AD9665 [ADI]

4-Channel, LVDS, Dual-Output, Laser Diode Driver with Oscillator; 4通道, LVDS ,双路输出,激光二极管驱动器与振荡器
AD9665
型号: AD9665
厂家: ADI    ADI
描述:

4-Channel, LVDS, Dual-Output, Laser Diode Driver with Oscillator
4通道, LVDS ,双路输出,激光二极管驱动器与振荡器

振荡器 驱动器 二极管 激光二极管
文件: 总17页 (文件大小:447K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4-Channel, LVDS, Dual-Output,  
Laser Diode Driver with Oscillator  
AD9665  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
W3SET  
W3DIS  
W3DISN  
Dual, current-controlled output current sources with 4 input  
channels  
WRITE  
CHANNEL 3  
TTL-selectable output  
W2SET  
W2DIS  
W2DISN  
Stable on-chip oscillators with independent frequency and  
amplitude control  
WRITE  
OUTPUT A  
OUTPUT B  
ENABLE  
LD1  
LD2  
CHANNEL 2  
TTL- or LVDS-selectable write channel enables negative logic  
Independent TTL oscillator enables positive logic  
170 mA minimum output current for the read channel  
510 mA minimum output current for Write Channel 1  
330 mA minimum output current for Write Channel 2  
165 mA minimum output current for Write Channel 3  
950 mA typical total output current  
W1SET  
W1DIS  
W1DISN  
WRITE  
CHANNEL 1  
RSET  
RDIS  
READ CHANNEL  
OSCILLATOR  
Typical rise time/fall time of 0.8 ns  
Low power consumption  
OSCEN  
Single 5 V power supply ( 10%)  
INS OUTSEL  
F
F
A
A
ADJ2  
ADJ1  
ADJ2  
ADJ1  
Figure 1. 4-Channel, LVDS, Laser Driver Block Diagram  
APPLICATIONS  
DVD-R, DVD+R, DVD-RW, DVD+RW, DVD-RAM  
supercombo drives  
Magneto-optical (MO) drives  
Laser diode current switching  
1
2
3
4
5
6
7
8
24  
23  
W3DISN  
W3DIS*  
GND  
INS  
V
DD  
22  
21  
GENERAL DESCRIPTION  
LD1  
LD1  
GND  
LD2  
LD2  
AD9665  
GND  
The AD9665 is a laser diode driver for high performance CD-RW  
and DVD recordable drives. It includes four channels for four  
different optical power levels: the read channel generates a  
continuous output power level, whereas Channel 1, Channel 2,  
and Channel 3 can be used as write channels that can be  
controlled with an LVDS or TTL interface. The WxDIS and  
LFCSP  
20  
19  
18  
17  
W2DISN  
W2DIS*  
W1DISN  
W1DIS*  
5mm  
(Not to Scale)  
× 5mm  
V
DD  
RDIS  
pins are active low logic. The OSCEN pin is controlled by  
*TTL ACTIVE LOW  
NOTES  
an active high TTL signal. All active channels are summed at  
the output where Write Channel 1 can contribute at least  
325 mA output current, and Write Channel 2 and Write  
Channel 3 can contribute at least 250 mA and 150 mA,  
respectively. The level of the output current is set by an  
external resistor, which converts this voltage into a current  
at the WxSET pin.  
1. THE EXPOSED PAD SHOULD BE CONNECTED TO GROUND.  
Figure 2. 4-Channel, LVDS, Laser Driver Pin Configuration  
An on-chip oscillator is provided to allow output current  
modulation and to reduce laser-mode hopping. Four external  
resistors permit the setting of two distinct values for the  
frequency and swing of the oscillator. The oscillator can output  
up to 100 mA p-p of current (push-pull oscillator) with a  
frequency range of 200 MHz to 500 MHz.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2010 Analog Devices, Inc. All rights reserved.  
 
 
 
 
IMPORTANT LINKS for the AD9665*  
Last content update 08/25/2013 11:00 pm  
PARAMETRIC SELECTION TABLES  
DESIGN SUPPORT  
Submit your support request here:  
Linear and Data Converters  
Embedded Processing and DSP  
Find Similar Products By Operating Parameters  
Telephone our Customer Interaction Centers toll free:  
DOCUMENTATION  
Americas:  
Europe:  
China:  
1-800-262-5643  
00800-266-822-82  
4006-100-006  
4-Channel, LVDS, Dual-Output, Laser Diode Driver with Oscillator  
(AD9665 Product Highlight)  
India:  
1800-419-0108  
8-800-555-45-90  
Russia:  
Quality and Reliability  
Lead(Pb)-Free Data  
DESIGN TOOLS, MODELS, DRIVERS & SOFTWARE  
Analog Filter Wizard 2.0  
SAMPLE & BUY  
AD9665  
EVALUATION KITS & SYMBOLS & FOOTPRINTS  
Symbols and Footprints  
View Price & Packaging  
Request Evaluation Board  
Request Samples  
Check Inventory & Purchase  
DESIGN COLLABORATION COMMUNITY  
Find Local Distributors  
Collaborate Online with the ADI support team and other designers  
about select ADI products.  
Follow us on Twitter: www.twitter.com/ADI_News  
Like us on Facebook: www.facebook.com/AnalogDevicesInc  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet.  
Note: Dynamic changes to the content on this page (labeled 'Important Links') does not  
constitute a change to the revision number of the product data sheet.  
This content may be frequently modified.  
AD9665  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Board Layout..................................................................................9  
Temperature Considerations .......................................................9  
Shutdown Supply Current Variation ....................................... 11  
Evaluation Board ............................................................................ 12  
Schematic..................................................................................... 12  
Operation......................................................................................... 13  
Pin Descriptions ......................................................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Logic Table......................................................................................... 8  
Applications....................................................................................... 9  
REVISION HISTORY  
8/10—Revision E: Initial Version  
Rev. E | Page 2 of 16  
 
