AD9680 [ADI]

Dual Analog-to-Digital Converter;
AD9680
型号: AD9680
厂家: ADI    ADI
描述:

Dual Analog-to-Digital Converter

文件: 总99页 (文件大小:3113K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
14-Bit, 1.25 GSPS/1 GSPS/820 MSPS/500 MSPS  
JESD204B, Dual Analog-to-Digital Converter  
Data Sheet  
AD9680  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD1 AVDD2 AVDD3 AVDD1_SR DVDD DRVDD  
SPIVDD  
JESD204B (Subclass 1) coded serial digital outputs  
1.65 W total power per channel at 1 GSPS (default settings)  
SFDR at 1 GSPS = 85 dBFS at 340 MHz, 80 dBFS at 1 GHz  
SNR at 1 GSPS = 65.3 dBFS at 340 MHz (AIN = −1.0 dBFS),  
60.5 dBFS at 1 GHz (AIN = −1.0 dBFS)  
ENOB = 10.8 bits at 10 MHz  
(1.25V) (2.5V) (3.3V)  
(1.25V)  
(1.25V) (1.25V) (1.8V TO 3.3V)  
BUFFER  
VIN+A  
VIN–A  
ADC  
14  
CORE  
DDC  
FD_A  
SERDOUT0±  
4
SIGNAL  
MONITOR  
SERDOUT1±  
SERDOUT2±  
SERDOUT3±  
DNL = 0.5 LSB  
FD_B  
14  
DDC  
INL = 2.5 LSB  
VIN+B  
VIN–B  
ADC  
CORE  
Noise density = −154 dBFS/Hz at 1 GSPS  
1.25 V, 2.5 V, and 3.3 V dc supply operation  
No missing codes  
BUFFER  
CONTROL  
REGISTERS  
V_1P0  
FAST  
DETECT  
Internal ADC voltage reference  
Flexible input range: 1.46 V p-p to 1.94 V p-p  
AD9680-1250: 1.58 V p-p nominal  
SIGNAL  
MONITOR  
SYNCINB±  
SYSREF±  
JESD204B  
SUBCLASS 1  
CONTROL  
CLOCK  
GENERATION  
AD9680-1000 and AD9680-820: 1.70 V p-p nominal  
AD9680-500: 1.46 V p-p to 2.06 V p-p (2.06 V p-p nominal)  
Programmable termination impedance  
400 Ω, 200 Ω, 100 Ω, and 50 Ω differential  
2 GHz usable analog input full power bandwidth  
95 dB channel isolation/crosstalk  
CLK+  
CLK–  
÷2  
÷4  
÷8  
SPI CONTROL  
PDWN/  
STBY  
AD9680  
AGND DRGND DGND SDIO SCLK CSB  
Figure 1.  
Amplitude detect bits for efficient AGC implementation  
2 integrated wideband digital processors per channel  
12-bit NCO, up to 4 half-band filters  
Differential clock input  
Integer clock divide by 1, 2, 4, or 8  
Flexible JESD204B lane configurations  
Small signal dither  
PRODUCT HIGHLIGHTS  
1. Wide full power bandwidth supports IF sampling of signals  
up to 2 GHz.  
2. Buffered inputs with programmable input termination eases  
filter design and implementation.  
3. Four integrated wideband decimation filters and numerically  
controlled oscillator (NCO) blocks supporting multiband  
receivers.  
APPLICATIONS  
4. Flexible serial port interface (SPI) controls various product  
features and functions to meet specific system requirements.  
5. Programmable fast overrange detection.  
6. 9 mm × 9 mm, 64-lead LFCSP.  
Communications  
Diversity multiband, multimode digital receivers  
3G/4G, TD-SCDMA, W-CDMA, GSM, LTE  
General-purpose software radios  
Ultrawideband satellite receivers  
Instrumentation  
Radars  
Signals intelligence (SIGINT)  
DOCSIS 3.0 CMTS upstream receive paths  
HFC digital reverse path receivers  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD9680* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
REFERENCE MATERIALS  
Informational  
JESD204 Serial Interface  
Press  
EVALUATION KITS  
AD-FMCDAQ2-EBZ Evaluation Board  
Analog Devices Introduces High-Performance RF ICs for  
Multi-band Base Stations and Microwave Point-to-Point  
Radios  
AD9680/AD9234/AD9690 Evaluation Board  
ADA4961 & AD9680 Analog Signal Chain Evaluation and  
AD9528 Converter Synchronization  
Analog Devices Unveils New Class of Data Converters That  
Set 14-bit, GSPS Performance Standard  
Technical Articles  
DOCUMENTATION  
Clocking Wideband GSPS JESD204B ADCs  
Digital Signal Process in IF RF Data Converters  
Application Notes  
AN-835: Understanding High Speed ADC Testing and  
Evaluation  
MS-2660: Understanding Spurious-Free Dynamic Range in  
Wideband GSPS ADCs  
Data Sheet  
MS-2672: JESD204B Subclasses - Part 1: An Introduction to  
JESD204B Subclasses and Deterministic Latency  
AD9680: 14-Bit, 1 GSPS/820 MSPS/500 MSPS JESD204B,  
Dual Analog-to-Digital Converter Data Sheet  
MS-2677: JESD204B Subclasses - Part 2: Subclass 1 vs.  
Subclass 2 System Considerations  
TOOLS AND SIMULATIONS  
AD9680 Delphi Models  
Visual Analog  
MS-2708: GSPS Data Converters to the Rescue for  
Electronics Surveillance and Warfare Systems  
MS-2714: Understanding Layers in the JESD204B  
AD9680 / AD6674 IBIS Model  
AD9680 AMI Model  
Specificaton: A High Speed ADC Perspective, Part 1  
MS-2735: Maximizing the Dynamic Range of Software-  
Defined Radio  
AD9680 S-Parameters  
Powering GSPS or RF Sampling ADCs: Switcher vs LDO  
DESIGN RESOURCES  
AD9680 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
DISCUSSIONS  
View all AD9680 EngineerZone Discussions.  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
Submit feedback for this data sheet.  
DOCUMENT FEEDBACK  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD9680  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Frequency Translation ................................................................... 54  
General Description................................................................... 54  
DDC NCO Plus Mixer Loss and SFDR................................... 55  
Numerically Controlled Oscillator .......................................... 55  
FIR Filters ........................................................................................ 57  
General Description................................................................... 57  
Half-Band Filters ........................................................................ 58  
DDC Gain Stage ......................................................................... 60  
DDC Complex to Real Conversion ......................................... 60  
DDC Example Configurations ................................................. 61  
Digital Outputs ............................................................................... 64  
Introduction to the JESD204B Interface ................................. 64  
JESD204B Overview .................................................................. 64  
Functional Overview ................................................................. 65  
JESD204B Link Establishment ................................................. 65  
Physical Layer (Driver) Outputs .............................................. 67  
JESD204B Tx Converter Mapping ........................................... 69  
Configuring the JESD204B Link.............................................. 71  
Multichip Synchronization............................................................ 74  
SYSREF Setup/Hold Window Monitor................................. 76  
Test Modes....................................................................................... 78  
ADC Test Modes ........................................................................ 78  
JESD204B Block Test Modes .................................................... 79  
Serial Port Interface........................................................................ 81  
Configuration Using the SPI..................................................... 81  
Hardware Interface..................................................................... 81  
SPI Accessible Features.............................................................. 81  
Memory Map .................................................................................. 82  
Reading the Memory Map Register Table............................... 82  
Memory Map Register Table..................................................... 83  
Applications Information .............................................................. 96  
Power Supply Recommendations............................................. 96  
Exposed Pad Thermal Heat Slug Recommendations............ 96  
AVDD1_SR (Pin 57) and AGND (Pin 56 and Pin 60).............. 96  
Outline Dimensions....................................................................... 97  
Ordering Guide .......................................................................... 97  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 3  
General Description......................................................................... 4  
Specifications..................................................................................... 5  
DC Specifications ......................................................................... 5  
AC Specifications.......................................................................... 6  
Digital Specifications ................................................................... 8  
Switching Specifications .............................................................. 9  
Timing Specifications ................................................................ 10  
Absolute Maximum Ratings.......................................................... 12  
Thermal Characteristics ............................................................ 12  
ESD Caution................................................................................ 12  
Pin Configuration and Function Descriptions........................... 13  
Typical Performance Characteristics ........................................... 15  
AD9680-1250.............................................................................. 15  
AD9680-1000.............................................................................. 19  
AD9680-820................................................................................ 24  
AD9680-500................................................................................ 29  
Equivalent Circuits ......................................................................... 33  
Theory of Operation ...................................................................... 35  
ADC Architecture ...................................................................... 35  
Analog Input Considerations.................................................... 35  
Voltage Reference ....................................................................... 41  
Clock Input Considerations ...................................................... 42  
ADC Overrange and Fast Detect.................................................. 44  
ADC Overrange.......................................................................... 44  
Fast Threshold Detection (FD_A and FD_B) ........................ 44  
Signal Monitor ................................................................................ 45  
SPORT Over JESD204B............................................................. 46  
Digital Downconverter (DDC)..................................................... 48  
DDC I/Q Input Selection .......................................................... 48  
DDC I/Q Output Selection ....................................................... 48  
DDC General Description ........................................................ 48  
Rev. C | Page 2 of 97  
Data Sheet  
AD9680  
REVISION HISTORY  
Changes to Specifications Section and Table 1 .............................5  
Changes to AC Specifications Section and Table 2.......................6  
Changes to Digital Specifications Section .....................................8  
Changes to Switching Specifications Section and Table 4 ...........9  
Changes to Table 6, Thermal Characteristics Section, and  
Table 7...............................................................................................11  
Change to Digital Inputs Description, Table 8............................13  
Added AD9680-1000 Section, Figure 10, and Figure 11;  
Renumbered Sequentially ..............................................................14  
Changes to Figure 6 to Figure 9 ....................................................14  
Added Figure 12 to Figure 14........................................................15  
Changes to Figure 15 to Figure 17 ................................................15  
Changes to Figure 18 to Figure 21 ................................................16  
Changes to Figure 25 and Figure 29 .............................................17  
Changes to Figure 30 ......................................................................18  
Deleted Figure 35, Figure 36, and Figure 38................................19  
Added AD9680-500 Section and Figure 31 to Figure 54 .............19  
Changes to Analog Input Considerations Section and  
11/15—Rev. B to Rev. C  
Added AD9680-1250......................................................... Universal  
Changes to Features Section ............................................................1  
Change to General Description Section.........................................4  
Changes to Table 1 ............................................................................5  
Changes to Table 2 ............................................................................6  
Changes to Table 4 ............................................................................9  
Changes to Table 5 ..........................................................................10  
Changes to Figure 4.........................................................................11  
Changes to Pin 14 Description, Table 8 .......................................14  
Added AD9680-1250 Section and Figure 6 to Figure 29;  
Renumbered Sequentially ..............................................................15  
Changes to Figure 113 ....................................................................34  
Changes to Analog Input Considerations Section......................35  
Changes to Table 9 ..........................................................................36  
Changes to Input Buffer Control Registers (0x018, 0x019,  
0x01A, 0x935, 0x934, 0x11A) Section..........................................37  
Added Figure 118 to Figure 120....................................................37  
Changes to Table 10 ........................................................................40  
Changes to Table 17 ........................................................................57  
Changes to ADC Test Modes Section...........................................78  
Changes to Table 36 ........................................................................83  
Changes to Ordering Guide...........................................................97  
Differential Input Configurations Section...................................25  
Added Input Buffer Control Registers (0x018, 0x019, 0x01A,  
0x935, 0x934, 0x11A) Section, Figure 66, Figure 68, and Table 9;  
Renumbered Sequentially ..............................................................26  
Changes to Analog Input Buffer Controls and SFDR  
Optimization Section and Figure 67 ............................................26  
Added Figure 69 to Figure 72........................................................27  
Added Figure 73 to Figure 75........................................................28  
Changes to Table 10 ........................................................................28  
Added Input Clock Divider ½ Period Delay Adjust Section and  
Clock Fine Delay Adjust Section...................................................30  
Changes to Figure 83 and Temperature Diode Section .............31  
Added Signal Monitor Section and Figure 86 to Figure 89.......33  
Changes to Table 11 ........................................................................39  
Changes to Table 12 to Table 14....................................................40  
Changes to Table 16 ........................................................................41  
Deleted Figure 65 and Figure 66 ...................................................45  
Changes to Table 17 ........................................................................45  
Changes to Table 19 to Table 20....................................................46  
Changes to Table 22 ........................................................................47  
Changes to Table 23 ........................................................................49  
Changes to JESD204B Link Establishment Section ...................53  
Added Figure 105 to Figure 110....................................................56  
Changes to Example 1: Full Bandwidth Mode Section..............60  
Added Multichip Synchronization Section, Figure 115 to  
3/15—Rev. A to Rev. B  
Added AD9680-820 ........................................................... Universal  
Changes to Features Section ............................................................1  
Changes to Table 1 ............................................................................5  
Changes to Table 2 ............................................................................6  
Changes to Table 3 ............................................................................8  
Changes to Table 4 ............................................................................9  
Added Figure 14; Renumbered Sequentially...............................15  
Added AD9680-820 Section and Figure 31 Through Figure 36 ...19  
Added Figure 37 Through Figure 42 ............................................20  
Added Figure 43 Through Figure 48 ............................................21  
Added Figure 49 Through Figure 54 ............................................22  
Added Figure 55 ..............................................................................23  
Changes to Figure 69 and Figure 70 .............................................26  
Changes to Input Buffer Control Registers (0x018, 0x019, 0x01A,  
0x935, 0x934, 0x11A) Section, Table 9, and Figure 93....................31  
Added Figure 99 Through Figure 100..........................................33  
Changes to Table 10 ........................................................................34  
Changes to Clock Jitter Considerations Section .........................37  
Added Figure 112 ............................................................................37  
Changes to Digital Downconverter (DDC) Section...................42  
Changes to Table 17 ........................................................................51  
Changes to Table 36 ........................................................................77  
Changes to Ordering Guide...........................................................91  
Figure 117, and Table 28.................................................................62  
Added Test Modes Section and Table 29 to Table 33 .................66  
Changes to Reading the Memory Map Register Table Section.......70  
Changes to Table 36 ........................................................................71  
Changes to Power Supply Recommendations Section,  
Figure 118, and Exposed Pad Thermal Heat Slug  
Recommendations Section ............................................................83  
12/14—Rev. 0 to Rev. A  
Changes to Ordering Guide...........................................................84  
Added AD9680-500 ........................................................... Universal  
Changes to Features Section and Figure 1 .....................................1  
Changes to General Description Section.......................................4  
5/14—Revision 0: Initial Version  
Rev. C | Page 3 of 97  
 
AD9680  
Data Sheet  
GENERAL DESCRIPTION  
The AD9680 is a dual, 14-bit, 1.25 GSPS/1 GSPS/820 MSPS/  
500 MSPS analog-to-digital converter (ADC). The device has  
an on-chip buffer and sample-and-hold circuit designed for low  
power, small size, and ease of use. This device is designed for  
sampling wide bandwidth analog signals of up to 2 GHz. The  
AD9680 is optimized for wide input bandwidth, high sampling  
rate, excellent linearity, and low power in a small package.  
function in the communications receiver. The programmable  
threshold detector allows monitoring of the incoming signal  
power using the fast detect output bits of the ADC. If the input  
signal level exceeds the programmable threshold, the fast detect  
indicator goes high. Because this threshold indicator has low  
latency, the user can quickly turn down the system gain to avoid  
an overrange condition at the ADC input.  
The dual ADC cores feature a multistage, differential pipelined  
architecture with integrated output error correction logic. Each  
ADC features wide bandwidth inputs supporting a variety of  
user-selectable input ranges. An integrated voltage reference  
eases design considerations.  
Users can configure the Subclass 1 JESD204B-based high speed  
serialized output in a variety of one-, two-, or four-lane  
configurations, depending on the DDC configuration and the  
acceptable lane rate of the receiving logic device. Multiple device  
synchronization is supported through the SYSREF and  
SYNCINB input pins.  
The analog input and clock signals are differential inputs. Each  
ADC data output is internally connected to two digital down-  
converters (DDCs). Each DDC consists of up to five cascaded  
signal processing stages: a 12-bit frequency translator (NCO),  
and four half-band decimation filters. The DDCs are bypassed  
by default.  
The AD9680 has flexible power-down options that allow  
significant power savings when desired. All of these features can  
be programmed using a 1.8 V to 3.3 V capable, 3-wire SPI.  
The AD9680 is available in a Pb-free, 64-lead LFCSP and is  
specified over the −40°C to +85°C industrial temperature range.  
This product is protected by a U.S. patent.  
In addition to the DDC blocks, the AD9680 has several  
functions that simplify the automatic gain control (AGC)  
Rev. C | Page 4 of 97  
 
Data Sheet  
AD9680  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, AVDD1_SR = 1.25 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified  
maximum sampling rate for each speed grade, AIN = −1.0 dBFS, clock divider = 2, default SPI settings, TA = 25°C, unless otherwise noted.  
Table 1.  
AD9680-500  
AD9680-820  
AD9680-1000  
AD9680-1250  
Parameter  
Temp Min Typ Max Min Typ  
Max Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
ACCURACY  
Full  
14  
14  
14  
14  
Bits  
No Missing Codes  
Offset Error  
Offset Matching  
Gain Error  
Gain Matching  
Differential Nonlinearity  
(DNL)  
Integral Nonlinearity (INL)  
TEMPERATURE DRIFT  
Offset Error  
Full  
Full  
Full  
Full  
Full  
Full  
Guaranteed  
Guaranteed  
Guaranteed  
Guaranteed  
0
−0.3  
0
0
0
1
+0.3 −0.3  
0.3  
+6  
5.1  
0
0
0
1
+0.3 −0.31  
0.23  
+6  
5.5  
0
0
+0.31 −0.31  
0.23  
+0.31 % FSR  
0
0
1
0.3  
+6  
4.5  
% FSR  
% FSR  
% FSR  
LSB  
−6  
−6  
−6  
0
1
+6  
4.5  
−6  
−0.6  
−4.5  
0.5 +0.7 −0.7  
0.5 +0.8 −0.7  
0.5  
2.5  
+0.8  
−0.8  
−6  
0.5 +0.8  
Full  
2.5 +5.0 −3.3  
2.5 +4.3 −5.7  
+6.9  
3
+6  
LSB  
Full  
Full  
−3  
25  
−10  
54  
−12  
13.8  
−15  
92  
ppm/°C  
ppm/°C  
Gain Error  
INTERNAL VOLTAGE  
REFERENCE  
Voltage  
Full  
1.0  
1.0  
1.0  
1.0  
V
INPUT-REFERRED NOISE  
VREF = 1.0 V  
25°C  
2.06  
2.46  
2.63  
3.45  
LSB rms  
ANALOG INPUTS  
Differential Input Voltage  
Range (Programmable)  
Common-Mode Voltage  
(VCM)  
Differential Input  
Capacitance1  
Analog Input Full Power  
Bandwidth  
Full  
1.46 2.06 2.06 1.46 1.70 1.94 1.46  
1.70  
2.05  
1.5  
2
1.94  
1.46  
1.58  
2.05  
1.5  
2
1.94  
V p-p  
V
25°C  
25°C  
25°C  
2.05  
1.5  
2
2.05  
1.5  
2
pF  
GHz  
POWER SUPPLY  
AVDD1  
AVDD2  
AVDD3  
AVDD1_SR  
DVDD  
DRVDD  
SPIVDD  
IAVDD1  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
25°C  
Full  
1.22 1.25 1.28 1.22 1.25 1.28 1.22  
2.44 2.50 2.56 2.44 2.50 2.56 2.44  
1.25  
2.50  
3.3  
1.25  
1.25  
1.25  
1.8  
685  
595  
125  
16  
208  
200  
N/A3  
5
1.28  
2.56  
3.4  
1.28  
1.28  
1.28  
3.4  
720  
680  
142  
18  
269  
225  
1.22  
2.44  
3.2  
1.22  
1.22  
1.22  
1.7  
1.25  
2.50  
3.3  
1.25  
1.25  
1.25  
1.8  
785  
675  
125  
17  
250  
220  
N/A3  
5
1.28  
2.56  
3.4  
1.28  
1.28  
1.28  
3.4  
880  
780  
142  
20  
325  
300  
V
V
V
V
V
V
V
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
3.2  
3.3  
3.4  
3.2  
3.3  
3.4  
3.2  
1.22 1.25 1.28 1.22 1.25 1.28 1.22  
1.22 1.25 1.28 1.22 1.25 1.28 1.22  
1.22 1.25 1.28 1.22 1.25 1.28 1.22  
1.7  
1.8  
3.4  
1.7  
1.8  
3.4  
1.7  
435 467  
395 463  
605  
490  
125  
15  
660  
545  
140  
18  
IAVDD2  
IAVDD3  
87  
15  
101  
22  
IAVDD1_SR  
2
IDVDD  
145 152  
190 237  
140  
205  
200  
N/A3  
5
246  
240  
1
IDRVDD  
IDRVDD (L = 2 Mode)  
ISPIVDD  
5
6
6
6
6
Rev. C | Page 5 of 97  
 
 
AD9680  
Data Sheet  
AD9680-500  
Temp Min Typ Max Min Typ  
AD9680-820  
Max Min  
AD9680-1000  
AD9680-1250  
Parameter  
Typ  
Max  
Min  
Typ  
Max  
Unit  
POWER CONSUMPTION  
Total Power Dissipation  
(Including Output  
Drivers)2  
Total Power Dissipation  
(L = 2 Mode)  
Full  
2.2  
2.1  
2.9  
3.3  
3.7  
W
25°C  
N/A3  
N/A3  
N/A3  
W
Power-Down Dissipation  
Standby4  
Full  
Full  
700  
1.2  
820  
1.3  
835  
1.4  
1030  
1.66  
mW  
W
1 All lanes running. Power dissipation on DRVDD changes with lane rate and number of lanes used.  
2 Default mode. No DDCs used. L = 4, M = 2, F = 1.  
3 N/A means not applicable. At the maximum sample rate, it is not applicable to use L = 2 mode on the JESD204B output interface because this exceeds the maximum  
lane rate of 12.5 Gbps. L = 2 mode is supported when the equation ((M × N΄ × (10/8) × fOUT)/L) results in a line rate that is ≤12.5 Gbps. fOUT is the output sample rate and  
is denoted by fS/DCM, where DCM is the decimation ratio.  
4 Can be controlled by the SPI.  
AC SPECIFICATIONS  
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, AVDD1_SR = 1.25 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified  
maximum sampling rate for each speed grade, AIN = −1.0 dBFS, clock divider = 2, default SPI settings, TA = 25°C, unless otherwise noted.  
Table 2.  
AD9680-500  
Temp Min Typ Max Min Typ  
AD9680-820  
AD9680-1000  
AD9680-1250  
Max Unit  
Parameter1  
Max Min Typ  
Max Min Typ  
ANALOG INPUT FULL SCALE Full  
2.06  
1.7  
1.7  
1.58  
V p-p  
NOISE DENSITY2  
Full  
−153  
−153  
−154  
−151.5  
dBFS/Hz  
SIGNAL-TO-NOISE RATIO  
(SNR)3  
fIN = 10 MHz  
25°C  
Full  
69.2  
67.8 69.0  
68.6  
67.2  
65.6 67.0  
66.5  
67.2  
65.1 66.6  
65.3  
63.6  
61.5 63.2  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
fIN = 1950 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
62.8  
62.2  
61.1  
59.2  
55.5  
68.0  
64.4  
63.8  
60.5  
65.1  
64.0  
63.4  
59.7  
64.0  
61.5  
60.5  
57.0  
SNR AND DISTORTION RATIO  
(SINAD)3  
fIN = 10 MHz  
25°C  
Full  
69.0  
67.6 68.8  
68.4  
67.1  
65.2 66.8  
66.3  
67.1  
65.0 66.4  
65.2  
63.5  
61.4 62.8  
62.6  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
fIN = 1950 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
67.9  
64.2  
63.6  
60.3  
64.7  
63.5  
62.7  
58.7  
63.8  
62.1  
61.1  
56.0  
61.8  
60.8  
58.2  
51.5  
EFFECTIVE NUMBER OF BITS  
(ENOB)  
fIN = 10 MHz  
25°C  
Full  
11.2  
10.9 11.1  
11.1  
10.9  
10.5 10.8  
10.7  
10.8  
10.5 10.7  
10.5  
10.3  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
fIN = 1950 MHz  
9.9  
10.1  
10.1  
10.0  
9.8  
9.4  
8.3  
25°C  
25°C  
25°C  
25°C  
25°C  
11.0  
10.4  
10.3  
9.7  
10.5  
10.3  
10.1  
9.5  
10.3  
10.0  
9.8  
9.0  
Rev. C | Page 6 of 97  
 
 
Data Sheet  
AD9680  
AD9680-500  
Temp Min Typ Max Min Typ  
AD9680-820  
AD9680-1000  
AD9680-1250  
Parameter1  
Max Min Typ  
Max Min Typ  
Max Unit  
SPURIOUS-FREE DYNAMIC  
RANGE (SFDR)3  
fIN = 10 MHz  
25°C  
Full  
83  
88  
83  
81  
80  
75  
70  
91  
83  
81  
78  
78  
74  
70  
88  
85  
85  
82  
82  
80  
68  
84  
77  
78  
76  
77  
71  
61  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
fIN = 1950 MHz  
80  
75  
75  
74  
25°C  
25°C  
25°C  
25°C  
25°C  
WORST HARMONIC,  
SECOND OR THIRD3  
fIN = 10 MHz  
25°C  
Full  
−83  
−88  
−83  
−81  
−80  
−75  
−70  
−91  
−83  
−81  
−78  
−78  
−74  
−70  
−88  
−85  
−85  
−82  
−82  
−80  
−68  
−84  
dBFS  
−74 dBFS  
dBFS  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
fIN = 1950 MHz  
−80  
−75  
−75  
−77  
−78  
−76  
−77  
−71  
−61  
25°C  
25°C  
25°C  
25°C  
25°C  
dBFS  
dBFS  
dBFS  
dBFS  
WORST OTHER, EXCLUDING  
SECOND OR THIRD  
HARMONIC3  
fIN = 10 MHz  
25°C  
Full  
−95  
−95  
−93  
−93  
−88  
−89  
−84  
−97  
−93  
−91  
−90  
−83  
−84  
−74  
−95  
−94  
−88  
−86  
−81  
−82  
−75  
−87  
−79  
−81  
−79  
−79  
−77  
−69  
dBFS  
−74 dBFS  
dBFS  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
fIN = 1950 MHz  
−82  
−80  
−81  
25°C  
25°C  
25°C  
25°C  
25°C  
dBFS  
dBFS  
dBFS  
dBFS  
TWO-TONE  
INTERMODULATION  
DISTORTION (IMD),  
A
IN1 AND AIN2 = −7 dBFS  
fIN1 = 185 MHz,  
IN2 = 188 MHz  
fIN1 = 338 MHz,  
fIN2 = 341 MHz  
CROSSTALK5  
FULL POWER BANDWIDTH6 25°C  
25°C  
25°C  
25°C  
−88  
−88  
−90  
−87  
−87  
−88  
−82  
dBFS  
dBFS  
f
−784  
95  
2
95  
2
95  
2
95  
2
dB  
GHz  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Noise density is measured at a low analog input frequency (30 MHz).  
3 See Table 10 for the recommended settings for full-scale voltage and buffer current settings.  
4 Measurement taken with 449 MHz and 452 MHz inputs for two-tone.  
5 Crosstalk is measured at 170 MHz with a −1.0 dBFS analog input on one channel and no input on the adjacent channel.  
6 Measured with the circuit shown in Figure 115.  
Rev. C | Page 7 of 97  
 
AD9680  
Data Sheet  
DIGITAL SPECIFICATIONS  
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, AVDD1_SR = 1.25 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified  
maximum sampling rate for each speed grade, AIN = −1.0 dBFS, clock divider = 2, default SPI settings, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Temperature Min  
Typ  
Max  
1800  
2.5  
Unit  
CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
Differential Input Voltage  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
Full  
LVDS/LVPECL  
Full  
Full  
Full  
Full  
600  
1200  
0.85  
35  
mV p-p  
V
kΩ  
pF  
SYSREF INPUTS (SYSREF+, SYSREF−)  
Logic Compliance  
Full  
Full  
Full  
Full  
Full  
LVDS/LVPECL  
Differential Input Voltage  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance (Differential)  
LOGIC INPUTS (SDI, SCLK, CSB, PDWN/STBY)  
Logic Compliance  
Logic 1 Voltage  
Logic 0 Voltage  
Input Resistance  
400  
0.6  
1200  
0.85  
35  
1800  
2.0  
mV p-p  
V
kΩ  
pF  
2.5  
Full  
Full  
Full  
Full  
CMOS  
0.8 × SPIVDD  
0
V
0.5  
V
30  
kΩ  
LOGIC OUTPUT (SDIO)  
Logic Compliance  
Full  
Full  
Full  
CMOS  
Logic 1 Voltage (IOH = 800 µA)  
Logic 0 Voltage (IOL = 50 µA)  
SYNCIN INPUT (SYNCINB+/SYNCINB−)  
Logic Compliance  
Differential Input Voltage  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
0.8 × SPIVDD  
0
V
V
0.5  
Full  
Full  
Full  
Full  
Full  
LVDS/LVPECL/CMOS  
400  
0.6  
1200  
0.85  
35  
1800  
2.0  
mV p-p  
V
kΩ  
pF  
2.5  
0.5  
770  
LOGIC OUTPUTS (FD_A, FD_B)  
Logic Compliance  
Logic 1 Voltage  
Logic 0 Voltage  
Input Resistance  
Full  
Full  
Full  
Full  
CMOS  
0.8 × SPIVDD  
0
V
V
kΩ  
30  
DIGITAL OUTPUTS (SERDOUTx , x = 0 TO 3)  
Logic Compliance  
Differential Output Voltage  
Full  
Full  
CML  
360  
mV p-p  
Output Common-Mode Voltage (VCM  
AC-Coupled  
)
25°C  
25°C  
25°C  
25°C  
Full  
0
1.8  
+100  
V
Short-Circuit Current (IDSHORT  
Differential Return Loss (RLDIFF  
Common-Mode Return Loss (RLCM  
Differential Termination Impedance  
)
−100  
8
6
mA  
dB  
dB  
1
)
1
)
80  
100  
120  
1 Differential and common-mode return loss are measured from 100 MHz to 0.75 × baud rate.  
Rev. C | Page 8 of 97  
 
