +2.0 V  
−0.3 V to +3.9 V  
DRVDD to AGND1  
VIN+, VIN− to AGND1  
CLK+, CLK− to AGND1  
VREF to AGND1  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−40°C to +85°C  
Table 7. Thermal Resistance  
SENSE to AGND1  
VCM to AGND1  
Airflow  
Package  
Type  
Velocity  
(m/sec)  
RBIAS to AGND1  
1, 2  
1, 3  
1, 4  
1,2  
θJA  
θJC  
3.1  
θJB  
20.ꢁ  
ΨJT  
0.3  
0.5  
0.8  
Unit  
°C/W  
°C/W  
°C/W  
CSB to AGND1  
32-Lead LFCSP  
5 mm × 5 mm  
0
1.0  
2.5  
3ꢁ.1  
32.4  
29.1  
SCLK/DFS to AGND1  
SDIO/PDWN to AGND1  
MODE/OR to AGND1  
D0 through D13 to AGND1  
DCO to AGND1  
1 Per JEDEC 51-ꢁ, plus JEDEC 51-5 2S2P test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-ꢀ (moving air).  
3 Per MIL-Std 883, Method 1012.1.  
4 Per JEDEC JESD51-8 (still air).  
Operating Temperature Range (Ambient)  
Maximum Junction Temperature Under Bias  
Storage Temperature Range (Ambient)  
150°C  
−ꢀ5°C to +150°C  
Typical θJA is specified for a 4-layer PCB with a solid ground  
plane. As shown in Table 7, airflow improves heat dissipation,  
which reduces θJA. In addition, metal in direct contact with the  
package leads from metal traces, through holes, ground, and  
power planes, reduces the θJA.  
1 AGND refers to the analog ground of the customer’s PCB.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. 0 | Page 9 of 32  
 
 
 
 
 
 
AD9649  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
CLK+  
CLK–  
AVDD  
1
2
3
4
5
6
7
8
24 AVDD  
23 MODE/OR  
22 DCO  
21 D13 (MSB)  
20 D12  
19 D11  
18 D10  
17 D9  
PIN 1  
INDICATOR  
CSB  
AD9649  
TOP VIEW  
SCLK/DFS  
SDIO/PDWN  
D0 (LSB)  
D1  
(Not to Scale)  
NOTES  
1. THE EXPOSED PADDLE MUST BE SOLDERED TO THE ANALOG GROUND  
PLANE OF THE PCB TO ENSURE PROPER FUNCTIONALITY AND MAXIMIZE  
THE HEAT DISSIPATION, NOISE, AND MECHANICAL STRENGTH BENEFITS.  
Figure 3. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
0 (EP)  
GND  
Exposed Paddle. The exposed paddle is the only ground connection. It must be soldered to the analog  
ground of the customer’s PCB to ensure proper functionality and maximize the heat dissipation, noise,  
and mechanical strength benefits.  
1, 2  
3, 24, 29, 32  
CLK+, CLK−  
AVDD  
Differential Encode Clock for PECL, LVDS, or 1.8 V CMOS Inputs.  
1.8 V Supply Pin for the ADC CORE Domain.  
4
5
CSB  
SCLK/DFS  
SPI Chip Select. Active low enable, 30 kΩ internal pull-up.  
SPI Clock Input in SPI Mode (SCLK). 30 kΩ internal pull-down.  
Data Format Select in Non-SPI Mode (DFS). Static control of data output format. 30 kΩ internal pull-down.  
DFS high = twos complement output; DFS low = offset binary output.  
SDIO/PDWN  
SPI Data Input/Output (SDIO). Bidirectional SPI data I/O with 30 kΩ internal pull-down.  
Non-SPI Mode Power-Down (PDWN). Static control of chip power-down with 30 kΩ internal pull-down.  
See Table 14 for details.  
ꢁ to 12, 14 to 21 D0 (LSB) to  
D13 (MSB)  
ADC Digital Outputs.  
13  
22  
23  
DRVDD  
DCO  
MODE/OR  
1.8 V to 3.3 V Supply Pin for Output Driver Domain.  
Data Clock Digital Output.  
Chip Mode Select Input in SPI Mode (MODE).  
Out-of-Range Digital Output in SPI Mode or in Non-SPI Mode (OR).  
Default = out-of-range (OR) digital output (SPI Register 0x2A, Bit 0 = 1).  
Option = chip mode select input (SPI Register 0x2A, Bit 0 = 0).  
Chip power-down (SPI Register 0x08, Bits[ꢁ:5] = 100).  
Chip stand-by (SPI Register 0x08, Bits[ꢁ:5] = 101).  
Normal operation, output disabled (SPI Register 0x08, Bits[ꢁ:5] = 110).  
Normal operation, output enabled (SPI Register 0x08, Bits[ꢁ:5] = 111).  
In non-SPI mode, the pin operates only as an out-of-range (OR) digital output.  
1.0 V Voltage Reference Input/Output. See Table 10.  
25  
VREF  
2ꢀ  
2ꢁ  
28  
30, 31  
SENSE  
VCM  
RBIAS  
Reference Mode Selection. See Table 10.  
Analog Output Voltage at Mid AVDD Supply. Sets common mode of the analog inputs.  
Set Analog Current Bias. Connect to 10 kΩ (1% tolerance) resistor to ground.  
ADC Analog Inputs.  
VIN−, VIN+  
Rev. 0 | Page 10 of 32  
 
AD9649  
TYPICAL PERFORMANCE CHARACTERISTICS  
AD9649-80  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty cycle  
clock, unless otherwise noted.  
0
0
80MSPS  
80MSPS  
30.5MHz @ –1dBFS  
SNR = 73.2dB (74.2dBFS)  
SFDR = 93.6dBc  
9.7MHz @ –1dBFS  
SNR = 73.4dB (74.4dBFS)  
SFDR = 94.4dBc  
–15  
–30  
–15  
–30  
–45  
–45  
–60  
–60  
–75  
–75  
–90  
–90  
3
3
2
5
2
4
6
5
6
4
–105  
–120  
–105  
–120  
4
8
12  
16  
20  
24  
28  
32  
36  
4
8
12  
16  
20  
24  
28  
32  
36  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 4. AD9649-80 Single-Tone FFT with fIN = 9.7 MHz  
Figure 7. AD9649-80 Single-Tone FFT with fIN = 30.5 MHz  
0
0
80MSPS  
200MHz @ –1dBFS  
SNR = 70.5dB (71.5dBFS)  
SFDR = 80.2dBc  
80MSPS  
70.3MHz @ –1dBFS  
SNR = 72.1dB (73.1dBFS)  
SFDR = 93.5dBc  
–15  
–30  
–15  
–30  
–45  
–60  
–45  
–60  
–75  
–90  
–75  
–90  
2
3
2
3
4
6
5
–105  
–120  
6
4
5
–105  
–120  
4
8
12  
16  
20  
24  
28  
32  
36  
4
8
12  
16  
20  
24  
28  
32  
36  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 5. AD9649-80 Single-Tone FFT with fIN = 70.3 MHz  
Figure 8. AD9649-80 Single-Tone FFT with fIN = 200 MHz  
0
0
80MSPS  
30.5MHz @ –7dBFS  
32.5MHz @ –7dBFS  
–15  
–20  
SFDR = 89.5dBc (96.5dBFS)  
–30  
–45  
–60  
SFDR (dBc)  
–40  
–60  
IMD3 (dBc)  
–75  
–90  
–80  
–100  
–120  
2F1 + F2  
2F2 + F1  
SFDR (dBFS)  
IMD3 (dBFS)  
F2 – F1  
2F1 – F2  
2F2 – F1  
F1 + F2  
–105  
–120  
–90  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
4
8
12  
16  
20  
24  
28  
32  
36  
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 6. AD9649-80 Two-Tone FFT with fIN1 = 30.5 MHz and fIN2 = 32.5 MHz  
Figure 9. AD9649-80 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN)  
with fIN1 = 30.5 MHz and fIN2 = 32.5 MHz  
Rev. 0 | Page 11 of 32  
 