AD9665  
SPECIFICATIONS  
RDIS  
At 25°C, VDD = 5 V, ENABLE = 1, OSCEN = 0, FADJ = 6.81 kΩ, AADJ = 5.76 kΩ, VOUT = 2.5 V, IOUT = 50 mA (Read),  
unless otherwise specified.  
= 0,  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
LASER AMPLIFIER  
Output Current Read Channel  
Output is sourcing, IIN = 2 mA  
Output is sourcing, VOUT = 3.5 V, IIN = 2 mA  
Output is sourcing, IIN = 2 mA  
Output is sourcing, VOUT = 3.5 V, IIN = 2 mA  
Output is sourcing, IIN = 2 mA  
Output is sourcing, VOUT = 3.5 V, IIN = 2 mA  
Output is sourcing, IIN = 2 mA  
Output is sourcing, VOUT = 3.5 V, IIN = 2 mA  
All channels sourcing, IIN = 1.45 mA  
All channels sourcing, VOUT = 3.5 V, IIN = 1.45 mA  
Read channel or Write Channel 31  
Write Channel 12 or Write Channel 23  
Write Channel 1, VOUT = 3.5 V, IIN = 2 mA4  
Read channel1  
170  
150  
510  
450  
330  
290  
165  
145  
875  
775  
−1.5  
−1.0  
−15  
85  
190  
170  
540  
480  
360  
320  
185  
165  
950  
850  
0.4  
mA  
mA  
Output Current Write Channel 1  
Output Current Write Channel 2  
Output Current Write Channel 3  
Total Output Current (See Figure 11)  
Output Current Linearity Error  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
+1.5  
+1.0  
%
0.2  
%
−9  
%
Best-Fit Current Gain  
Best-Fit Current Offset  
105  
300  
200  
100  
−2  
115  
335  
225  
110  
+4  
mA/mA  
mA/mA  
mA/mA  
mA/mA  
mA  
Write Channel 12  
Write Channel 23  
Write Channel 31  
Read channel or Write Channel 31  
Write Channel 12  
265  
165  
80  
−7  
−17  
−11  
140  
−3  
+11  
+8  
mA  
Write Channel 23  
−1  
mA  
IIN Input Impedance (RIN), All Channels  
IOUT Current Output Noise  
RIN to GND, IOUT = 0 mA  
200  
100  
3.5  
260  
Ω
f = 300 MHz  
pA/√Hz  
%/V  
%/V  
IOUT Supply Sensitivity, (PSRR) Read Mode  
IOUT Supply Sensitivity, (PSRR) Write Mode  
VDD = 5 V 10%  
IOUT = 100 mA, 50 mA read channel,  
3.5  
50 mA any write channel, VDD = 5 V 10%  
IOUT Temperature Sensitivity, Read Mode  
IOUT Temperature Sensitivity, Write Mode  
175  
150  
390  
350  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
IOUT = 100 mA (50 mA read channel, 50 mA Write Channel 1)  
IOUT = 100 mA (50 mA read channel, 50 mA Write Channel 2)  
IOUT = 100 mA (50 mA read channel, 50 mA Write Channel 3)  
LASER AMPLIFIER AC SPECIFICATIONS  
Write Rise Time  
IOUT = 50 mA (read channel), 150 mA (Write Channel 1)5  
IOUT = 65 mA (read channel), 375 mA (Write Channel 1),  
0.75  
0.8  
0.95  
1.3  
ns  
ns  
V
DD = 5 V, VOUT = 3.5 V6  
IOUT = 50 mA (read channel), 100 mA (Write Channel 2)5  
IOUT = 50 mA (read channel), 50 mA (Write Channel 3)5  
IOUT = 50 mA (read channel), 150 mA (Write Channel 1)7  
IOUT = 65 mA (read channel), 375 mA (Write Channel 1),  
0.6  
0.8  
ns  
ns  
ns  
ns  
0.55  
0.55  
0.4  
0.75  
0.75  
0.6  
Write Fall Time  
V
DD = 5 V, VOUT = 3.5 V8  
IOUT = 50 mA (read channel), 100 mA (Write Channel 2)7  
IOUT = 50 mA (read channel), 50 mA (Write Channel 3)7  
Logic at 50% of final value to IOUT at 50% of final value  
Logic at 50% of final value to IOUT at 50% of final value  
ENABLE 50% H-L to IOUT at 50% of final value  
0.55  
0.45  
5.2  
6.3  
3.8  
5.5  
3
0.75  
0.65  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IOUT ON Propagation Delay (LVDS Mode)  
IOUT OFF Propagation Delay (LVDS Mode)  
Disable Time  
Enable Time  
ENABLE 50% L-H to IOUT at 50% of final value  
Output Switching Time  
OUTSEL 50% to IOUT at 50% of final value  
OSCILLATOR SPECIFICATIONS  
Oscillator Frequency  
OSCEN = 1  
280  
315  
50  
340  
MHz  
Oscillator Amplitude  
OSCEN = 1  
mA p-p  
μA p-p/°C  
kHz/°C  
Oscillator Temperature Coefficient  
Oscillator amplitude, OSCEN = 1  
Oscillator frequency, OSCEN = 1  
60  
195  
Rev. E | Page 3 of 16  
 