Data Sheet  
AD9680  
SWITCHING SPECIFICATIONS  
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, AVDD1_SR = 1.25 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified  
maximum sampling rate for each speed grade, AIN = −1.0 dBFS, default SPI settings, TA = 25°C, unless otherwise noted.  
Table 4.  
AD9680-500  
Temp Min Typ Max Min  
AD9680-820  
AD9680-1000  
AD9680-1250  
Typ Max Unit  
Parameter  
CLOCK  
Typ  
Max Min Typ Max Min  
Clock Rate (at  
Full  
0.3  
4
0.3  
4
0.3  
4
0.3  
4
GHz  
CLK+/CLK− Pins)  
Maximum Sample Rate1  
Minimum Sample Rate2  
Clock Pulse Width High  
Clock Pulse Width Low  
OUTPUT PARAMETERS  
Unit Interval (UI)3  
Full  
Full  
Full  
Full  
500  
300  
1000  
1000  
820  
300  
609.7  
609.7  
1000  
300  
500  
500  
1250  
300  
400  
400  
MSPS  
MSPS  
ps  
ps  
Full  
25°C  
80  
24  
200  
32  
80  
24  
121.95  
32  
80  
24  
100  
32  
80  
24  
80  
32  
ps  
ps  
Rise Time (tR) (20% to  
80% into 100 Ω Load)  
Fall Time (tF) (20% to 80% 25°C  
into 100 Ω Load)  
24  
32  
24  
32  
24  
32  
24  
32  
ps  
PLL Lock Time  
25°C  
25°C  
2
5
2
2
2
ms  
Data Rate per Channel  
3.125  
12.5 3.125 8.2  
12.5 3.125 10  
12.5 3.1215 12.5 12.5 Gbps  
(NRZ)4  
LATENCY5  
Pipeline Latency  
Full  
Full  
55  
1
55  
55  
55  
1
Clock  
cycles  
Clock  
cycles  
Fast Detect Latency  
28  
28  
28  
4
28  
4
Wake-Up Time6  
Standby  
Power-Down  
APERTURE  
25°C  
25°C  
1
1
ms  
ms  
4
4
Aperture Delay (tA)  
Aperture Uncertainty  
(Jitter, tJ)  
Full  
Full  
530  
55  
530  
55  
530  
55  
530  
55  
ps  
fS rms  
Out-of-Range Recovery  
Time  
Full  
1
1
1
1
Clock  
cycles  
1 The maximum sample rate is the clock rate after the divider.  
2 The minimum sample rate operates at 300 MSPS with L = 2 or L = 1.  
3 Baud rate = 1/UI. A subset of this range can be supported.  
4 Default L = 4. This number can be changed based on the sample rate and decimation ratio.  
5 No DDCs used. L = 4, M = 2, F = 1.  
6 Wake-up time is defined as the time required to return to normal operation from power-down mode.  
Rev. C | Page 9 of 97  
 
AD9680  
Data Sheet  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
CLK+ to SYSREF+ TIMING REQUIREMENTS  
See Figure 3  
tSU_SR  
tH_SR  
Device clock to SYSREF+ setup time  
Device clock to SYSREF+ hold time  
See Figure 4  
117  
−96  
ps  
ps  
SPI TIMING REQUIREMENTS  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tACCESS  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
Minimum period that SCLK must be in a logic high state  
Minimum period that SCLK must be in a logic low state  
2
2
40  
2
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
10  
Maximum time delay between falling edge of SCLK and output  
data valid for a read operation  
6
10  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an  
input relative to the SCLK rising edge (not shown in Figure 4)  
10  
ns  
Timing Diagrams  
APERTURE  
DELAY  
SAMPLE N  
N + 1  
ANALOG  
N – 54  
INPUT  
SIGNAL  
N – 55  
N – 53  
N – 1  
N – 52  
N – 51  
CLK–  
CLK+  
CLK–  
CLK+  
SERDOUT0–  
SERDOUT0+  
A
A
A
A
B
B
B
B
C
C
C
C
D
D
D
D
E
E
E
E
F
F
F
F
G
G
G
G
H
I
I
I
I
J
J
J
J
A
B
B
B
B
C
C
C
C
D
D
D
D
E
E
E
E
F
F
F
F
G
G
G
G
H
H
H
H
I
I
I
I
J
J
J
J
A
A
A
A
B
B
B
B
C
C
C
C
D
D
D
D
E
E
E
E
F
F
F
F
G
G
G
G
H
H
H
H
I
I
I
I
J
CONVERTER0 MSB  
CONVERTER0 LSB  
CONVERTER1 MSB  
CONVERTER1 LSB  
SERDOUT1–  
SERDOUT1+  
H
H
H
A
A
A
J
J
J
SERDOUT2–  
SERDOUT2+  
SERDOUT3–  
SERDOUT3+  
SAMPLE N – 55  
SAMPLE N – 54  
SAMPLE N – 53  
ENCODED INTO 1  
ENCODED INTO 1  
ENCODED INTO 1  
8-BIT/10-BIT SYMBOL  
8-BIT/10-BIT SYMBOL  
8-BIT/10-BIT SYMBOL  
Figure 2. Data Output Timing (Full Bandwidth Mode; L = 4; M = 2; F = 1)  
Rev. C | Page 10 of 97  
 
 
Data Sheet  
AD9680  
CLK–  
CLK+  
tSU_SR  
tH_SR  
SYSREF–  
SYSREF+  
Figure 3. SYSREF Setup and Hold Timing  
tDS  
tHIGH  
tCLK  
tACCESS  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
DON’T CARE  
DON’T CARE  
R/W  
SDIO DON’T CARE  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
D7  
D6  
D3  
D2  
D1  
D0  
Figure 4. Serial Port Interface Timing Diagram  
Rev. C | Page 11 of 97  
 
 
AD9680  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 6.  
Typical θJA, θJB, and θJC are specified vs. the number of printed  
circuit board (PCB) layers in different airflow velocities (in m/sec).  
Airflow increases heat dissipation effectively reducing θJA and  
θJB. In addition, metal in direct contact with the package leads  
and exposed pad from metal traces, through holes, ground, and  
power planes, reduces θJA. Thermal performance for actual  
applications requires careful inspection of the conditions in  
an application. The use of appropriate thermal management  
techniques is recommended to ensure that the maximum junction  
temperature does not exceed the limits shown in Table 6.  
Parameter  
Rating  
Electrical  
AVDD1 to AGND  
AVDD1_SR to AGND  
AVDD2 to AGND  
AVDD3 to AGND  
1.32 V  
1.32 V  
2.75 V  
3.63 V  
1.32 V  
1.32 V  
3.63 V  
−0.3 V to +0.3 V  
3.2 V  
−0.3 V to SPIVDD + 0.3 V  
−0.3 V to SPIVDD + 0.3 V  
−40°C to +85°C  
−40°C to +115°C  
DVDD to DGND  
DRVDD to DRGND  
SPIVDD to AGND  
AGND to DRGND  
VIN x to AGND  
SCLK, SDIO, CSB to AGND  
PDWN/STBY to AGND  
Operating Temperature Range  
Junction Temperature Range  
Table 7. Thermal Resistance Values  
Airflow  
Velocity  
(m/sec)  
PCB Type  
θJA  
ΨJB  
θJC_TOP θJC_BOT Unit  
JEDEC  
2s2p Board  
0.0  
1.0  
2.5  
17.81, 2 6.31, 3 4.71, 4  
15.61, 2 5.91, 3 N/A5  
15.01, 2 5.71, 3 N/A5  
1.21, 4  
°C/W  
°C/W  
°C/W  
Storage Temperature Range (Ambient) −65°C to +150°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
1 Per JEDEC 51-7, plus JEDEC 51-5 2s2p test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per JEDEC JESD51-8 (still air).  
4 Per MIL-STD 883, Method 1012.1.  
5 N/A means not applicable.  
ESD CAUTION  
Rev. C | Page 12 of 97  
 
 
 
 
Data Sheet  
AD9680  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AVDD1  
AVDD1  
AVDD2  
AVDD3  
VIN–A  
VIN+A  
AVDD3  
AVDD2  
AVDD2  
1
2
3
4
5
6
7
8
9
48 AVDD1  
47 AVDD1  
46 AVDD2  
45 AVDD3  
44 VIN–B  
43 VIN+B  
42 AVDD3  
41 AVDD2  
40 AVDD2  
39 AVDD2  
38 SPIVDD  
37 CSB  
AD9680  
TOP VIEW  
(Not to Scale)  
AVDD2 10  
AVDD2 11  
V_1P0 12  
SPIVDD 13  
PDWN/STBY 14  
DVDD 15  
36 SCLK  
35 SDIO  
34 DVDD  
33 DGND  
DGND 16  
NOTES  
1. EXPOSED PAD. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE  
PACKAGE PROVIDES THE GROUND REFENCE FOR AVDDx. THIS EXPOSED  
PAD MUST BE CONNECTED TO GROUND FOR PROPER OPERATION.  
Figure 5. Pin Configuration (Top View)  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type  
Description  
Power Supplies  
0
EPAD  
Ground  
Exposed Pad. The exposed thermal pad on the bottom of the  
package provides the ground reference for AVDDx. This  
exposed pad must be connected to ground for proper  
operation.  
1, 2, 47, 48, 49, 52, 55, 61, 64 AVDD1  
Supply  
Supply  
Analog Power Supply (1.25 V Nominal).  
Analog Power Supply (2.5 V Nominal).  
3, 8, 9, 10, 11, 39, 40, 41,  
46, 50, 51, 62, 63  
AVDD2  
4, 7, 42, 45  
13, 38  
15, 34  
16, 33  
18, 31  
19, 30  
56, 60  
57  
AVDD3  
SPIVDD  
DVDD  
Supply  
Supply  
Supply  
Ground  
Ground  
Supply  
Ground  
Supply  
Analog Power Supply (3.3 V Nominal).  
Digital Power Supply for SPI (1.8 V to 3.3 V).  
Digital Power Supply (1.25 V Nominal).  
Ground Reference for DVDD.  
Ground Reference for DRVDD.  
Digital Driver Power Supply (1.25 V Nominal).  
Ground Reference for SYSREF .  
DGND  
DRGND  
DRVDD  
AGND1  
AVDD1_SR1  
Analog Power Supply for SYSREF (1.25 V Nominal).  
Analog  
5, 6  
12  
VIN−A, VIN+A  
V_1P0  
Input  
Input/DNC  
ADC A Analog Input Complement/True.  
1.0 V Reference Voltage Input/Do Not Connect. This pin is  
configurable through the SPI as a no connect or an input. Do  
not connect this pin if using the internal reference. Requires a  
1.0 V reference voltage input if using an external voltage  
reference source.  
44, 43  
53, 54  
VIN−B, VIN+B  
CLK+, CLK−  
Input  
Input  
ADC B Analog Input Complement/True.  
Clock Input True/Complement.  
CMOS Outputs  
17, 32  
FD_A, FD_B  
Output  
Fast Detect Outputs for Channel A and Channel B.  
Rev. C | Page 13 of 97  
 
AD9680  
Data Sheet  
Pin No.  
Digital Inputs  
20, 21  
Mnemonic  
Type  
Description  
SYNCINB−, SYNCINB+  
SYSREF+, SYSREF−  
Input  
Input  
Active Low JESD204B LVDS Sync Input True/Complement.  
Active High JESD204B LVDS System Reference Input  
True/Complement.  
58, 59  
Data Outputs  
22, 23  
24, 25  
26, 27  
28, 29  
SERDOUT0−, SERDOUT0+ Output  
SERDOUT1−, SERDOUT1+ Output  
SERDOUT2−, SERDOUT2+ Output  
SERDOUT3−, SERDOUT3+ Output  
Lane 0 Output Data Complement/True.  
Lane 1 Output Data Complement/True.  
Lane 2 Output Data Complement/True.  
Lane 3 Output Data Complement/True.  
Device Under Test (DUT)  
Controls  
14  
PDWN/STBY  
Input  
Power-Down Input (Active High). The operation of this pin  
depends on the SPI mode and can be configured as power-  
down or standby. Requires an external 10 kΩ pull-down resistor.  
35  
36  
37  
SDIO  
SCLK  
CSB  
Input/Output SPI Serial Data Input/Output.  
Input  
Input  
SPI Serial Clock.  
SPI Chip Select (Active Low).  
1 To ensure proper ADC operation, connect AVDD1_SR and AGND separately from the AVDD1 and EPAD connection. For more information, see the Applications  
Information section.  
Rev. C | Page 14 of 97  
 
Data Sheet  
AD9680  
TYPICAL PERFORMANCE CHARACTERISTICS  
AD9680-1250  
AVDD1 = 1.25 V, AVDD1_SR = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, 1.58 V p-p  
full-scale differential input, AIN = −1.0 dBFS, default SPI settings, clock divider = 2, TA = 25°C, 128k FFT sample, unless otherwise noted.  
See Table 10 for recommended settings.  
A
= –1dBFS  
A
= –1dBFS  
IN  
IN  
–10  
–30  
–10  
–30  
SNR = 64dBFS  
ENOB = 10.3 BITS  
SFDR = 82dBFS  
SNR = 62.5dBFS  
ENOB = 9.9 BITS  
SFDR = 70dBFS  
BUFFER CURRENT = 3.5×  
BUFFER CURRENT = 3.5×  
–50  
–50  
–70  
–70  
–90  
–90  
–110  
–130  
–110  
–130  
0
0
0
78.125 156.250 234.375 312.500 390.625 468.750 546.875 625.000  
FREQUENCY (MHz)  
0
0
0
78.125 156.250 234.375 312.500 390.625 468.750 546.875 625.000  
FREQUENCY (MHz)  
Figure 6. Single-Tone FFT with fIN = 10.3 MHz  
Figure 9. Single-Tone FFT with fIN = 450.3 MHz  
A
= –1dBFS  
A
= –1dBFS  
IN  
SNR = 60.9dBFS  
ENOB = 9.8 BITS  
SFDR = 74dBFS  
IN  
–10  
–30  
–10  
–30  
SNR = 63.4dBFS  
ENOB = 10.2 BITS  
SFDR = 79dBFS  
BUFFER CURRENT = 3.5×  
BUFFER CURRENT = 5.5×  
–50  
–50  
–70  
–70  
–90  
–90  
–110  
–130  
–110  
–130  
78.125 156.250 234.375 312.500 390.625 468.750 546.875 625.000  
FREQUENCY (MHz)  
78.125 156.250 234.375 312.500 390.625 468.750 546.875 625.000  
FREQUENCY (MHz)  
Figure 7. Single-Tone FFT with fIN = 170.3 MHz  
Figure 10. Single-Tone FFT with fIN = 765.3 MHz  
0
–20  
A
= –1dBFS  
SNR = 62.8dBFS  
ENOB = 10.1 BITS  
SFDR = 76dBFS  
BUFFER CURRENT = 3.5×  
A
= –1dBFS  
IN  
IN  
–10  
–30  
SNR = 59.7dBFS  
ENOB = 9.6 BITS  
SFDR = 74dBFS  
BUFFER CURRENT = 5.5×  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–120  
–110  
–130  
78.125 156.250 234.375 312.500 390.625 468.750 546.875 625.000  
FREQUENCY (MHz)  
78.125 156.250 234.375 312.500 390.625 468.750 546.875 625.000  
FREQUENCY (MHz)  
Figure 8. Single-Tone FFT with fIN = 340.3 MHz  
Figure 11. Single-Tone FFT with fIN = 985.3 MHz  
Rev. C | Page 15 of 97  
 
 
AD9680  
Data Sheet  
0
85  
80  
75  
70  
65  
60  
A
= –1dBFS  
IN  
SNR = 58.5dBFS  
ENOB = 9.3 BITS  
SFDR = 68dBFS  
BUFFER CURRENT = 5.5×  
–20  
SFDR  
–40  
–60  
–80  
–100  
SNR  
–120  
0
78.125 156.250 234.375 312.500 390.625 468.750 546.875 625.000  
FREQUENCY (MHz)  
1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200 1220 1240 1260  
SAMPLE RATE (MHz)  
Figure 12. Single-Tone FFT with fIN = 1205.3 MHz  
Figure 15. SNR/SFDR vs. fS, fIN = 170.3 MHz; Buffer Control 1 (0x018) = 3.5×  
85  
0
3.5× SNR (dBFS)  
3.5× SFDR (dBFS)  
4.5× SNR (dBFS)  
A
= –1dBFS  
IN  
SNR = 56.6dBFS  
ENOB = 9.0 BITS  
SFDR = 67dBFS  
BUFFER CURRENT = 7.5×  
–20  
–40  
4.5× SFDR (dBFS)  
80  
75  
70  
65  
60  
–60  
–80  
–100  
–120  
10.3 147.3 212.3 290.3 355.3 433.3 511.3 589.3 667.3  
0
78.125 156.250 234.375 312.500 390.625 468.750 546.875 625.000  
FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
Figure 13. Single-Tone FFT with fIN = 1602.3 MHz  
Figure 16. SNR/SFDR vs. fIN; fIN < 700 MHz;  
Buffer Control 1 (0x018) = 3.5× and 4.5×  
0
–20  
80  
A
= –1dBFS  
SNR 6.5×  
SFDR 6.5×  
IN  
SNR = 55.4dBFS  
ENOB = 8.8 BITS  
SFDR = 63dBFS  
75  
70  
65  
60  
55  
BUFFER CURRENT = 8.5×  
–40  
–60  
–80  
–100  
–120  
0
78.125 156.250 234.375 312.500 390.625 468.750 546.875 625.000  
FREQUENCY (MHz)  
628.3 706.6 784.3 862.3 940.3 1018.3 1096.3 1174.3 1252.3  
INPUT FREQUENCY (MHz)  
Figure 17. SNR/SFDR vs. fIN; 650 MHz < fIN < 1.3 GHz;  
Buffer Control 1 (0x018) = 6.5×  
Figure 14. Single-Tone FFT with fIN = 1954.3 MHz  
Rev. C | Page 16 of 97  
Data Sheet  
AD9680  
80  
0
–20  
SNR 8.5×  
SFDR 8.5×  
IMD3 (dBc)  
IMD3 (dBFS)  
SFDR (dBFS)  
SFDR (dBc)  
75  
70  
65  
60  
55  
50  
–40  
–60  
–80  
–100  
–120  
1252.3 1356.3 1460.3 1564.3 1668.3 177.23 1876.3 1980.3  
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12 –6  
INPUT AMPLITUDE (dBFS)  
0
INPUT FREQUENCY (MHz)  
Figure 18. SNR/SFDR vs. fIN; 1.3 GHz < fIN < 2GHz;  
Buffer Control 1 (0x018) = 8.5×  
Figure 21. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
IN1 = 184 MHz and fIN2 = 187 MHz  
f
0
0
A
AND A  
= –7dBFS  
IN2  
IN1  
IMD3 (dBc)  
SFDR = 82dBFS  
IMD2 = 84dBFS  
IMD3 = 82dBFS  
BUFFER CURRENT = 3.5×  
IMD3 (dBFS)  
SFDR (dBFS)  
SFDR (dBc)  
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12 –6  
0
0
78.125 156.250 234.375 312.500 390.625 468.750 546.875 625.000  
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 19. Two-Tone FFT; fIN1 = 184 MHz, fIN2 = 187 MHz  
Figure 22. Two-Tone IMD3/SFDR vs. Input Amplitude (AIN) with  
IN1 = 449 MHz and fIN2 = 452 MHz  
f
0
–20  
120  
100  
80  
A
AND A  
= –7dBFS  
IN2  
IN1  
SFDR = 78dBFS  
IMD2 = 78dBFS  
IMD3 = 78dBFS  
BUFFER CURRENT = 5.5×  
–40  
60  
40  
–60  
20  
–80  
0
SNR (dBFS)  
SNR (dBc)  
SFDR (dBc)  
SFDR (dBFS)  
–100  
–120  
–20  
–40  
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12 –6  
INPUT AMPLITUDE (dBFS)  
0
0
78.125 156.250 234.375 312.500 390.625 468.750 546.875 625.000  
FREQUENCY (MHz)  
Figure 20. Two-Tone FFT; fIN1 = 449 MHz, fIN2 = 452 MHz  
Figure 23. SNR/SFDR vs. Analog Input Level, fIN = 170.3 MHz  
Rev. C | Page 17 of 97  
AD9680  
Data Sheet  
85  
80  
75  
70  
65  
60  
55  
1200000  
1000000  
800000  
600000  
400000  
200000  
0
3.45 LSB rms  
SFDR  
SNR  
–48 –38 –28 –18 –8  
2
12 22 32 42 52 62 72 82 92 102 112  
TEMPERATURE (°C)  
CODE  
Figure 24. SNR/SFDR vs. Temperature, fIN = 170.3 MHz  
Figure 27. Input-Referred Noise Histogram  
4
3
4.00  
3.95  
3.90  
3.85  
3.80  
3.75  
3.70  
3.65  
3.60  
3.55  
2
1
0
–1  
–2  
–3  
–4  
0
2000  
4000  
6000  
8000 10000 12000 14000 16000  
–48 –38 –28 –18 –8  
2
12 22 32 42 52 62 72 82  
OUTPUT CODE  
TEMPERATURE (°C)  
Figure 25. INL, fIN = 10.3 MHz  
Figure 28. Power Dissipation vs. Temperature  
0.4  
0.3  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
0
2000  
4000  
6000  
8000 10000 12000 14000 16000  
1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200 1220 1240 1260  
OUTPUT CODE  
SAMPLE RATE (MHz)  
Figure 26. DNL, fIN = 15 MHz  
Figure 29. Power Dissipation vs. fS  
Rev. C | Page 18 of 97  
Data Sheet  
AD9680  
AD9680-1000  
AVDD1 = 1.25 V, AVDD1_SR = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, 1.7 V p-p  
full-scale differential input, AIN = −1.0 dBFS, default SPI settings, clock divider = 2, TA = 25°C, 128k FFT sample, unless otherwise noted.  
See Table 10 for recommended settings.  
A
= –1dBFS  
A
= –1dBFS  
IN  
IN  
–10  
–30  
–10  
–30  
SNR = 67.2dBFS  
ENOB = 10.8 BITS  
SFDR = 88dBFS  
SNR = 64.0dBFS  
ENOB = 10.3 BITS  
SFDR = 82dBFS  
BUFFER CONTROL 1 = 1.5×  
BUFFER CONTROL 1 = 3.0×  
–50  
–50  
–70  
–70  
–90  
–90  
–110  
–130  
–110  
–130  
0
0
0
100  
200  
300  
400  
500  
0
0
0
100  
200  
300  
400  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 30. Single-Tone FFT with fIN = 10.3 MHz  
Figure 33. Single-Tone FFT with fIN = 450.3 MHz  
0
–20  
A
= –1dBFS  
IN  
A
= –1dBFS  
SNR = 61.5dBFS  
ENOB = 10.1 BITS  
SFDR = 82dBFS  
BUFFER CONTROL 1 = 6.0×  
IN  
–10  
–30  
SNR = 66.6dBFS  
ENOB = 10.7 BITS  
SFDR = 85dBFS  
BUFFER CONTROL 1 = 3.0×  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–120  
–110  
–130  
100  
200  
300  
400  
500  
100  
200  
300  
400  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 31. Single-Tone FFT with fIN = 170.3 MHz  
Figure 34. Single-Tone FFT with fIN = 765.3 MHz  
0
A
= –1dBFS  
A
= –1dBFS  
SNR = 65.3dBFS  
ENOB = 10.5 BITS  
SFDR = 85dBFS  
BUFFER CONTROL 1 = 3.0×  
IN  
IN  
–10  
–30  
SNR = 60.5dBFS  
ENOB = 9.9 BITS  
SFDR = 80dBFS  
–20  
–40  
BUFFER CONTROL 1 = 6.0×  
–50  
–60  
–70  
–80  
–90  
–100  
–120  
–110  
–130  
100  
200  
300  
400  
500  
100  
200  
300  
400  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 35. Single-Tone FFT with fIN = 985.3 MHz  
Figure 32. Single-Tone FFT with fIN = 340.3 MHz  
Rev. C | Page 19 of 97  
 
AD9680  
Data Sheet  
0
90  
85  
80  
75  
70  
65  
60  
A
= –1dBFS  
IN  
SNR = 59.8BFS  
ENOB = 9.6 BITS  
SFDR = 79dBFS  
BUFFER CONTROL 1 = 8.0×  
–20  
–40  
SFDR (dBFS)  
–60  
–80  
SNR (dBFS)  
–100  
–120  
0
100  
200  
300  
400  
500  
700  
750  
800  
850  
900  
950  
1000  
1050  
1100  
FREQUENCY (MHz)  
SAMPLE RATE (MHz)  
Figure 39. SNR/SFDR vs. fS, fIN = 170.3 MHz; Buffer Control 1 (0x018) = 3.0×  
Figure 36. Single-Tone FFT with fIN = 1293.3 MHz  
90  
85  
80  
75  
70  
65  
0
–20  
A
= –1dBFS  
IN  
SNR = 57.7dBFS  
ENOB = 9.2 BITS  
SFDR = 70dBFS  
BUFFER CONTROL 1 = 8.0×  
–40  
–60  
–80  
60  
1.5× SFDR (dBFS)  
1.5× SNR (dBFS)  
3.0× SFDR (dBFS)  
3.0× SNR (dBFS)  
–100  
–120  
55  
50  
10.3 63.3 100.3 170.3 225.3 302.3 341.3 403.3 453.3 502.3  
0
100  
200  
300  
400  
500  
ANALOG INPUT FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 40. SNR/SFDR vs. fIN; fIN < 500 MHz;  
Buffer Control 1 (0x018) = 1.5× and 3.0×  
Figure 37. Single-Tone FFT with fIN = 1725.3 MHz  
100  
90  
80  
70  
60  
0
–20  
A
= –1dBFS  
IN  
SNR = 57.0dBFS  
ENOB = 9.1 BITS  
SFDR = 69dBFS  
BUFFER CURRENT = 6.0×  
–40  
–60  
–80  
–100  
–120  
4.0× SFDR  
4.0× SNRFS  
6.0× SFDR  
6.0× SNRFS  
50  
476.8 554.4 593.2 670.8 748.4 826.0 903.6  
ANALOG INPUT FREQUENCY (MHz)  
981.2  
0
100  
200  
300  
400  
500  
FREQUENCY (MHz)  
Figure 41. SNR/SFDR vs. fIN; 500 MHz < fIN < 1 GHz;  
Buffer Control 1 (0x018) = 4.0× and 6.0×  
Figure 38. Single-Tone FFT with fIN = 1950.3 MHz  
Rev. C | Page 20 of 97  
Data Sheet  
AD9680  
100  
90  
80  
70  
60  
50  
0
–20  
A
AND A  
= –7dBFS  
IN2  
IN1  
SFDR = 88dBFS  
IMD2 = 93dBFS  
IMD3 = 88dBFS  
BUFFER CONTROL 1 = 4.5×  
–40  
–60  
SFDR  
SNR  
–80  
–100  
–120  
0
100  
200  
300  
400  
500  
978.5  
1065.0 1142.4 1220.0 1297.3 1374.8 1452.2  
ANALOG INPUT FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 45. Two-Tone FFT; fIN1 = 338 MHz, fIN2 = 341 MHz  
Figure 42. SNR/SFDR vs. fIN; 1 GHz < fIN < 1.5 GHz;  
Buffer Control 1 (0x018) = 6.0×  
100  
20  
SFDR (dBc)  
SFDR (dBFS)  
IMD3 (dBc)  
0
IMD3 (dBFS)  
90  
–20  
–40  
80  
70  
–60  
SFDR  
SNR  
–80  
–100  
–120  
–140  
60  
50  
1513.3  
1607.4  
1701.6  
1795.6  
1889.7  
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12 –6  
ANALOG INPUT FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 46. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
Figure 43. SNR/SFDR vs. fIN; 1.5 GHz < fIN < 2 GHz;  
Buffer Control 1 (0x018) = 7.5×  
f
IN1 = 184 MHz and fIN2 = 187 MHz  
20  
0
0
–20  
SFDR (dBc)  
SFDR (dBFS)  
IMD3 (dBc)  
A
AND A  
= –7dBFS  
IN2  
IN1  
SFDR = 87dBFS  
IMD2 = 93dBFS  
IMD3 (dBFS)  
IMD3 = 87dBFS  
BUFFER CONTROL 1 = 3.0×  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–40  
–60  
–80  
–100  
–120  
0
100  
200  
300  
400  
500  
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12 –6  
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 47. Two-Tone IMD3/SFDR vs. Input Amplitude (AIN) with  
Figure 44. Two-Tone FFT; fIN1 = 184 MHz, fIN2 = 187 MHz  
f
IN1 = 338 MHz and fIN2 = 341 MHz  
Rev. C | Page 21 of 97  
AD9680  
Data Sheet  
110  
100  
90  
3
2
80  
70  
1
60  
50  
0
40  
30  
–1  
–2  
–3  
20  
10  
SFDR (dBFS)  
SFDR (dBc)  
SNR (dBFS)  
SNR (dBc)  
0
–10  
–20  
0
2000  
4000  
6000  
8000 10000 12000 14000 16000  
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12 –6  
0
OUTPUT CODE  
INPUT AMPLITUDE (dBFS)  
Figure 50. INL, fIN = 10.3 MHz  
Figure 48. SNR/SFDR vs. Analog Input Level, fIN = 170.3 MHz  
0.6  
0.4  
100  
90  
SFDR  
0.2  
80  
0
70  
SNR  
–0.2  
–0.4  
–0.6  
60  
50  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
0
2000  
4000  
6000  
8000 10000 12000 14000 16000  
TEMPERATURE (°C)  
OUTPUT CODE  
Figure 51. DNL, fIN = 15 MHz  
Figure 49. SNR/SFDR vs. Temperature, fIN = 170.3 MHz  
Rev. C | Page 22 of 97  
Data Sheet  
AD9680  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
25000  
L = 4, M = 2, F = 1  
2.63 LSB rms  
20000  
15000  
10000  
5000  
0
700  
750  
800  
850  
900  
950  
1000  
1050  
1100  
N – 6 N – 5 N – 4 N – 3 N – 2 N – 1  
N
N + 1 N + 2 N + 3 N + 4 N + 5 N + 6  
SAMPLE RATE (MHz)  
CODE  
Figure 52. Input-Referred Noise Histogram  
Figure 54. Power Dissipation vs. fS  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
L = 4  
M = 2  
F = 1  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
Figure 53. Power Dissipation vs. Temperature  
Rev. C | Page 23 of 97  
AD9680  
Data Sheet  
AD9680-820  
AVDD1 = 1.25 V, AVDD1_SR = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, 1.7 V p-p  
full-scale differential input, AIN = −1.0 dBFS, default SPI settings, clock divider = 2, TA = 25°C, 128k FFT sample, unless otherwise noted.  
See Table 10 for recommended settings.  
0
0
A
= –1dBFS  
A
= –1dBFS  
IN  
IN  
SNR = 67.2dBFS  
SNR = 65.1dBFS  
–20  
ENOB = 10.5 BITS  
SFDR = 79dBFS  
–20  
ENOB = 10.9BITS  
SFDR = 89dBFS  
BUFFER CONTROL 1 = 6.5×  
BUFFER CONTROL 1 = 1.5×  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
82  
164  
246  
328  
410  
410  
410  
0
82  
164  
246  
328  
410  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 55. Single-Tone FFT with fIN = 10.3 MHz  
Figure 58. Single-Tone FFT with fIN = 450.3 MHz  
0
–20  
0
–20  
A
= –1dBFS  
A
= –1dBFS  
IN  
IN  
SNR = 67.0dBFS  
ENOB = 10.8 BITS  
SFDR = 83dBFS  
SNR = 64.0dBFS  
ENOB = 10.3 BITS  
SFDR = 79dBFS  
BUFFER CONTROL 1 = 2.0×  
BUFFER CONTROL 1 = 6.5×  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
82  
164  
246  
328  
410  
0
82  
164  
246  
328  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 56. Single-Tone FFT with fIN = 170.3 MHz  
Figure 59. Single-Tone FFT with fIN = 765.3 MHz  
0
–20  
0
–20  
A
= –1dBFS  
SNR = 66.5dBFS  
ENOB = 10.7 BITS  
SFDR = 86dBFS  
BUFFER CONTROL 1 = 3.0×  
A
= –1dBFS  
IN  
IN  
SNR = 63.4dBFS  
ENOB = 10.1 BITS  
SFDR = 74dBFS  
BUFFER CONTROL 1 = 8.5×  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
82  
164  
246  
328  
410  
0
82  
164  
246  
328  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 57. Single-Tone FFT with fIN = 340.3 MHz  
Figure 60. Single-Tone FFT with fIN = 985.3 MHz  
Rev. C | Page 24 of 97  
 