 
AD9649  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty cycle  
clock, unless otherwise noted.  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
SFDR (dBc)  
SFDRFS  
SNR (dBFS)  
SNRFS  
60  
SFDR  
40  
20  
0
SNR  
–90  
–80  
–60  
–40  
–20  
0
0
50  
100  
150  
200  
INPUT AMPLITUDE (dBFS)  
INPUT FREQUENCY (MHz)  
Figure 13. AD9649-80 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7 MHz  
Figure 10. AD9649-80 SNR/SFDR vs. Input Frequency (AIN)  
with 2 V p-p Full Scale  
450,000  
400,000  
350,000  
120  
SFDR (dBc)  
SNR (dBFS)  
100  
300,000  
250,000  
200,000  
150,000  
100,000  
50,000  
0
80  
60  
40  
20  
0
N – 4 N – 3 N – 2 N – 1  
N
N + 1 N + 2 N + 3 N + 4  
10  
20  
30  
40  
50  
60  
70  
80  
OUTPUT CODE  
SAMPLE RATE (MSPS)  
Figure 14. AD9649-80 Grounded Input Histogram  
Figure 11. AD9649-80 SNR/SFDR vs. Sample Rate with AIN = 9.7 MHz  
2.0  
1.5  
0.5  
0.4  
0.3  
0.2  
1.0  
0.5  
0.1  
0
0
–0.1  
–0.5  
–1.0  
–1.5  
–2.0  
–0.2  
–0.3  
–0.4  
–0.5  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
OUTPUT CODE  
OUTPUT CODE  
Figure 12. AD9649-80 DNL Error with fIN = 9.7 MHz  
Figure 15. AD9649-80 INL with fIN = 9.7 MHz  
Rev. 0 | Page 12 of 32  
AD9649  
AD9649-65  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty cycle  
clock, unless otherwise noted.  
0
–15  
–30  
–45  
–60  
–75  
–90  
–105  
120  
100  
80  
65MSPS  
9.7MHz @ –1dBFS  
SNR = 73.5dB (74.5dBFS)  
SFDR = 97.7dBc  
SFDRFS  
SNRFS  
60  
SFDR  
40  
20  
0
SNR  
3
2
5
6
4
–120  
3
6
9
12  
15  
18  
21  
24  
27  
30  
–90 –80  
–60  
–40  
–20  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 16. AD9649-65 Single-Tone FFT with fIN = 9.7 MHz  
Figure 19.AD9649-65 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7 MHz  
100  
0
65MSPS  
70.3MHz @ –1dBFS  
SNR = 72.6dB (73.6dBFS)  
SFDR = 94.1dBc  
90  
SFDR (dBc)  
–15  
80  
–30  
70  
SNR (dBFS)  
–45  
–60  
60  
50  
40  
30  
20  
10  
0
–75  
–90  
2
4
3
5
6
–105  
–120  
0
50  
100  
150  
200  
3
6
9
12  
15  
18  
21  
24  
27  
30  
INPUT FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 20. AD9649-65 SNR/SFDR vs. Input Frequency (AIN)  
with 2 V p-p Full Scale  
Figure 17. AD9649-65 Single-Tone FFT with fIN = 70.3 MHz  
0
65MSPS  
30.5MHz @ –1dBFS  
SNR = 73.3dB (74.3dBFS)  
SFDR = 99.3dBc  
–15  
–30  
–45  
–60  
–75  
–90  
3
2
5
–105  
–120  
6
4
3
6
9
12  
15  
18  
21  
24  
27  
30  
FREQUENCY (MHz)  
Figure 18. AD9649-65 Single-Tone FFT with fIN = 30.5 MHz  
Rev. 0 | Page 13 of 32  
 
AD9649  
AD9649-40  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty cycle  
clock, unless otherwise noted.  
120  
100  
80  
0
–15  
–30  
–45  
40MSPS  
9.7MHz @ –1dBFS  
SNR = 73.5dB (74.5dBFS)  
SFDR = 95.4dBc  
SFDRFS  
SNRFS  
–60  
–75  
–90  
60  
SFDR  
40  
20  
0
SNR  
2
4
5
3
6
–105  
–120  
2
4
6
8
10  
12  
14  
16  
18  
–90 –80  
–60  
–40  
–20  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 21. AD9649-40 Single-Tone FFT with fIN = 9.7 MHz  
Figure 23. AD9649-40 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7 MHz  
0
40MSPS  
30.5MHz @ –1dBFS  
SNR = 73.2dB (74.2dBFS)  
SFDR = 95.7dBc  
–15  
–30  
–45  
–60  
–75  
–90  
4
3
2
5
–105  
–120  
6
2
4
6
8
10  
12  
14  
16  
18  
FREQUENCY (MHz)  
Figure 22. AD9649-40 Single-Tone FFT with fIN = 30.5 MHz  
Rev. 0 | Page 14 of 32  
 
AD9649  
AD9649-20  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty cycle  
clock, unless otherwise noted.  
0
–15  
–30  
120  
20MSPS  
9.7MHz @ –1dBFS  
SNR = 73.5dBFS (74.5dBFS)  
SFDR = 97.2dBc  
SFDR (dBFS)  
SNR (dBFS)  
100  
80  
–45  
–60  
60  
SFDR (dBc)  
–75  
–90  
40  
SNR (dBc)  
4
3
5
2
6
–105  
–120  
20  
0
950k 1.90 2.85 3.80 4.75 5.70 6.65 7.60 8.55 9.50  
FREQUENCY (MHz)  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
INPUT AMPLITUDE (dBFS)  
Figure 24. AD9649-20 Single-Tone FFT with fIN = 9.7 MHz  
Figure 26. AD9649-20 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7 MHz  
0
20MSPS  
30.5MHz @ –1dBFS  
SNR = 73.2dB (74.2dBFS)  
SFDR = 98.1dBc  
–15  
–30  
–45  
–60  
–75  
–90  
3
2
4
6
5
–105  
–120  
950k 1.90 2.85 3.80 4.75 5.70 6.65 7.60 8.55 9.50  
FREQUENCY (MHz)  
Figure 25. AD9649-20 Single-Tone FFT with fIN = 30.5 MHz  
Rev. 0 | Page 15 of 32  
 
AD9649  
EQUIVALENT CIRCUITS  
DRVDD  
AVDD  
VIN±  
Figure 31. Equivalent D0 to D13 and OR Digital Output Circuit  
Figure 27. Equivalent Analog Input Circuit  
DRVDD  
AVDD  
SCLK/DFS,  
350  
MODE,  
375  
SDIO/PDWN  
VREF  
30kΩ  
7.5kΩ  
Figure 32. Equivalent SCLK/DFS, MODE and SDIO/PDWN Input Circuit  
Figure 28. Equivalent VREF Circuit  
AVDD  
DRVDD  
AVDD  
30k  
375  
350Ω  
SENSE  
CSB  
Figure 29. Equivalent SENSE Circuit  
Figure 33. Equivalent CSB Input Circuit  
5  
CLK+  
15kΩ  
0.9V  
AVDD  
15kΩ  
5Ω  
CLK–  
375  
RBIAS  
AND VCM  
Figure 30. Equivalent Clock Input Circuit  
Figure 34. Equivalent RBIAS, VCM Circuit  
Rev. 0 | Page 16 of 32  
 