AD9665  
Parameter  
Conditions  
Min  
Typ  
2
Max  
Unit  
ns  
Disable Time Oscillator  
Enable Time Oscillator  
LOGIC SPECIFICATIONS  
INS = 1 (LVDS Mode)  
Minimum Differential Input Voltage  
Maximum Differential Input Voltage  
Valid Input Voltage  
OSCEN 50% H-L to IOUT at 50% of final value, OSCEN = 1  
OSCEN 50% L-H to IOUT at 50% of final value, OSCEN = 1  
4
ns  
Magnitude  
100  
0
mV  
mV  
V
Magnitude  
600  
2.4  
Relative to GND  
OUTEN  
Logic HI Threshold  
Temperature stabilized  
Temperature stabilized  
2.0  
V
V
Logic LO Threshold  
SUPPLY CURRENT9  
0.8  
W1DIS10  
W2DIS10  
W3DIS10  
ENABLE  
OSCEN  
RDIS  
INS = 1 (LVDS Mode)  
Power Down  
0
1
1
1
0
0
1
1
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
8.6  
26  
46  
54  
mA  
mA  
mA  
mA  
Inputs Disabled, Read Enabled  
Inputs Disabled, Oscillator Enabled  
Read Mode, Oscillator Enabled11  
IOUT = 50 mA  
Write Mode11  
1
0
1
0
0
0
49  
mA  
IOUT = 150 mA (50 mA Write  
Channel 1, Write Channel 2,  
Write Channel 3)  
INS = 0 (TTL Mode)  
Power-Down  
0
1
1
1
0
0
1
1
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
9.5  
23  
43  
51  
mA  
mA  
mA  
mA  
Inputs Disabled, Read Enabled  
Inputs Disabled, Oscillator Enabled  
Read Mode, Oscillator Enabled11  
IOUT = 50 mA  
Write Mode11  
1
0
1
0
0
0
43  
mA  
IOUT = 150 mA (50 mA Write  
Channel 1, Write Channel 2,  
Write Channel 3)  
OPERATING CONDITIONS  
Supply Voltage Range  
4.5  
5.5  
V
Operating Temperature Range  
−25  
+85  
°C  
1 Output linearity, offset current, and gain are calculated using the best-fit method at 30 mA, 60 mA, and 90 mA. The transfer function is IOUT = (IIN × GAIN) + IOS  
.
2 Output linearity, offset current, and gain are calculated using the best-fit method at 90 mA, 120 mA, and 150 mA. The transfer function is IOUT = (IIN × GAIN) + IOS  
.
3 Output linearity, offset current, and gain are calculated using the best-fit method at 60 mA, 90 mA, and 120 mA. The transfer function is IOUT = (IIN × GAIN) + IOS  
.
4
Output linearity is calculated using the best-fit method, which is calculated at 90 mA, 120 mA, and 150 mA, extrapolated to IIN = 2 mA.  
5 Measured electrically from 10% to 90% of final value. Sharp Diode—GH06550B2B (see Figure 14).  
6 Measured electrically from 10% to 90% of final value. Mitsubishi Diode—ML101J26. RL = 0.66 Ω (see Figure 14).  
7 Measured electrically from 90% to 10% of final value. Sharp Diode—GH06550B2B (see Figure 14).  
8 Measured electrically from 90% to 10% of final value. Mitsubishi Diode—ML101J26. RL = 0.66 Ω (see Figure 14).  
9 See the Shutdown Supply Current Variation section for more information.  
10 WxDIS = 0 means channel is off regardless of mode: TTL or LVDS (see Table 3). WxDIS = 1 means channel is on regardless of mode: TTL or LVDS (see Table 3).  
11 The value specified does not include the output current.  
Rev. E | Page 4 of 16  
 
AD9665  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Range  
Supply Voltage (+VDD)  
Pins 10, 11, 17, 23, 32  
6 V  
Input Pins  
Pins 12, 13, 14, 15  
2.2 mA  
Pins 1, 2, 5, 6, 7, 8, 9, 16, 24, 29, 30  
Internal Power Dissipation1  
5 mm × 5 mm, 32-Lead, Pad-Up LFCSP  
Operating Temperature Range  
Storage Temperature Range  
−0.8 V to +VDD  
2 W  
ESD CAUTION  
−25°C to +85°C  
−65°C to +150°C  
1 Power dissipation is specified on semistandard 4-layer board.  
Rev. E | Page 5 of 16  
 
 
 
AD9665  
TYPICAL PERFORMANCE CHARACTERISTICS  
700  
200  
175  
150  
125  
100  
75  
A
= 5.76k  
F
= 6.81kΩ  
ADJ  
ADJ  
600  
500  
400  
300  
200  
100  
0
READ (50mA)  
READ (50mA) AND WRITE 3 (50mA)  
READ (50mA) AND WRITE 2 (50mA)  
READ (50mA) AND WRITE 1 (50mA)  
50  
25  
0
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
RESISTANCE (k)  
ADJUST  
12  
14  
F
RESISTANCE (k)  
A
ADJ  
Figure 3. Oscillator Frequency vs. FADJ  
Figure 6. Oscillator Amplitude vs. AADJ  
70  
60  
50  
40  
30  
20  
10  
0
70  
65  
60  
55  
50  
45  
40  
35  
30  
A
= 5.76kΩ  
A
F
= 5.76kΩ  
= 6.81kΩ  
ADJ  
ADJ  
ADJ  
(50mA)  
READ  
(50mA)  
(50mA)  
READ  
AND WRITE 3  
(50mA)  
(50mA)  
READ  
AND WRITE 2  
(50mA)  
READ  
AND WRITE 1  
(50mA)  
200  
250  
300  
350  
400  
450  
500  
550  
600  
0
10  
20  
30  
I
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (MHz)  
CURRENT (mA DC)  
OUT  
Figure 4. Oscillator Amplitude vs. Frequency  
Figure 7. Oscillator Amplitude vs. IOUT-DC  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
2.5  
SECOND HARMONIC  
THIRD HARMONIC  
2.0  
1.5  
1.0  
0.5  
0
OUT 2  
FOURTH HARMONIC  
OUT 1  
FIFTH HARMONIC  
0.1  
1
10  
100  
1000  
100  
200  
300  
400  
500  
600  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 5. IOUT Current Noise  
Figure 8. Oscillator Distortion vs. Frequency  
Rev. E | Page 6 of 16  
 