Data Sheet  
AD9680  
0
90  
85  
80  
75  
70  
65  
60  
55  
50  
A
= –1dBFS  
IN  
SNR = 62.0dBFS  
ENOB = 9.9 BITS  
SFDR = 76dBFS  
BUFFER CONTROL 1 = 6.5×  
–20  
–40  
SFDR  
SNR  
–60  
–80  
–100  
–120  
500  
550  
600  
650  
700  
750  
800  
850  
900  
0
82  
164  
246  
328  
410  
SAMPLE RATE (MHz)  
FREQUENCY (MHz)  
Figure 61. Single-Tone FFT with fIN = 1205.3 MHz  
Figure 64. SNR/SFDR vs. fS, fIN = 170.3 MHz;  
Buffer Control 1 (0x018) = 3.0×  
0
–20  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
A
= –1dBFS  
IN  
SNR = 60.5dBFS  
ENOB = 9.5 BITS  
SFDR = 68dBFS  
BUFFER CONTROL 1 = 7.5×  
–40  
–60  
–80  
–100  
–120  
SFDR (3.0×)  
SNR (3.0×)  
0
82  
164  
246  
328  
410  
FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
Figure 65. SNR/SFDR vs. fIN; fIN < 450 MHz;  
Buffer Control 1 (0x018) = 3.0×  
Figure 62. Single-Tone FFT with fIN = 1720.3 MHz  
85  
0
–20  
A
= –1dBFS  
IN  
SNR = 59.7dBFS  
ENOB = 9.5 BITS  
SFDR = 69dBFS  
BUFFER CONTROL 1 = 8.5×  
80  
75  
70  
65  
60  
55  
–40  
–60  
–80  
–100  
–120  
SFDR (6.5×)  
SNR (6.5×)  
50  
450.3  
480.3  
510.3  
515.3  
610.3  
766.3  
810.3  
985.3  
0
82  
164  
246  
328  
410  
ANALOG INPUT FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 66. SNR/SFDR vs. fIN; 450 MHz < fIN < 1 GHz;  
Buffer Control 1 (0x018) = 6.5×  
Figure 63. Single-Tone FFT with fIN = 1950.3 MHz  
Rev. C | Page 25 of 97  
AD9680  
Data Sheet  
0
–20  
80  
75  
70  
65  
60  
55  
50  
AIN1 AND AIN2 = –7dBFS  
SFDR = 87dBFS  
IMD2 = 92dBFS  
IMD3 = 87dBFS  
BUFFER CURRENT = 3.0×  
–40  
–60  
–80  
–100  
–120  
SFDR (6.5×)  
SNR (6.5×)  
0
82  
164  
246  
328  
410  
985.3 1022.3  
1110.3  
1205.3  
1315.3  
1420.3  
1510.3  
FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
Figure 67. SNR/SFDR vs. fIN; 1 GHz < fIN < 1.5 GHz;  
Buffer Control 1 (0x018) = 6.5×  
Figure 70. Two-Tone FFT; fIN1 = 338 MHz, fIN2 = 341 MHz  
75  
70  
65  
60  
55  
0
IMD3 (dBc)  
IMD3 (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
–20  
–40  
–60  
–80  
–100  
–120  
SFDR (8.5×)  
SNR (8.5×)  
50  
1510.3  
1600.3  
1720.3  
1810.3  
1920.3  
1950.3  
–87 –81 –75 –69 –63 –57 –51 –45 –39 –33 –27 –21 –15 –9  
INPUT AMPLITUDE (dBFS)  
ANALOG INPUT FREQUENCY (MHz)  
Figure 68. SNR/SFDR vs. fIN; 1.5 GHz < fIN < 2 GHz;  
Buffer Control 1 (0x018) = 8.5×  
Figure 71. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
IN1 = 184 MHz and fIN2 = 187 MHz  
f
0
–20  
0
AIN1 AND AIN2 = –7dBFS  
SFDR = 90dBFS  
IMD2 = 90dBFS  
IMD3 = 91dBFS  
BUFFER CURRENT = 3.0×  
IMD3 (dBc)  
IMD3 (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–100  
–120  
–120  
0
–87 –81 –75 –69 –63 –57 –51 –45 –39 –33 –27 –21 –15 –9  
INPUT AMPLITUDE (dBFS)  
82  
164  
246  
328  
410  
FREQUENCY (MHz)  
Figure 72. Two-Tone IMD3/SFDR vs. Input Amplitude (AIN) with  
IN1 = 338 MHz and fIN2 = 341 MHz  
Figure 69. Two-Tone FFT; fIN1 = 184 MHz, fIN2 = 187 MHz  
f
Rev. C | Page 26 of 97  
Data Sheet  
AD9680  
120  
105  
90  
2.5  
2.0  
1.5  
75  
1.0  
60  
0.5  
45  
0
30  
–0.5  
–1.0  
–1.5  
–2.0  
15  
SNR (dBc)  
0
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
–15  
–30  
0
2000  
4000  
6000  
8000 10000 12000 14000 16000  
OUTPUT CODE  
INPUT AMPLITUDE (dBFS)  
Figure 73. SNR/SFDR vs. Analog Input Level, fIN = 170.3 MHz  
Figure 75. INL, fIN = 10.3 MHz  
90  
0.25  
0.20  
SNR (dBFS)  
SFDR (dBFS)  
85  
80  
75  
70  
65  
60  
0.15  
0.10  
0.05  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
–45  
–30  
–15  
–5  
5
15  
25  
45  
65  
85  
0
2000  
4000  
6000  
8000 10000 12000 14000 16000  
TEMPERATURE (°C)  
OUTPUT CODE  
Figure 76. DNL, fIN = 15 MHz  
Figure 74. SNR/SFDR vs. Temperature, fIN = 170.3 MHz  
Rev. C | Page 27 of 97  
AD9680  
Data Sheet  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
1600000  
1400000  
1200000  
1000000  
800000  
600000  
400000  
200000  
0
2.46 LSB rms  
CODE  
SAMPLE RATE (MHz)  
Figure 79. Power Dissipation vs. fS ; L = 4, M = 2, F = 1 for fS ≥ 625 MSPS and  
L = 2, M = 2, F = 2 for fS < 625 MSPS (Default SPI)  
Figure 77. Input-Referred Noise Histogram  
2.90  
2.88  
2.86  
2.84  
2.82  
2.80  
2.78  
2.76  
–45  
–30  
–15  
–5  
5
15  
25  
45  
65  
85  
TEMPERATURE (°C)  
Figure 78. Power Dissipation vs. Temperature  
Rev. C | Page 28 of 97  
Data Sheet  
AD9680  
AD9680-500  
AVDD1 = 1.25 V, AVDD1_SR = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, 2.06 V p-p  
full-scale differential input, AIN = −1.0 dBFS, default SPI settings, clock divider = 2, TA = 25°C, 128k FFT sample, unless otherwise noted.  
See Table 10 for recommended settings.  
0
0
A
= −1dBFS  
A
= −1dBFS  
IN  
IN  
SNR = 68.9dBFS  
SNR = 67.8dBFS  
ENOB = 10.9 BITS  
SFDR = 83dBFS  
ENOB = 10.8 BITS  
SFDR = 83dBFS  
–20  
–20  
BUFFER CONTROL 1 = 4.5×  
BUFFER CONTROL 1 = 2.0×  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
Figure 83. Single-Tone FFT with fIN = 450.3 MHz  
Figure 80. Single-Tone FFT with fIN = 10.3 MHz  
0
0
A
= −1dBFS  
IN  
A
= −1dBFS  
IN  
SNR = 68.9dBFS  
SNR = 64.7dBFS  
ENOB = 11 BITS  
–20  
–40  
–20  
–40  
ENOB = 10.4 BITS  
SFDR = 80dBFS  
SFDR = 88dBFS  
BUFFER CONTROL 1 = 2.0×  
BUFFER CONTROL 1 = 5.0×  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
Figure 81. Single-Tone FFT with fIN = 170.3 MHz  
Figure 84. Single-Tone FFT with fIN = 765.3 MHz  
0
–20  
0
A
= −1dBFS  
IN  
A
= −1dBFS  
IN  
SNR = 68.5dBFS  
SNR = 64.0dBFS  
ENOB = 10.9 BITS  
SFDR = 83dBFS  
–20  
–40  
ENOB = 10.3 BITS  
SFDR = 76dBFS  
BUFFER CONTROL 1 = 4.5×  
BUFFER CONTROL 1 = 5.0×  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
Figure 82. Single-Tone FFT with fIN = 340.3 MHz  
Figure 85. Single-Tone FFT with fIN = 985.3 MHz  
Rev. C | Page 29 of 97  
 
AD9680  
Data Sheet  
95  
90  
85  
80  
75  
70  
65  
60  
0
A
= −1dBFS  
IN  
SNR = 63.0dBFS  
–20  
ENOB = 10.0 BITS  
SFDR = 69dBFS  
BUFFER CONTROL 1 = 8.0×  
SFDR  
–40  
–60  
–80  
SNR  
–100  
–120  
–140  
0
300 320 340 360 380 400 420 440 460 480 500 530 550  
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
SAMPLE FREQUENCY (MHz)  
Figure 86. Single-Tone FFT with fIN = 1310.3 MHz  
Figure 89. SNR/SFDR vs. fS, fIN = 170.3 MHz; Buffer Control 1 = 2.0×  
100  
0
–20  
A
= −1dBFS  
IN  
SNR = 61.5dBFS  
ENOB = 9.8 BITS  
SFDR = 69dBFS  
90  
80  
70  
BUFFER CONTROL 1 = 8.0×  
–40  
–60  
–80  
–100  
–120  
–140  
60  
2.0× SNR  
2.0× SFDR  
4.5× SNR  
4.5× SFDR  
50  
10.3  
95.3 150.3 180.3 240.3 301.3 340.7 390.3 450.3  
ANALOG INPUT FREQUENCY (MHz)  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
Figure 87. Single-Tone FFT with fIN = 1710.3 MHz  
Figure 90. SNR/SFDR vs. fIN; fIN < 500 MHz;  
Buffer Control 1 (0x018) = 2.0× and 4.5×  
0
–20  
100  
90  
80  
70  
60  
50  
A
= −1dBFS  
IN  
SNR = 60.8dBFS  
ENOB = 9.6 BITS  
SFDR = 68dBFS  
BUFFER CONTROL 1 = 8.0×  
–40  
–60  
–80  
–100  
–120  
–140  
4.0× SNR  
4.0× SFDR  
8.0× SNR  
8.0× SFDR  
450.3 480.3 510.3 515.3 610.3 765.3 810.3 985.3 1010.3  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
Figure 91. SNR/SFDR vs. fIN; 500 MHz < fIN < 1 GHz;  
Buffer Control 1 (0x018) = 4.0× and 8.0×  
Figure 88. Single-Tone FFT with fIN = 1950.3 MHz  
Rev. C | Page 30 of 97  
Data Sheet  
AD9680  
80  
0
–20  
7.0× SNR  
SFDR (dBc)  
7.0× SFDR  
8.0× SNR  
SFDR (dBFS)  
IMD3 (dBc)  
8.0× SFDR  
75  
70  
65  
60  
55  
IMD3 (dBFS)  
–40  
–60  
–80  
–100  
–120  
50  
1010.3  
90  
84  
78  
72  
66  
60 54 48 42 36 30 24 18 12  
1205.3  
1410.3  
1600.3  
1810.3  
1950.3  
ANALOG INPUT FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 92. SNR/SFDR vs. fIN; 1 GHz < fIN < 2 GHz;  
Buffer Control 1 (0x018) = 7.0× and 8.0×  
Figure 95. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
IN1 = 184 MHz and fIN2 = 187 MHz  
f
0
0
A
AND A  
= –7dBFS  
IN2  
SFDR (dBc)  
SFDR (dBFS)  
IMD3 (dBc)  
IN1  
SFDR = 88dBFS  
IMD2 = 94dBFS  
–20  
–40  
–20  
IMD3 (dBFS)  
IMD3 = 88dBFS  
BUFFER CONTROL 1 = 2.0×  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
–90  
–81  
–72  
–63  
–54  
–45  
–36  
–27  
–18  
–9  
0
50  
100  
150  
200  
250  
FREQUENCY (MHz)  
AMPLITUDE (dBFS)  
Figure 93. Two-Tone FFT; fIN1 = 184 MHz, fIN2 = 187 MHz  
Figure 96. Two-Tone IMD3/SFDR vs. Input Amplitude (AIN) with  
IN1 = 338 MHz and fIN2 = 341 MHz  
f
0
–20  
–40  
–60  
–80  
110  
100  
90  
A
AND A  
= –7dBFS  
IN2  
IN1  
SFDR = 88dBFS  
IMD2 = 88dBFS  
IMD3 = 89dBFS  
BUFFER CONTROL 1 = 4.5×  
80  
70  
60  
50  
40  
30  
20  
10  
–100  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SNR (dBc)  
0
–10  
–120  
–20  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
0
50  
100  
150  
200  
250  
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 94. Two-Tone FFT; fIN1 = 338 MHz, fIN2 = 341 MHz  
Figure 97. SNR/SFDR vs. Analog Input Level, fIN = 170.3 MHz  
Rev. C | Page 31 of 97  
AD9680  
Data Sheet  
95  
90  
85  
80  
75  
70  
900000  
800000  
700000  
600000  
500000  
400000  
300000  
200000  
100000  
0
2.06 LSB RMS  
SFDR  
SNR  
65  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
OUTPUT CODE  
Figure 98. SNR/SFDR vs. Temperature, fIN = 170.3 MHz  
Figure 101. Input-Referred Noise Histogram  
2.32  
2.30  
2.28  
2.26  
2.24  
2.22  
2.20  
3.0  
2.5  
L = 4  
M = 2  
F = 1  
2.0  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0
2000  
4000  
6000  
8000 10000 12000 14000 16000  
–45  
–35  
–5  
15  
25  
45  
65  
85  
TEMPERATURE (°C)  
OUTPUT CODE  
Figure 99. INL, fIN = 10.3 MHz  
Figure 102. Power Dissipation vs. Temperature  
0.8  
0.6  
2.37  
2.32  
2.27  
2.22  
2.17  
2.12  
2.07  
2.02  
1.97  
1.92  
1.87  
L = 4, M = 2, F = 1  
L = 2, M = 2, F = 2  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
0
2000  
4000  
6000  
8000 10000 12000 14000 16000  
300 320 340 360 380 400 420 440 460 480 500 520 540  
OUTPUT CODE  
SAMPLE RATE (MHz)  
Figure 103. Power Dissipation vs. fS  
Figure 100. DNL, fIN = 15 MHz  
Rev. C | Page 32 of 97  
Data Sheet  
AD9680  
EQUIVALENT CIRCUITS  
AVDD3  
AVDD3  
VIN+x  
AVDD3  
3pF 1.5pF  
EMPHASIS/SWING  
CONTROL (SPI)  
400Ω  
V
CM  
BUFFER  
10pF  
DRVDD  
AVDD3  
AVDD3  
DATA+  
DATA–  
SERDOUTx+  
x = 0, 1, 2, 3  
DRGND  
DRVDD  
VIN–x  
OUTPUT  
DRIVER  
A
IN  
SERDOUTx–  
x = 0, 1, 2, 3  
3pF 1.5pF  
CONTROL  
(SPI)  
DRGND  
Figure 104. Analog Inputs  
Figure 107. Digital Outputs  
DVDD  
1kΩ  
SYNCINB+  
AVDD1  
25Ω  
20kΩ  
CLK+  
CLK–  
DGND  
DVDD  
LEVEL  
V
= 0.85V  
TRANSLATOR  
CM  
20kΩ  
AVDD1  
V
CM  
1kΩ  
25Ω  
SYNCINB–  
SYNCINB± PIN  
CONTROL (SPI)  
20kΩ  
20kΩ  
DGND  
V
= 0.85V  
CM  
Figure 105. Clock Inputs  
Figure 108. SYNCINB Inputs  
AVDD1_SR  
1kΩ  
SYSREF+  
SPIVDD  
ESD  
PROTECTED  
20kΩ  
SPIVDD  
LEVEL  
V
= 0.85V  
1kΩ  
TRANSLATOR  
CM  
SCLK  
AVDD1_SR  
20kΩ  
30kΩ  
1kΩ  
ESD  
PROTECTED  
SYSREF–  
Figure 106. SYSREF Inputs  
Figure 109. SCLK Input  
Rev. C | Page 33 of 97  
 
 
AD9680  
Data Sheet  
SPIVDD  
SPIVDD  
ESD  
PROTECTED  
ESD  
PROTECTED  
30kΩ  
1kΩ  
1kΩ  
PDWN/  
STBY  
CSB  
ESD  
PROTECTED  
ESD  
PROTECTED  
PDWN  
CONTROL (SPI)  
Figure 110. CSB Input  
Figure 113. PDWN/STBY Input  
SPIVDD  
AVDD2  
ESD  
ESD  
PROTECTED  
PROTECTED  
SDO  
SPIVDD  
SDI  
1kΩ  
V_1P0  
SDIO  
30kΩ  
ESD  
PROTECTED  
ESD  
PROTECTED  
V_1P0 PIN  
CONTROL (SPI)  
Figure 111. SDIO Input  
Figure 114. V_1P0 Input/Output  
SPIVDD  
ESD  
PROTECTED  
FD  
JESD LMFC  
JESD SYNC~  
FD_A/FD_B  
TEMPERATURE DIODE  
(FD_A ONLY)  
ESD  
PROTECTED  
FD_x PIN CONTROL (SPI)  
Figure 112. FD_A/FD_B Outputs  
Rev. C | Page 34 of 97  
Data Sheet  
AD9680  
THEORY OF OPERATION  
The AD9680 has two analog input channels and four JESD204B  
output lane pairs. The ADC is designed to sample wide bandwidth  
analog signals of up to 2 GHz. The AD9680 is optimized for wide  
input bandwidth, high sampling rate, excellent linearity, and  
low power in a small package.  
into sample mode, the signal source must be capable of charging  
the sample capacitors and settling within one-half of a clock cycle.  
A small resistor, in series with each input, can help reduce the peak  
transient current injected from the output stage of the driving  
source. In addition, low Q inductors or ferrite beads can be placed  
on each leg of the input to reduce high differential capacitance at  
the analog inputs and, thus, achieve the maximum bandwidth of  
the ADC. Such use of low Q inductors or ferrite beads is required  
when driving the converter front end at high IF frequencies.  
Either a differential capacitor or two single-ended capacitors  
can be placed on the inputs to provide a matching passive network.  
This ultimately creates a low-pass filter at the input, which limits  
unwanted broadband noise. For more information, refer to the  
AN-742 Application Note, the AN-827 Application Note, and  
the Analog Dialogue article Transformer-Coupled Front-End  
for Wideband A/D Converters(Volume 39, April 2005). In  
general, the precise values depend on the application.  
The dual ADC cores feature a multistage, differential pipelined  
architecture with integrated output error correction logic. Each  
ADC features wide bandwidth inputs supporting a variety of  
user-selectable input ranges. An integrated voltage reference  
eases design considerations.  
The AD9680 has several functions that simplify the AGC  
function in a communications receiver. The programmable  
threshold detector allows monitoring of the incoming signal  
power using the fast detect output bits of the ADC. If the input  
signal level exceeds the programmable threshold, the fast detect  
indicator goes high. Because this threshold indicator has low  
latency, the user can quickly turn down the system gain to avoid  
an overrange condition at the ADC input.  
For best dynamic performance, the source impedances driving  
VIN+x and VIN−x must be matched such that common-mode  
settling errors are symmetrical. These errors are reduced by the  
common-mode rejection of the ADC. An internal reference  
buffer creates a differential reference that defines the span of the  
ADC core.  
The Subclass 1 JESD204B-based high speed serialized output data  
lanes can be configured in one-lane (L = 1), two-lane (L = 2),  
and four-lane (L = 4) configurations, depending on the sample  
rate and the decimation ratio. Multiple device synchronization  
is supported through the SYSREF and SYNCINB input pins.  
Maximum SNR performance is achieved by setting the ADC  
to the largest span in a differential configuration. In the case  
of the AD9680, the available span is programmable through  
the SPI port from 1.46 V p-p to 2.06 V p-p differential, with  
1.58 V p-p differential being the default for the AD9680-1250,  
1.70 V p-p differential being the default for the AD9680-1000  
and AD9680-820, and 2.06 V p-p differential being the default  
for the AD9680-500.  
ADC ARCHITECTURE  
The architecture of the AD9680 consists of an input buffered  
pipelined ADC. The input buffer is designed to provide a  
termination impedance to the analog input signal. This  
termination impedance can be changed using the SPI to meet  
the termination needs of the driver/amplifier. The default  
termination value is set to 400 Ω. The equivalent circuit diagram of  
the analog input termination is shown in Figure 104. The input  
buffer is optimized for high linearity, low noise, and low power.  
Differential Input Configurations  
There are several ways to drive the AD9680, either actively or  
passively. However, optimum performance is achieved by  
driving the analog input differentially.  
The input buffer provides a linear high input impedance (for  
ease of drive) and reduces kickback from the ADC. The buffer  
is optimized for high linearity, low noise, and low power. The  
quantized outputs from each stage are combined into a final  
14-bit result in the digital correction logic. The pipelined  
architecture permits the first stage to operate with a new input  
sample; at the same time, the remaining stages operate with the  
preceding samples. Sampling occurs on the rising edge of the clock.  
For applications where SNR and SFDR are key parameters,  
differential transformer coupling is the recommended input  
configuration (see Figure 115 and Table 9) because the noise  
performance of most amplifiers is not adequate to achieve the  
true performance of the AD9680.  
For low to midrange frequencies, a double balun or double  
transformer network (see Figure 115 and Table 9) is recom-  
mended for optimum performance of the AD9680. For higher  
frequencies in the second or third Nyquist zones, it is better  
to remove some of the front-end passive components to ensure  
wideband operation (see Figure 115 and Table 9).  
ANALOG INPUT CONSIDERATIONS  
The analog input to the AD9680 is a differential buffer. The  
internal common-mode voltage of the buffer is 2.05 V. The  
clock signal alternately switches the input circuit between  
sample mode and hold mode. When the input circuit is switched  
Rev. C | Page 35 of 97  
 
 
 
AD9680  
Data Sheet  
0.1µF  
R2  
R3  
R3  
R1  
R1  
C1  
C2  
ADC  
BALUN  
0.1µF  
R2  
0.1µF  
C1  
NOTES  
1. SEE TABLE 9 FOR COMPONENT VALUES.  
Figure 115. Differential Transformer-Coupled Configuration for AD9680  
Table 9. Differential Transformer-Coupled Input Configuration Component Values  
Device  
Frequency Range  
Transformer  
R1 (Ω)  
R2 (Ω)  
50  
50  
R3 (Ω)  
10  
10  
10  
10  
10  
0
C1 (pF)  
C2 (pF)  
AD9680-500  
DC to 250 MHz  
250 MHz to 2 GHz  
DC to 410 MHz  
410 MHz to 2 GHz  
DC to 500 MHz  
500 MHz to 2 GHz  
DC to 625 MHz  
ETC1-1-13  
BAL-0006/BAL-0006SMG  
ETC1-1-13  
BAL-0006/BAL-0006SMG  
ETC1-1-13/BAL-0006SMG  
BAL-0006/BAL-0006SMG  
BAL-0006SMG  
10  
10  
4
4
2
2
AD9680-820  
AD9680-1000  
AD9680-1250  
10  
10  
50  
50  
4
4
2
2
25  
25  
25  
25  
4
2
Open  
4
Open  
Open  
2
Open  
10  
10  
50  
50  
15  
0
625 MHz to 2 GHz  
BAL-0006SMG  
Input Common Mode  
Input Buffer Control Registers (0x018, 0x019, 0x01A,  
0x935, 0x934, 0x11A)  
The analog inputs of the AD9680 are internally biased to the  
common mode as shown in Figure 116. The common-mode  
buffer has a limited range in that the performance suffers greatly  
if the common-mode voltage drops by more than 100 mV.  
Therefore, in dc-coupled applications, set the common-mode  
voltage to 2.05 V, 100 mV to ensure proper ADC operation.  
The full-scale voltage setting must be at a 1.7 V p-p differential  
if running in a dc-coupled application.  
The input buffer has many registers that set the bias currents and  
other settings for operation at different frequencies. These bias  
currents and settings can be changed to suit the input frequency  
range of operation. Register 0x018 controls the buffer bias current  
to help with the kickback from the ADC core. This setting can be  
scaled from a low setting of 1.0× to a high setting of 8.5×. The  
default setting is 3.0× for the AD9680-1000 and AD9680-820,  
and 2.0× for the AD9680-500. These settings are sufficient for  
operation in the first Nyquist zone for the products. When the  
input buffer current in Register 0x018 is set, the amount of  
current required by the AVDD3 supply changes. This relationship  
is shown in Figure 117. For a complete list of buffer current  
settings, see Table 36.  
Analog Input Buffer Controls and SFDR Optimization  
The AD9680 input buffer offers flexible controls for the analog  
inputs, such as input termination, buffer current, and input full-  
scale adjustment. All the available controls are shown in Figure 116.  
AVDD3  
AVDD3  
300  
VIN+x  
250  
AD9680-1250,  
AD9680-1000,  
AND  
AVDD3  
3pF 1.5pF  
AD9680-820  
200  
400Ω  
V
CM  
BUFFER  
AD9680-500  
10pF  
150  
AVDD3  
AVDD3  
100  
VIN–x  
AIN CONTROL  
SPI REGISTERS  
(0x008, 0x015,  
0x016, 0x018,  
0x019, 0x01A,  
0x11A, 0x934,  
0x935)  
3pF 1.5pF  
50  
1.5×  
2.5×  
3.5×  
4.5×  
5.5×  
6.5×  
7.5×  
8.5×  
BUFFER CONTROL 1 SETTING  
Figure 117. IAVDD3 vs. Buffer Control 1 Setting in Register 0x018  
Figure 116. Analog Input Controls  
The 0x019, 0x01A, 0x11A, and 0x935 registers offer secondary  
bias controls for the input buffer for frequencies >500 MHz.  
Register 0x934 can be used to reduce input capacitance to achieve  
wider signal bandwidth but may result in slightly lower linearity  
Using the 0x018, 0x019, 0x01A, 0x11A, 0x934, and 0x935 registers,  
the buffer behavior on each channel can be adjusted to optimize the  
SFDR over various input frequencies and bandwidths of interest.  
Rev. C | Page 36 of 97  
 
 
 