 
AD9649  
THEORY OF OPERATION  
high IF frequencies. Either a shunt capacitor or two single-ended  
capacitors can be placed on the inputs to provide a matching pas-  
sive network. This ultimately creates a low-pass filter at the input  
to limit unwanted broadband noise. See the AN-742 Application  
Note, the AN-827 Application Note, and the Analog Dialogue  
article, “Transformer-Coupled Front-End for Wideband A/D  
Converters” (Volume 39, April 2005) for more information. In  
general, the precise values depend on the application.  
The AD9649 architecture consists of a multistage, pipelined ADC.  
Each stage provides sufficient overlap to correct for flash errors in  
the preceding stage. The quantized outputs from each stage are  
combined into a final 14-bit result in the digital correction logic.  
The pipelined architecture permits the first stage to operate with  
a new input sample, whereas the remaining stages operate with pre-  
ceding samples. Sampling occurs on the rising edge of the clock.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor DAC  
and an interstage residue amplifier (for example, a multiplying  
digital-to-analog converter (MDAC)). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage consists of a flash ADC.  
Input Common Mode  
The analog inputs of the AD9649 are not internally dc-biased.  
Therefore, in ac-coupled applications, the user must provide an  
external dc bias. Setting the device so that VCM = AVDD/2  
is recommended for optimum performance, but the device can  
function over a wider range with reasonable performance, as  
shown in Figure 36 and Figure 37.  
100  
The output staging block aligns the data, corrects errors, and  
passes the data to the CMOS output buffers. The output buffers  
are powered from a separate (DRVDD) supply, allowing adjust-  
ment of the output voltage swing. During power-down, the output  
buffers go into a high impedance state.  
SFDR (dBc)  
90  
80  
SNR (dBFS)  
ANALOG INPUT CONSIDERATIONS  
The analog input to the AD9649 is a differential switched-  
capacitor circuit designed for processing differential input  
signals. This circuit can support a wide common-mode range  
while maintaining excellent performance. By using an input  
common-mode voltage of midsupply, users can minimize  
signal-dependent errors and achieve optimum performance.  
70  
60  
50  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 36. SNR/SFDR vs. Input Common-Mode Voltage,  
fIN = 32.1 MHz, fS = 80 MSPS  
H
CPAR  
100  
90  
H
VIN+  
CSAMPLE  
SFDR (dBc)  
SNR (dBFS)  
S
S
S
S
CSAMPLE  
VIN–  
H
CPAR  
80  
H
70  
60  
50  
Figure 35. Switched-Capacitor Input Circuit  
The clock signal alternately switches the input circuit between  
sample mode and hold mode (see Figure 35). When the input  
circuit is switched to sample mode, the signal source must be  
capable of charging the sample capacitors and settling within one-  
half of a clock cycle. A small resistor in series with each input  
can help reduce the peak transient current injected from the output  
stage of the driving source. In addition, low Q inductors or ferrite  
beads can be placed on each leg of the input to reduce high differ-  
ential capacitance at the analog inputs and, therefore, achieve the  
maximum bandwidth of the ADC. Such use of low Q inductors or  
ferrite beads is required when driving the converter front end at  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 37. SNR/SFDR vs. Input Common-Mode Voltage,  
fIN = 10.3 MHz, fS = 20 MSPS  
An on-board, common-mode voltage reference is included in  
the design and is available from the VCM pin. The VCM pin  
must be decoupled to ground by a 0.1 μF capacitor, as described  
in the Applications Information section.  
Rev. 0 | Page 1ꢁ of 32  
 
 
 
 
AD9649  
Differential Input Configurations  
the true SNR performance of the AD9649. For applications above  
~10 MHz where SNR is a key parameter, differential double balun  
coupling is the recommended input configuration (see Figure 41).  
Optimum performance is achieved while driving the AD9649  
in a differential input configuration. For baseband applications,  
the AD8138, ADA4937-2, and ADA4938-2 differential drivers  
provide excellent performance and a flexible interface to the ADC.  
An alternative to using a transformer-coupled input at frequencies  
in the second Nyquist zone is to use the AD8352 differential driver.  
An example is shown in Figure 42. See the AD8352 data sheet  
for more information.  
The output common-mode voltage of the ADA4938-2 is easily  
set with the VCM pin of the AD9649 (see Figure 38), and the  
driver can be configured in a Sallen-Key filter topology to  
provide band limiting of the input signal.  
In any configuration, the value of Shunt Capacitor C is dependent  
on the input frequency and source impedance and may need to  
be reduced or removed. Table 9 displays the suggested values to set  
the RC network. However, these values are dependent on the  
input signal and should be used only as a starting guide.  
200  
33Ω  
VIN–  
VIN  
76.8Ω  
AVDD  
90Ω  
10pF  
ADC  
ADA4938-2  
33Ω  
0.1µF  
120Ω  
VCM  
Table 9. Example RC Network  
VIN+  
200Ω  
R Series  
Frequency Range (MHz)  
0 to ꢁ0  
ꢁ0 to 200  
(Ω Each)  
C Differential (pF)  
Figure 38. Differential Input Configuration Using the ADA4938-2  
33  
125  
22  
Open  
For baseband applications below ~10 MHz where SNR is a key  
parameter, differential transformer coupling is the recommended  
input configuration. An example is shown in Figure 39. To bias  
the analog input, the VCM voltage can be connected to the  
center tap of the secondary winding of the transformer.  
Single-Ended Input Configuration  
A single-ended input can provide adequate performance in cost-  
sensitive applications. In this configuration, SFDR and distortion  
performance degrade due to the large input common-mode swing.  
If the source impedances on each input are matched, there should  
be little effect on SNR performance. Figure 40 shows a typical  
single-ended input configuration.  
VIN+  
R
2V p-p  
49.9  
C
ADC  
R
VCM  
VIN–  
10µF  
AVDD  
0.1µF  
1k  
R
Figure 39. Differential Transformer-Coupled Configuration  
VIN+  
1V p-p  
0.1µF  
49.9Ω  
1kΩ  
The signal characteristics must be considered when selecting  
a transformer. Most RF transformers saturate at frequencies  
below a few megahertz (MHz). Excessive signal power can also  
cause core saturation, which leads to distortion.  
AVDD  
ADC  
C
1kΩ  
R
VIN–  
10µF  
0.1µF  
1kΩ  
At input frequencies in the second Nyquist zone and above, the  
noise performance of most amplifiers is not adequate to achieve  
Figure 40. Single-Ended Input Configuration  
0.1µF  
R
R
0.1µF  
VIN+  
2V p-p  
25  
25Ω  
P
A
S
S
P
C
ADC  
0.1µF  
0.1µF  
VCM  
VIN–  
Figure 41. Differential Double Balun Input Configuration  
V
CC  
0.1µF  
0Ω  
0.1µF  
16  
1
8, 13  
11  
0.1µF  
0.1µF  
ANALOG INPUT  
R
R
VIN+  
VIN–  
2
200Ω  
C
ADC  
AD8352  
10  
R
R
G
C
D
D
3
4
5
200Ω  
VCM  
14  
0.1µF  
ANALOG INPUT  
0Ω  
0.1µF  
0.1µF  
Figure 42. Differential Input Configuration Using the AD8352  
Rev. 0 | Page 18 of 32  
 