AD9665  
60  
55  
50  
45  
40  
35  
30  
330  
325  
320  
315  
310  
305  
300  
WRITE 3  
READ  
WRITE 1  
WRITE 2  
A
F
= 5.76kΩ  
= 6.81kΩ  
A
F
= 5.76k  
= 6.81kΩ  
ADJ  
ADJ  
ADJ  
ADJ  
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. Oscillator Amplitude vs. Temperature  
Figure 12. Oscillator Frequency vs. Temperature  
1250  
1000  
750  
500  
250  
0
1250  
1000  
750  
500  
250  
0
V
V
= 5V  
V
V
= 5V  
DD  
DD  
= 2.5V  
= 3.5V  
OUT  
OUT  
TEMPERATURE = 25°C  
TEMPERATURE = 25°C  
TOTAL I  
OUT  
TOTAL I  
OUT  
WRITE 1  
WRITE 1  
READ  
WRITE 2  
WRITE 2  
READ  
WRITE 3  
1.8  
WRITE 3  
1.8 2.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
2.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
INPUT CURRENT (mA)  
INPUT CURRENT (mA)  
Figure 10. Output Current vs. Input Current for Each Channel, VOUT = 2.5 V  
Figure 13. Output Current vs. Input Current for Each Channel, VOUT = 3.5 V  
1000  
AD9665  
V
= 5V  
DD  
TEMPERATURE = 25°C  
V
= 2V  
OUT  
READ  
4.32k200Ω  
INS  
V
= 2.5V  
OUT  
800  
600  
400  
200  
0
+5V  
V
_RD  
IN  
WR1  
4.32k200Ω  
V
= 3V  
OUT  
V
V
V
_WR1  
_WR2  
_WR3  
IN  
IN  
IN  
I
_1  
OUT  
WR2  
4.32k200Ω  
50Ω  
SCOPE  
LD_1  
V
= 3.5V  
OUT  
R
WR3  
4.32k200Ω  
S
R
L
R
46.4Ω  
TERM  
3.4Ω  
50Ω  
RD ENABLE  
W1_P  
W1_N  
I
_2  
OUT  
I
= I  
= I  
= I  
= I  
IN  
IN_RD  
IN_WR1  
IN_WR2  
IN_WR3  
1.8  
50Ω  
SCOPE  
R
WR1 ENABLE  
LD_2  
T
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
2.0  
100Ω  
INPUT CURRENT FOR EACH CHANNEL (mA)  
R
S
R
L
R
46.4Ω  
TERM  
3.4Ω  
50Ω  
Figure 11. Total IOUT vs. IIN  
W2_P  
R
100Ω  
T
WR2 ENABLE  
WR3 ENABLE  
W2_N  
W3_P  
R
T
100Ω  
OUTSEL  
+5V  
W3_N  
Figure 14. Electrical LVDS Pulse Response Schematic  
Rev. E | Page 7 of 16  
 