 
Data Sheet  
AD9680  
76  
74  
72  
70  
68  
66  
64  
62  
60  
58  
and noise performance. These register settings do not impact the  
AVDD3 power as much as Register 0x018 does. For frequencies  
<500 MHz, it is recommended to use the default settings for  
these registers. Table 10 shows the recommended values for the  
buffer current control registers for various speed grades.  
Register 0x11A is used when sampling in higher Nyquist zones  
(>500 MHz for the AD9680-1000). This setting enables the ADC  
sampling network to optimize the sampling and settling times  
internal to the ADC for high frequency operation. For frequencies  
greater than 500 MHz, it is recommended to operate the ADC core  
at a 1.46 V full-scale setting irrespective of the speed grade. This  
setting offers better SFDR without any significant penalty in SNR.  
650MHz  
750MHz  
850MHz  
1304.3 1408.3 1512.3 1616.3 1720.3 1824.3 1928.3  
INPUT FREQUENCY (MHz)  
Figure 118, Figure 119, and Figure 120 show the SFDR vs.  
analog input frequency for various buffer settings for the  
AD9680-1250. The recommended settings shown in Table 10  
were used to take the data while changing the contents of  
Register 0x018 only.  
Figure 120. Buffer Current Sweeps, AD9680-1250 (SFDR vs. IBUFF);  
1300 MHz < fIN < 2000 MHz; Front-End Network Shown in Figure 115  
Figure 121, Figure 122, and Figure 123 show the SFDR vs.  
analog input frequency for various buffer settings for the  
AD9680-1000. The recommended settings shown in Table 10  
were used to take the data while changing the contents of  
Register 0x018 only.  
85  
250MHz  
350MHz  
450MHz  
550MHz  
80  
75  
70  
65  
60  
90  
85  
80  
75  
70  
65  
60  
10.3 147.3 212.3 290.3 355.3 433.3 511.3 589.3 667.3  
INPUT FREQUENCY (MHz)  
1.5×  
3.0×  
4.5×  
55  
50  
Figure 118. Buffer Current Sweeps, AD9680-1250 (SFDR vs. IBUFF);  
fIN < 500 MHz; Front-End Network Shown in Figure 115  
10  
60  
110 160 210 260 310 360 410 460  
ANALOG INPUT FREQUENCY (MHz)  
80  
75  
70  
65  
Figure 121. Buffer Current Sweeps, AD9680-1000 (SFDR vs. IBUFF);  
fIN < 500 MHz; Front-End Network Shown in Figure 115  
85  
4.0×  
5.0×  
6.0×  
80  
75  
70  
65  
60  
55  
50  
45  
40  
60  
350MHz  
450MHz  
550MHz  
650MHz  
55  
602.3 680.3 758.3 836.3 914.3 992.3 1070.3 1148.3 1226.3  
INPUT FREQUENCY (MHz)  
Figure 119. Buffer Current Sweeps, AD9680-1250 (SFDR vs. IBUFF);  
600 MHz < fIN < 1300 MHz; Front-End Network Shown in Figure 115  
503.4  
677.6  
851.9  
1026.2  
1200.5  
1374.8  
ANALOG INPUT FREQUENCY (MHz)  
Figure 122. Buffer Current Sweeps, AD9680-1000 (SFDR vs. IBUFF);  
500 MHz < fIN < 1500 MHz; Front-End Network Shown in Figure 115  
Rev. C | Page 37 of 97  
 
 
 
 
 
AD9680  
Data Sheet  
80  
75  
70  
65  
60  
55  
50  
45  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
4.5×  
5.5×  
6.5×  
7.5×  
8.5×  
1.5×  
2.0×  
3.0×  
4.5×  
40  
1513.4  
1607.4  
1701.5  
1795.6  
1889.8  
ANALOG INPUT FREQUENCY (MHz)  
Figure 123. Buffer Current Sweeps, AD9680-1000 (SFDR vs. IBUFF);  
1500 MHz < fIN < 2000 MHz; Front-End Network Shown in Figure 115  
ANALOG INPUT FREQUENCY (MHz)  
Figure 125. Buffer Current Sweeps, AD9680-820 (SFDR vs. IBUFF);  
fIN < 500 MHz; Front-End Network Shown in Figure 115  
In certain high frequency applications, the SFDR can be improved  
by reducing the full-scale setting, as shown in Table 10. At high  
frequencies, the performance of the ADC core is limited by jitter.  
The SFDR can be improved by backing off of the full scale level.  
Figure 124 shows the SFDR and SNR vs. full-scale input level at  
different high frequencies for the AD9680-1000.  
85  
80  
75  
70  
65  
80  
75  
70  
65  
60  
55  
80  
75  
70  
65  
60  
55  
1.65GHz  
1.52GHz  
1.76GHz  
1.95GHz  
1.9GHz  
3.5×  
4.5×  
5.5×  
6.5×  
60  
55  
7.5×  
50  
1.52GHz  
1.65GHz  
1.76GHz  
1.9GHz  
ANALOG INPUT FREQUENCY (MHz)  
Figure 126. Buffer Current Sweeps, AD9680-820 (SFDR vs. IBUFF);  
500 MHz < fIN < 1000 MHz; Front-End Network Shown in Figure 115  
1.95GHz  
80  
–3  
–2  
–1  
INPUT LEVEL (dBFS)  
6.5×  
7.5×  
8.5×  
75  
Figure 124. SNR/SFDR vs. Analog Input Level vs. Input Frequencies, AD9680-1000  
Figure 125, Figure 126, and Figure 127 show the SFDR vs.  
analog input frequency for various buffer settings for the  
AD9680-820. The recommended settings shown in Table 10  
were used to take the data while changing the contents of  
Register 0x018 only.  
70  
65  
60  
55  
50  
ANALOG INPUT FREQUENCY (MHz)  
Figure 127. Buffer Current Sweeps, AD9680-820 (SFDR vs. IBUFF);  
1000 MHz < fIN < 2000 MHz; Front-End Network Shown in Figure 115  
Rev. C | Page 38 of 97  
 
 
 
 
 
Data Sheet  
AD9680  
95  
90  
85  
80  
75  
70  
65  
Figure 128, Figure 129, and Figure 130 show the SFDR vs.  
analog input frequency for various buffer settings for the  
AD9680-500. The recommended settings shown in Table 10  
were used to take the data while changing the contents of  
Register 0x018 only.  
4.0×  
5.0×  
6.0×  
7.0×  
8.0×  
100  
90  
80  
70  
60  
450.3  
480.3  
510.3  
515.3  
610.3  
765.3  
810.3  
985.3  
ANALOG INPUT FREQUENCY (MHz)  
50  
Figure 129. Buffer Current Sweeps, AD9680-500 (SFDR vs. IBUFF);  
450 MHz < fIN < 1000 MHz; Front-End Network Shown in Figure 115  
1.0×  
40  
1.5×  
2.0×  
3.0×  
4.5×  
80  
75  
70  
65  
60  
55  
50  
30  
10.3  
95.3 150.3 180.3 240.3 301.3 340.7 390.3 450.3  
ANALOG INPUT FREQUENCY (MHz)  
Figure 128. Buffer Current Sweeps, AD9680-500 (SFDR vs. IBUFF);  
fIN < 500 MHz; Front-End Network Shown in Figure 115 Buffer Control 1  
(0x018) = 1.0×, 1.5×, 2.0×, 3.0×, or 4.5×  
4.0×  
5.0×  
45  
6.0×  
7.0×  
8.0×  
40  
1010.3  
1205.3  
1410.3  
1600.3  
1810.3  
1950.3  
ANALOG INPUT FREQUENCY (MHz)  
Figure 130. Buffer Current Sweeps, AD9680-500 (SFDR vs. IBUFF);  
1 GHz < fIN < 2 GHz; Front-End Network Shown in Figure 115  
Rev. C | Page 39 of 97  
 
 
 
AD9680  
Data Sheet  
Table 10. Recommended Register Settings for SFDR Optimization at Different Input Frequencies  
Buffer  
Buffer  
Control 2  
Buffer  
Control 3  
Buffer  
Control 4  
Buffer  
Control 1  
(0x018)—  
Buffer  
Control 5  
(0x935)—  
Low  
Input  
Full-  
Scale  
Input  
Full-Scale  
Range  
(0x019)— (0x01A)— (0x11A)—  
Buffer  
Bias  
Buffer  
Bias  
High  
Frequency  
Input  
Input  
Current  
Frequency  
Control  
Termination  
Capacitance  
(0x934)  
Setting  
Setting  
(0x025)  
(0x030)  
(0x016)1  
Product  
Frequency  
Control  
Setting  
Setting  
AD9680-  
500  
DC to  
250 MHz  
250 MHz to 0x70  
500 MHz (4.5×)  
500 MHz to 0x80  
1 GHz  
1 GHz to  
2 GHz  
0x20  
(2.0×)  
0x60  
0x0A  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x20 (on)  
0x20 (on)  
0x00 (off)  
N/A3  
0x04 (on)  
0x04 (on)  
0x00 (off)  
0x00 (off)  
0x04 (on)  
0x04 (on)  
0x00 (off)  
0x00 (off)  
0x04 (on)  
0x04 (on)  
0x00 (off)  
0x00 (off)  
0x04 (on)  
0x00 (off)  
0x0C  
(2.06 V p-p)  
0x0C  
(2.06 V p-p)  
0x08  
(1.46 V p-p)  
0x08  
(1.46 V p-p)  
0x04  
0x04  
0x18  
0x18  
0x14  
0x14  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x0C/0x1C/…  
0x0C/0x1C/…  
0x0C/0x1C/…  
0x0C/0x1C/…  
0x0C/0x1C/…  
0x0C/0x1C/…  
0x0C/0x1C/…  
0x0C/0x1C/…  
0x0E/0x1E/…  
0x0E/0x1E/…  
0x0E/0x1E/…  
0x0E/0x1E/…  
0x0E/0x1E/…  
0x0E/0x1E/…  
0x1F  
(Setting 3) (Setting 3)  
0x60 0x0A  
(Setting 3) (Setting 3)  
0x40 0x08  
(Setting 1) (Setting 1)  
0x40 0x08  
(Setting 1) (Setting 1)  
0x40 0x09  
(Setting 1) (Setting 2)  
0x40 0x09  
(Setting 1) (Setting 2)  
0x40 0x08  
(Setting 1) (Setting 1)  
0x40 0x08  
(Setting 1) (Setting 1)  
0x50 0x09  
(Setting 2) (Setting 2)  
0x50 0x09  
(Setting 2) (Setting 2)  
0x60 0x09  
(Setting 3) (Setting 2)  
0x70 0x09  
(Setting 4) (Setting 2)  
0x50 0x09  
(Setting 2) (Setting 2)  
0x50 0x09  
(Setting 2) (Setting 2)  
0x1F  
0x1F or 0x002  
0x1F or 0x001  
0x1F  
(5.0×)  
0xF0  
(8.5×)  
AD9680-  
820  
DC to  
200 MHz  
DC to  
410 MHz  
500 MHz to 0x80  
1 GHz  
1 GHz to  
2 GHz  
0x10  
(1.5×)  
0x40  
(3.0×)  
0x0A  
(1.70 V p-p)  
0x0A  
(1.70 V p-p)  
0x08  
(1.46 V p-p)  
0x08  
(1.46 V p-p)  
0x1F  
0x1F or 0x002  
0x1F or 0x001  
0x1F  
(5.0×)  
0xF0  
(8.5×)  
AD9680-  
1000  
DC to  
150 MHz  
0x10  
(1.5×)  
0x0A  
(1.70 V p-p)  
DC to  
500 MHz  
0x40  
(3.0×)  
0x0A  
(1.70 V p-p)  
0x1F  
500 MHz to 0xA0  
1 GHz  
0x08  
(1.46 V p-p)  
0x1F or 0x001  
0x1F or 0x001  
0x1F  
(6.0×)  
1 GHz to  
2 GHz  
0xD0  
(7.5×)  
0x08  
(1.46 V p-p)  
AD9680-  
1250  
DC to  
625 MHz  
0x50  
(3.5×)  
0xA0  
(6.0×)  
0x0A  
(1.58 V p-p)  
0x08  
(1.46 V p-p)  
>625 MHz  
0x1F or 0x001  
1 The input termination can be changed to accommodate the application with little or no impact to ac performance.  
2 The input capacitance can be set to 1.5 pF to achieve wider input bandwidth but results in slightly lower ac performance.  
3 N/A means not applicable.  
Rev. C | Page 40 of 97  
 
Data Sheet  
AD9680  
Absolute Maximum Input Swing  
the reference voltage. For more information on adjusting the  
full-scale level of the AD9680, refer to the Memory Map Register  
Table section.  
The absolute maximum input swing allowed at the inputs of the  
AD9680 is 4.3 V p-p differential. Signals operating near or at  
this level can cause permanent damage to the ADC.  
The use of an external reference may be necessary, in some  
applications, to enhance the gain accuracy of the ADC or to  
improve thermal drift characteristics. Figure 132 shows the  
typical drift characteristics of the internal 1.0 V reference.  
VOLTAGE REFERENCE  
A stable and accurate 1.0 V voltage reference is built into the  
AD9680. This internal 1.0 V reference is used to set the full-  
scale input range of the ADC. The full-scale input range can  
be adjusted via the ADC Function Register 0x025. For more  
information on adjusting the input swing, see Table 36. Figure 131  
shows the block diagram of the internal 1.0 V reference controls.  
1.0010  
1.0009  
1.0008  
1.0007  
1.0006  
1.0005  
1.0004  
1.0003  
1.0002  
1.0001  
1.0000  
0.9999  
0.9998  
VIN+A/  
VIN+B  
VIN–A/  
VIN–B  
ADC  
INTERNAL  
V_1P0  
GENERATOR  
CORE  
FULL-SCALE  
VOLTAGE  
ADJUST  
INPUT FULL-SCALE  
RANGE ADJUST  
SPI REGISTER  
(0x025, 0x02,  
AND 0x024)  
–50  
0
25  
90  
V_1P0  
TEMPERATURE (°C)  
Figure 132. Typical V_1P0 Drift  
V_1P0 PIN  
CONTROL SPI  
REGISTER  
The external reference must be a stable 1.0 V reference. The  
ADR130 is a good option for providing the 1.0 V reference.  
Figure 133 shows how the ADR130 can be used to provide the  
external 1.0 V reference to the AD9680. The grayed out areas  
show unused blocks within the AD9680 while using the  
ADR130 to provide the external reference.  
(0x025, 0x02,  
AND 0x024)  
Figure 131. Internal Reference Configuration and Controls  
The SPI Register 0x024 enables the user to either use this internal  
1.0 V reference, or to provide an external 1.0 V reference. When  
using an external voltage reference, provide a 1.0 V reference.  
The full-scale adjustment is made using the SPI, irrespective of  
INTERNAL  
V_1P0  
GENERATOR  
FULL-SCALE  
VOLTAGE  
ADJUST  
ADR130  
1
2
3
6
5
4
NC  
NC  
GND SET  
V_1P0  
0.1µF  
INPUT  
V
V
OUT  
IN  
0.1µF  
FULL-SCALE  
CONTROL  
Figure 133. External Reference Using ADR130  
Rev. C | Page 41 of 97  
 
 
 
 
AD9680  
Data Sheet  
Input Clock Divider  
CLOCK INPUT CONSIDERATIONS  
The AD9680 contains an input clock divider with the ability to  
divide the Nyquist input clock by 1, 2, 4, and 8. The divider  
ratios can be selected using Register 0x10B. This is shown in  
Figure 137.  
For optimum performance, drive the AD9680 sample clock  
inputs (CLK+ and CLK−) with a differential signal. This signal  
is typically ac-coupled to the CLK+ and CLK− pins via a  
transformer or clock drivers. These pins are biased internally  
and require no additional biasing.  
The maximum frequency at the CLK inputs is 4 GHz. This is  
the limit of the divider. In applications where the clock input is  
a multiple of the sample clock, care must be taken to program  
the appropriate divider ratio into the clock divider before applying  
the clock signal. This ensures that the current transients during  
device startup are controlled.  
Figure 134 shows a preferred method for clocking the AD9680.  
The low jitter clock source is converted from a single-ended  
signal to a differential signal using an RF transformer.  
0.1µF  
1:1Z  
CLK+  
ADC  
CLK–  
CLOCK  
INPUT  
CLK+  
100Ω  
50Ω  
CLK–  
÷2  
÷4  
÷8  
0.1µF  
Figure 134. Transformer-Coupled Differential Clock  
Another option is to ac couple a differential CML or LVDS  
REG 0x10B  
signal to the sample clock input pins, as shown in Figure 135  
and Figure 136.  
Figure 137. Clock Divider Circuit  
The AD9680 clock divider can be synchronized using the  
external SYSREF input. A valid SYSREF causes the clock  
divider to reset to a programmable state. This synchronization  
feature allows multiple devices to have their clock dividers  
aligned to guarantee simultaneous input sampling. See the  
Multichip Synchronization section for more information.  
3.3V  
71Ω  
33Ω  
10pF  
33Ω  
0.1µF  
Z0 = 50Ω  
CLK+  
ADC  
CLK–  
0.1µF  
Input Clock Divider ½ Period Delay Adjust  
Z0 = 50Ω  
Figure 135. Differential CML Sample Clock  
The input clock divider inside the AD9680 provides phase delay  
in increments of ½ the input clock cycle. Register 0x10C can be  
programmed to enable this delay independently for each channel.  
Changing this register does not affect the stability of the  
JESD204B link.  
0.1µF  
0.1µF  
0.1µF  
100Ω  
0.1µF  
CLOCK INPUT  
CLOCK INPUT  
CLK+  
LVDS  
CLK+  
ADC  
DRIVER  
CLK–  
CLK–  
Clock Fine Delay Adjust  
1
1
50Ω  
50Ω  
The AD9680 sampling edge instant can be adjusted by writing to  
Register 0x117 and Register 0x118. Setting Bit 0 of Register 0x117  
enables the feature, and Bits[7:0] of Register 0x118 set the value  
of the delay. This value can be programmed individually for  
each channel. The clock delay can be adjusted from −151.7 ps  
to +150 ps in ~1.7 ps increments. The clock delay adjust takes  
effect immediately when it is enabled via SPI writes. Enabling  
the clock fine delay adjust in Register 0x117 causes a datapath  
reset. However, the contents of Register 0x118 can be changed  
without affecting the stability of the JESD204B link.  
1
50Ω RESISTORS ARE OPTIONAL.  
Figure 136. Differential LVDS Sample Clock  
Clock Duty Cycle Considerations  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals. As a result, these ADCs may  
be sensitive to clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic performance  
characteristics. In applications where the clock duty cycle cannot  
be guaranteed to be 50%, a higher multiple frequency clock can be  
supplied to the device. The AD9680 can be clocked at 2 GHz with  
the internal clock divider set to 2. The output of the divider offers  
a 50% duty cycle, high slew rate (fast edge) clock signal to the  
internal ADC. See the Memory Map section for more details on  
using this feature.  
Clock Jitter Considerations  
High speed, high resolution ADCs are sensitive to the quality  
of the clock input. The degradation in SNR at a given input  
frequency (fA) due only to aperture jitter (tJ) can be calculated by  
SNR = 20 × log 10 (2 × π × fA × tJ)  
In this equation, the rms aperture jitter represents the root  
mean square of all jitter sources, including the clock input,  
analog input signal, and ADC aperture jitter specifications.  
Rev. C | Page 42 of 97  
 
 
 
 
 
Data Sheet  
AD9680  
IF undersampling applications are particularly sensitive to jitter  
(see Figure 138).  
Power-Down/Standby Mode  
The AD9680 has a PDWN/STBY pin that can be used to  
configure the device in power-down or standby mode. The  
default operation is PDWN. The PDWN/STBY pin is a logic  
high pin. When in power-down mode, the JESD204B link is  
disrupted. The power-down option can also be set via  
Register 0x03F and Register 0x040.  
130  
12.5fS  
120  
110  
100  
90  
25fS  
50fS  
100fS  
200fS  
400fS  
800fS  
In standby mode, the JESD204B link is not disrupted and  
transmits zeros for all converter samples. This can be changed  
using Register 0x571, Bit 7 to select /K/ characters.  
80  
70  
60  
Temperature Diode  
50  
The AD9680 contains a diode-based temperature sensor for  
measuring the temperature of the die. This diode can output a  
voltage and serve as a coarse temperature sensor to monitor the  
internal die temperature.  
40  
30  
10  
100  
1000  
10000  
ANALOG INPUT FREQUENCY (MHz)  
Figure 138. Ideal SNR vs. Input Frequency and Jitter  
The temperature diode voltage can be output to the FD_A pin  
using the SPI. Use Register 0x028, Bit 0 to enable or disable the  
diode. Register 0x028 is a local register. Channel A must be  
selected in the device index register (0x008) to enable the  
temperature diode readout. Configure the FD_A pin to output  
the diode voltage by programming Register 0x040[2:0]. See  
Table 36 for more information.  
Treat the clock input as an analog signal in cases where aperture  
jitter may affect the dynamic range of the AD9680. Separate  
power supplies for clock drivers from the ADC output driver  
supplies to avoid modulating the clock signal with digital noise.  
If the clock is generated from another type of source (by gating,  
dividing, or other methods), retime the clock by the original clock  
at the last step. Refer to the AN-501 Application Note and the  
AN-756 Application Note for more in-depth information about  
jitter performance as it relates to ADCs.  
The voltage response of the temperature diode (SPIVDD =  
1.8 V) is shown in Figure 140.  
0.90  
Figure 139 shows the estimated SNR of the AD9680-1000 across  
input frequency for different clock induced jitter values. The  
SNR can be estimated by using the following equation:  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
SNR  
  
SNR  
10  
JITTER  
ADC  
10  
SNR (dBFS) =10log 10  
+10  
70  
65  
60  
–55 –45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
TEMPERATURE (°C)  
Figure 140. Temperature Diode Voltage vs. Temperature  
25f  
50f  
75f  
100f  
125f  
150f  
175f  
200f  
55  
50  
45  
s
s
s
s
s
s
s
s
10  
100  
1K  
10K  
INPUT FREQUENCY (MHz)  
Figure 139. Estimated SNR Degradation for the AD9680-1000 vs.  
Input Frequency and RMS Jitter  
Rev. C | Page 43 of 97  
 
 
 
AD9680  
Data Sheet  
ADC OVERRANGE AND FAST DETECT  
In receiver applications, it is desirable to have a mechanism to  
reliably determine when the converter is about to be clipped.  
The standard overrange bit in the JESD204B outputs provides  
information on the state of the analog input that is of limited  
usefulness. Therefore, it is helpful to have a programmable  
threshold below full scale that allows time to reduce the gain  
before the clip actually occurs. In addition, because input  
signals can have significant slew rates, the latency of this  
function is of major concern. Highly pipelined converters can  
have significant latency. The AD9680 contains fast detect  
circuitry for individual channels to monitor the threshold and  
assert the FD_A and FD_B pins.  
The operation of the upper threshold and lower threshold  
registers, along with the dwell time registers, is shown in  
Figure 141.  
The FD indicator is asserted if the input magnitude exceeds the  
value programmed in the fast detect upper threshold registers,  
located at Register 0x247 and Register 0x248. The selected  
threshold register is compared with the signal magnitude at the  
output of the ADC. The fast upper threshold detection has a  
latency of 28 clock cycles (maximum). The approximate upper  
threshold magnitude is defined by  
Upper Threshold Magnitude (dBFS)  
= 20 log (Threshold Magnitude/213)  
ADC OVERRANGE  
The FD indicators are not cleared until the signal drops below  
the lower threshold for the programmed dwell time. The lower  
threshold is programmed in the fast detect lower threshold  
registers, located at Register 0x249 and Register 0x24A. The fast  
detect lower threshold register is a 13-bit register that is compared  
with the signal magnitude at the output of the ADC. This  
comparison is subject to the ADC pipeline latency, but is  
accurate in terms of converter resolution. The lower threshold  
magnitude is defined by  
The ADC overrange indicator is asserted when an overrange is  
detected on the input of the ADC. The overrange indicator can  
be embedded within the JESD204B link as a control bit (when  
CSB > 0). The latency of this overrange indicator matches the  
sample latency.  
The AD9680 also records any overrange condition in any of the  
eight virtual converters. For more information on the virtual  
converters, refer to Figure 146. The overrange status of each virtual  
converter is registered as a sticky bit in Register 0x563. The  
contents of Register 0x563 can be cleared using Register 0x562,  
by toggling the bits corresponding to the virtual converter to set  
and reset position.  
Lower Threshold Magnitude (dBFS)  
= 20 log (Threshold Magnitude/213)  
For example, to set an upper threshold of −6 dBFS, write 0xFFF  
to Register 0x247 and Register 0x248. To set a lower threshold  
of −10 dBFS, write 0xA1D to Register 0x249 and Register 0x24A.  
FAST THRESHOLD DETECTION (FD_A AND FD_B)  
The FD bit is immediately set whenever the absolute value of  
the input signal exceeds the programmable upper threshold  
level. The FD bit is only cleared when the absolute value of the  
input signal drops below the lower threshold level for greater  
than the programmable dwell time. This feature provides  
hysteresis and prevents the FD bit from excessively toggling.  
The dwell time can be programmed from 1 to 65,535 sample  
clock cycles by placing the desired value in the fast detect dwell  
time registers, located at Register 0x24B and Register 0x24C.  
See the Memory Map section (Register 0x040, and Register 0x245  
to Register 0x24C in Table 36) for more details.  
UPPER THRESHOLD  
DWELL TIME  
TIMER RESET BY  
RISE ABOVE  
LOWER  
THRESHOLD  
LOWER THRESHOLD  
TIMER COMPLETES BEFORE  
SIGNAL RISES ABOVE  
LOWER THRESHOLD  
DWELL TIME  
FD_A OR FD_B  
Figure 141. Threshold Settings for FD_A and FD_B Signals  
Rev. C | Page 44 of 97  
 
 
 
 
Data Sheet  
AD9680  
SIGNAL MONITOR  
The signal monitor block provides additional information about  
the signal being digitized by the ADC. The signal monitor  
computes the peak magnitude of the digitized signal. This  
information can be used to drive an AGC loop to optimize the  
range of the ADC in the presence of real-world signals.  
converter output samples. The peak magnitude can be derived  
by using the following equation:  
Peak Magnitude (dBFS) = 20log(Peak Detector Value/213)  
The magnitude of the input port signal is monitored over a  
programmable time period, which is determined by the signal  
monitor period register (SMPR). The peak detector function is  
enabled by setting Bit 1 of Register 0x270 in the signal monitor  
control register. The 24-bit SMPR must be programmed before  
activating this mode.  
The results of the signal monitor block can be obtained either  
by reading back the internal values from the SPI port or by  
embedding the signal monitoring information into the  
JESD204B interface as special control bits. A global, 24-bit  
programmable period controls the duration of the  
measurement. Figure 142 shows the simplified block diagram  
of the signal monitor block.  
After enabling peak detection mode, the value in the SMPR is  
loaded into a monitor period timer, which decrements at the  
decimated clock rate. The magnitude of the input signal is  
compared with the value in the internal magnitude storage  
register (not accessible to the user), and the greater of the two  
is updated as the current peak level. The initial value of the  
magnitude storage register is set to the current ADC input signal  
magnitude. This comparison continues until the monitor period  
timer reaches a count of 1.  
SIGNAL MONITOR  
FROM  
MEMORY  
MAP  
PERIOD REGISTER  
(SMPR)  
DOWN  
COUNTER  
IS  
COUNT = 1?  
0x271, 0x272, 0x273  
LOAD  
CLEAR  
LOAD  
MAGNITUDE  
STORAGE  
REGISTER  
SIGNAL  
MONITOR  
HOLDING  
REGISTER  
TO SPORT OVER  
JESD204B AND  
MEMORY MAP  
FROM  
INPUT  
LOAD  
When the monitor period timer reaches a count of 1, the 13-bit  
peak level value is transferred to the signal monitor holding  
register, which can be read through the memory map or output  
through the SPORT over the JESD204B interface. The monitor  
period timer is reloaded with the value in the SMPR, and the  
countdown restarts. In addition, the magnitude of the first  
input sample is updated in the magnitude storage register, and  
the comparison and update procedure, as explained previously,  
continues.  
COMPARE  
A > B  
Figure 142. Signal Monitor Block  
The peak detector captures the largest signal within the  
observation period. The detector only observes the magnitude  
of the signal. The resolution of the peak detector is a 13-bit  
value, and the observation period is 24 bits and represents  
Rev. C | Page 45 of 97  
 