 
 
 
 
 
AD9649  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
VOLTAGE REFERENCE  
A stable and accurate 1.0 V voltage reference is built into the  
AD9649. The VREF can be configured using either the internal  
1.0 V reference or an externally applied 1.0 V reference voltage.  
The various reference modes are summarized in the sections  
that follow. The Reference Decoupling section describes the  
best practices PCB layout of the reference.  
INTERNAL VREF = 0.996V  
Internal Reference Connection  
A comparator within the AD9649 detects the potential at the  
SENSE pin and configures the reference into two possible modes,  
which are summarized in Table 10. If SENSE is grounded, the  
reference amplifier switch is connected to the internal resistor  
divider (see Figure 43), setting VREF to 1.0 V.  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
LOAD CURRENT (mA)  
Figure 44. VREF Accuracy vs. Load Current  
VIN+  
VIN–  
4
3
2
ADC  
CORE  
VREF ERROR (mV)  
1
0
VREF  
–1  
–2  
–3  
–4  
–5  
–6  
1.0µF  
0.1µF  
SELECT  
LOGIC  
SENSE  
0.5V  
ADC  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 43. Internal Reference Configuration  
Figure 45. Typical VREF Drift  
If the internal reference of the AD9649 is used to drive multiple  
converters to improve gain matching, the loading of the reference  
by the other converters must be considered. Figure 44 shows  
how the internal reference voltage is affected by loading.  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
7.5 kΩ load (see Figure 28). The internal buffer generates the  
positive and negative full-scale references for the ADC core.  
Therefore, the external reference must be limited to a maximum  
of 1.0 V.  
External Reference Operation  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics. Figure 45 shows the typical drift characteristics of the  
internal reference in 1.0 V mode.  
Table 10. Reference Configuration Summary  
Selected Mode  
SENSE Voltage (V) Resulting VREF (V)  
Resulting Differential Span (V p-p)  
Fixed Internal Reference  
Fixed External Reference  
AGND to 0.2  
AVDD  
1.0 internal  
1.0 applied to external VREF pin  
2.0  
2.0  
Rev. 0 | Page 19 of 32  
 
 
 
 
 
AD9649  
This limit helps prevent the large voltage swings of the clock  
from feeding through to other portions of the AD9649 while  
preserving the fast rise and fall times of the signal that are critical  
to a low jitter performance.  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, clock the AD9649 sample clock inputs,  
CLK+ and CLK−, with a differential signal. The signal is typi-  
cally ac-coupled into the CLK+ and CLK− pins via a transformer  
or capacitors. These pins are biased internally (see Figure 46) and  
require no external bias.  
If a low jitter clock source is not available, another option is to  
ac couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 49. The AD9510/AD9511/AD9512/  
AD9513/AD9514/AD9515/AD9516/AD9517 clock drivers offer  
excellent jitter performance.  
AVDD  
0.9V  
CLK+  
CLK–  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
2pF  
2pF  
AD951x  
PECL DRIVER  
100  
ADC  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
240Ω  
240Ω  
50kΩ  
50kΩ  
Figure 46. Equivalent Clock Input Circuit  
Clock Input Options  
Figure 49. Differential PECL Sample Clock (Up to 4× Rated Sample Rate)  
The AD9649 has a very flexible clock input structure. The clock  
input can be a CMOS, LVDS, LVPECL, or sine wave signal.  
Regardless of the type of signal being used, clock source jitter is  
of great concern, as described in the Jitter Considerations section.  
A third option is to ac couple a differential LVDS signal to the  
sample clock input pins as shown in Figure 50. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515/AD9516/AD9517  
clock drivers offer excellent jitter performance.  
Figure 47 and Figure 48 show two preferred methods for clock-  
ing the AD9649. The CLK inputs support up to 4× the rated sample  
rate when using the internal clock divider feature. A low jitter clock  
source is converted from a single-ended signal to a differential  
signal using either an RF transformer or an RF balun.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
AD951x  
LVDS DRIVER  
100Ω  
ADC  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
®
50kΩ  
50kΩ  
Mini-Circuits  
ADT1-1WT, 1:1 Z  
0.1µF  
0.1µF  
XFMR  
Figure 50. Differential LVDS Sample Clock (Up to 4× Rated Sample Rate)  
CLOCK  
INPUT  
CLK+  
100  
50Ω  
In some applications, it may be acceptable to drive the sample  
clock inputs with a single-ended 1.8 V CMOS signal. In such  
applications, drive the CLK+ pin directly from a CMOS gate, and  
bypass the CLK− pin to ground with a 0.1 ꢀF capacitor (see  
Figure 51).  
ADC  
0.1µF  
CLK–  
SCHOTTKY  
DIODES:  
HSMS2822  
0.1µF  
Figure 47. Transformer-Coupled Differential Clock (3 MHz to 200 MHz)  
V
CC  
OPTIONAL  
100Ω  
0.1µF  
1
0.1µF  
1kΩ  
1kΩ  
AD951x  
CMOS DRIVER  
1nF  
50Ω  
1nF  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
CLOCK  
INPUT  
CLK+  
50Ω  
ADC  
ADC  
CLK–  
CLK–  
SCHOTTKY  
DIODES:  
0.1µF  
HSMS2822  
1
50RESISTOR IS OPTIONAL.  
Figure 48. Balun-Coupled Differential Clock (Up to 4× Rated Sample Rate)  
Figure 51. Single-Ended 1.8 V CMOS Input Clock (Up to 200 MHz)  
The RF balun configuration is recommended for clock frequen-  
cies between 80 MHz and 320 MHz, and the RF transformer is  
recommended for clock frequencies from 3 MHz to 200 MHz.  
The back-to-back Schottky diodes across the transformer/balun  
secondary limit clock excursions into the AD9649 to ~0.8 V p-p  
differential.  
Input Clock Divider  
The AD9649 contains an input clock divider with the ability  
to divide the input clock by integer values of 1, 2, or 4.  
Rev. 0 | Page 20 of 32  
 
 
 
 
 
 
 