 
AD9665  
LOGIC TABLE  
Table 3.  
ENABLE OUTSEL OSCEN  
INS  
RDIS  
W1DIS  
W1DISN  
W2DIS  
W2DISN  
W3DIS  
W3DISN  
OSC  
LD1  
LD2  
L
H
H
x
L
L
x
L
x
x
x
x
x
x
x
x
x
OFF  
OFF  
L
L
L
L
H
H
x
x
H
H
x
x
H
H
x
x
OFF  
ON  
OFF  
OFF  
I
× 100mA/mA  
RSET  
I
I
× 100mA/mA +  
RSET  
H
(F  
+ A  
)
OSC ADJ2  
ADJ2  
I
×
W1SET  
300mA/mA +  
(F + A  
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
L
H
H
x
x
x
H
L
x
x
x
H
H
L
x
x
x
ON  
ON  
ON  
OFF  
OFF  
OFF  
I
)
OSC ADJ2 ADJ2  
I
I
× 200mA/mA +  
W2SET  
I
(F  
+ A )  
OSC ADJ2  
ADJ2  
× 100mA/mA +  
W3SET  
I
(F  
+ A  
)
H
OSC ADJ2  
ADJ2  
I
(F  
OSC ADJ2  
+ A  
)
ADJ2  
H
H
L
L
H
L
L
H
L
H
H
x
H
H
x
H
H
x
ON  
OFF  
OFF  
(NOT RECOMMENDED)  
H
L
L
L
OFF  
I
× 100mA/mA  
RSET  
I
I
× 100mA/mA +  
RSET  
H
H
H
H
L
L
L
L
H
H
H
H
H
H
H
H
L
H
H
H
H
L
L
H
L
H
H
L
L
L
H
H
H
L
L
L
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
(F  
+ A  
)
OSC ADJ2  
ADJ2  
I
×
W1SET  
300mA/mA +  
(F + A  
I
)
OSC ADJ2 ADJ2  
I
I
× 200mA/mA +  
W2SET  
I
(F  
+ A )  
H
H
H
L
L
OSC ADJ2  
ADJ2  
× 100mA/mA +  
W3SET  
I
(F  
+ A  
)
L
H
H
OSC ADJ2  
ADJ2  
I
(F  
OSC ADJ2  
+ A  
)
ADJ2  
H
H
L
H
L
H
L
H
L
H
H
x
x
H
H
x
x
H
H
x
x
ON  
OFF  
(NOT RECOMMENDED)  
H
OFF  
I
× 100mA/mA  
OFF  
RSET  
I
I
× 100mA/mA +  
RSET  
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
H
H
H
H
L
x
x
x
x
H
H
L
x
x
x
x
H
H
H
L
x
x
x
x
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
(F  
+ A )  
OSC ADJ1  
ADJ1  
I
× 300mA/mA +  
W1SET  
I
(F  
+ A )  
OSC ADJ1  
ADJ1  
I
I
× 200mA/mA +  
W2SET  
I
(F  
+ A )  
H
H
OSC ADJ1  
ADJ1  
× 100mA/mA +  
W3SET  
I
(F  
+ A  
)
H
OSC ADJ1  
ADJ1  
I
(F  
OSC ADJ1  
+ A  
)
ADJ1  
H
H
H
H
H
L
L
H
L
H
H
x
H
H
x
H
H
x
ON  
OFF  
OFF  
(NOT RECOMMENDED)  
H
L
L
L
OFF  
I
× 100mA/mA  
RSET  
I
I
× 100mA/mA +  
RSET  
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
L
L
H
L
H
H
L
L
L
H
H
H
L
L
L
ON  
ON  
ON  
(F  
+ A  
)
OFF  
OFF  
OFF  
OSC ADJ1  
ADJ1  
I
I
I
× 300mA/mA +  
W1SET  
I
(F  
+ A )  
OSC ADJ1  
ADJ1  
× 200mA/mA +  
W2SET  
I
(F  
+ A )  
H
H
H
L
OSC ADJ1  
ADJ1  
× 100mA/mA +  
W3SET  
I
(F  
+ A  
)
H
H
H
H
H
H
H
H
L
L
H
H
L
H
L
ON  
ON  
OFF  
OFF  
OSC ADJ1  
ADJ1  
I
(F  
OSC ADJ1  
+ A  
)
ADJ1  
H
H
L
H
(NOT RECOMMENDED)  
OUTSEL  
INS  
OSCEN  
TTL  
H = LD1 OUTPUT  
L = LD2 OUTPUT  
H = LVDS  
L = TTL  
H = OSCILLATOR ON  
L = OSCILLATOR OFF  
USE LVDS + INPUT  
Rev. E | Page 8 of 16  
 
 
AD9665  
APPLICATIONS  
The AD9665 uses the current at one or more of its four inputs,  
RSET, W1SET, W2SET, and W3SET, and generates an output  
current proportional to the sum of the input currents. The read  
channel has a typical gain of 105 mA/mA, Write Channel 1 has  
a typical gain of 300 mA/mA, Write Channel 2 has a typical  
gain of 200 mA/mA, and Write Channel 3 has a typical gain of  
100 mA/mA. The input impedance of all the channels is  
typically 200 Ω. In most cases, a voltage output DAC can be  
used to drive these channels. In this case, a series resistance  
should be placed between each of the DAC channels and the  
respective input on the AD9665. These resistances should be  
selected to scale the desired maximum output current for each  
channel with an appropriate voltage from the DAC without  
excessively loading it.  
Add this to the ~2 V of operating voltage that is required for the  
laser diode, and voltage headroom can become a problem if  
operating on a 5 V supply. Because the di/dt term seems to be a  
system requirement, L is the only contributor that can be  
changed when trying to reduce the voltage drop. Decreasing the  
inductance of the FPC can be done by either making the trace  
wider or by making it shorter. Because the distance from the  
laser diode driver (LDD) to the laser diode is fixed, using a  
wider trace is the only option. This can be accomplished by  
changing from a single-layer FPC design to a double-layer FPC  
design. This additional layer allows the full width of the FPC  
from the LDD to the laser diode to be used for the drive  
current, while the bottom layer can be used entirely for the  
return path (see Figure 15).  
BOARD LAYOUT  
Due to the fast rise and fall time (<1 ns) required for the  
operation of high speed drives, trace lengths carrying high  
VIA  
speed signals, such as  
, W1DIS, W2DIS, and W3DIS, and  
RDIS  
I
DIODE  
I
DIODE  
I
DIODE  
I
DIODE  
the output current should be kept as short as possible to  
minimize series inductance. A decoupling capacitor should be  
located near each VDD pin, and the ground return for the  
cathode of the laser diode should be kept as short as possible.  
LASER  
DIODE  
TOP  
TRACE  
An S11 measurement of a piece of flexible printed circuit board  
(FPC) can show the inductance associated with that section of  
the FPC. In Table 4, an S11 measurement of two different pieces  
of a 19 mm (0.75 in) FPC was taken. The first piece is a single  
layer of an FPC with 0.5 ounce copper and 25.4 micron (1 mil)  
thick Kapton® and coverlay. The second piece is an FPC with  
2 layers of 0.5 ounce copper and 25.4 micron (1 mil) thick  
Kapton and coverlay.  
BOTTOM  
TRACE  
SINGLE-LAYER  
FPC  
DOUBLE-LAYER  
FPC  
Figure 15. Single-Layer and Double-Layer Flexible Printed Circuit Boards  
TEMPERATURE CONSIDERATIONS  
The AD9665 is available in a 32-lead LFCSP with an exposed  
heat pad on top of the package. Using a 4-layer JEDEC standard  
test board, the θJA of this package was determined without any  
external heat sink attached to the exposed pad. This board is  
made of FR4, is 1.60 mm thick, and consists of four copper  
layers. The two internal layers are solid copper (1 oz/in2 or  
0.35 mm thick). The two surface layers (containing the  
component and back side traces) use 2 oz/in2 (0.70 mm thick)  
of copper. This method of construction yields a θJA for the  
AD9665 of approximately 110°C/W. An integrated circuit  
dissipating 500 mW and packaged in an LFCSP, while operating  
in an ambient environment of 85°C, would have an internal  
junction temperature of approximately 140°C.  
Table 4. Inductance of FPC  
S11  
L, nH @ 10 MHz  
L, nH @ 300 MHz  
Single-layer FPC  
Double-layer FPC  
8.8  
4.3  
8.5  
4.2  
As indicated by the measurement results, using two layers of  
copper in an FPC can reduce inductance by over 50%. Using the  
basic circuit equation  
di  
V = L  
dt  
85°C + 0.5 W × 110°C/W = 140°C  
it can be seen that increasing the amplitude of a current step  
increases the voltage drop across the inductor. For example, on  
the single-layer FPC, a 200 mA pulse with a rise time of 1 ns  
generates a voltage drop of 1.86 V, assuming an additional  
0.5 nH of inductance due to the laser diode itself. Increase this  
current to 250 mA, and the voltage drop is greater than 2.3 V.  
This junction temperature is within the maximum  
recommended operating junction temperature of 150°C. This  
can be improved by attaching an external heat sink to the exposed  
heat pad of the package. Of course, this is not a realistic method for  
mounting a laser diode driver in an optical storage device.  
In an actual application, the laser diode driver would most  
likely be mounted to a flexible circuit board. The θJA of a system  
is highly dependent on the board layout, material, and heat  
sink. The user must consider these conditions carefully.  
Rev. E | Page 9 of 16  
 