 
AD9680  
Data Sheet  
is to be inserted (CS = 1), only the most significant control bit is  
used (see Example Configuration 1 and Example Configuration 2  
in Figure 143). To select the SPORT over JESD204B option,  
program Register 0x559, Register 0x55A, and Register 0x58F.  
See Table 36 for more information on setting these bits.  
SPORT OVER JESD204B  
The signal monitor data can also be serialized and sent over the  
JESD204B interface as control bits. These control bits must be  
deserialized from the samples to reconstruct the statistical data.  
The signal control monitor function is enabled by setting Bits[1:0]  
of Register 0x279 and Bit 1 of Register 0x27A. Figure 143 shows  
two different example configurations for the signal monitor  
control bit locations inside the JESD204B samples. A maximum  
of three control bits can be inserted into the JESD204B samples;  
however, only one control bit is required for the signal monitor.  
Control bits are inserted from MSB to LSB. If only one control bit  
Figure 144 shows the 25-bit frame data that encapsulates the  
peak detector value. The frame data is transmitted MSB first  
with five 5-bit subframes. Each subframe contains a start bit  
that can be used by a receiver to validate the deserialized data.  
Figure 145 shows the SPORT over JESD204B signal monitor  
data with a monitor period timer set to 80 samples.  
16-BIT JESD204B SAMPLE SIZE (N' = 16)  
1-BIT  
CONTROL  
BIT  
15-BIT CONVERTER RESOLUTION (N = 15)  
(CS = 1)  
EXAMPLE  
CONFIGURATION 1  
(N' = 16, N = 15, CS = 1)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CTRL  
[BIT 2]  
X
S[14] S[13] S[12] S[11] S[10]  
S[9]  
X
S[8]  
X
S[7]  
X
S[6]  
X
S[5]  
X
S[4]  
X
S[3]  
X
S[2]  
X
S[1]  
X
S[0]  
X
X
X
X
X
X
SERIALIZED SIGNAL MONITOR  
FRAME DATA  
16-BIT JESD204B SAMPLE SIZE (N' = 16)  
14-BIT CONVERTER RESOLUTION (N = 14)  
1
CONTROL  
BIT  
(CS = 1)  
1 TAIL  
BIT  
EXAMPLE  
CONFIGURATION 2  
(N' = 16, N = 14, CS = 1)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CTRL  
[BIT 2]  
X
S[13] S[12] S[11] S[10]  
S[9]  
X
S[8]  
X
S[7]  
X
S[6]  
X
S[5]  
X
S[4]  
X
S[3]  
X
S[2]  
X
S[1]  
X
S[0]  
X
TAIL  
X
X
X
X
X
SERIALIZED SIGNAL MONITOR  
FRAME DATA  
Figure 143. Signal Monitor Control Bit Locations  
5-BIT SUB-FRAMES  
5-BIT IDLE  
IDLE IDLE IDLE IDLE IDLE  
SUB-FRAME  
1
1
1
1
1
(OPTIONAL)  
5-BIT IDENTIFIER START ID[3]  
ID[2]  
0
ID[1]  
0
ID[0]  
1
0
0
SUB-FRAME  
5-BIT DATA  
MSB  
START  
0
P[12]  
P[11]  
P[7]  
P[10]  
P[6]  
P[9]  
P5]  
SUB-FRAME  
25-BIT  
FRAME  
5-BIT DATA  
SUB-FRAME  
START  
0
P[8]  
P[4]  
P[0]  
5-BIT DATA  
SUB-FRAME  
START  
0
P[3]  
0
P[2]  
0
P1]  
0
5-BIT DATA  
LSB  
SUB-FRAME  
START  
0
P[] = PEAK MAGNITUDE VALUE  
Figure 144. SPORT over JESD204B Signal Monitor Frame Data  
Rev. C | Page 46 of 97  
 
 
 
Data Sheet  
AD9680  
SMPR = 80 SAMPLES (0x271 = 0x50; 0x272 = 0x00; 0x273 = 0x00)  
80 SAMPLE PERIOD  
PAYLOAD #3  
25-BIT FRAME (N)  
DATA  
MSB  
DATA  
LSB  
IDENT.  
IDENT.  
IDENT.  
DATA DATA  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
80 SAMPLE PERIOD  
PAYLOAD #3  
25-BIT FRAME (N + 1)  
DATA  
DATA  
LSB  
DATA DATA  
MSB  
IDLE  
IDLE  
IDLE  
IDLE  
80 SAMPLE PERIOD  
PAYLOAD #3  
25-BIT FRAME (N + 2)  
DATA  
DATA  
LSB  
DATA DATA  
MSB  
IDLE  
IDLE  
IDLE  
IDLE  
Figure 145. SPORT over JESD204B Signal Monitor Example with Period = 80 Samples  
Rev. C | Page 47 of 97  
 
AD9680  
Data Sheet  
DIGITAL DOWNCONVERTER (DDC)  
The AD9680 includes four digital downconverters (DDC 0 to  
DDC 3) that provide filtering and reduce the output data rate.  
This digital processing section includes an NCO, a half-band  
decimating filter, an FIR filter, a gain stage, and a complex-real  
conversion stage. Each of these processing blocks has control lines  
that allow it to be independently enabled and disabled to provide  
the desired processing function. The digital downconverter can  
be configured to output either real data or complex output data.  
The Chip Q ignore bit (Bit 5) in the chip application mode  
register (Register 0x200) controls the chip output muxing of all  
the DDC channels. When all DDC channels use real outputs,  
this bit must be set high to ignore all DDC Q output ports.  
When any of the DDC channels are set to use complex I/Q  
outputs, the user must clear this bit to use both DDC Output  
Port I and DDC Output Port Q. For more information, see  
Figure 154.  
The DDCs output a 16-bit stream. To enable this operation, the  
converter number of bits, N, is set to a default value of 16, even  
though the analog core only outputs 14 bits. In full bandwidth  
operation, the ADC outputs are the 14-bit word followed by  
two zeros, unless the tail bits are enabled.  
DDC GENERAL DESCRIPTION  
The four DDC blocks are used to extract a portion of the full  
digital spectrum captured by the ADC(s). They are intended for  
IF sampling or oversampled baseband radios requiring wide  
bandwidth input signals.  
DDC I/Q INPUT SELECTION  
Each DDC block contains the following signal processing stages.  
The AD9680 has two ADC channels and four DDC channels.  
Each DDC channel has two input ports that can be paired to  
support both real or complex inputs through the I/Q crossbar  
mux. For real signals, both DDC input ports must select the  
same ADC channel (for example, DDC Input Port I = ADC  
Channel A, and Input Port Q = ADC Channel A). For complex  
signals, each DDC input port must select different ADC  
channels (for example, DDC Input Port I = ADC Channel A,  
and Input Port Q = ADC Channel B).  
Frequency Translation Stage (Optional)  
The frequency translation stage consists of a 12-bit complex NCO  
and quadrature mixers that can be used for frequency translation  
of both real or complex input signals. This stage shifts a portion  
of the available digital spectrum down to baseband.  
Filtering Stage  
After shifting down to baseband, the filtering stage decimates  
the frequency spectrum using a chain of up to four half-band  
low-pass filters for rate conversion. The decimation process  
lowers the output data rate, which in turn reduces the output  
interface rate.  
The inputs to each DDC are controlled by the DDC input  
selection registers (Register 0x311, Register 0x331, Register 0x351,  
and Register 0x371). See Table 36 for information on how to  
configure the DDCs.  
Gain Stage (Optional)  
Due to losses associated with mixing a real input signal down to  
baseband, the gain stage compensates by adding an additional  
0 dB or 6 dB of gain.  
DDC I/Q OUTPUT SELECTION  
Each DDC channel has two output ports that can be paired to  
support both real or complex outputs. For real output signals,  
only the DDC Output Port I is used (the DDC Output Port Q is  
invalid). For complex I/Q output signals, both DDC Output  
Port I and DDC Output Port Q are used.  
Complex to Real Conversion Stage (Optional)  
When real outputs are necessary, the complex to real conversion  
stage converts the complex outputs back to real by performing  
an fS/4 mixing operation plus a filter to remove the complex  
component of the signal.  
The I/Q outputs to each DDC channel are controlled by the  
DDC complex to real enable bit (Bit 3) in the DDC control  
registers (Register 0x310, Register 0x330, Register 0x350, and  
Register 0x370).  
Figure 146 shows the detailed block diagram of the DDCs  
implemented in the AD9680.  
Rev. C | Page 48 of 97  
 
 
 
 
Data Sheet  
AD9680  
DDC 0  
DDC 1  
DDC 2  
DDC 3  
REAL/I  
I
REAL/I  
CONVERTER 0  
NCO  
+
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 1  
ADC  
REAL/I  
SYSREF±  
I
SAMPLING  
AT fS  
REAL/I  
REAL/I  
CONVERTER 2  
NCO  
+
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 3  
SYSREF±  
I
REAL/I  
REAL/I  
CONVERTER 4  
NCO  
+
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 5  
ADC  
SAMPLING  
AT fS  
REAL/I  
SYSREF±  
I
REAL/I  
REAL/I  
CONVERTER 6  
NCO  
+
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 7  
SYSREF±  
SYSREF  
SYNCHRONIZATION  
CONTROL CIRCUITS  
Figure 146. DDC Detailed Block Diagram  
Figure 147 shows an example usage of one of the four DDC  
blocks with a real input signal and four half-band filters (HB4,  
HB3, HB2, and HB1). It shows both complex (decimate by 16)  
and real (decimate by 8) output options.  
the chip decimation ratio sample rate. Whenever the NCO  
frequency is set or changed, the DDC soft reset must be issued.  
If the DDC soft reset is not issued, the output may potentially  
show amplitude variations.  
When DDCs have different decimation ratios, the chip  
decimation ratio (Register 0x201) must be set to the lowest  
decimation ratio of all the DDC blocks. In this scenario,  
samples of higher decimation ratio DDCs are repeated to match  
Table 11, Table 12, Table 13, Table 14, and Table 15 show the  
DDC samples when the chip decimation ratio is set to 1, 2, 4, 8,  
or 16, respectively.  
Rev. C | Page 49 of 97  
 
AD9680  
Data Sheet  
ADC  
SAMPLING  
AT fS  
ADC  
REAL  
REAL  
REAL INPUT—SAMPLED AT fS  
BANDWIDTH OF  
INTEREST  
BANDWIDTH OF  
INTEREST IMAGE  
fS/32  
fS/32  
DC  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
FREQUENCY TRANSLATION STAGE (OPTIONAL)  
I
DIGITAL MIXER + NCO FORfS/3 TUNING, THE FREQUENCY  
TUNING WORD = ROUND ((fS/3)/fS × 4096) = +1365 (0x555)  
NCO TUNES CENTER OF  
BANDWIDTH OF INTEREST  
TO BASEBAND  
cos(ωt)  
REAL  
12-BIT  
NCO  
90°  
0°  
–sin(ωt)  
Q
BANDWIDTH OF  
INTEREST IMAGE  
(–6dB LOSS DUE TO  
NCO + MIXER)  
DIGITAL FILTER  
RESPONSE  
BANDWIDTH OF INTEREST  
(–6dB LOSS DUE TO  
NCO + MIXER)  
fS/32  
fS/32  
DC  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
FILTERING STAGE  
4 DIGITAL HALF-BAND FILTERS  
(HB4 + HB3 + HB2 + HB1)  
HB4 FIR  
HB3 FIR  
HB2 FIR  
HB1 FIR  
HALF-  
HALF-  
HALF-  
HALF-  
BAND  
BAND  
BAND  
BAND  
I
I
FILTER  
FILTER  
FILTER  
FILTER  
2
2
2
2
2
2
2
HB4 FIR  
HB3 FIR  
HB2 FIR  
HB1 FIR  
HALF-  
BAND  
FILTER  
HALF-  
BAND  
FILTER  
HALF-  
BAND  
FILTER  
HALF-  
BAND  
FILTER  
Q
Q
2
6dB GAIN TO  
COMPENSATE FOR  
NCO + MIXER LOSS  
COMPLEX (I/Q) OUTPUTS  
GAIN STAGE (OPTIONAL)  
0dB OR 6dB GAIN  
DECIMATE BY 16  
DIGITAL FILTER  
RESPONSE  
I
I
2
+6dB  
GAIN STAGE (OPTIONAL)  
0dB OR 6dB GAIN  
Q
Q
2
+6dB  
fS/32  
fS/32  
fS/32  
fS/32  
DC  
COMPLEX TO REAL  
DC  
fS/8  
fS/16  
fS/16  
fS/8  
fS/16  
fS/16  
CONVERSION STAGE (OPTIONAL)  
DOWNSAMPLE BY 2  
fS/4 MIXING + COMPLEX FILTER TO REMOVE Q  
I
I
+6dB  
+6dB  
REAL (I) OUTPUTS  
DECIMATE BY 8  
COMPLEX  
TO  
REAL  
REAL/I  
Q
Q
6dB GAIN TO  
COMPENSATE FOR  
NCO + MIXER LOSS  
fS/32  
fS/32  
DC  
fS/8  
fS/16  
fS/16  
fS/8  
Figure 147. DDC Theory of Operation Example (Real Input—Decimate by 16)  
Rev. C | Page 50 of 97  
 
Data Sheet  
AD9680  
Table 11. DDC Samples, Chip Decimation Ratio = 1  
Real (I) Output (Complex to Real Enabled)  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR +  
HB4 FIR +  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB2 FIR +  
HB1 FIR  
HB2 FIR +  
HB1 FIR  
HB1 FIR  
HB1 FIR  
(DCM1 = 1)  
(DCM1 = 2)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = 2)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = 16)  
N
N
N
N
N
N
N
N
N + 1  
N + 2  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 8  
N + 9  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 8  
N + 9  
N + 8  
N + 9  
N + 10  
N + 11  
N + 10  
N + 11  
N + 12  
N + 13  
N + 12  
N + 13  
N + 14  
N + 15  
N + 14  
N + 15  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 8  
N + 9  
N + 8  
N + 9  
N + 10  
N + 11  
N + 10  
N + 11  
N + 12  
N + 13  
N + 12  
N + 13  
N + 14  
N + 15  
N + 14  
N + 15  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 4  
N + 5  
N + 4  
N + 5  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 6  
N + 7  
N + 6  
N + 7  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 4  
N + 5  
N + 4  
N + 5  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 6  
N + 7  
N + 6  
N + 7  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
N + 16  
N + 17  
N + 18  
N + 19  
N + 20  
N + 21  
N + 22  
N + 23  
N + 24  
N + 25  
N + 26  
N + 27  
N + 28  
N + 29  
N + 30  
N + 31  
N + 1  
1 DCM means decimation.  
Rev. C | Page 51 of 97  
 
AD9680  
Data Sheet  
Table 12. DDC Samples, Chip Decimation Ratio = 2  
Real (I) Output (Complex to Real Enabled)  
HB4 FIR +  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR +  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB2 FIR +  
HB1 FIR  
HB2 FIR +  
HB1 FIR  
HB1 FIR  
(DCM1 = 2)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = 2)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = 16)  
N
N
N
N
N
N
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 8  
N + 9  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 8  
N + 9  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
1 DCM means decimation.  
Table 13. DDC Samples, Chip Decimation Ratio = 4  
Real (I) Output (Complex to Real Enabled)  
HB4 FIR + HB3 FIR +  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR + HB3 FIR +  
HB2 FIR + HB1 FIR  
(DCM1 = 16)  
HB3 FIR + HB2 FIR +  
HB2 FIR + HB1 FIR  
HB2 FIR + HB1 FIR  
(DCM1 = 4)  
HB3 FIR + HB2 FIR +  
HB1 FIR (DCM1 = 8)  
HB1 FIR (DCM1 = 4)  
(DCM1 = 8)  
N
N
N
N
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 1  
N
N + 1  
N
N + 1  
1 DCM means decimation.  
Table 14. DDC Samples, Chip Decimation Ratio = 8  
Real (I) Output (Complex to Real Enabled)  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB3 FIR + HB2 FIR + HB1 FIR  
HB4 FIR + HB3 FIR + HB2 FIR +  
HB1 FIR (DCM1 = 16)  
N
HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM1 = 8)  
(DCM1 = 8)  
N
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
1 DCM means decimation.  
Rev. C | Page 52 of 97  
 
 
 
Data Sheet  
AD9680  
Table 15. DDC Samples, Chip Decimation Ratio = 16  
Real (I) Output (Complex to Real Enabled)  
HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM1 = 16)  
Not applicable  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM1 = 16)  
N
Not applicable  
Not applicable  
Not applicable  
N + 1  
N + 2  
N + 3  
1 DCM means decimation.  
If the chip decimation ratio is set to decimate by 4, DDC 0 is set to use HB2 + HB1 filters (complex outputs decimate by 4), and DDC 1 is  
set to use HB4 + HB3 + HB2 + HB1 filters (real outputs decimate by 8), then DDC 1 repeats its output data two times for every one  
DDC 0 output. The resulting output samples are shown in Table 16.  
Table 16. DDC Output Samples when Chip DCM1 = 4, DDC 0 DCM1 = 4 (Complex), and DDC 1 DCM1 = 8 (Real)  
DDC 0  
DDC 1  
DDC Input Samples  
N
Output Port I  
Output Port Q  
Output Port I  
Output Port Q  
Not applicable  
I0 [N]  
Q0 [N]  
I1 [N]  
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
I0 [N + 1]  
I0 [N + 2]  
I0 [N + 3]  
Q0 [N + 1]  
Q0 [N + 2]  
Q0 [N + 3]  
I1 [N + 1]  
I1 [N]  
Not applicable  
Not applicable  
Not applicable  
N + 8  
N + 9  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
I1 [N + 1]  
1 DCM means decimation.  
Rev. C | Page 53 of 97  
 
 
AD9680  
Data Sheet  
FREQUENCY TRANSLATION  
Variable IF Mode  
FREQUENCY TRANSLATION GENERAL DESCRIPTION  
NCO and mixers are enabled. NCO output frequency can be  
used to digitally tune the IF frequency.  
Frequency translation is accomplished by using a 12-bit  
complex NCO along with a digital quadrature mixer. The  
frequency translation translates either a real or complex input  
signal from an intermediate frequency (IF) to a baseband  
complex digital output (carrier frequency = 0 Hz).  
0 Hz IF (ZIF) Mode  
Mixers are bypassed and the NCO is disabled.  
fS/4 Hz IF Mode  
The frequency translation stage of each DDC can be controlled  
individually and supports four different IF modes using Bits[5:4] of  
the DDC control registers (Register 0x310, Register 0x330,  
Register 0x350, and Register 0x370). These IF modes are  
Mixers and NCO are enabled in special down mixing by fS/4  
mode to save power.  
Test Mode  
Input samples are forced to 0.999 to positive full scale. NCO is  
enabled. This test mode allows the NCOs to directly drive the  
decimation filters.  
Variable IF mode  
0 Hz IF (ZIF) mode  
fS/4 Hz IF mode  
Test mode  
Figure 148 and Figure 149 show examples of the frequency  
translation stage for both real and complex inputs.  
NCO FREQUENCY TUNING WORD (FTW) SELECTION  
12-BIT NCO FTW = MIXING FREQUENCY/ADC SAMPLE RATE × 4096  
I
cos(ωt)  
ADC  
SAMPLING  
AT fS  
ADC + DIGITAL MIXER + NCO  
REAL INPUT—SAMPLED AT fS  
REAL  
REAL  
12-BIT  
NCO  
90°  
0°  
COMPLEX  
–sin(ωt)  
Q
BANDWIDTH OF  
INTEREST  
BANDWIDTH OF  
INTEREST IMAGE  
fS/32  
fS/32  
DC  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
–6dB LOSS DUE TO  
NCO + MIXER  
12-BIT NCO FTW =  
ROUND ((fS/3)/fS × 4096) = +1365 (0x555)  
POSITIVE FTW VALUES  
fS/32  
fS/32  
DC  
12-BIT NCO FTW =  
ROUND ((fS/3)/fS × 4096) = –1365 (0xAAB)  
NEGATIVE FTW VALUES  
fS/32  
fS/32  
DC  
Figure 148. DDC NCO Frequency Tuning Word Selection—Real Inputs  
Rev. C | Page 54 of 97  
 
 
 
Data Sheet  
AD9680  
NCO FREQUENCY TUNING WORD (FTW) SELECTION  
12-BIT NCO FTW = MIXING FREQUENCY/ADC SAMPLE RATE × 4096  
QUADRATURE MIXER  
ADC  
SAMPLING  
AT fS  
I
+
I
I
I
I
Q
QUADRATURE ANALOG MIXER +  
Q
2 ADCs + QUADRATURE DIGITAL  
MIXER + NCO  
12-BIT  
NCO  
REAL  
90°  
PHASE  
90°  
0°  
COMPLEX  
Q
COMPLEX INPUT—SAMPLED AT fS  
I
I
+
ADC  
SAMPLING  
AT fS  
Q
Q
Q
Q
+
BANDWIDTH OF  
INTEREST  
IMAGE DUE TO  
ANALOG I/Q  
MISMATCH  
fS/32  
fS/32  
fS/16  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
DC  
12-BIT NCO FTW =  
ROUND ((fS/3)/fS × 4096) = +1365 (0x555)  
POSITIVE FTW VALUES  
fS/32  
fS/32  
DC  
Figure 149. DDC NCO Frequency Tuning Word Selection—Complex Inputs  
Setting Up the NCO FTW and POW  
DDC NCO PLUS MIXER LOSS AND SFDR  
The NCO frequency value is given by the 12-bit twos  
complement number entered in the NCO FTW. Frequencies  
between −fS/2 and fS/2 (fS/2 excluded) are represented using the  
following frequency words:  
When mixing a real input signal down to baseband, 6 dB of loss  
is introduced in the signal due to filtering of the negative image.  
An additional 0.05 dB of loss is introduced by the NCO. The  
total loss of a real input signal mixed down to baseband is 6.05 dB.  
For this reason, it is recommended that the user compensate for  
this loss by enabling the additional 6 dB of gain in the gain stage  
of the DDC to recenter the dynamic range of the signal within  
the full scale of the output bits.  
0x800 represents a frequency of –fS/2.  
0x000 represents dc (frequency is 0 Hz).  
0x7FF represents a frequency of +fS/2 – fS/212.  
The NCO frequency tuning word can be calculated using the  
following equation:  
When mixing a complex input signal down to baseband, the  
maximum value each I/Q sample can reach is 1.414 × full scale  
after it passes through the complex mixer. To avoid overrange  
of the I/Q samples and to keep the data bitwidths aligned with  
real mixing, 3.06 dB of loss (0.707 × full scale) is introduced in  
the mixer for complex signals. An additional 0.05 dB of loss is  
introduced by the NCO. The total loss of a complex input signal  
mixed down to baseband is −3.11 dB.  
Mod( fC , fS )  
12  
NCO _ FTW = round 2  
fS  
where:  
NCO_FTW is a 12-bit twos complement number representing  
the NC O F T W.  
fS is the AD9680 sampling frequency (clock rate) in Hz.  
fC is the desired carrier frequency in Hz.  
Mod( ) is a remainder function. For example, Mod(110,100) =  
10, and for negative numbers, Mod(–32, 10) = –2.  
round( ) is a rounding function. For example, round(3.6) = 4,  
and for negative numbers, round(–3.4)= –3.  
The worst case spurious signal from the NCO is greater than  
102 dBc SFDR for all output frequencies.  
NUMERICALLY CONTROLLED OSCILLATOR  
The AD9680 has a 12-bit NCO for each DDC that enables the  
frequency translation process. The NCO allows the input  
spectrum to be tuned to dc, where it can be effectively filtered  
by the subsequent filter blocks to prevent aliasing. The NCO  
can be set up by providing a frequency tuning word (FTW) and  
a phase offset word (POW).  
Note that this equation applies to the aliasing of signals in the  
digital domain (that is, aliasing introduced when digitizing  
analog signals).  
Rev. C | Page 55 of 97  
 
 
 
 
AD9680  
Data Sheet  
For example, if the ADC sampling frequency (fS) is 1250 MSPS  
and the carrier frequency (fC) is 416.667 MHz,  
Two methods can be used to synchronize multiple PAWs within  
the chip:  
Using the SPI. The DDC NCO soft reset bit in the DDC  
synchronization control register (Register 0x300, Bit 4)  
can be used to reset all the PAWs in the chip. This is  
accomplished by toggling the DDC NCO soft reset bit.  
This method can only be used to synchronize DDC  
channels within the same AD9680 chip.  
Using the SYSREF pin. When the SYSREF pin is enabled  
in the SYSREF control registers (Register 0x120 and  
Register 0x121), and the DDC synchronization is enabled  
in Bits[1:0] in the DDC synchronization control register  
(Register 0x300), any subsequent SYSREF event resets all  
the PAWs in the chip. This method can be used to synchronize  
DDC channels within the same AD9680 chip, or DDC  
channels within separate AD9680 chips.  
Mod(416.667,1250  
NCO _ FTW = round 212  
=1365 MHz  
1250  
This, in turn, converts to 0x555 in the 12-bit twos complement  
representation for NCO_FTW. The actual carrier frequency can  
be calculated based on the following equation:  
NCO _ FTW × fS  
fC actual =  
= 416.56 MHz  
212  
A 12-bit POW is available for each NCO to create a known phase  
relationship between multiple AD9680 chips or individual DDC  
channels inside one AD9680.  
The following procedure must be followed to update the FTW  
and/or POW registers to ensure proper operation of the NCO:  
Write to the FTW registers for all the DDCs.  
Write to the POW registers for all the DDCs.  
Synchronize the NCOs either through the DDC soft reset  
bit accessible through the SPI, or through the assertion of  
the SYSREF pin.  
Mixer  
The NCO is accompanied by a mixer, whose operation is  
similar to an analog quadrature mixer. The mixer performs the  
downconversion of input signals (real or complex) by using the  
NCO frequency as a local oscillator. For real input signals, this  
mixer performs a real mixer operation (with two multipliers).  
For complex input signals, the mixer performs a complex mixer  
operation (with four multipliers and two adders). The mixer  
adjusts its operation based on the input signal (real or complex)  
provided to each individual channel. The selection of real or  
complex inputs can be controlled individually for each DDC  
block by using Bit 7 of the DDC control register (Register 0x310,  
Register 0x330, Register 0x350, and Register 0x370).  
Note that the NCOs must be synchronized either through SPI  
or through the SYSREF pin after all writes to the FTW or POW  
registers have completed. This synchronization is necessary to  
ensure the proper operation of the NCO.  
NCO Synchronization  
Each NCO contains a separate phase accumulator word (PAW)  
that determines the instantaneous phase of the NCO. The initial  
reset value of each PAW is determined by the POW described  
in the Setting Up the NCO FTW and POW section. The phase  
increment value of each PAW is determined by the FTW.  
Rev. C | Page 56 of 97  
 
Data Sheet  
AD9680  
FIR FILTERS  
Table 17 shows the different bandwidth options by including  
FIR FILTERS GENERAL DESCRIPTION  
different half-band filters. In all cases, the DDC filtering stage of  
the AD9680 provides less than −0.001 dB of pass-band ripple  
and >100 dB of stop-band alias rejection.  
There are four sets of decimate-by-2, low-pass, half-band, finite  
impulse response (FIR) filters (HB1 FIR, HB2 FIR, HB3 FIR,  
and HB4 FIR, shown in Figure 146). These filters follow the  
frequency translation stage. After the carrier of interest is tuned  
down to dc (carrier frequency = 0 Hz), these filters efficiently lower  
the sample rate while providing sufficient alias rejection from  
unwanted adjacent carriers around the bandwidth of interest.  
Table 18 shows the amount of stop-band alias rejection for  
multiple pass-band ripple/cutoff points. The decimation ratio  
of the filtering stage of each DDC can be controlled individually  
through Bits[1:0] of the DDC control registers (0x310, 0x330,  
0x350, and 0x370).  
HB1 FIR is always enabled and cannot be bypassed. The HB2,  
HB3, and HB4 FIR filters are optional and can be bypassed for  
higher output sample rates.  
Table 17. DDC Filter Characteristics  
Real Output  
Output  
Sample  
Decimation Rate  
Complex (I/Q) Output  
ADC  
Output  
Sample  
Decimation Rate  
Alias  
Protected  
Bandwidth Improvement Ripple  
(MHz)  
Pass-  
Band  
Sample Half Band  
Rate  
(MSPS) Selection  
Ideal SNR  
Alias  
Rejection  
(dB)  
Filter  
Ratio  
(MSPS) Ratio  
(MSPS)  
(dB)1  
(dB)  
1250  
HB1  
1
1250  
625  
2
625 (I) +  
625 (Q)  
481.25  
1
<−0.001  
>100  
HB1 + HB2  
2
4
8
1
2
4
8
1
2
4
8
1
2
4
8
4
312.5 (I) +  
312.5 (Q)  
240.62  
120.31  
60.15  
385.0  
192.5  
96.3  
4
HB1 + HB2 +  
HB3  
312.5  
156.25  
1000  
500  
8
156.25 (I) +  
156.25 (Q)  
7
HB1 + HB2 +  
HB3 + HB4  
16  
2
78.125 (I) +  
78.125 (Q)  
10  
1
1000  
HB1  
500 (I) +  
500 (Q)  
250 (I) +  
250 (Q)  
125 (I) +  
125 (Q)  
62.5 (I) +  
62.5 (Q)  
HB1 + HB2  
4
4
HB1 + HB2 +  
HB3  
HB1 + HB2 +  
HB3 + HB4  
250  
8
7
125  
16  
2
48.1  
10  
1
820  
HB1  
820  
410 (I) +  
410 (Q)  
205 (I) +  
205 (Q)  
102.5 (I) +  
102.5 (Q)  
51.25 (I) +  
51.25 (Q)  
315.7  
157.8  
78.9  
HB1 + HB2  
410  
4
4
HB1 + HB2 +  
HB3  
HB1 + HB2 +  
HB3 + HB4  
205  
8
7
102.5  
500  
16  
2
39.4  
10  
1
500  
HB1  
250 (I) +  
250 (Q)  
125 (I) +  
125 (Q)  
62.5 (I) +  
62.5 (Q)  
31.25 (I) +  
31.25 (Q)  
192.5  
96.3  
HB1 + HB2  
250  
4
4
HB1 + HB2 +  
HB3  
HB1 + HB2 +  
HB3 + HB4  
125  
8
48.1  
7
62.5  
16  
24.1  
10  
1 Ideal SNR improvement due to oversampling and filtering = 10log(bandwidth/(fS/2)).  
Rev. C | Page 57 of 97  
 
 
 