AD9649  
Clock Duty Cycle  
supplies for clock drivers separate from the ADC output driver  
supplies. Low jitter, crystal-controlled oscillators make the best  
clock sources. If the clock is generated from another type of source  
(by gating, dividing, or another method), it should be retimed by  
the original clock at the last step.  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals and, as a result, may be sensitive  
to clock duty cycle. Commonly, a 50% duty cycle clock with 5%  
tolerance is required to maintain optimum dynamic performance,  
as shown in Figure 52.  
For more information, see the AN-501 Application Note and the  
AN-756 Application Note, which are available on www.analog.com.  
Jitter on the rising edge of the clock input can also impact dynamic  
performance and should be minimized, as discussed in the Jitter  
Considerations section of this datasheet.  
80  
POWER DISSIPATION AND STANDBY MODE  
As shown in Figure 54, the analog core power dissipated by the  
AD9649 is proportional to its sample rate. The digital power dis-  
sipation of the CMOS outputs are determined primarily by the  
strength of the digital drivers and the load on each output bit.  
75  
70  
The maximum DRVDD current (IDRVDD) can be calculated as  
65  
60  
55  
50  
45  
40  
I
DRVDD = VDRVDD × CLOAD × fCLK × N  
where N is the number of output bits (15, in the case of the  
AD9649).  
This maximum current occurs when every output bit switches  
on every clock cycle, that is, a full-scale square wave at the Nyquist  
frequency of fCLK/2. In practice, the DRVDD current is estab-  
lished by the average number of output bits that are switching,  
which is determined by the sample rate and the characteristics  
of the analog input signal.  
10  
20  
30  
40  
50  
60  
70  
80  
POSITIVE DUTY CYCLE (%)  
Figure 52. SNR vs. Clock Duty Cycle  
Reducing the capacitive load presented to the output drivers can  
minimize digital power consumption. The data in Figure 54 was  
taken using the same operating conditions as those used for the  
Typical Performance Characteristics, with a 5 pF load on each  
output driver.  
Jitter Considerations  
High speed, high resolution ADCs are sensitive to the quality  
of the clock input. The degradation in SNR from the low fre-  
quency SNR (SNRLF) at a given input frequency (fINPUT) due to  
jitter (tJRMS) can be calculated by  
85  
SNRHF = −10 log[(2π × fINPUT × tJRMS)2 + 10 (SNR /10)  
]
LF  
80  
75  
In the previous equation, the rms aperture jitter represents the  
clock input jitter specification. IF undersampling applications  
are particularly sensitive to jitter, as illustrated in Figure 53.  
80  
AD9649-80  
70  
65  
AD9649-65  
60  
55  
75  
70  
65  
0.05ps  
50  
AD9649-40  
45  
0.2ps  
40  
AD9649-20  
35  
10  
20  
30  
40  
50  
60  
70  
80  
60  
55  
50  
0.5ps  
CLOCK RATE (MSPS)  
Figure 54. Analog Core Power vs. Clock Rate  
1.0ps  
1.5ps  
In SPI mode, the AD9649 can be placed in power-down mode  
directly via the SPI port or by using the programmable external  
MODE pin. In non-SPI mode, power-down is achieved by assert-  
ing the PDWN pin high. In this state, the ADC typically dissipates  
500 μW. During power-down, the output drivers are placed in a  
high impedance state. Asserting the PDWN pin (or the MODE pin  
in SPI mode) low returns the AD9649 to normal operating mode.  
Note that PDWN is referenced to the digital output driver supply  
(DRVDD) and should not exceed that supply voltage.  
2.0ps  
2.5ps  
3.0ps  
45  
1
10  
100  
1k  
FREQUENCY (MHz)  
Figure 53. SNR vs. Input Frequency and Jitter  
The clock input should be treated as an analog signal in cases in  
which aperture jitter may affect the dynamic range of the AD9649.  
To avoid modulating the clock signal with digital noise, keep power  
Rev. 0 | Page 21 of 32  
 
 
 
 
 
AD9649  
Low power dissipation in power-down mode is achieved by shut-  
ting down the reference, reference buffer, biasing networks, and  
clock. Internal capacitors are discharged when entering power-  
down mode and then must be recharged when returning to normal  
operation. As a result, wake-up time is related to the time spent  
in power-down mode, and shorter power-down cycles result in  
proportionally shorter wake-up times.  
Digital Output Enable Function (OEB)  
When using the SPI interface, the data outputs and DCO can be  
independently three-stated by using the programmable external  
MODE pin. The OEB function of the MODE pin is enabled via  
Bits[6:5] of Register 0x08.  
If the MODE pin is configured to operate in traditional OEB mode  
and the MODE pin is low, the output data drivers and DCOs are  
enabled. If the MODE pin is high, the output data drivers and  
DCOs are placed in a high impedance state. This OEB function  
is not intended for rapid access to the data bus. Note that the  
MODE pin is referenced to the digital output driver supply  
(DRVDD) and should not exceed that supply voltage.  
When using the SPI port interface, the user can place the ADC  
in power-down mode or standby mode. Standby mode allows  
the user to keep the internal reference circuitry powered when  
faster wake-up times are required. See the Memory Map section for  
more details.  
DIGITAL OUTPUTS  
TIMING  
The AD9649 output drivers can be configured to interface with  
1.8 V to 3.3 V CMOS logic families. Output data can also be multi-  
plexed onto a single output bus to reduce the total number of traces  
required.  
The AD9649 provides latched data with a pipeline delay of eight  
clock cycles. Data outputs are available one propagation delay (tPD)  
after the rising edge of the clock signal.  
Minimize the length of the output data lines and loads placed on  
them to reduce transients within the AD9649. These transients may  
degrade converter dynamic performance.  
The CMOS output drivers are sized to provide sufficient output  
current to drive a wide variety of logic families. However, large  
drive currents tend to cause current glitches on the supplies and  
may affect converter performance.  
The lowest typical conversion rate of the AD9649 is 3 MSPS.  
At clock rates below 3 MSPS, dynamic performance may degrade.  
Applications requiring the ADC to drive large capacitive loads  
or large fanouts may require external buffers or latches.  
Data Clock Output (DCO)  
The AD9649 provides a data clock output (DCO) signal that is  
intended for capturing the data in an external register. The CMOS  
data outputs are valid on the rising edge of DCO, unless the DCO  
clock polarity has been changed via the SPI. See Figure 2 for a  
graphical timing description.  
The output data format can be selected to be either offset binary  
or twos complement by setting the SCLK/DFS pin when operating  
in the external pin mode (see Table 11).  
As detailed in the AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI, the data format can be selected for offset  
binary, twos complement, or gray code when using the SPI control.  
Table 11. SCLK/DFS and SDIO/PDWN Mode Selection  
(External Pin Mode)  
Voltage at Pin SCLK/DFS  
SDIO/PDWN  
GND  
Offset binary (default) Normal operation  
(default)  
DRVDD  
Twos complement  
Outputs disabled  
Table 12. Output Data Format  
Input (V)  
Condition (V)  
Offset Binary Output Mode  
Twos Complement Mode  
10 0000 0000 0000  
10 0000 0000 0000  
00 0000 0000 0000  
01 1111 1111 1111  
01 1111 1111 1111  
OR  
1
0
0
0
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
< −VREF − 0.5 LSB  
= −VREF  
= 0  
= +VREF − 1.0 LSB  
> +VREF − 0.5 LSB  
00 0000 0000 0000  
00 0000 0000 0000  
10 0000 0000 0000  
11 1111 1111 1111  
11 1111 1111 1111  
1
Rev. 0 | Page 22 of 32  
 
 
 
AD9649  
BUILT-IN SELF-TEST (BIST) AND OUTPUT TEST  
The AD9649 includes a built-in test feature designed to enable  
verification of the integrity of each channel, as well as facilitate  
board-level debugging. Also included is a built-in self-test (BIST)  
feature that verifies the integrity of the digital datapath of the  
AD9649. Various output test options are also provided to place  
predictable values on the outputs of the AD9649.  
runs the BIST, enabling Bit 0 (BIST enable) of Register 0x0E  
and resetting the PN sequence generator, Bit 2 (BIST init) of  
Register 0x0E. Upon completion of the BIST, Bit 0 of Register 0x24  
is automatically cleared. The PN sequence can be continued from  
its last value by writing a 0 in Bit 2 of Register 0x0E. However, if the  
PN sequence is not reset, the signature calculation does not equal  
the predetermined value at the end of the test. The user must  
then rely on verifying the output data.  
BUILT-IN SELF-TEST (BIST)  
The BIST is a thorough test of the digital portion of the selected  
AD9649 signal path. Perform the BIST test after a reset to ensure  
that the part is in a known state. During the BIST test, data from  
an internal pseudorandom noise (PN) source is driven through  
the digital datapath of both channels, starting at the ADC block  
output. At the datapath output, CRC logic calculates a signature  
from the data. The BIST sequence runs for 512 cycles and then  
stops. When the BIST sequence is complete, the BIST compares  
the signature results with a predetermined value. If the signatures  
match, the BIST sets Bit 0 of Register 0x24, signifying that the  
test passed. If the BIST test failed, Bit 0 of Register 0x24 is cleared.  
The outputs are connected during this test so that the PN sequence  
can be observed as it runs. Writing the value 0x05 to Register 0x0E  
OUTPUT TEST MODES  
The output test options are described in Table 16 at Address 0x0D.  
When an output test mode is enabled, the analog section of the  
ADC is disconnected from the digital back end blocks and the  
test pattern is run through the output formatting block. Some of  
the test patterns are subject to output formatting, and some are  
not. The PN generators from the PN sequence tests can be reset  
by setting Bit 4 or Bit 5 of Register 0x0D. These tests can be per-  
formed with or without an analog signal (if present, the analog  
signal is ignored), but they do require an encode clock. For more  
information, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
Rev. 0 | Page 23 of 32  
 