 
 
 
 
AD9665  
Some of the circuitry of the AD9665 can be used to monitor the  
internal junction temperature.  
While the power to the AD9665 is disconnected, the AD9665  
should be allowed to reach thermal equilibrium (at the desired  
ambient temperature). With all channels turned off such that  
The AD9665 uses a combination of diodes and transistors to  
protect it from electrostatic discharge (ESD). All input pins have  
a diode between them and ground, with the anode connected to  
ground and the cathode connected to the particular input pin.  
The base-emitter junction of a PNP transistor is used for ESD  
protection for each pin to VDD. The collector is electrically  
connected to the substrate of the die (see Figure 16). The base-  
emitter junction of this transistor can be used to monitor the  
internal die temperature of the IC.  
I
OUT = 0 mA, measure V1 as shown in Figure 16 (note the  
polarity).  
The second point of the 2-point measurement is obtained when  
the AD9665 is operated under load, for example, while driving  
a laser. Before taking the measurement, the AD9665 must be  
allowed adequate time to reach a thermal equilibrium.  
As seen in Figure 16, the AD9665 has a finite parasitic  
resistance (RS) between VDD (Pin 17) and the base of the PNP  
transistor. This resistance is typically 120 mΩ. Because the goal  
of the experiment is to measure ΔVBE of the transistor, the  
voltage drop across this resistance must be taken into account to  
get an accurate representation of the actual ΔVBE. This voltage  
drop varies depending on the output current of the AD9665  
operating under load. Therefore, the actual supply current (IDD)  
must be measured for each measurement.  
Using a 10 V source at the enable pin to forward-bias the base-  
emitter junction and a 1 MΩ resistor to limit the current, a  
2-point measurement can be used to calculate the junction  
temperature of the IC. Because the enable pin (ENABLE) needs  
to be high for normal operation, the AD9665 can be operated  
normally with the 10 V applied through the 1 MΩ resistor.  
For this experiment, V1 and V2 were measured between the  
ENABLE pin (Pin 16) and the closest VDD pin (Pin 17).  
VDROP = IDD × RS  
AD9665  
So the resulting ΔVBE can be found as  
I
DD  
ΔVBE = (V2 + VDROP2) − (V1 + VDROP1  
)
V
R
S
DD  
5V  
For increasing temperature, this result should be negative.  
V1, V2  
+
I
From ΔVBE, the final junction temperature is determined by  
BE  
1M  
ENABLE  
ΔVBE  
TJ =TA +  
10V  
GND  
1.9 mV/°C  
From the resulting temperature rise in addition to the measured  
power dissipation, the thermal resistance from the junction to  
ambient can be calculated as  
Figure 16. Junction Temperature Measurement Circuit  
The most important aspect of measuring junction temperature  
on the AD9665 is that only one variable in the system is  
changed at a time. In this case, the only variable is the amount  
of power being dissipated by the AD9665. Therefore, the  
ambient temperature should be held constant. For example, to  
measure the junction temperature of the AD9665 while  
operating at 60°C ambient, the ambient temperature must be  
held constant for both the initial measurement, V1, and the  
final measurement, V2. This is true because of the relationship  
between temperature and VBE. For the process with which the  
AD9665 is fabricated, the change in VBE (ΔVBE) is related to the  
die temperature by −1.9 mV/°C (note the negative coefficient).  
Therefore, die temperature is directly related to ambient  
temperature and the power dissipated.  
PD = VDD × IDD VLOAD × ILOAD  
TJ TA  
θJA  
=
PD  
Rev. E | Page 10 of 16  
 