AD9680  
Data Sheet  
Table 18. DDC Filter Alias Rejection  
Alias  
Pass-Band Ripple/  
Alias Protected Bandwidth for  
Real (I) Outputs1  
Alias Protected Bandwidth for  
Rejection (dB) Cutoff Point (dB)  
Complex (I/Q) Outputs1  
<77% × fOUT  
>100  
90  
85  
63.3  
25  
19.3  
10.7  
<−0.001  
<−0.001  
<−0.001  
<−0.006  
−0.5  
<38.5% × fOUT  
<38.7% × fOUT  
<38.9% × fOUT  
<40% × fOUT  
44.4% × fOUT  
45.6% × fOUT  
48% × fOUT  
<77.4% × fOUT  
<77.8% × fOUT  
<80% × fOUT  
88.8% × fOUT  
91.2% × fOUT  
−1.0  
−3.0  
96% × fOUT  
1 fOUT is the ADC input sample rate fS/DDC decimation ratio.  
HB3 Filter  
HALF-BAND FILTERS  
The second decimate-by-2, half-band, low-pass, FIR filter (HB3)  
uses an 11-tap, symmetrical, fixed coefficient filter implementation,  
optimized for low power consumption. The HB3 filter is only used  
when complex outputs (decimate by 8 or 16) or real outputs  
(decimate by 4 or 8) are enabled; otherwise, the filter is bypassed.  
Table 20 and Figure 151 show the coefficients and response of  
the HB3 filter.  
The AD9680 offers four half-band filters to enable digital signal  
processing of the ADC converted data. These half-band filters  
are bypassable and can be individually selected.  
HB4 Filter  
The first decimate-by-2, half-band, low-pass FIR filter (HB4) uses  
an 11-tap, symmetrical, fixed-coefficient filter implementation,  
optimized for low power consumption. The HB4 filter is only used  
when complex outputs (decimate by 16) or real outputs (decimate  
by 8) are enabled; otherwise, the filter is bypassed. Table 19 and  
Figure 150 show the coefficients and response of the HB4 filter.  
Table 20. HB3 Filter Coefficients  
HB3 Coefficient  
Number  
Normalized  
Coefficient  
Decimal Coefficient  
(18-Bit)  
C1, C11  
C2, C10  
C3, C9  
C4, C8  
C5, C7  
C6  
0.006554  
0
−0.050819  
0
0.294266  
0.500000  
859  
0
−6661  
0
38,570  
65,536  
Table 19. HB4 Filter Coefficients  
HB4 Coefficient  
Number  
Normalized  
Coefficient  
Decimal Coefficient  
(15-Bit)  
C1, C11  
C2, C10  
C3, C9  
C4, C8  
C5, C7  
C6  
0.006042  
0
−0.049316  
0
0.293273  
0.500000  
99  
0
−808  
0
4805  
8192  
0
–20  
–40  
0
–20  
–60  
–80  
–40  
–100  
–120  
–60  
–80  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
NORMALIZED FREQUENCY (× π RAD/SAMPLE)  
–100  
–120  
Figure 151. HB3 Filter Response  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
NORMALIZED FREQUENCY (× π RAD/SAMPLE)  
Figure 150. HB4 Filter Response  
Rev. C | Page 58 of 97  
 
 
 
 
 
 
Data Sheet  
AD9680  
HB2 Filter  
0
–20  
The third decimate-by-2, half-band, low-pass FIR filter (HB2)  
uses a 19-tap, symmetrical, fixed coefficient filter implementation  
that is optimized for low power consumption. The HB2 filter is  
only used when complex outputs (decimate by 4, 8, or 16) or  
real outputs (decimate by 2, 4, or 8) are enabled; otherwise, the  
filter is bypassed.  
–40  
–60  
–80  
Table 21 and Figure 152 show the coefficients and response of  
the HB2 filter.  
–100  
–120  
Table 21. HB2 Filter Coefficients  
HB2 Coefficient  
Number  
Normalized  
Coefficient  
Decimal Coefficient  
(19-Bit)  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
NORMALIZED FREQUENCY (× π RAD/SAMPLE)  
C1, C19  
C2, C18  
C3, C17  
C4, C16  
C5, C15  
C6, C14  
C7, C13  
C8, C12  
C9, C11  
C10  
0.000614  
0
−0.005066  
0
0.022179  
0
−0.073517  
0
0.305786  
0.500000  
161  
0
−1328  
0
5814  
0
−19,272  
0
80,160  
131,072  
Figure 153. HB1 Filter Response  
Table 22. HB1 Filter Coefficients  
HB1 Coefficient  
Number  
Normalized  
Coefficient  
Decimal Coefficient  
(21-Bit)  
C1, C55  
C2, C54  
C3, C53  
C4, C52  
C5, C51  
C6, C50  
C7, C49  
C8, C48  
C9, C47  
C10, C46  
C11, C45  
C12, C44  
C13, C43  
C14, C42  
C15, C41  
C16, C40  
C17, C39  
C18, C38  
C19, C37  
C20, C36  
C21, C35  
C22, C34  
C23, C33  
C24, C32  
C25, C31  
C26, C30  
C27, C29  
C28  
−0.000023  
−24  
0
0
0.000097  
102  
0
0
−0.000288  
−302  
0
0
0
–20  
0.000696  
730  
0
0
−0.0014725  
−1544  
0
0
–40  
0.002827  
2964  
0
0
–60  
−0.005039  
−5284  
0
0
–80  
0.008491  
8903  
–100  
–120  
0
0
−0.013717  
−14,383  
0
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
0.021591  
0
22,640  
0
NORMALIZED FREQUENCY (× π RAD/SAMPLE)  
Figure 152. HB2 Filter Response  
−0.033833  
0
−35,476  
0
HB1 Filter  
0.054806  
0
57,468  
0
The fourth and final decimate-by-2, half-band, low-pass FIR  
filter (HB1) uses a 55-tap, symmetrical, fixed coefficient filter  
implementation, optimized for low power consumption. The  
HB1 filter is always enabled and cannot be bypassed. Table 22  
and Figure 153 show the coefficients and response of the HB1  
filter.  
−0.100557  
0
−105,442  
0
0.316421  
0.500000  
331,792  
524,288  
Rev. C | Page 59 of 97  
 
 
 
 
AD9680  
Data Sheet  
DDC GAIN STAGE  
DDC COMPLEX TO REAL CONVERSION  
Each DDC contains an independently controlled gain stage.  
The gain is selectable as either 0 dB or 6 dB. When mixing a real  
input signal down to baseband, it is recommended that the user  
enable the 6 dB of gain to recenter the dynamic range of the  
signal within the full scale of the output bits.  
Each DDC contains an independently controlled complex to  
real conversion block. The complex to real conversion block  
reuses the last filter (HB1 FIR) in the filtering stage, along with  
an fS/4 complex mixer to upconvert the signal.  
After up converting the signal, the Q portion of the complex  
mixer is no longer needed and is dropped.  
When mixing a complex input signal down to baseband, the  
mixer has already recentered the dynamic range of the signal  
within the full scale of the output bits and no additional gain is  
necessary. However, the optional 6 dB gain can be used to  
compensate for low signal strengths. The downsample by 2  
portion of the HB1 FIR filter is bypassed when using the  
complex to real conversion stage (see Figure 154).  
Figure 154 shows a simplified block diagram of the complex to  
real conversion.  
HB1 FIR  
GAIN STAGE  
COMPLEX TO  
REAL ENABLE  
LOW-PASS  
FILTER  
I
0dB  
OR  
I
I
0
2
I/REAL  
6dB  
1
COMPLEX TO REAL CONVERSION  
0dB  
OR  
6dB  
cos(ωt)  
+
90°  
REAL  
fS/4  
0°  
sin(ωt)  
0dB  
OR  
6dB  
Q
LOW-PASS  
FILTER  
Q
0dB  
OR  
6dB  
Q
Q
2
HB1 FIR  
Figure 154. Complex to Real Conversion Block  
Rev. C | Page 60 of 97  
 
 
 
Data Sheet  
AD9680  
DDC EXAMPLE CONFIGURATIONS  
Table 23 describes the register settings for multiple DDC example configurations.  
Table 23. DDC Example Configurations  
Chip  
Chip  
DDC  
DDC  
No. of Virtual  
Application Decimation Input  
Output  
Type  
Bandwidth Converters  
Layer  
Ratio  
Type  
per DDC1  
Required  
Register Settings2  
One DDC  
2
Complex Complex 38.5% × fS  
2
Register 0x200 = 0x01 (one DDC; I/Q selected)  
Register 0x201 = 0x01 (chip decimate by 2)  
Register 0x310 = 0x83 (complex mixer; 0 dB gain; variable IF;  
complex outputs; HB1 filter)  
Register 0x311 = 0x04 (DDC I input = ADC Channel A;  
DDC Q input = ADC Channel B)  
Register 0x314, Register 0x315, Register 0x320, Register 0x321 =  
FTW and POW set as required by application for DDC 0  
Two DDCs  
Two DDCs  
Two DDCs  
4
4
4
Complex Complex 19.25% × fS  
4
2
2
Register 0x200 = 0x02 (two DDCs; I/Q selected)  
Register 0x201 = 0x02 (chip decimate by 4)  
Register 0x310, Register 0x330 = 0x80 (complex mixer; 0 dB  
gain; variable IF; complex outputs; HB2 + HB1 filters)  
Register 0x311, Register 0x331 = 0x04 (DDC I input =  
ADC Channel A; DDC Q input = ADC Channel B)  
Register 0x314, Register 0x315, Register 0x320, Register 0x321 =  
FTW and POW set as required by application for DDC 0  
Register 0x334, Register 0x335, Register 0x340, Register 0x341 =  
FTW and POW set as required by application for DDC 1  
Complex Real  
9.63% × fS  
Register 0x200 = 0x22 (two DDCs; I only selected)  
Register 0x201 = 0x02 (chip decimate by 4)  
Register 0x310, Register 0x330 = 0x89 (complex mixer; 0 dB  
gain; variable IF; real output; HB3 + HB2 + HB1 filters)  
Register 0x311, Register 0x331 = 0x04 (DDC I Input = ADC  
Channel A; DDC Q Input = ADC Channel B)  
Register 0x314, Register 0x315, Register 0x320, Register 0x321 =  
FTW and POW set as required by application for DDC 0  
Register 0x334, Register 0x335, Register 0x340, Register 0x341 =  
FTW and POW set as required by application for DDC 1  
Real  
Real  
9.63% × fS  
Register 0x200 = 0x22 (two DDCs; I only selected)  
Register 0x201 = 0x02 (chip decimate by 4)  
Register 0x310, Register 0x330 = 0x49 (real mixer; 6 dB gain;  
variable IF; real output; HB3 + HB2 + HB1 filters)  
Register 0x311 = 0x00 (DDC 0 I input = ADC Channel A;  
DDC 0 Q input = ADC Channel A)  
Register 0x331 = 0x05 (DDC 1 I input = ADC Channel B;  
DDC 1 Q input = ADC Channel B)  
Register 0x314, Register 0x315, Register 0x320, Register 0x321 =  
FTW and POW set as required by application for DDC 0  
Register 0x334, Register 0x335, Register 0x340, Register 0x341 =  
FTW and POW set as required by application for DDC 1  
Two DDCs  
4
Real  
Complex 19.25% × fS  
4
Register 0x200 = 0x02 (two DDCs; I/Q selected)  
Register 0x201 = 0x02 (chip decimate by 4)  
Register 0x310, Register 0x330 = 0x40 (real mixer; 6 dB gain;  
variable IF; complex output; HB2 + HB1 filters)  
Register 0x311 = 0x00 (DDC 0 I input = ADC Channel A;  
DDC 0 Q input = ADC Channel A)  
Register 0x331 = 0x05 (DDC 1 I input = ADC Channel B;  
DDC 1 Q input = ADC Channel B)  
Register 0x314, Register 0x315, Register 0x320, Register 0x321 =  
FTW and POW set as required by application for DDC 0  
Register 0x334, Register 0x335, Register 0x340, Register 0x341 =  
FTW and POW set as required by application for DDC 1  
Rev. C | Page 61 of 97  
 
 
AD9680  
Data Sheet  
Chip  
Chip  
DDC  
DDC  
Output  
Type  
No. of Virtual  
Bandwidth Converters  
Application Decimation Input  
Layer  
Ratio  
Type  
per DDC1  
Required  
Register Settings2  
Two DDCs  
8
Real  
Real  
4.81% × fS  
2
Register 0x200 = 0x22 (two DDCs; I only selected)  
Register 0x201 = 0x03 (chip decimate by 8)  
Register 0x310, Register 0x330 = 0x4A (real mixer; 6 dB gain;  
variable IF; real output; HB4 + HB3 + HB2 + HB1 filters)  
Register 0x311 = 0x00 (DDC 0 I input = ADC Channel A;  
DDC 0 Q input = ADC Channel A)  
Register 0x331 = 0x05 (DDC 1 I input = ADC Channel B;  
DDC 1 Q input = ADC Channel B)  
Register 0x314, Register 0x315, Register 0x320, Register 0x321 =  
FTW and POW set as required by application for DDC 0  
Register 0x334, Register 0x335, Register 0x340, Register 0x341 =  
FTW and POW set as required by application for DDC 1  
Four DDCs  
8
Real  
Complex 9.63% × fS  
8
Register 0x200 = 0x03 (four DDCs; I/Q selected)  
Register 0x201 = 0x03 (chip decimate by 8)  
Register 0x310, Register 0x330, Register 0x350, Register 0x370 =  
0x41 (real mixer; 6 dB gain; variable IF; complex output;  
HB3+HB2+HB1 filters)  
Register 0x311 = 0x00 (DDC 0 I input = ADC Channel A;  
DDC 0 Q input = ADC Channel A)  
Register 0x331 = 0x00 (DDC 1 I input = ADC Channel A;  
DDC 1 Q input = ADC Channel A)  
Register 0x351 = 0x05 (DDC 2 I input = ADC Channel B;  
DDC 2 Q input = ADC Channel B)  
Register 0x371 = 0x05 (DDC 3 I input = ADC Channel B;  
DDC 3 Q input = ADC Channel B)  
Register 0x314, Register 0x315, Register 0x320, Register 0x321 =  
FTW and POW set as required by application for DDC 0  
Register 0x334, Register 0x335, Register 0x340, Register 0x341 =  
FTW and POW set as required by application for DDC 1  
Register 0x354, Register 0x355, Register 0x360, Register 0x361 =  
FTW and POW set as required by application for DDC 2  
Register 0x374, Register 0x375, Register 0x380, Register 0x381 =  
FTW and POW set as required by application for DDC 3  
Four DDCs  
8
Real  
Real  
4.81% × fS  
4
Register 0x200 = 0x23 (four DDCs; I only selected)  
Register 0x201 = 0x03 (chip decimate by 8)  
Register 0x310, Register 0x330, Register 0x350, Register 0x370 =  
0x4A (real mixer; 6 dB gain; variable IF; real output; HB4 +  
HB3 + HB2 + HB1 filters)  
Register 0x311 = 0x00 (DDC 0 I input = ADC Channel A;  
DDC 0 Q input = ADC Channel A)  
Register 0x331 = 0x00 (DDC 1 I input = ADC Channel A;  
DDC 1 Q input = ADC Channel A)  
Register 0x351 = 0x05 (DDC 2 I input = ADC Channel B;  
DDC 2 Q input = ADC Channel B)  
Register 0x371 = 0x05 (DDC 3 I input = ADC Channel B;  
DDC 3 Q input = ADC Channel B)  
Register 0x314, Register 0x315, Register 0x320, Register 0x321 =  
FTW and POW set as required by application for DDC 0  
Register 0x334, Register 0x335, Register 0x340, Register 0x341 =  
FTW and POW set as required by application for DDC 1  
Register 0x354, Register 0x355, Register 0x360, Register 0x361 =  
FTW and POW set as required by application for DDC 2  
Register 0x374, Register 0x375, Register 0x380, Register 0x381 =  
FTW and POW set as required by application for DDC 3  
Rev. C | Page 62 of 97  
Data Sheet  
AD9680  
Chip  
Chip  
DDC  
DDC  
Output  
Type  
No. of Virtual  
Bandwidth Converters  
Application Decimation Input  
Layer  
Ratio  
Type  
per DDC1  
Required  
Register Settings2  
Four DDCs  
16  
Real  
Complex 4.81% × fS  
8
Register 0x200 = 0x03 (four DDCs; I/Q selected)  
Register 0x201 = 0x04 (chip decimate by 16)  
Register 0x310, Register 0x330, Register 0x350, Register 0x370 =  
0x42 (real mixer; 6 dB gain; variable IF; complex output;  
HB4 + HB3 + HB2 + HB1 filters)  
Register 0x311 = 0x00 (DDC 0 I input = ADC Channel A;  
DDC 0 Q input = ADC Channel A)  
Register 0x331 = 0x00 (DDC 1 I input = ADC Channel A;  
DDC 1 Q input = ADC Channel A)  
Register 0x351 = 0x05 (DDC 2 I input = ADC Channel B;  
DDC 2 Q input = ADC Channel B)  
Register 0x371 = 0x05 (DDC 3 I input = ADC Channel B;  
DDC 3 Q input = ADC Channel B)  
Register 0x314, Register 0x315, Register 0x320, Register 0x321 =  
FTW and POW set as required by application for DDC 0  
Register 0x334, Register 0x335, Register 0x340, Register 0x341 =  
FTW and POW set as required by application for DDC 1  
Register 0x354, Register 0x355, Register 0x360, Register 0x361 =  
FTW and POW set as required by application for DDC 2  
Register 0x374, Register 0x375, Register 0x380, Register 0x381 =  
FTW and POW set as required by application for DDC 3  
1 fS is the ADC sample rate. Bandwidths listed are <−0.001 dB of pass-band ripple and >100 dB of stop-band alias rejection.  
2 The NCOs must be synchronized either through the SPI or through the SYSREF pin after all writes to the FTW or POW registers have completed, to ensure the proper  
operation of the NCO. See the NCO Synchronization section for more information.  
Rev. C | Page 63 of 97  
 
AD9680  
Data Sheet  
DIGITAL OUTPUTS  
K is the number of frames per multiframe  
INTRODUCTION TO THE JESD204B INTERFACE  
(AD9680 value = 4, 8, 12, 16, 20, 24, 28, or 32 )  
S is the samples transmitted/single converter/frame cycle  
(AD9680 value = set automatically based on L, M, F, and N΄)  
HD is the high density mode (AD9680 = set automatically  
based on L, M, F, and N΄)  
The AD9680 digital outputs are designed to the JEDEC standard  
JESD204B, serial interface for data converters. JESD204B is a  
protocol to link the AD9680 to a digital processing device over  
a serial interface with lane rates of up to 12.5 Gbps. The benefits  
of the JESD204B interface over LVDS include a reduction in  
required board area for data interface routing, and an ability to  
enable smaller packages for converter and logic devices.  
CF is the number of control words/frame clock cycle/  
converter device (AD9680 value = 0)  
Figure 155 shows a simplified block diagram of the AD9680  
JESD204B link. By default, the AD9680 is configured to use  
two converters and four lanes. Converter A data is output to  
SERDOUT0 and/or SERDOUT1 , and Converter B is output  
to SERDOUT2 and/or SERDOUT3 . The AD9680 allows  
other configurations such as combining the outputs of both  
converters onto a single lane, or changing the mapping of the  
A and B digital output paths. These modes are set up via a quick  
configuration register in the SPI register map, along with  
additional customizable options.  
JESD204B OVERVIEW  
The JESD204B data transmit block assembles the parallel data  
from the ADC into frames and uses 8-bit/10-bit encoding as  
well as optional scrambling to form serial output data. Lane  
synchronization is supported through the use of special control  
characters during the initial establishment of the link. Additional  
control characters are embedded in the data stream to maintain  
synchronization thereafter. A JESD204B receiver is required to  
complete the serial link. For additional details on the JESD204B  
interface, refer to the JESD204B standard.  
By default in the AD9680, the 14-bit converter word from each  
converter is broken into two octets (eight bits of data). Bit 13  
(MSB) through Bit 6 are in the first octet. The second octet  
contains Bit 5 through Bit 0 (LSB) and two tail bits. The tail bits  
can be configured as zeros or a pseudorandom number  
sequence. The tail bits can also be replaced with control bits  
indicating overrange, SYSREF , or fast detect output.  
The AD9680 JESD204B data transmit block maps up to two  
physical ADCs or up to eight virtual converters (when DDCs  
are enabled) over a link. A link can be configured to use one,  
two, or four JESD204B lanes. The JESD204B specification refers  
to a number of parameters to define the link, and these parameters  
must match between the JESD204B transmitter (the AD9680  
output) and the JESD204B receiver (the logic device input).  
The two resulting octets can be scrambled. Scrambling is  
optional; however, it is recommended to avoid spectral peaks  
when transmitting similar digital data patterns. The scrambler  
uses a self-synchronizing, polynomial-based algorithm defined  
by the equation 1 + x  
a self-synchronizing version of the scrambler polynomial.  
The JESD204B link is described according to the following  
parameters:  
L is the number of lanes/converter device (lanes/link)  
(AD9680 value = 1, 2, or 4)  
14 + x15. The descrambler in the receiver is  
M is the number of converters/converter device (virtual  
converters/link) (AD9680 value = 1, 2, 4, or 8)  
F is the octets/frame (AD9680 value = 1, 2, 4, 8, or 16)  
N΄ is the number of bits per sample (JESD204B word size)  
(AD9680 value = 8 or 16)  
The two octets are then encoded with an 8-bit/10-bit encoder.  
The 8-bit/10-bit encoder works by taking eight bits of data (an  
octet) and encoding them into a 10-bit symbol. Figure 156  
shows how the 14-bit data is taken from the ADC, how the tail  
bits are added, how the two octets are scrambled, and how the  
octets are encoded into two 10-bit symbols. Figure 156 illustrates  
the default data format.  
N is the converter resolution (AD9680 value = 7 to 16)  
CS is the number of control bits/sample  
(AD9680 value = 0, 1, 2, or 3)  
CONVERTER 0  
CONVERTER A  
ADC  
A
INPUT  
SERDOUT0–,  
SERDOUT0+  
MUX/  
FORMAT  
(SPI  
REG 0x561,  
REG 0x564)  
JESD204B LINK  
LANE MUX  
AND MAPPING  
(SPI  
REG 0x5B0,  
REG 0x5B2,  
REG 0x5B3,  
REG 0x5B5,  
REG 0x5B6)  
CONTROL  
(L.M.F)  
SERDOUT1–,  
SERDOUT1+  
(SPI REG 0x570)  
SERDOUT2–,  
SERDOUT2+  
CONVERTER B  
INPUT  
ADC  
B
SERDOUT3–,  
SERDOUT3+  
CONVERTER 1  
SYSREF±  
SYNCINB±  
Figure 155. Transmit Link Simplified Block Diagram Showing Full Bandwidth Mode (Register 0x200 = 0x00)  
Rev. C | Page 64 of 97  
 
 
 
 
Data Sheet  
AD9680  
JESD204B  
INTERFACE  
TEST PATTERN  
(REG 0x573,  
REG 0x551 TO  
REG 0x558)  
JESD204B DATA  
LINK LAYER TEST  
PATTERNS  
JESD204B  
LONG TRANSPORT  
TEST PATTERN  
REG 0x571[5]  
REG 0x574[2:0]  
SERDOUT0±  
SERDOUT1±  
SERIALIZER  
ADC TEST PATTERNS  
SCRAMBLER  
1 + x + x  
(OPTIONAL)  
FRAME  
CONSTRUCTION  
(RE0x550,  
8-BIT/10-BIT  
ENCODER  
14  
15  
REG 0x551 TO  
REG 0x558)  
a
b
i
j
a
b
i j  
JESD204B SAMPLE  
CONSTRUCTION  
MSB A13  
SYMBOL0  
SYMBOL1  
a
a
b
b
c
c
d
d
e
e
f
f
g
g
h
h
i
i
j
j
A12  
A11  
A10  
A9  
MSB S7 S7  
MSB A13 A5  
A12 A4  
A11 A3  
A10 A2  
A9 A1  
ADC  
S6 S6  
S5 S5  
A8  
TAIL BITS  
0x571[6]  
A7  
S4 S4  
A6  
S3 S3  
A5  
S2 S2  
A8 A0  
A4  
S1 S1  
A7 C2  
A3  
LSB S0 S0  
LSB A6  
T
A2  
A1  
SB A0  
L
C2  
C1  
C0  
CONTROL BITS  
Figure 156. ADC Output Data Path Showing Data Framing  
TRANSPORT  
LAYER  
DATA LINK  
LAYER  
PHYSICAL  
LAYER  
PROCESSED  
ALIGNMENT  
CHARACTER  
GENERATION  
SAMPLE  
FRAME  
8-BIT/10-BIT  
ENCODER  
CROSSBAR  
MUX  
SAMPLES  
SCRAMBLER  
SERIALIZER  
Tx  
OUTPUT  
CONSTRUCTION CONSTRUCTION  
FROM ADC  
SYSREF±  
SYNCINB±  
Figure 157. Data Flow  
Physical Layer  
FUNCTIONAL OVERVIEW  
The physical layer consists of the high speed circuitry clocked at  
the serial clock rate. In this layer, parallel data is converted into  
one, two, or four lanes of high speed differential serial data.  
The block diagram in Figure 157 shows the flow of data through  
the JESD204B hardware from the sample input to the physical  
output. The processing can be divided into layers that are  
derived from the open source initiative (OSI) model widely  
used to describe the abstraction layers of communications  
systems. These layers are the transport layer, data link layer,  
and physical layer (serializer and output driver).  
JESD204B LINK ESTABLISHMENT  
The AD9680 JESD204B transmitter (Tx) interface operates in  
Subclass 1 as defined in the JEDEC Standard 204B (July 2011  
specification). The link establishment process is divided into the  
following steps: code group synchronization and SYNCINB ,  
initial lane alignment sequence, and user data and error correction.  
Transport Layer  
The transport layer handles packing the data (consisting of  
samples and optional control bits) into JESD204B frames that  
are mapped to 8-bit octets. These octets are sent to the data link  
layer. The transport layer mapping is controlled by rules derived  
from the link parameters. Tail bits are added to fill gaps where  
required. The following equation can be used to determine the  
number of tail bits within a sample (JESD204B word):  
Code Group Synchronization (CGS) and SYNCINB  
The CGS is the process by which the JESD204B receiver finds  
the boundaries between the 10-bit symbols in the stream of  
data. During the CGS phase, the JESD204B transmit block  
transmits /K28.5/ characters. The receiver must locate /K28.5/  
characters in its input data stream using clock and data recovery  
(CDR) techniques.  
T = N CS  
Data Link Layer  
The receiver issues a synchronization request by asserting the  
SYNCINB pin of the AD9680 low. The JESD204B Tx then begins  
sending /K/ characters. Once the receiver has synchronized, it waits  
for the correct reception of at least four consecutive /K/ symbols. It  
then deasserts SYNCINB . The AD9680 then transmits an ILAS  
on the following local multiframe clock (LMFC) boundary.  
The data link layer is responsible for the low level functions  
of passing data across the link. These include optionally  
scrambling the data, inserting control characters for multichip  
synchronization/lane alignment/monitoring, and encoding  
8-bit octets into 10-bit symbols. The data link layer is also  
responsible for sending the initial lane alignment sequence  
(ILAS), which contains the link configuration data used by the  
receiver to verify the settings in the transport layer.  
For more information on the code group synchronization  
phase, refer to the JEDEC Standard JESD204B, July 2011,  
Section 5.3.3.1.  
Rev. C | Page 65 of 97  
 
 
 
 
AD9680  
Data Sheet  
The SYNCINB pin operation can also be controlled by the  
SPI. The SYNCINB signal is a differential dc-coupled LVDS  
mode signal by default, but it can also be driven single-ended.  
For more information on configuring the SYNCINB pin  
operation, refer to Register 0x572.  
User Data and Error Detection  
After the initial lane alignment sequence is complete, the user  
data is sent. Normally, within a frame, all characters are considered  
user data. However, to monitor the frame clock and multiframe  
clock synchronization, there is a mechanism for replacing  
characters with /F/ or /A/ alignment characters when the data  
meets certain conditions. These conditions are different for  
unscrambled and scrambled data. The scrambling operation is  
enabled by default, but it can be disabled using the SPI.  
The SYNCINB pins can also be configured to run in CMOS  
(single-ended) mode, by setting Bit[4] in Register 0x572. When  
running SYNCINB in CMOS mode, connect the CMOS  
SYNCINB signal to Pin 21 (SYNCINB+) and leave Pin 20  
(SYNCINB−) floating.  
For scrambled data, any 0xFC character at the end of a frame  
is replaced by an /F/, and any 0x7C character at the end of a  
multiframe is replaced with an /A/. The JESD204B receiver (Rx)  
checks for /F/ and /A/ characters in the received data stream  
and verifies that they only occur in the expected locations. If an  
unexpected /F/ or /A/ character is found, the receiver handles  
the situation by using dynamic realignment or asserting the  
SYNCINB signal for more than four frames to initiate a  
resynchronization. For unscrambled data, if the final character  
of two subsequent frames is equal, the second character is  
replaced with an /F/ if it is at the end of a frame, and an /A/ if  
it is at the end of a multiframe.  
Initial Lane Alignment Sequence (ILAS)  
The ILAS phase follows the CGS phase and begins on the next  
LMFC boundary. The ILAS consists of four multiframes, with  
an /R/ character marking the beginning and an /A/ character  
marking the end. The ILAS begins by sending an /R/ character  
followed by 0 to 255 ramp data for one multiframe. On the  
second multiframe, the link configuration data is sent, starting  
with the third character. The second character is a /Q/ character  
to confirm that the link configuration data will follow. All  
undefined data slots are filled with ramp data. The ILAS  
sequence is never scrambled.  
Insertion of alignment characters can be modified using SPI.  
The frame alignment character insertion (FACI) is enabled by  
default. More information on the link controls is available in the  
Memory Map section, Register 0x571.  
The ILAS sequence construction is shown in Figure 158. The  
four multiframes include the following:  
Multiframe 1. Begins with an /R/ character (/K28.0/) and  
ends with an /A/ character (/K28.3/).  
8-Bit/10-Bit Encoder  
Multiframe 2. Begins with an /R/ character followed by a  
/Q/ character (/K28.4/), followed by link configuration  
parameters over 14 configuration octets (see Table 24) and  
ends with an /A/ character. Many of the parameter values  
are of the value – 1 notation.  
The 8-bit/10-bit encoder converts 8-bit octets into 10-bit symbols  
and inserts control characters into the stream when needed.  
The control characters used in JESD204B are shown in Table 24.  
The 8-bit/10-bit encoding ensures that the signal is dc balanced by  
using the same number of ones and zeros across multiple symbols.  
Multiframe 3. Begins with an /R/ character (/K28.0/) and  
ends with an /A/ character (/K28.3/).  
Multiframe 4. Begins with an /R/ character (/K28.0/) and  
ends with an /A/ character (/K28.3/).  
The 8-bit/10-bit interface has options that can be controlled via  
the SPI. These operations include bypass and invert. These options  
are troubleshooting tools for the verification of the digital front  
end (DFE). See the Memory Map section, Register 0x572[2:1]  
for information on configuring the 8-bit/10-bit encoder.  
K
K
R
D
D
A
R
Q
C
C
D
D
A
R
D
D
A
R
D
D A D  
END OF  
MULTIFRAME  
START OF  
ILAS  
START OF LINK  
CONFIGURATION DATA  
START OF  
USER DATA  
Figure 158. Initial Lane Alignment Sequence  
Rev. C | Page 66 of 97  
 