AD9649  
SERIAL PORT INTERFACE (SPI)  
The falling edge of CSB, in conjunction with the rising edge of  
SCLK, determines the start of the framing. An example of the  
serial timing and its definitions can be found in Figure 55 and  
Table 5.  
The AD9649 SPI allows the user to configure the converter for  
specific functions or operations through a structured register space  
provided inside the ADC. The SPI gives the user added flexibility  
and customization, depending on the application. Addresses are  
accessed via the serial port and can be written to or read from via  
the port. Memory is organized into bytes that can be further  
divided into fields, which are documented in the Memory Map  
section. For detailed operational information, see the AN-877  
Application Note, Interfacing to High Speed ADCs via SPI.  
Other modes involving the CSB are available. The CSB can be  
held low indefinitely, which permanently enables the device;  
this is called streaming. The CSB can stall high between bytes to  
allow for additional external timing. When CSB is tied high, SPI  
functions are placed in high impedance mode. This mode turns  
on any SPI pin secondary functions.  
CONFIGURATION USING THE SPI  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase, and its length is determined  
by the W0 and W1 bits, as shown in Figure 55.  
Three pins define the SPI of this ADC: the SCLK (SCLK/DFS,  
the SDIO (SDIO/PDWN), and the CSB (see Table 13). The SCLK  
(a serial clock) is used to synchronize the read and write data  
presented from and to the ADC. The SDIO (serial data input/  
output) is a dual-purpose pin that allows data to be sent and  
read from the internal ADC memory map registers. The CSB  
(chip select bar) is an active-low control that enables or disables  
the read and write cycles.  
All data is composed of 8-bit words. The first bit of the first byte in  
a multibyte serial data transfer frame indicates whether a read com-  
mand or a write command is issued. This allows the serial data  
input/output (SDIO) pin to change direction from an input to  
an output at the appropriate point in the serial frame.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. If the instruction is a readback  
operation, performing a readback causes the serial data input/  
output (SDIO) pin to change direction from an input to an output  
at the appropriate point in the serial frame.  
Table 13. Serial Port Interface Pins  
Pin  
Function  
SCLK Serial clock. The serial shift clock input, which is used to  
synchronize serial interface reads and writes.  
SDIO Serial data input/output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
Data can be sent in MSB-first mode or in LSB-first mode. MSB  
first is the default on power-up and can be changed via the SPI  
port configuration register. For more information about this  
and other features, see the AN-877 Application Note, Interfacing  
to High Speed ADCs via SPI.  
CSB  
Chip select bar. An active-low control that gates the read  
and write cycles.  
tHIGH  
tDS  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 55. Serial Port Interface Timing Diagram  
Rev. 0 | Page 24 of 32  
 
 
 
AD9649  
In this mode, connect the CSB chip select to DRVDD, which  
disables the serial port interface.  
HARDWARE INTERFACE  
The pins described in Table 13 constitute the physical interface  
between the programming device of the user and the serial port  
of the AD9649. The SCLK pin and the CSB pin function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
Table 14. Mode Selection  
External  
Pin  
SDIO/PDWN DRVDD  
AGND (default)  
DRVDD  
AGND (default)  
Voltage  
Configuration  
Chip power-down mode  
Normal operation (default)  
Twos complement enabled  
Offset binary enabled  
SCLK/DFS  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. For detailed information about one  
method for SPI configuration, refer to the AN-812 Application  
Note, Microcontroller-Based Serial Port Interface (SPI) Boot Circuit.  
SPI ACCESSIBLE FEATURES  
Table 15 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in the AN-877 Application Note, Interfacing to High Speed ADCs  
via SPI. The AD9649 part-specific features are described in detail  
in Table 16.  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used for  
other devices, it may be necessary to provide buffers between this  
bus and the AD9649 to prevent these signals from transitioning  
at the converter inputs during critical sampling periods.  
Table 15. Features Accessible Using the SPI  
Feature  
Description  
Modes  
Allows the user to set either power-down mode or  
standby mode  
The SDIO/PDWN and SCLK/DFS pins serve a dual function when  
the SPI interface is not being used. When the pins are strapped  
to DRVDD or ground during device power-on, they are associated  
with a specific function. The Digital Outputs section describes  
the strappable functions supported on the AD9649.  
Offset Adjust Allows the user to digitally adjust the converter  
offset  
Test Mode  
Allows the user to set test modes to have known  
data on output bits  
Output Mode Allows the user to set up outputs  
CONFIGURATION WITHOUT THE SPI  
Output Phase Allows the user to set the output clock polarity  
Output Delay Allows the user to vary the DCO delay  
In applications that do not interface to the SPI control registers,  
the SDIO/PDWN pin and the SCLK/DFS pin serve as standalone  
CMOS-compatible control pins. When the device is powered up, it  
is assumed that the user intends to use the pins as static control  
lines for the power-down and output data format feature control.  
Rev. 0 | Page 25 of 32  
 
 
 
AD9649  
MEMORY MAP  
READING THE MEMORY MAP REGISTER TABLE  
DEFAULT VALUES  
Each row in the memory map register table (see Table 16) contains  
eight bit locations. The memory map is roughly divided into four  
sections: the chip configuration registers (Address 0x00 to  
Address 0x02); the device transfer registers (Address 0xFF); the  
program registers, including setup, control, and test (Address 0x08  
to Address 0x2A); and the digital feature control registers  
(Address 0x101).  
After the AD9649 is reset, critical registers are loaded with default  
values. The default values for the registers are given in the memory  
map register table (see Table 16).  
Logic Levels  
An explanation of logic level terminology follows:  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
Table 16 documents the default hexadecimal value for each  
hexadecimal address shown. The column with the heading Bit 7  
(MSB) is the start of the default hexadecimal value given. For  
example, Address 0x2A, the OR/MODE select register, has a hexa-  
decimal default value of 0x01. This means that in Address 0x2A,  
Bits[7:1] = 0, and Bit 0 = 1. This setting is the default OR/MODE  
setting. The default value results in the programmable external  
MODE/OR pin (Pin 23) functioning as an out-of-range digital  
output. For more information on this function and others, see the  
AN-877 Application Note, Interfacing to High Speed ADCs via SPI.  
This document details the functions controlled by Register 0x00  
to Register 0xFF. The remaining register, Register 0x101, is docu-  
mented in the Memory Map Register Descriptions section that  
follows Table 16.  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
Transfer Register Map  
Address 0x08 to Address 0x18 are shadowed. Writes to these  
addresses do not affect part operation until a transfer command  
is issued by writing 0x01 to Address 0xFF, setting the transfer bit.  
This allows these registers to be updated internally and simulta-  
neously when the transfer bit is set. The internal update takes  
place when the transfer bit is set, and then the bit autoclears.  
OPEN LOCATIONS  
All address and bit locations that are not included in the SPI map  
are not currently supported for this device. Unused bits of a valid  
address location should be written with 0s. Writing to these loca-  
tions is required only when part of an address location is open  
(for example, Address 0x2A). If the entire address location is  
open, it is omitted from the SPI map (for example, Address 0x13)  
and should not be written.  
Rev. 0 | Page 2ꢀ of 32  
 