AD9665  
SHUTDOWN SUPPLY CURRENT VARIATION  
The AD9665 defaults to TTL input mode when the ENABLE  
pin is tied low (ENABLE = 0), regardless of the position of the  
INS pin. Because of this, there can be additional supply current  
due to the applied voltage on the read, write, or OSCEN enable  
pins, the cause of which is an inverter located on the TTL input  
ENABLE pins (see Figure 17).  
Voltages close to GND or VDD are not sufficient to turn on  
both transistors. However, as voltages vary from these extremes,  
significant current can flow. Figure 18 shows how the power-  
down current varies with voltage applied on the read, write, or  
OSCEN enable pins.  
Therefore, to ensure the lowest possible shutdown current,  
the read, write, and OSCEN voltages should be tied to either  
0 V or 5 V.  
+V  
DD  
16  
CHIP DISABLED  
INPUT  
OUTPUT  
12  
VALID  
TTL LOW  
VALID  
TTL HIGH  
8
4
0
GND  
Figure 17. Inverter Circuit  
NONVALID  
TTL REGION  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
TTL VOLTAGE ON READ AND WRITE CHANNELS (V)  
Figure 18. Read and Write TTL Enable Voltage vs. Supply Current  
Rev. E | Page 11 of 16  
 
 
 
AD9665  
EVALUATION BOARD  
SCHEMATIC  
OUTSEL  
OSCEN  
W10  
VD  
V
R20  
W1  
DD  
R22  
DNI  
DNI  
R15  
R16  
R17  
R18  
VDD  
6.81k6.81k5.76k5.76kΩ  
+
C6  
0.1µF  
C13  
10µF  
SHORT, WIDE,  
AND CLOSE  
W3DISN  
VDNEG  
W3DIS  
VDNEG  
W2DISN  
VDNEG  
W2DIS  
VDNEG  
W1DISN  
VDNEG  
W1DIS  
VDNEG  
32 31 30 29 28 27 26 25  
W2  
W3  
W4  
W5  
W6  
W7  
VD  
R1  
VDPOS  
D1  
100Ω  
R6  
DNI  
W11  
LD1  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
W3DISN  
INS  
VDD  
R4  
46.4Ω  
C7  
DNI  
R5  
3.1Ω  
W3DIS  
GND  
V
DD  
+
C9  
C14  
10µF  
VDPOS  
VDPOS  
LD1  
0.1µF  
GND  
LD1  
GND  
LD2  
LD2  
AD9665  
R2  
100Ω  
W2DISN  
W2DIS  
W1DISN  
W1DIS  
SHORT, WIDE,  
AND CLOSE  
D2  
V
DD  
R7  
DNI  
C8  
0.1µF  
LD2  
VDPOS  
VDPOS  
C10  
DNI  
R9  
46.4Ω  
R8  
3.1Ω  
9
10 11 12 13 14 15 16  
R3  
100Ω  
ENBL  
VDPOS  
VDD  
W9  
VDNEG VDPOS  
VDNEG VDPOS  
5V  
RDIS  
R10  
0Ω  
R11  
4.3kΩ  
R12  
4.3kΩ  
R13  
R14  
4.3kΩ  
R21  
DNI  
4.3kΩ  
VDD  
R19  
DNI  
W8  
VD  
+
C12  
10µF  
C18  
0.1µF  
C17  
0.1µF  
C11  
0.1µF  
C1  
0.1µF  
C2  
DNI  
C3  
DNI  
C4  
DNI  
C5  
DNI  
VDD  
W3SET W2SET W1SET  
RSET  
Figure 19. AD9665ACPZ-32 Evaluation Board Schematic  
Rev. E | Page 12 of 16  
 