Data Sheet  
AD9680  
Table 24. AD9680 Control Characters used in JESD204B  
10-Bit Value,  
RD1 = −1  
10-Bit Value,  
RD1 = +1  
Abbreviation  
Control Symbol  
/K28.0/  
/K28.3/  
/K28.4/  
/K28.5/  
8-Bit Value  
000 11100  
011 11100  
100 11100  
101 11100  
111 11100  
Description  
/R/  
/A/  
/Q/  
/K/  
/F/  
001111 0100  
001111 0011  
001111 0100  
001111 1010  
001111 1000  
110000 1011  
110000 1100  
110000 1101  
110000 0101  
110000 0111  
Start of multiframe  
Lane alignment  
Start of link configuration data  
Group synchronization  
Frame alignment  
/K28.7/  
1 RD means running disparity.  
If there is no far-end receiver termination, or if there is poor  
differential trace routing, timing errors can result. To avoid such  
timing errors, it is recommended that the trace length be less  
than six inches, and that the differential output traces be close  
together and at equal lengths.  
PHYSICAL LAYER (DRIVER) OUTPUTS  
Digital Outputs, Timing, and Controls  
The AD9680 physical layer consists of drivers that are defined in  
the JEDEC Standard JESD204B, July 2011. The differential digital  
outputs are powered up by default. The drivers use a dynamic  
100 Ω internal termination to reduce unwanted reflections.  
Figure 161 to Figure 166 show an example of the digital output  
data eye, time interval error (TIE) jitter histogram, and bathtub  
curve for one AD9680 lane running at 10 Gbps and 6 Gbps,  
respectively. The format of the output data is twos complement  
by default. To change the output data format, see the Memory Map  
section (Register 0x561 in Table 36).  
Place a 100 Ω differential termination resistor at each receiver  
input to result in a nominal 300 mV p-p swing at the receiver  
(see Figure 159). Alternatively, single-ended 50 Ω termination  
can be used. When single-ended termination is used, the  
termination voltage is DRVDD/2. Otherwise, 0.1 µF ac coupling  
capacitors can be used to terminate to any single-ended voltage.  
De-Emphasis  
De-emphasis enables the receiver eye diagram mask to be met  
in conditions where the interconnect insertion loss does not  
meet the JESD204B specification. Use the de-emphasis feature  
only when the receiver is unable to recover the clock due to  
excessive insertion loss. Under normal conditions, it is disabled  
to conserve power. Additionally, enabling and setting too high a  
de-emphasis value on a short link can cause the receiver eye  
diagram to fail. Use the de-emphasis setting with caution  
because it can increase electromagnetic interference (EMI). See  
the Memory Map section (Register 0x5C1 to Register 0x5C5 in  
Table 36) for more details.  
V
RXCM  
50Ω  
50Ω  
DRVDD  
100Ω  
DIFFERENTIAL  
TRACE PAIR  
0.1µF  
0.1µF  
SERDOUTx+  
RECEIVER  
100Ω  
OR  
SERDOUTx–  
OUTPUT SWING = 300mV p-p  
V
= V  
RXCM  
CM  
Figure 159. AC-Coupled Digital Output Termination Example  
Phase-Locked Loop  
The AD9680 digital outputs can interface with custom ASICs  
and FPGA receivers, providing superior switching performance  
in noisy environments. Single point-to-point network topologies  
are recommended with a single differential 100 Ω termination  
resistor placed as close to the receiver inputs as possible. The  
common mode of the digital output automatically biases itself  
to half the DRVDD supply of 1.2 V (VCM = 0.6 V). See Figure 160  
for dc coupling the outputs to the receiver logic.  
The phase-locked loop (PLL) is used to generate the serializer  
clock, which operates at the JESD204B lane rate. The status of  
the PLL lock can be checked in the PLL locked status bit  
(Register 0x56F, Bit 7). This read only bit lets the user know if  
the PLL has achieved a lock for the specific setup. The JESD204B  
lane rate control, Bit 4 of Register 0x56E, must be set to  
correspond with the lane rate.  
DRVDD  
100Ω  
DIFFERENTIAL  
TRACE PAIR  
SERDOUTx+  
RECEIVER  
100Ω  
SERDOUTx–  
OUTPUT SWING = 300mV p-p  
V
= DRVDD/2  
CM  
Figure 160. DC-Coupled Digital Output Termination Example  
Rev. C | Page 67 of 97  
 
 
 
 
AD9680  
Data Sheet  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
Tx EYE  
MASK  
Tx EYE  
MASK  
–100  
–200  
–300  
–400  
–100  
–200  
–300  
–400  
–100 –80 –60 –40 –20  
0
20  
40  
60  
80  
–150  
–100  
–50  
0
50  
100  
150  
TIME (ps)  
TIME (ps)  
Figure 161. Digital Outputs Data Eye, External 100 Ω Terminations  
at 10 Gbps  
Figure 164. Digital Outputs Data Eye, External 100 Ω Terminations  
at 6 Gbps  
8000  
7000  
6000  
4000  
4000  
3000  
2000  
1000  
0
12000  
10000  
8000  
6000  
4000  
2000  
0
1
2
–4  
–2  
0
2
4
6
–4  
–3  
–2  
–1  
0
3
4
TIME (ps)  
TIME (ps)  
Figure 162. Digital Outputs Histogram, External 100 Ω Terminations  
at 10 Gbps  
Figure 165. Digital Outputs Histogram, External 100 Ω Terminations  
at 6 Gbps  
1
1
–2  
1
–2  
1
–4  
1
–4  
1
–6  
1
–6  
1
–8  
1
–8  
1
–10  
1
–10  
1
–12  
1
–12  
1
–14  
1
–14  
1
–16  
1
–16  
1
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
UI  
UI  
Figure 163. Digital Outputs Bathtub Curve, External 100 Ω Terminations  
at 10 Gbps  
Figure 166. Digital Outputs Bathtub Curve, External 100 Ω Terminations  
at 6 Gbps  
Rev. C | Page 68 of 97  
 
 
Data Sheet  
AD9680  
Figure 167 shows a block diagram of the two scenarios  
described for I/Q transport layer mapping.  
JESD204B TX CONVERTER MAPPING  
To support the different chip operating modes, the AD9680  
design treats each sample stream (real or I/Q) as originating  
from separate virtual converters. The I/Q samples are always  
mapped in pairs with the I samples mapped to the first virtual  
converter and the Q samples mapped to the second virtual  
converter. With this transport layer mapping, the number of  
virtual converters are the same whether  
The JESD204B Tx block for AD9680 supports up to four DDC  
blocks. Each DDC block outputs either two sample streams (I/Q)  
for the complex data components (real + imaginary), or one  
sample stream for real (I) data. The JESD204B interface can be  
configured to use up to eight virtual converters depending on the  
DDC configuration. Figure 168 shows the virtual converters and  
their relationship to the DDC outputs when complex outputs  
are used. Table 25 shows the virtual converter mapping for each  
chip operating mode when channel swapping is disabled.  
A single real converter is used along with a digital  
downconverter block producing I/Q outputs, or  
An analog downconversion is used with two real  
converters producing I/Q outputs.  
DIGITAL DOWNCONVERSION  
M = 2  
I
CONVERTER 0  
DIGITAL  
DOWN  
CONVERSION  
JESD204B  
Tx  
REAL  
REAL  
L LANES  
ADC  
Q
CONVERTER 1  
I/Q ANALOG MIXING  
M = 2  
I
CONVERTER 0  
I
ADC  
REAL  
90°  
PHASE  
JESD204B  
Tx  
L LANES  
Σ
Q
Q
CONVERTER 1  
ADC  
Figure 167. I/Q Transport Layer Mapping  
DDC 0  
ADC A  
SAMPLING  
AT fS  
REAL/I  
REAL/I  
REAL/I  
CONVERTER 0  
Q
I
I
REAL/Q  
Q
Q
CONVERTER 1  
DDC 1  
DDC 2  
DDC 3  
REAL/I  
REAL/I  
CONVERTER 2  
Q
I
I
REAL/Q  
Q
Q
I/Q  
CROSSBAR  
MUX  
CONVERTER 3  
OUTPUT  
INTERFACE  
REAL/I  
REAL/I  
CONVERTER 4  
Q
I
I
REAL/Q  
Q
Q
CONVERTER 5  
ADC B  
SAMPLING  
AT fS  
REAL/I  
REAL/I  
CONVERTER 6  
Q
REAL/Q  
I
I
REAL/Q  
Q
Q
CONVERTER 7  
Figure 168. DDCs and Virtual Converter Mapping  
Rev. C | Page 69 of 97  
 
 
 
AD9680  
Data Sheet  
Table 25. Virtual Converter Mapping  
Number of Chip  
Virtual Converter Mapping  
Virtual  
Converters Mode (0x200, Ignore  
Supported Bits[1:0]) (0x200, Bit 5)  
Full bandwidth Real or  
Operating  
Chip Q  
0
1
2
3
4
5
6
7
1 to 2  
ADC A  
ADC B  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
DDC 3 Q  
mode (0x0)  
complex  
(0x0)  
samples samples  
1
2
2
4
4
8
One DDC  
mode  
(0x1)  
Real (I only)  
(0x1)  
DDC 0 I  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
samples  
One DDC  
mode  
(0x1)  
Complex (I/Q) DDC 0 I  
(0x0)  
DDC 0 Q Unused  
samples samples  
Two DDC  
mode  
(0x2)  
Real (I only)  
(0x1)  
DDC 0 I  
DDC 1 I  
Unused  
samples samples  
Two DDC  
mode  
(0x2)  
Complex (I/Q) DDC 0 I  
(0x0)  
DDC 0 Q DDC 1 I  
samples samples samples samples  
DDC 1 Q Unused  
Four DDC  
mode  
(0x3)  
Real (I only)  
(0x1)  
DDC 0 I  
DDC 1 I  
DDC 2 I  
DDC 3 I  
Unused  
samples samples samples samples  
Four DDC  
mode  
Complex (I/Q) DDC 0 I  
(0x0)  
DDC 0 Q DDC 1 I  
DDC 1 Q DDC 2 I  
DDC 2 Q DDC 3 I  
samples samples samples samples samples samples samples samples  
(0x3)  
Rev. C | Page 70 of 97  
 
Data Sheet  
AD9680  
The decimation ratio (DCM) is the parameter programmed in  
Register 0x201.  
CONFIGURING THE JESD204B LINK  
The AD9680 has one JESD204B link. The device offers an easy  
way to set up the JESD204B link through the JESD04B quick  
configuration register (Register 0x570). The serial outputs  
(SERDOUT0 to SERDOUT3 ) are considered to be part of  
one JESD204B link. The basic parameters that determine the  
link setup are  
The following steps can be used to configure the output:  
1. Power down the link.  
2. Select quick configuration options.  
3. Configure detailed options.  
4. Set output lane mapping (optional).  
5. Set additional driver configuration options (optional).  
6. Power up the link.  
Number of lanes per link (L)  
Number of converters per link (M)  
Number of octets per frame (F)  
If the lane line rate calculated is less than 6.25 Gbps, select  
the low line rate option by programming a value of 0x10 to  
Register 0x56E.  
If the internal DDCs are used for on-chip digital processing, M  
represents the number of virtual converters. The virtual converter  
mapping setup is shown in Figure 168.  
Table 26 and Table 27 show the JESD204B output configurations  
supported for both N΄ = 16 and N΄ = 8 for a given number of  
virtual converters. Take care to ensure that the serial line rate  
for a given configuration is within the supported range of  
3.125 Gbps to 12.5 Gbps.  
The maximum lane rate allowed by the JESD204B specification  
is 12.5 Gbps. The lane line rate is related to the JESD204B  
parameters using the following equation:  
10  
8
L
M ×N'×  
× f  
OUT  
Lane Line Rate =  
fADC _CLOCK  
Decimation Ratio  
where  
fOUT  
=
Table 26. JESD204B Output Configurations for N΄ = 16  
Number of Virtual  
JESD204B Transport Layer Settings2  
Converters  
Supported  
(Same Value as M) (0x570)  
JESD204B Quick  
Configuration  
JESD204B Serial  
Line Rate1  
L
1
2
2
4
4
1
2
4
4
1
2
4
1
2
4
M
1
1
1
1
1
2
2
2
2
4
4
4
8
8
8
F
2
1
2
1
2
4
2
1
2
8
4
2
16  
8
4
S
1
1
2
2
4
1
1
1
2
1
1
1
1
1
1
HD  
0
1
0
1
N
N΄ CS  
K3  
1
0x01  
0x40  
0x41  
0x80  
0x81  
0x0A  
0x49  
0x88  
0x89  
0x13  
0x52  
0x91  
0x1C  
0x5B  
0x9A  
20 × fOUT  
10 × fOUT  
10 × fOUT  
5 × fOUT  
8 to 16  
8 to 16  
8 to 16  
8 to 16  
8 to 16  
8 to 16  
8 to 16  
8 to 16  
8 to 16  
8 to 16  
8 to 16  
8 to 16  
8 to 16  
8 to 16  
8 to 16  
16 0 to 3  
16 0 to 3  
16 0 to 3  
16 0 to 3  
16 0 to 3  
16 0 to 3  
16 0 to 3  
16 0 to 3  
16 0 to 3  
16 0 to 3  
16 0 to 3  
16 0 to 3  
16 0 to 3  
16 0 to 3  
16 0 to 3  
Only valid K  
values that  
are divisible  
by 4 are  
supported  
5 × fOUT  
0
2
40 × fOUT  
20 × fOUT  
10 × fOUT  
10 × fOUT  
80 × fOUT  
40 × fOUT  
20 × fOUT  
160 × fOUT  
80 × fOUT  
40 × fOUT  
0
0
1
0
4
8
0
0
0
0
0
0
1 fOUT = output sample rate = ADC sample rate/chip decimation ratio. The JESD204B serial line rate must be ≥3125 Mbps and ≤12,500 Mbps; when the serial line rate is  
≤12.5 Gbps and ≥ 6.25 Gbps, the low line rate mode must be disabled (set Bit 4 to 0x0 in 0x56E). When the serial line rate is <6.25 Gbps and ≥3.125 Gbps, the low line  
rate mode must be enabled (set Bit 4 to 0x1 in 0x56E).  
2 JESD204B transport layer descriptions are as described in the JESD204B Overview section.  
3 For F = 1, K = 20, 24, 28, and 32. For F = 2, K = 12, 16, 20, 24, 28, and 32. For F = 4, K = 8, 12, 16, 20, 24, 28, and 32. For F = 8 and F = 16, K = 4, 8, 12, 16, 20, 24, 28, and 32.  
Rev. C | Page 71 of 97  
 
 
AD9680  
Data Sheet  
Table 27. JESD204B Output Configurations for N΄ = 8  
Number of Virtual  
JESD204B Quick  
JESD204B Transport Layer Settings2  
Converters Supported Configuration  
(Same Value as M)  
(0x570)  
0x00  
0x01  
0x40  
0x41  
0x42  
0x80  
0x81  
0x09  
0x48  
0x49  
0x88  
0x89  
0x8A  
Serial Line Rate1  
10 × fOUT  
10 × fOUT  
5 × fOUT  
L
1
1
2
2
2
4
4
1
2
2
4
4
4
M
1
1
1
1
1
1
1
2
2
2
2
2
2
F
1
2
1
2
4
1
2
2
1
2
1
2
4
S
1
2
2
4
8
4
8
1
1
2
2
4
8
HD  
0
0
N
N΄  
8
8
8
8
8
8
8
8
8
8
8
8
8
CS  
0 to 1 Only valid K  
K3  
1
7 to 8  
7 to 8  
7 to 8  
7 to 8  
7 to 8  
7 to 8  
7 to 8  
7 to 8  
7 to 8  
7 to 8  
7 to 8  
7 to 8  
7 to 8  
values which  
are divisible  
by 4 are  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0
5 × fOUT  
0
supported  
5 × fOUT  
0
2.5 × fOUT  
2.5 × fOUT  
20 × fOUT  
10 × fOUT  
10 × fOUT  
5 × fOUT  
0
0
2
0
0
0
0
5 × fOUT  
0
5 × fOUT  
0
1 fOUT = output sample rate = ADC sample rate/chip decimation ratio. The JESD204B serial line rate must be ≥3125 Mbps and ≤12,500 Mbps; when the serial line rate is  
≤12.5 Gbps and ≥6.25 Gbps, the low line rate mode must be disabled (set Bit 4 to 0x0 in Register 0x56E). When the serial line rate is <6.25 Gbps and ≥3.125 Gbps, the  
low line rate mode must be enabled (set Bit 4 to 0x1 in Register 0x56E).  
2 JESD204B transport layer descriptions are as described in the JESD204B Overview section.  
3 For F = 1, K = 20, 24, 28, and 32. For F = 2, K = 12, 16, 20, 24, 28, and 32. For F = 4, K = 8, 12, 16, 20, 24, 28, and 32. For F = 8 and F = 16, K = 4, 8, 12, 16, 20, 24, 28, and 32.  
CMOS  
See the Example 1: Full Bandwidth Mode section and the  
Example 2: ADC with DDC Option (Two ADCs Plus Four  
DDCs) section for two examples describing which JESD204B  
FAST  
DETECTION  
transport layer settings are valid for a given chip mode.  
L
14-BIT  
AT  
1Gbps  
REAL/I  
JESD204B  
LANES  
AT UP TO  
12.5Gbps  
Example 1: Full Bandwidth Mode  
CONVERTER 0  
CONVERTER 1  
JESD204B  
TRANSMIT  
INTERFACE  
Chip application mode = full bandwidth mode (see Figure 169).  
14-BIT  
AT  
1Gbps  
REAL/Q  
Two 14-bit converters at 1000 MSPS  
Full bandwidth application layer mode  
No decimation  
FAST  
DETECTION  
JESD204B output configuration is as follows:  
CMOS  
Two virtual converters required (see Table 26)  
Output sample rate (fOUT) = 1000/1 = 1000 MSPS  
Figure 169. Full Bandwidth Mode  
Example 2: ADC with DDC Option (Two ADCs Plus Four  
DDCs)  
JESD204B supported output configurations (see Table 26)  
include:  
Chip application mode = four-DDC mode. (see Figure 170).  
N΄ = 16 bits  
N = 14 bits  
Two 14-bit converters at 1 GSPS  
Four DDC application layer mode with complex outputs  
(I/Q)  
Chip decimation ratio = 16  
DDC decimation ratio = 16 (see Table 15).  
L = 4, M = 2, and F = 1, or L = 4, M = 2, and F = 2 (quick  
configuration = 0x88 or 0x89)  
CS = 0 to 2  
K = 32  
Output serial line rate = 10 Gbps per lane, low line rate  
mode disabled  
JESD204B output configuration is as follows:  
Virtual converters required = 8 (see Table 26)  
Output sample rate (fOUT) = 1000/16 = 62.5 MSPS  
Rev. C | Page 72 of 97  
 
 
 
 
Data Sheet  
AD9680  
JESD204B supported output configurations (see Table 26):  
For L = 1, low line rate mode is disabled. For L = 2, low line  
rate mode is enabled.  
N΄ = 16 bits  
N = 14 bits  
Example 2 shows the flexibility in the digital and lane  
configurations for the AD9680. The sample rate is 1 GSPS;  
however, the outputs are all combined in either one or two  
lanes, depending on the I/O speed capability of the receiving  
device.  
L = 1, M = 8, and F = 16, or L = 2, M = 8, and F = 8 (quick  
configuration = 0x1C or 0x5B)  
CS = 0 to 1  
K = 32  
Output serial line rate = 10 Gbps per lane (L = 1) or 5 Gbps  
per lane (L = 2)  
I
ADC A  
SAMPLING  
AT fS  
REAL  
CONVERTER 0  
Q
CONVERTER 1  
REAL/I  
DDC 0  
DDC 1  
DDC 2  
DDC 3  
L
I
JESD204B  
LANES  
CONVERTER 2  
Q
CONVERTER 3  
REAL/Q  
AT UP TO  
12.5Gbps  
L JESD204B  
LANES UP TO  
12.5Gbps  
I/Q  
CROSSBAR  
MUX  
I
CONVERTER 4  
Q
CONVERTER 5  
REAL/I  
ADC B  
SAMPLING  
AT fS  
I
REAL  
REAL/Q  
CONVERTER 6  
Q
CONVERTER 7  
SYSREF  
SYNCHRONIZATION  
CONTROL CIRCUITS  
Figure 170. Two ADC Plus Four DDC Mode  
Rev. C | Page 73 of 97  
 
AD9680  
Data Sheet  
MULTICHIP SYNCHRONIZATION  
The AD9680 has a SYSREF input that provides flexible options  
for synchronizing the internal blocks. The SYSREF input is a  
source synchronous system reference signal that enables multichip  
synchronization. The input clock divider, DDCs, signal monitor  
block, and JESD204B link can be synchronized using the SYSREF  
input. For the highest level of timing accuracy, SYSREF must  
meet setup and hold requirements relative to the CLK input.  
supports several features that aid users in meeting the  
requirements set out for capturing a SYSREF signal. The  
SYSREF sample event can be defined as either a synchronous  
low to high transition, or a synchronous high to low transition.  
Additionally, the AD9680 allows the SYSREF signal to be sampled  
using either the rising edge or falling edge of the CLK input.  
The AD9680 also has the ability to ignore a programmable  
number (up to 16) of SYSREF events. The SYSREF control  
options can be selected using Register 0x120 and Register 0x121.  
The flowchart in Figure 171 describes the internal mechanism  
for multichip synchronization in the AD9680. The AD9680  
Rev. C | Page 74 of 97  
 
Data Sheet  
AD9680  
START  
INCREMENT  
SYSREF± IGNORE  
COUNTER  
NO  
NO  
NO  
SYSREF±  
IGNORE  
COUNTER  
EXPIRED?  
(0x121)  
UPDATE  
SETUP/HOLD  
DETECTOR STATUS  
(0x128)  
RESET  
SYSREF± IGNORE  
COUNTER  
SYSREF±  
ENABLED?  
(0x120)  
NO  
YES  
SYSREF±  
ASSERTED?  
YES  
YES  
INPUT  
CLOCK  
CLOCK  
DIVIDER  
AUTO ADJUST  
ENABLED?  
(0x10D)  
INCREMENT  
SYSREF±  
COUNTER  
(0x12A)  
CLOCK  
DIVIDER  
> 1?  
ALIGN CLOCK  
DIVIDER  
PHASE TO  
SYSREF  
YES  
YES  
YES  
DIVIDER  
ALIGNMENT  
REQUIRED?  
(0x10B)  
NO  
NO  
NO  
TIMESTAMP  
MODE  
SYSREF±  
TIMESTAMP  
DELAY  
SYSREF±  
SYSREF±  
YES  
CONTROL BITS?  
(0x559, 0x55A,  
0x58F)  
INSERTED  
IN JESD204B  
CONTROL BITS  
SYNCHRONIZATION  
MODE?  
(0x123)  
(0x1FF)  
NO  
RAMP  
TEST  
SYSREF± RESETS  
RAMP TEST  
MODE  
YES  
MODE  
NORMAL  
MODE  
BACK TO START  
ENABLED?  
(0x550)  
GENERATOR  
NO  
ALIGN PHASE  
JESD204B  
LMFC  
ALIGNMENT  
REQUIRED?  
SEND INVALID  
NORMAL  
OF ALL  
YES  
YES  
SYNC~  
ASSERTED  
8-BIT/10-BIT  
CHARACTERS  
(ALL 0's)  
SEND K28.5  
CHARACTERS  
JESD204B  
INTERNAL CLOCKS  
(INCLUDING LMFC)  
TO SYSREF±  
INITIALIZATION  
NO  
NO  
SIGNAL  
MONITOR  
ALIGNMENT  
ENABLED?  
(0x26F)  
DDC NCO  
ALIGN DDC  
NCO PHASE  
ACCUMULATOR  
ALIGN SIGNAL  
YES  
YES  
ALIGNMENT  
ENABLED?  
(0x300)  
MONITOR  
BACK TO START  
COUNTERS  
NO  
NO  
Figure 171. Multichip Synchronization  
Rev. C | Page 75 of 97  
 
AD9680  
Data Sheet  
Figure 172 and Figure 173 show the setup and hold status values  
for different phases of SYSREF . The setup detector returns the  
status of the SYSREF signal before the CLK edge, and the  
hold detector returns the status of the SYSREF signal after the  
CLK edge. Register 0x128 stores the status of SYSREF and  
lets the user know if the SYSREF signal is captured by the ADC.  
SYSREF SETUP/HOLD WINDOW MONITOR  
To ensure a valid SYSREF signal capture, the AD9680 has a  
SYSREF setup/hold window monitor. This feature allows the  
system designer to determine the location of the SYSREF signals  
relative to the CLK signals by reading back the amount of  
setup/hold margin on the interface through the memory map.  
0xF  
0xE  
0xD  
0xC  
0xB  
0xA  
0x9  
REG 0x128[3:0]  
0x8  
0x7  
0x6  
0x5  
0x4  
0x3  
0x2  
0x1  
0x0  
CLK±  
INPUT  
SYSREF±  
INPUT  
VALID  
FLIP-FLOP  
HOLD (MIN)  
FLIP-FLOP  
SETUP (MIN)  
FLIP-FLOP  
HOLD (MIN)  
Figure 172. SYSREF Setup Detector  
Rev. C | Page 76 of 97  
 
 
Data Sheet  
AD9680  
0xF  
0xE  
0xD  
0xC  
0xB  
0xA  
0x9  
REG 0x128[7:4] 0x8  
0x7  
0x6  
0x5  
0x4  
0x3  
0x2  
0x1  
0x0  
CLK±  
INPUT  
SYSREF±  
INPUT  
VALID  
FLIP-FLOP  
SETUP (MIN)  
FLIP-FLOP  
HOLD (MIN)  
FLIP-FLOP  
HOLD (MIN)  
Figure 173. SYSREF Hold Detector  
Table 28 shows the description of the contents of Register 0x128 and how to interpret them.  
Table 28. SYSREF Setup/Hold Monitor, Register 0x128  
Register 0x128[7:4]  
Hold Status  
Register 0x128[3:0]  
Setup Status  
Description  
0x0  
0x0 to 0x8  
0x8  
0x0 to 0x7  
0x8  
0x9 to 0xF  
0x0  
Possible setup error. The smaller this number, the smaller the setup margin.  
No setup or hold error (best hold margin).  
No setup or hold error (best setup and hold margin).  
No setup or hold error (best setup margin).  
0x8  
0x9 to 0xF  
0x0  
0x0  
0x0  
Possible hold error. The larger this number, the smaller the hold margin.  
Possible setup or hold error.  
Rev. C | Page 77 of 97  
 
 
AD9680  
Data Sheet  
TEST MODES  
If the application mode is set to select a DDC mode of  
ADC TEST MODES  
operation, the test modes must be enabled for each DDC  
enabled. The test patterns can be enabled via Bit 2 and Bit 0 of  
Register 0x327, Register 0x347, and Register 0x367, depending  
on which DDC(s) are selected. The (I) data uses the test  
patterns selected for Channel A, and the (Q) data uses the test  
patterns selected for Channel B. For DDC3 only, the (I) data  
uses the test patterns from Channel A, and the (Q) data does  
not output test patterns. Bit 0 of Register 0x387 selects the  
Channel A test patterns to be used for the (I) data. For more  
information, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
The AD9680 has various test options that aid in the system level  
implementation. The AD9680 has ADC test modes that are  
available in Register 0x550. These test modes are described in  
Table 29. When an output test mode is enabled, the analog section  
of the ADC is disconnected from the digital back-end blocks,  
and the test pattern is run through the output formatting block.  
Some of the test patterns are subject to output formatting, and  
some are not. The PN generators from the PN sequence tests  
can be reset by setting Bit 4 or Bit 5 of Register 0x550. These  
tests can be performed with or without an analog signal (if  
present, the analog signal is ignored); however, they do require  
an encode clock.  
Table 29. ADC Test Modes1  
Output Test Mode  
Bit Sequence  
Default/  
Seed Value  
Pattern Name  
Off (default)  
Expression  
Sample (N, N + 1, N + 2, …)  
0000  
N/A  
N/A  
N/A  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
Midscale short  
+Full-scale short  
−Full-scale short  
Checkerboard  
PN sequence long  
PN sequence short  
One-/zero-word toggle  
User input  
00 0000 0000 0000  
01 1111 1111 1111  
10 0000 0000 0000  
10 1010 1010 1010  
X23 + X18 + 1  
N/A  
N/A  
N/A  
N/A  
0x3AFF  
0x0092  
N/A  
N/A  
N/A  
N/A  
0x1555, 0x2AAA, 0x1555, 0x2AAA, 0x1555  
0x3FD7, 0x0002, 0x26E0, 0x0A3D, 0x1CA6  
0x125B, 0x3C9A, 0x2660, 0x0c65, 0x0697  
0x0000, 0x3FFF, 0x0000, 0x3FFF, 0x0000  
X9 + X5 + 1  
11 1111 1111 1111  
Register 0x551 to  
Register 0x558  
N/A  
User Pattern 1[15:2], User Pattern 2[15:2],  
User Pattern 3[15:2], User Pattern 4[15:2],  
User Pattern 1[15:2] … for repeat mode  
User Pattern 1[15:2], User Pattern 2[15:2],  
User Pattern 3[15:2], User Pattern 4[15:2],  
0x0000 … for single mode  
1111  
Ramp Output  
(X) % 214  
N/A  
(X) % 214, (X +1) % 214, (X +2) % 214, (X +3) % 214  
1 N/A means not applicable.  
Rev. C | Page 78 of 97  
 