 
AD9649  
MEMORY MAP REGISTER TABLE  
All address and bit locations that are not included in Table 16 are not currently supported for this device.  
Table 16.  
Def.  
Value  
Default  
Notes/  
Addr.  
(MSB)  
Bit 7  
(LSB)  
Bit 0  
(Hex) Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
(Hex)  
Comments  
Chip configuration registers  
0x00  
SPI port  
configuration  
0
LSB first  
Soft  
reset  
1
1
Soft  
reset  
LSB first  
0
0x18  
The nibbles are  
mirrored so that  
LSB or MSB first  
mode registers  
correctly, regard-  
less of shift  
mode.  
0x01  
0x02  
Chip ID  
8-bit chip ID, Bits[ꢁ:0]  
AD9ꢀ49 = 0xꢀF  
Read  
only  
Unique chip ID  
used to differen-  
tiate devices;  
read only.  
Chip grade  
Open  
Open  
Speed grade ID, Bits[ꢀ:4]  
(identify device variants of chip ID)  
20 MSPS = 000  
Open  
Read  
only  
Unique speed  
grade ID used to  
differentiate  
devices; read  
only.  
40 MSPS = 001  
ꢀ5 MSPS = 010  
80 MSPS = 011  
Device transfer registers  
0xFF Transfer  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Transfer  
0x00  
0x00  
Synchronously  
transfers data  
from the master  
shift register to  
the slave.  
Program registers  
0x08  
Modes  
External  
Pin 23  
MODE  
input  
External Pin 23  
00 = chip run  
01 = full power-down  
10 = standby  
11 = chip wide  
digital reset  
Determines  
function when high  
00 = full power-down  
01 = standby  
10 = normal mode,  
output disabled  
11 = normal mode,  
output enabled  
various generic  
modes of chip  
operation.  
enable  
0x0B  
0x0D  
Clock divide  
Test mode  
Open  
Clock divider, Bits[2:0]  
Clock divide ratio  
000 = divide-by-1  
001 = divide-by-2  
011 = divide-by-4  
0x00  
0x00  
The divide ratio  
is the value + 1.  
User test mode  
00 = single  
01 = alternate  
10 = single once  
11 = alternate once  
Reset PN Reset PN  
long gen short  
gen  
Output test mode, Bits[3:0] (local)  
0000 = off (default)  
When set, the  
test data is  
placed on the  
output pins in  
place of normal  
data.  
0001 = midscale short  
0010 = positive FS  
0011 = negative FS  
0100 = alternating checkerboard  
0101 = PN 23 sequence  
0110 = PN 9 sequence  
0111 = 1/0 word toggle  
1000 = user input  
1001 = 1/0 bit toggle  
1010 = 1× sync  
1011 = one bit high  
1100 = mixed bit frequency  
0x0E  
0x10  
BIST enable  
Offset adjust  
Open  
Open  
Open  
Open  
Open  
BIST init  
Open  
BIST  
enable  
0x00  
0x00  
When Bit 0 is set,  
the built-in self-  
test function is  
initiated.  
8-bit device offset adjustment, Bits[ꢁ:0] (local)  
Device offset  
trim.  
Offset adjust in LSBs from +12ꢁ to −128 (twos complement format)  
Rev. 0 | Page 2ꢁ of 32  
 
 
AD9649  
Def.  
Value  
Default  
Notes/  
Addr.  
(MSB)  
Bit 7  
(LSB)  
Bit 0  
(Hex) Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
(Hex)  
Comments  
0x14  
Output mode  
00 = 3.3 V CMOS  
10 = 1.8 V CMOS  
Open  
Output  
disable  
Open  
Output  
invert  
00 = offset binary  
01 = twos  
complement  
10 = gray code  
11 = offset binary  
0x00  
0x22  
Configures the  
outputs and the  
format of the  
data.  
0x15  
Output adjust  
3.3 V DCO  
drive strength  
00 = 1 stripe  
(default)  
01 = 2 stripes  
10 = 3 stripes  
11 = 4 stripes  
1.8 V DCO  
3.3 V data  
1.8 V data  
Determines  
CMOS output  
drive strength  
properties.  
drive strength  
00 = 1 stripe  
01 = 2 stripes  
10 = 3 stripes  
(default)  
drive strength  
00 = 1 stripe  
(default)  
01 = 2 stripes  
10 = 3 stripes  
11 = 4 stripes  
drive strength  
00 = 1 stripe  
01 = 2 stripes  
10 = 3 stripes  
(default)  
11 = 4 stripes  
11 = 4 stripes  
0x1ꢀ  
Output phase  
DCO  
Open  
Open  
Open  
Open  
Input clock phase adjust,  
Bits[2:0]  
(Value is number of input clock  
cycles of phase delay)  
000 = no delay  
001 = 1 input clock cycle  
010 = 2 input clock cycles  
011 = 3 input clock cycles  
100 = 4 input clock cycles  
101 = 5 input clock cycles  
110 = ꢀ input clock cycles  
111 = ꢁ input clock cycles  
0x00  
On devices that  
use global clock  
divide, deter-  
mines which  
output  
polarity  
0 =  
normal  
1 = inv  
phase of the  
divider output is  
used to supply  
the output clock;  
internal latching  
is unaffected.  
0x1ꢁ  
Output delay  
Enable  
DCO  
delay  
Open  
Enable  
data  
delay  
Open  
DCO/data delay, Bits[2:0]  
000 = 0.5ꢀ ns  
001 = 1.12 ns  
010 = 1.ꢀ8 ns  
011 = 2.24 ns  
100 = 2.80 ns  
101 = 3.3ꢀ ns  
110 = 3.92 ns  
111 = 4.48 ns  
0x00  
Sets the fine  
output delay of  
the output clock  
but does not  
change internal  
timing.  
0x19  
0x1A  
0x1B  
0x1C  
0x24  
USER_PATT1_LSB  
USER_PATT1_MSB  
USER_PATT2_LSB  
USER_PATT2_MSB  
BIST signature LSB  
Bꢁ  
Bꢀ  
B5  
B4  
B3  
B2  
B1  
B9  
B1  
B9  
B0  
B8  
B0  
B8  
0x00  
0x00  
0x00  
0x00  
0x00  
User-defined  
Pattern 1 LSB.  
B15  
Bꢁ  
B14  
Bꢀ  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
User-defined  
Pattern 1 MSB.  
User-defined  
Pattern 2 LSB.  
B15  
B14  
B13  
B12  
B11  
B10  
User-defined  
Pattern 2 MSB.  
BIST signature, Bits[ꢁ:0]  
Least significant  
byte of BIST sig-  
nature, read only.  
0x2A  
OR/MODE select  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
0 =  
0x01  
Selects I/O  
MODE  
1 = OR  
(default)  
functionality in  
conjunction with  
Address 0x08 for  
MODE (input) or  
OR (output) on  
External Pin 23.  
Digital feature control register  
0x101 USR2  
1
Enable  
GCLK  
detect  
Run  
GCLK  
Disable  
SDIO  
pull-  
0x88  
Enables internal  
oscillator for  
clock rates of  
<5 MHz.  
down  
Rev. 0 | Page 28 of 32  
AD9649  
Bit 2—Run GCLK  
MEMORY MAP REGISTER DESCRIPTIONS  
Bit 2 enables the GCLK oscillator. For some applications with  
encode rates below 10 MSPS, it may be preferable to set this bit  
high to supersede the GCLK detector.  
For additional information about functions controlled in  
Register 0x00 to Register 0xFF, see the AN-877 Application  
Note, Interfacing to High Speed ADCs via SPI.  
Bit 0—Disable SDIO Pull-Down  
USR2 (Register 0x101)  
Bit 0 can be set high to disable the internal 30 kꢁ pull-down on  
the SDIO pin, which can be used to limit the loading when many  
devices are connected to the SPI bus.  
Bit 3—Enable GCLK Detect  
Normally set high, Bit 3 enables a circuit that detects encode  
rates below ~5 MSPS. When a low encode rate is detected, an  
internal oscillator, GCLK, is enabled, ensuring the proper oper-  
ation of several circuits. If set low, the detector is disabled.  
Rev. 0 | Page 29 of 32  
 