 
AD9665  
OPERATION  
WxDISN RDIS  
, ENABLE, INS,  
OUTSEL, and OSCEN, can be driven with pulsed sources or  
can be set to a steady state level with jumpers. For steady state  
The logic signals, WxDIS,  
,
PIN DESCRIPTIONS  
Table 5.  
Pin No. Mnemonic Description  
WxDISN  
operation, the logic levels for the WxDIS and  
pins are  
1
W3DISN  
Negative enable for Write Channel 3  
(LVDS mode only)  
Positive enable for Write Channel 3  
(LVDS mode), enable (TTL mode)  
set with voltages applied to the VDPOS and VDNEG pins on  
the evaluation board. For LVDS mode (INS = 1), VDPOS and  
VDNEG should be at a level greater than 50 mV and less than  
2.45 V (0.050 V < VDPOS < 2.45 V and 0.05 V < VDNEG < 2.45 V),  
with the differential voltage greater than 100 mV and less than  
600 mV. For TTL operation (INS = 0), VDPOS should be  
greater than 2.5 V and VDNEG should be less than 0.8 V. Under  
TTL operation, it may be convenient to put VDPOS at 5 V and  
VDNEG at 0 V. The pin labeled 5 V is the logic level for INS  
and OUTSEL.  
2
W3DIS  
3, 4  
5
GND  
W2DISN  
GND  
Negative enable for Write Channel 2  
(LVDS mode only)  
Positive enable for Write Channel 2  
(LVDS mode), enable (TTL mode)  
Negative enable for Write Channel 1  
(LVDS mode only)  
Positive enable for Write Channel 1  
(LVDS mode), enable (TTL mode)  
6
7
8
W2DIS  
W1DISN  
W1DIS  
The VDD pins are connected together in the IC and can be  
connected to the same external supply. Although they are all  
connected internally, there must be a direct connection to each  
of these pins through their vector pins externally, which are also  
labeled VDD.  
9
RDIS  
VDD  
Enable for R Channel (TTL only)  
10  
5 V supply and dc logic level  
RDIS  
for  
5 V supply and dc logic level  
RDIS  
and ENABLE  
11  
VDD  
A jumper set to the right side of a 3-lead connection applies the  
VDPOS voltage to the applicable pin on the IC. A jumper set to  
the left side of a 3-lead connection applies the VDNEG voltage.  
for  
and ENABLE  
12  
13  
14  
15  
16  
17  
W3SET  
W2SET  
W1SET  
RSET  
ENABLE  
VDD  
Input for Write Channel 3 (RIN = 200 Ω)  
Input for Write Channel 2 (RIN = 200 Ω)  
Input for Write Channel 1 (RIN = 200 Ω)  
Input for Read Channel (RIN = 200 Ω)  
Chip enable—active high  
Output stage supply, 5 V  
Output 2  
GND  
Output 1  
Evaluation boards are shipped with 100 Ω termination resistors  
across the LVDS inputs and without 50 Ω resistors on the other  
logic traces. Resistors R5 and R8 can be connected between ground  
and the cathodes of Diode 1 and Diode 2, respectively. To monitor  
diode current with an oscilloscope, a 3.1 Ω resistor can be placed in  
each of these positions. The series 46.4 Ω resistors at R4 and R9  
present a 50 Ω impedance to measurement equipment. This results  
in the oscilloscope displaying the diode current with a conversion  
factor of 1.558 mV/mA. If this capability is not desired, 0 Ω  
resistors can be installed in the R5 and R8 positions.  
18, 19  
20  
21, 22  
23  
LD2  
GND  
LD1  
VDD  
Output stage supply, 5 V  
24  
INS  
Logic mode select (0 = TTL, 1 = LVDS)  
Amplitude resistor set for Oscillator 2  
Amplitude resistor set for Oscillator 1  
Frequency resistor set for Oscillator 2  
Frequency resistor set for Oscillator 1  
Output select (0 = LD2, 1 = LD1)  
Oscillator enable—active high  
No connection  
25  
26  
27  
AADJ2  
AADJ1  
FADJ2  
28  
FADJ1  
29  
30  
31  
OUTSEL  
OSCEN  
N/C  
32  
VDD  
5 V supply and dc logic level for OSCEN  
N/A  
EPAD  
The exposed pad should be connected  
to ground.  
Rev. E | Page 13 of 16  
 
 
AD9665  
OUTLINE DIMENSIONS  
0.30  
0.23  
0.18  
0.60 MAX  
5.00  
BSC SQ  
0.60 MAX  
25  
24  
32  
1
0.45  
BSC  
4.75  
BSC SQ  
0.50  
BSC  
2.85  
2.70 SQ  
2.55  
*
PIN 1  
INDICATOR  
EXPOSED  
PAD  
17  
16  
8
9
0.50  
0.40  
0.30  
0.20  
MIN  
TOP VIEW  
BOTTOM VIEW  
3.50 REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
COPLANARITY  
SEATING  
PLANE  
0.05  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220 WITH EXCEPTION TO PADDLE ORIENTATION.  
FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION  
SECTION OF THIS DATA SHEET.  
Figure 20. 32-Lead Pad-Up, Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad  
(CP-32-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−25°C to +85°C  
−25°C to +85°C  
Package Description  
Package Option  
CP-32-1  
CP-32-1  
AD9665ACPZ-REEL  
AD9665ACPZ-REEL7  
32-Lead, Pad-Up, Lead Frame Chip Scale Package [LFCSP_VQ]  
32-Lead, Pad-Up, Lead Frame Chip Scale Package [LFCSP_VQ]  
1 Z = RoHS Compliant Part.  
Rev. E | Page 14 of 16  
 
 
 
AD9665  
NOTES  
Rev. E | Page 15 of 16  
AD9665  
NOTES  
© 2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05269-0-8/10(E)  
Rev. E | Page 16 of 16  

相关型号:

AD9665ACPZ-REEL

4-Channel, LVDS, Dual-Output, Laser Diode Driver with Oscillator
ADI

AD9665ACPZ-REEL7

4-Channel, LVDS, Dual-Output, Laser Diode Driver with Oscillator
ADI

AD96685

Ultrafast Comparators
ADI

AD96685BH

Ultrafast Comparators
ADI

AD96685BH

COMPARATOR, 3000uV OFFSET-MAX, MBCY10, METAL CAN, TO-100, 10 PIN
ROCHESTER

AD96685BP

Ultrafast Comparators
ADI

AD96685BP-REEL

Ultrafast Comparators
ADI

AD96685BP-REEL

COMPARATOR, 3000uV OFFSET-MAX, PQCC20, PLASTIC, LCC-20
ROCHESTER

AD96685BQ

Ultrafast Comparators
ADI

AD96685BR

Ultrafast Comparators
ADI

AD96685BR

COMPARATOR, 3000uV OFFSET-MAX, PDSO16, SOIC-16
ROCHESTER

AD96685BRZ

Ultra Fast ECL Single Comparator
ADI