 
AD9649  
APPLICATIONS INFORMATION  
To maximize the coverage and adhesion between the ADC and  
the PCB, a silkscreen should be overlaid to partition the continuous  
plane on the PCB into several uniform sections. This provides  
several tie points between the ADC and the PCB during the reflow  
process. Using one continuous plane with no partitions guarantees  
only one tie point between the ADC and the PCB. For detailed  
information about packaging and PCB layout of chip scale  
packages, see the AN-772 Application Note, A Design and  
Manufacturing Guide for the Lead Frame Chip Scale Package  
(LFCSP), at www.analog.com.  
DESIGN GUIDELINES  
Before starting the design and layout of the AD9649 as a system,  
it is recommended that the designer become familiar with these  
guidelines, which discuss the special circuit connections and  
layout requirements needed for certain pins.  
Power and Ground Recommendations  
When connecting power to the AD9649, it is strongly recom-  
mended that two separate supplies be used. Use one 1.8 V supply  
for analog (AVDD); use a separate 1.8 V to 3.3 V supply for the  
digital output supply (DRVDD). If a common 1.8 V AVDD and  
DRVDD supply must be used, the AVDD and DRVDD domains  
must be isolated with a ferrite bead or filter choke and separate  
decoupling capacitors. Several different decoupling capacitors can  
be used to cover both high and low frequencies. Locate these  
capacitors close to the point of entry at the PCB level and close  
to the pins of the part, with minimal trace length.  
Encode Clock  
For optimum dynamic performance, use a low jitter encode  
clock source with a 50% duty cycle ( 5%) to clock the AD9649.  
VCM  
The VCM pin should be decoupled to ground with a 0.1 ꢀF  
capacitor, as shown in Figure 39.  
A single PCB ground plane should be sufficient when using the  
AD9649. With proper decoupling and smart partitioning of the  
PCB analog, digital, and clock sections, optimum performance  
is easily achieved.  
RBIAS  
The AD9649 requires that a 10 kΩ resistor be placed between  
the RBIAS pin and ground. This resistor sets the master current  
reference of the ADC core and should have at least a 1% tolerance.  
Exposed Paddle Thermal Heat Sink Recommendations  
Reference Decoupling  
The exposed paddle (Pin 0) is the only ground connection for  
the AD9649; therefore, it must be connected to analog ground  
(AGND) on the customers PCB. To achieve the best electrical  
and thermal performance, mate an exposed (no solder mask)  
continuous copper plane on the PCB to the AD9649 exposed  
paddle, Pin 0.  
Externally decouple the VREF pin to ground with a low ESR,  
1.0 ꢀF capacitor in parallel with a low ESR, 0.1 ꢀF ceramic  
capacitor.  
SPI Port  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter  
performance. If the on-board SPI bus is used for other devices,  
it may be necessary to provide buffers between this bus and the  
AD9649 to keep these signals from transitioning at the converter  
inputs during critical sampling periods.  
The copper plane should have several vias to achieve the lowest  
possible resistive thermal path for heat dissipation to flow through  
the bottom of the PCB. Fill or plug these vias with nonconduc-  
tive epoxy.  
Rev. 0 | Page 30 of 32  
 
 
 
AD9649  
OUTLINE DIMENSIONS  
5.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
EXPOSED  
PAD  
(BOTTOM VIEW)  
3.65  
3.50 SQ  
3.35  
TOP  
VIEW  
4.75  
BSC SQ  
0.50  
0.40  
0.30  
17  
16  
8
9
0.25 MIN  
0.80 MAX  
0.65 TYP  
3.50 REF  
12° MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
Figure 56. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad  
(CP-32-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
Package Option  
CP-32-4  
CP-32-4  
CP-32-4  
CP-32-4  
CP-32-4  
CP-32-4  
CP-32-4  
CP-32-4  
AD9ꢀ49BCPZ-801, 2  
AD9ꢀ49BCPZRLꢁ-801, 2  
AD9ꢀ49BCPZ-ꢀ51, 2  
AD9ꢀ49BCPZRLꢁ-ꢀ51, 2  
AD9ꢀ49BCPZ-401, 2  
AD9ꢀ49BCPZRLꢁ-401, 2  
AD9ꢀ49BCPZ-201, 2  
AD9ꢀ49BCPZRLꢁ-201, 2  
AD9ꢀ49-80EBZ1  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
Evaluation Board  
AD9ꢀ49-ꢀ5EBZ1  
Evaluation Board  
Evaluation Board  
Evaluation Board  
AD9ꢀ49-40EBZ1  
AD9ꢀ49-20EBZ1  
1 Z = RoHS Compliant Part.  
2 The exposed paddle (Pin 0) is the only GND connection on the chip and must be connected to the PCB AGND.  
Rev. 0 | Page 31 of 32  
 
 
 
AD9649  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08539-0-10/09(0)  
Rev. 0 | Page 32 of 32  
 
 
 
 
 
 
 
 
 
 
 

相关型号:

AD9649BCPZ-65

14-Bit, 20/40/65/80 MSPS 1.8 V Analog-to-Digital Converter
ADI

AD9649BCPZ-80

14-Bit, 20/40/65/80 MSPS 1.8 V Analog-to-Digital Converter
ADI

AD9649BCPZRL7-20

14-Bit, 20/40/65/80 MSPS 1.8 V Analog-to-Digital Converter
ADI

AD9649BCPZRL7-40

14-Bit, 20/40/65/80 MSPS 1.8 V Analog-to-Digital Converter
ADI

AD9649BCPZRL7-65

14-Bit, 20/40/65/80 MSPS 1.8 V Analog-to-Digital Converter
ADI

AD9649BCPZRL7-80

14-Bit, 20/40/65/80 MSPS 1.8 V Analog-to-Digital Converter
ADI

AD9649_17

14-Bit, 20/40/65/80 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9650

16-Bit, 25 MSPS/65 MSPS/80 MSPS/105 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9650-105EBZ

16-Bit, 25 MSPS/65 MSPS/80 MSPS/105 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9650-25EBZ

16-Bit, 25 MSPS/65 MSPS/80 MSPS/105 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9650-65EBZ

16-Bit, 25 MSPS/65 MSPS/80 MSPS/105 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9650-80EBZ

16-Bit, 25 MSPS/65 MSPS/80 MSPS/105 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
ADI