 
 
Data Sheet  
AD9680  
These tests are shown in Register 0x571[5]. The test pattern is  
equivalent to the raw samples from the ADC.  
JESD204B BLOCK TEST MODES  
In addition to the ADC pipeline test modes, the AD9680 also has  
flexible test modes in the JESD204B block. These test modes are  
listed in Register 0x573 and Register 0x574. These test patterns  
can be injected at various points along the output data path. These  
test injection points are shown in Figure 156. Table 30 describes  
the various test modes available in the JESD204B block. For the  
AD9680, a transition from test modes (Register 0x573 ≠ 0x00)  
to normal mode (Register 0x573 = 0x00) requires an SPI soft  
reset. This is done by writing 0x81 to Register 0x00 (self cleared).  
Interface Test Modes  
The interface test modes are described in Register 0x573, Bits[3:0].  
These test modes are also explained in Table 30. The interface tests  
can be injected at various points along the data. See Figure 156  
for more information on the test injection points. Register 0x573,  
Bits[5:4] show where these tests are injected.  
Table 31, Table 32, and Table 33 show examples of some of the  
test modes when injected at the JESD sample input, PHY 10-bit  
input, and scrambler 8-bit input. UP in the tables represent the  
user pattern control bits from the customer register map.  
Transport Layer Sample Test Mode  
The transport layer samples are implemented in the AD9680 as  
defined by Section 5.1.6.3 in the JEDEC JESD204B Specification.  
Table 30. JESD204B Interface Test Modes  
Output Test Mode  
Bit Sequence  
Pattern Name  
Expression  
Default  
0000  
Off (default)  
Not applicable  
Not applicable  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
Alternating checker board  
1/0 word toggle  
0x5555, 0xAAAA, 0x5555, …  
0x0000, 0xFFFF, 0x0000, …  
X31 + X28 + 1  
Not applicable  
Not applicable  
0x0003AFFF  
0x003AFF  
0x03AF  
0x092  
0x07  
Ramp size depends on test injection point  
User Pattern 1 to User Pattern 4, then repeat  
User Pattern 1 to User Pattern 4, then zeros  
31-bit PN sequence  
23-bit PN sequence  
15-bit PN sequence  
9-bit PN sequence  
7-bit PN sequence  
Ramp output  
X23 + X18 + 1  
X15 + X14 + 1  
X9 + X5 + 1  
X7 + X6 + 1  
(X) % 216  
1110  
1111  
Continuous/repeat user test  
Single user test  
Register 0x551 to Register 0x558  
Register 0x551 to Register 0x558  
Table 31. JESD204B Sample Input for M = 2, S = 2, N' = 16 (Register 0x573[5:4] = 'b00)  
Frame  
Number  
Converter  
Number  
Sample  
Number  
Alternating  
Checkerboard  
1/0 Word  
Toggle  
Ramp  
PN9  
PN23  
User Repeat  
UP1[15:0]  
UP1[15:0]  
UP1[15:0]  
UP1[15:0]  
UP2[15:0]  
UP2[15:0]  
UP2[15:0]  
UP2[15:0]  
UP3[15:0]  
UP3[15:0]  
UP3[15:0]  
UP3[15:0]  
User Single  
UP1[15:0]  
UP1[15:0]  
UP1[15:0]  
UP1[15:0]  
UP2[15:0]  
UP2[15:0]  
UP2[15:0]  
UP2[15:0]  
UP3[15:0]  
UP3[15:0]  
UP3[15:0]  
UP3[15:0]  
UP4[15:0]  
UP4[15:0]  
UP4[15:0]  
UP4[15:0]  
0x0000  
0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0x5555  
0x5555  
0x5555  
0x5555  
0xAAAA  
0xAAAA  
0xAAAA  
0xAAAA  
0x5555  
0x5555  
0x5555  
0x5555  
0xAAAA  
0xAAAA  
0xAAAA  
0xAAAA  
0x5555  
0x5555  
0x5555  
0x5555  
0x0000  
0x0000  
0x0000  
0x0000  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0x0000  
0x0000  
0x0000  
0x0000  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0x0000  
0x0000  
0x0000  
0x0000  
(X) % 216  
0x496F  
0x496F  
0x496F  
0x496F  
0xC9A9  
0xC9A9  
0xC9A9  
0xC9A9  
0x980C  
0x980C  
0x980C  
0x980C  
0x651A  
0x651A  
0x651A  
0x651A  
0x5FD1  
0x5FD1  
0x5FD1  
0x5FD1  
0xFF5C  
0xFF5C  
0xFF5C  
0xFF5C  
0x0029  
0x0029  
0x0029  
0x0029  
0xB80A  
0xB80A  
0xB80A  
0xB80A  
0x3D72 UP4[15:0]  
0x3D72 UP4[15:0]  
0x3D72 UP4[15:0]  
0x3D72 UP4[15:0]  
0x9B26  
0x9B26  
0x9B26  
0x9B26  
(X) % 216  
(X) % 216  
(X) % 216  
(X +1) % 216  
(X +1) % 216  
(X +1) % 216  
(X +1) % 216  
(X +2) % 216  
(X +2) % 216  
(X +2) % 216  
(X +2) % 216  
(X +3) % 216  
(X +3) % 216  
(X +3) % 216  
(X +3) % 216  
(X +4) % 216  
(X +4) % 216  
(X +4) % 216  
(X +4) % 216  
UP1[15:0]  
UP1[15:0]  
UP1[15:0]  
UP1[15:0]  
0x0000  
0x0000  
0x0000  
Rev. C | Page 79 of 97  
 
 
 
AD9680  
Data Sheet  
Table 32. Physical Layer 10-bit Input (Register 0x573[5:4] = 'b01)  
10-Bit Symbol  
Number  
Alternating  
Checkerboard  
1/0 Word  
Toggle  
Ramp  
(X) % 210  
PN9  
PN23  
0x3FD  
0x1C0  
0x00A  
0x1B8  
0x028  
0x3D7  
0x0A6  
0x326  
0x10F  
0x3FD  
0x31E  
0x008  
User Repeat  
UP1[15:6]  
UP2[15:6]  
UP3[15:6]  
UP4[15:6]  
UP1[15:6]  
UP2[15:6]  
UP3[15:6]  
UP4[15:6]  
UP1[15:6]  
UP2[15:6]  
UP3[15:6]  
UP4[15:6]  
User Single  
UP1[15:6]  
UP2[15:6]  
UP3[15:6]  
UP4[15:6]  
0x000  
0x000  
0x000  
0x000  
0x000  
0
1
2
3
4
5
6
7
8
9
10  
11  
0x155  
0x2AA  
0x155  
0x2AA  
0x155  
0x2AA  
0x155  
0x2AA  
0x155  
0x2AA  
0x155  
0x2AA  
0x000  
0x3FF  
0x000  
0x3FF  
0x000  
0x3FF  
0x000  
0x3FF  
0x000  
0x3FF  
0x000  
0x3FF  
0x125  
0x2FC  
0x26A  
0x198  
0x031  
0x251  
0x297  
0x3D1  
0x18E  
0x2CB  
0x0F1  
0x3DD  
(X + 1) % 210  
(X + 2) % 210  
(X + 3) % 210  
(X + 4) % 210  
(X + 5) % 210  
(X + 6) % 210  
(X + 7) % 210  
(X + 8) % 210  
(X + 9) % 210  
(X + 10) % 210  
(X + 11) % 210  
0x000  
0x000  
0x000  
Table 33. Scrambler 8-bit Input (Register 0x573[5:4] = 'b10)  
8-Bit Octet  
Number  
Alternating  
Checkerboard  
1/0 Word  
Toggle  
Ramp  
(X) % 28  
PN9  
PN23  
User Repeat  
UP1[15:9]  
UP2[15:9]  
UP3[15:9]  
UP4[15:9]  
UP1[15:9]  
UP2[15:9]  
UP3[15:9]  
UP4[15:9]  
UP1[15:9]  
UP2[15:9]  
UP3[15:9]  
UP4[15:9]  
User Single  
UP1[15:9]  
UP2[15:9]  
UP3[15:9]  
UP4[15:9]  
0x00  
0x00  
0x00  
0x00  
0x00  
0
1
2
3
4
5
6
7
8
9
10  
11  
0x55  
0xAA  
0x55  
0xAA  
0x55  
0xAA  
0x55  
0xAA  
0x55  
0xAA  
0x55  
0xAA  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x49  
0x6F  
0xC9  
0xA9  
0x98  
0x0C  
0x65  
0x1A  
0x5F  
0xD1  
0x63  
0xAC  
0xFF  
0x5C  
0x00  
0x29  
0xB8  
0x0A  
0x3D  
0x72  
0x9B  
0x26  
0x43  
0xFF  
(X + 1) % 28  
(X + 2) % 28  
(X + 3) % 28  
(X + 4) % 28  
(X + 5) % 28  
(X + 6) % 28  
(X + 7) % 28  
(X + 8) % 28  
(X + 9) % 28  
(X + 10) % 28  
(X + 11) % 28  
0x00  
0x00  
0x00  
Data Link Layer Test Modes  
Test patterns inserted at this point are useful for verifying the  
functionality of the data link layer. When the data link layer  
test modes are enabled, disable SYNCINB by writing 0xC0  
to Register 0x572.  
The data link layer test modes are implemented in the AD9680  
as defined by section 5.3.3.8.2 in the JEDEC JESD204B  
Specification. These tests are shown in Register 0x574 Bits[2:0].  
Rev. C | Page 80 of 97  
 
 
Data Sheet  
AD9680  
SERIAL PORT INTERFACE  
The AD9680 SPI allows the user to configure the converter for  
specific functions or operations through a structured register  
space provided inside the ADC. The SPI gives the user added  
flexibility and customization, depending on the application.  
Addresses are accessed via the serial port and can be written to  
or read from via the port. Memory is organized into bytes that  
can be further divided into fields. These fields are documented  
in the Memory Map section. For detailed operational information,  
see the Serial Control Interface Standard (Rev. 1.0).  
command is issued, which allows the SDIO pin to change  
direction from an input to an output.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. If the instruction is a  
readback operation, performing a readback causes the SDIO pin  
to change direction from an input to an output at the appropriate  
point in the serial frame.  
CONFIGURATION USING THE SPI  
Data can be sent in MSB first mode or in LSB first mode. MSB  
first is the default on power-up and can be changed via the SPI  
port configuration register. For more information about this  
and other features, see the Serial Control Interface Standard  
(Rev. 1.0).  
Three pins define the SPI of the AD9680 ADC: the SCLK pin,  
the SDIO pin, and the CSB pin (see Table 34). The SCLK (serial  
clock) pin is used to synchronize the read and write data  
presented from/to the ADC. The SDIO (serial data input/output)  
pin is a dual-purpose pin that allows data to be sent and read  
from the internal ADC memory map registers. The CSB (chip  
select bar) pin is an active low control that enables or disables  
the read and write cycles.  
HARDWARE INTERFACE  
The pins described in Table 34 comprise the physical interface  
between the user programming device and the serial port of the  
AD9680. The SCLK pin and the CSB pin function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
Table 34. Serial Port Interface Pins  
Pin  
Function  
SCLK Serial clock. The serial shift clock input that is used to  
synchronize serial interface, reads, and writes.  
SDIO Serial data input/output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. One method for SPI configuration  
is described in detail in the AN-812 Application Note,  
Microcontroller-Based Serial Port Interface (SPI) Boot Circuit.  
CSB  
Chip select bar. An active low control that gates the read  
and write cycles.  
Do not activate the SPI port during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is  
used for other devices, it may be necessary to provide buffers  
between this bus and the AD9680 to prevent these signals from  
transitioning at the converter inputs during critical sampling  
periods.  
The falling edge of CSB, in conjunction with the rising edge of  
SCLK, determines the start of the framing. An example of the  
serial timing and its definitions can be found in Figure 4 and  
Table 5.  
Other modes involving the CSB pin are available. The CSB pin  
can be held low indefinitely, which permanently enables the  
device; this is called streaming. The CSB can stall high between  
bytes to allow additional external timing. When CSB is tied  
high, SPI functions are placed in a high impedance mode. This  
mode turns on any SPI pin secondary functions.  
SPI ACCESSIBLE FEATURES  
Table 35 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in the Serial Control Interface Standard (Rev. 1.0). The AD9680  
device-specific features are described in the Memory Map section.  
All data is composed of 8-bit words. The first bit of each  
individual byte of serial data indicates whether a read or write  
Table 35. Features Accessible Using the SPI  
Feature Name  
Description  
Mode  
Clock  
Allows the user to set either power-down mode or standby mode.  
Allows the user to access the clock divider via the SPI.  
DDC  
Allows the user to set up decimation filters for different applications.  
Allows the user to set test modes to have known data on output bits.  
Allows the user to set up outputs.  
Test Input/Output  
Output Mode  
SERDES Output Setup  
Allows the user to vary SERDES settings such as swing and emphasis.  
Rev. C | Page 81 of 97  
 
 
 
 
 
 
AD9680  
Data Sheet  
MEMORY MAP  
Logic Levels  
An explanation of logic level terminology follows:  
READING THE MEMORY MAP REGISTER TABLE  
Each row in the memory map register table has eight bit  
locations. The memory map is divided into four sections: the  
Analog Devices SPI registers (Register 0x000 to Register 0x00D),  
the analog input buffer control registers, the ADC function  
registers, the DDC function registers, and the digital outputs  
and test modes registers.  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
X denotes a don’t care bit.  
Table 36 (see the Memory Map Register Table section) documents  
the default hexadecimal value for each hexadecimal address shown.  
The column with the heading Bit 7 (MSB) is the start of the  
default hexadecimal value given. For example, Address 0x561,  
the output mode register, has a hexadecimal default value of  
0x01, which means that Bit 0 = 1, and the remaining bits are 0s.  
This setting is the default output format value, which is twos  
complement. For more information on this function and others,  
see Table 36.  
Channel-Specific Registers  
Some channel setup functions, such as the input termination  
(Register 0x016), can be programmed to a different value for  
each channel. In these cases, channel address locations are  
internally duplicated for each channel. These registers and bits  
are designated in Table 36 as local. These local registers and bits  
can be accessed by setting the appropriate Channel A or Channel B  
bits in Register 0x008. If both bits are set, the subsequent write  
affects the registers of both channels. In a read cycle, set only  
Channel A or Channel B to read one of the two registers. If both  
bits are set during an SPI read cycle, the device returns the value  
for Channel A. Registers and bits designated as global in Table 36  
affect the entire device and the channel features for which  
independent settings are not allowed between channels. The  
settings in Register 0x005 do not affect the global registers and bits.  
Open and Reserved Locations  
All address and bit locations that are not included in Table 36  
are not currently supported for this device. Write unused bits of  
a valid address location with 0s unless the default value is set  
otherwise. Writing to these locations is required only when part  
of an address location is unassigned (for example, Address 0x561).  
If the entire address location is open (for example, Address 0x13),  
do not write to this address location.  
SPI Soft Reset  
After issuing a soft reset by programming 0x81 to Register 0x000,  
the AD9680 requires 5 ms to recover. When programming the  
AD9680 for application setup, ensure that an adequate delay is  
programmed into the firmware after asserting the soft reset and  
before starting the device setup.  
Default Values  
After the AD9680 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
the memory map register table, Table 36.  
Rev. C | Page 82 of 97  
 
 
Data Sheet  
AD9680  
MEMORY MAP REGISTER TABLE  
All address locations that are not included in Table 36 are not currently supported for this device and should not be written.  
Table 36. Memory Map Registers  
Reg  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB) Default  
Notes  
Analog Devices SPI Registers  
0x000  
INTERFACE_  
CONFIG_A  
Soft reset  
(self  
clearing)  
LSB first  
0 = MSB  
1 = LSB  
Address  
ascension  
0
0
Address  
ascension  
LSB first  
0 = MSB  
1 = LSB  
Soft reset  
(self  
clearing)  
0x00  
0x00  
0x001  
INTERFACE_  
CONFIG_B  
Single  
instruction  
0
0
0
0
0
0
0
0
0
Datapath  
soft reset  
(self  
0
clearing)  
0x002  
DEVICE_  
CONFIG  
(local)  
0
0
00 = normal operation  
10 = standby  
11 = power-down  
0x00  
0x003  
0x004  
0x005  
0x006  
CHIP_TYPE  
011 = high speed ADC  
0x03  
0xC5  
0x00  
Read  
only  
CHIP_ID  
(low byte)  
1
0
1
0
0
0
0
0
0
0
X
1
0
X
0
0
1
0
Read  
only  
CHIP_ID  
(high byte)  
Read  
only  
CHIP_  
GRADE  
1100 = 1250 MSPS  
1010 = 1000 MSPS  
1000 = 820 MSPS  
0101 = 500 MSPS  
X
X
Read  
only  
0x008  
0x00A  
0x00B  
0x00C  
Device index  
Scratch pad  
SPI revision  
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
Channel B  
Channel A  
0x0  
0
0
1
0
1
0
0x00  
0x01  
0x56  
Vendor ID  
(low byte)  
Read  
only  
0x00D  
Vendor ID  
(high byte)  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0x04  
0x00  
Read  
only  
Analog Input Buffer Control Registers  
0x015  
Analog input  
(local)  
0
Input  
disable  
0 =  
normal  
operation  
1 = input  
disabled  
0x016  
Input  
termination  
(local)  
Analog input differential termination  
0000 = 400 Ω (default)  
0001 = 200 Ω  
1110 = AD9680-1250 and AD9680-1000  
1100 = AD9680-820 and AD9680-500  
0x0E for  
AD9680-  
1250 and  
AD9680-  
1000;  
0010 = 100 Ω  
0110 = 50 Ω  
0x0C for  
AD9680-  
820 and  
AD9680-  
500  
0x934  
Input  
capacitance  
(local)  
0
0
0
0x1F = 3 pF to GND (default)  
0x00 = 1.5 pF to GND  
0x1F  
Rev. C | Page 83 of 97  
 
 
AD9680  
Data Sheet  
Reg  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB) Default  
Notes  
0x018  
Buffer  
Control 1  
(local)  
0000 = 1.0× buffer current  
0001 = 1.5× buffer current  
0010 = 2.0× buffer current (default for AD9680-500)  
0011 = 2.5× buffer current  
0100 = 3.0× buffer current (default for AD9680-1000  
and AD9680-820)  
0
0
0
0
0x50 for  
AD9680-  
1250;  
0x40 for  
AD9680-  
1000  
0101 = 3.5× buffer current (default for AD9680-1250)  
and  
AD9680-  
820;  
1111 = 8.5× buffer current  
0x20 for  
AD9680-  
500  
0x019  
Buffer  
Control 2  
(local)  
0100 = Setting 1 (default for AD9680-820)  
0101 = Setting 2 (default for AD9680-1250 and  
AD9680-1000)  
0110 = Setting 3 (default for AD9680-500)  
0111 = Setting 4  
0
0
0
0
0x50 for  
AD9680-  
1250 and  
AD9680-  
1000;  
0x40 for  
AD9680-  
820;  
0x60 for  
AD9680-  
500  
0x01A  
Buffer  
Control 3  
(local)  
0
0
0
0
1000 = Setting 1  
1001 = Setting 2 (default for AD9680-1250,  
AD9680-1000 and AD9680-820)  
0x09 for  
AD9680-  
1250,  
1010 = Setting 3 (default for AD9680-500)  
AD9680-  
1000  
and  
AD9680-  
820;  
0x0A for  
AD9680-  
500  
0x11A  
0x935  
0x025  
Buffer  
Control 4  
(local)  
0
0
0
0
0
0
High  
0
0
0
0
0
0
0
0
0
0
frequency  
setting  
0 = off  
(default)  
1 = on  
Buffer  
Control 5  
(local)  
0
Low  
frequency  
operation  
0 = off  
1 = on  
(default)  
Input full-  
scale range  
(local)  
0
Full-scale adjust  
0000 = 1.94 V  
1000 = 1.46 V  
0x09 for  
AD9680-  
1250;  
0x0A for  
AD9680-  
1000  
V p-p  
differ-  
ential;  
use in  
conjunc-  
tion with  
Reg.  
1001 = 1.58 V (default for AD9680-1250)  
1010 = 1.70 V (default for AD9680-1000 and  
AD9680-820)  
1011 = 1.82 V  
and  
1100 = 2.06 V (default for AD9680-500)  
AD9680-  
820;  
0x030  
0x0C for  
AD9680-  
500  
0x030  
Input full-  
scale control  
(local)  
0
0
0
Full-scale control  
0
0
Used in  
conjunc-  
tion with  
Reg.  
See Table 10 for recommended settings  
for different frequency bands;  
default values:  
AD9680-1250, AD9680-1000 = 110  
AD9680-820 = 101  
0x025  
AD9680-500 = 001  
AD9680-500 = 110 (for <1.82 V)  
Rev. C | Page 84 of 97  
Data Sheet  
AD9680  
Reg  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB) Default  
Notes  
ADC Function Registers  
0x024  
V_1P0  
control  
0
0
0
0
0
0
0
1.0 V  
0x00  
reference  
select  
0 =  
internal  
1 =  
external  
0x028  
Temperature  
diode  
0
0
0
0
0
0
0
Diode  
selection  
0 =  
no diode  
selected  
1 =  
0x00  
Used in  
conjunc-  
tion with  
Reg.  
0x040  
temper-  
ature  
diode  
selected  
0x03F  
0x040  
PDWN/  
STBY pin  
control (local) enabled  
0 = PDWN/  
STBY  
0
0
0
0
0
0
0
0x00  
0x3F  
Used in  
conjunc-  
tion with  
Reg.  
1 =  
disabled  
0x040  
Chip pin  
control  
PDWN/STBY function  
00 = power down  
01 = standby  
Fast Detect B (FD_B)  
000 = Fast Detect B output  
Fast Detect A (FD_A)  
000 = Fast Detect A output  
001 = JESD204B LMFC output  
001 = JESD204B LMFC output  
010 = JESD204B internal SYNC~ output  
111 = disabled  
10 = disabled  
010 = JESD204B internal SYNC~ output  
011 = temperature diode  
111 = disabled  
0x10B  
0x10C  
Clock divider  
0
0
0
0
0
0
000 = divide by 1  
001 = divide by 2  
011 = divide by 4  
111 = divide by 8  
0x00  
0x00  
Clock divider  
phase (local)  
0
0
0
Independently controls Channel A and Channel B clock  
divider phase offset  
0000 = 0 input clock cycles delayed  
0001 = ½ input clock cycles delayed  
0010 = 1 input clock cycles delayed  
0011 = 1½ input clock cycles delayed  
0100 = 2 input clock cycles delayed  
0101 = 2½ input clock cycles delayed  
1111 = 7½ input clock cycles delayed  
Clock divider negative  
skew window  
00 = no negative skew  
01 = 1 device clock of  
negative skew  
Clock divider positive  
skew window  
00 = no positive skew  
01 = 1 device clock of  
positive skew  
0x00  
Clock  
divider  
must be  
>1  
0x10D  
Clock divider  
and SYSREF  
control  
Clock  
0
0
0
divider  
auto phase  
adjust  
0 =  
disabled  
1 =  
10 = 2 device clocks of  
10 = 2 device clocks of  
negative skew  
positive skew  
enabled  
11 = 3 device clocks of  
negative skew  
11 = 3 device clocks of  
positive skew  
0x117  
Clock delay  
control  
0
0
0
0
0
0
0
Clock fine  
delay  
adjust  
enable  
0 =  
disabled  
1 =  
0x00  
Enabling  
the clock  
fine delay  
adjust  
causes a  
datapath  
reset  
enabled  
Rev. C | Page 85 of 97  
AD9680  
Data Sheet  
Reg  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB) Default  
Notes  
0x118  
Clock fine  
delay (local)  
Clock Fine Delay Adjust[7:0],  
twos complement coded control to adjust the fine sample clock skew in ~1.7 ps steps  
0x00  
Used in  
con-  
≤ −88 = −151.7 ps skew  
−87 = −150 ps skew  
junction  
with Reg.  
0x0117  
0 = 0 ps skew  
≥ +87 = +150 ps skew  
0x11C  
0x120  
Clock status  
0
0
0
0
0
0
0
0
0
0 = no  
input  
clock  
detected  
1 = input  
clock  
Read  
only  
detected  
SYSREF  
Control 1  
SYSREF  
flag reset  
0 =  
normal  
opera-  
tion  
1 = flags  
held in  
reset  
SYSREF  
transition  
select  
0 = low to  
high  
1 = high to  
low  
CLK  
edge  
select  
0 = rising  
SYSREF mode select  
00 = disabled  
01 = continuous  
10 = N shot  
0
0x00  
1 = falling  
0x121  
0x123  
SYSREF  
Control 2  
0
0
0
0
SYSREF N-shot ignore counter select  
0000 = next SYSREF only  
0001 = ignore the first SYSREF transition  
0010 = ignore the first two SYSREF transitions  
0x00  
0x00  
Mode  
select  
(Reg  
0x120,  
Bits [2:1])  
must be  
N-shot  
1111 = ignore the first 16 SYSREF transitions  
SYSREF  
timestamp  
delay control  
SYSREF timestamp delay, Bits[6:0]  
Ignored  
when  
Reg.  
0x00 = no delay  
0x01 = 1 clock delay  
0x01FF  
0x7F = 127 clocks delay  
= 0x00  
0x128  
0x129  
SYSREF  
Status 1  
SYSREF hold status, Register 0x128[7:4],  
refer to Table 28  
SYSREF setup status, Register 0x128[3:0],  
Read  
only  
refer to Table 28  
SYSREF and  
clock divider  
status  
0
0
0
0
Clock divider phase when SYSREF was captured  
0000 = in-phase  
Read  
only  
0001 = SYSREF is ½ cycle delayed from clock  
0010 = SYSREF is 1 cycle delayed from clock  
0011 = 1½ input clock cycles delayed  
0100 = 2 input clock cycles delayed  
0101 = 2½ input clock cycles delayed  
1111 = 7½ input clock cycles delayed  
0x12A  
0x1FF  
SYSREF  
counter  
SYSREF counter, Bits[7:0] increments when a SYSREF is captured  
Read  
only  
Chip sync  
mode  
Synchronization mode  
00 = normal  
0x00  
01 = timestamp  
0x200  
0x201  
0x228  
Chip  
application  
mode  
0
0
0
0
Chip Q  
ignore  
0 = normal  
(I/Q)  
1 = ignore  
(I only)  
0
0
0
0
0
Chip operating mode  
00 = full bandwidth mode  
01 = DDC 0 on  
10 = DDC 0 and DDC 1 on  
11 = DDC 0, DDC 1,  
0x00  
DDC 2, and DDC 3 on  
Chip  
decimation  
ratio  
0
Chip decimation ratio select  
000 = full sample rate (decimate = 1)  
0x00  
0x00  
001 = decimate by 2  
010 = decimate by 4  
011 = decimate by 8  
100 = decimate by 16  
Customer  
offset  
Offset adjust in LSBs from +127 to −128 (twos complement format)  
Rev. C | Page 86 of 97  
Data Sheet  
AD9680  
Reg  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB) Default  
Notes  
0x245  
Fast detect  
(FD) control  
(local)  
0
0
0
0
Force  
FD_A/  
FD_B pins; pins if force  
0 = normal pins is true,  
Force value of  
FD_A/FD_B  
0
Enable  
fast detect  
output  
0x00  
function;  
1 = force  
to value  
this value is  
output on FD  
pins  
0x247  
0x248  
0x249  
0x24A  
0x24B  
0x24C  
0x26F  
FD upper  
threshold  
LSB (local)  
Fast detect upper threshold, Bits[7:0]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
FD upper  
threshold  
MSB (local)  
0
0
0
0
0
Fast detect upper threshold, Bits[12:8]  
FD lower  
threshold  
LSB (local)  
Fast detect lower threshold, Bits[7:0]  
FD lower  
threshold  
MSB (local)  
0
Fast detect lower threshold, Bits[12:8]  
FD dwell  
time LSB  
(local)  
Fast detect dwell time, Bits[7:0]  
FD dwell  
time MSB  
(local)  
Fast detect dwell time, Bits[15:8]  
Signal  
monitor  
synchroniza-  
tion control  
0
0
0
0
0
0
0
0
0
0
Synchronization mode  
00 = disabled  
Refer to  
the  
Signal  
Monitor  
section  
01 = continuous  
11 = one shot  
0x270  
Signal  
0
0
Peak  
0
0x00  
monitor  
control (local)  
detector  
0 =  
disabled  
1 =  
enabled  
0x271  
0x272  
0x273  
0x274  
Signal  
Monitor  
Period  
Register 0  
(local)  
Signal monitor period, Bits[7:0]  
Signal monitor period, Bits[15:8]  
Signal monitor period, Bits[23:16]  
0x80  
0x00  
0x00  
0x01  
In deci-  
mated  
output  
clock  
cycles  
Signal  
Monitor  
Period  
Register 1  
(local)  
In deci-  
mated  
output  
clock  
cycles  
Signal  
Monitor  
Period  
Register 2  
(local)  
In deci-  
mated  
output  
clock  
cycles  
Signal  
0
0
0
Result  
update  
1 =  
0
0
0
Result  
selection  
0 =  
reserved  
1 = peak  
detector  
monitor  
result control  
(local)  
update  
results  
(self clear)  
0x275  
Signal  
Monitor  
Result  
Signal monitor result, Bits[7:0]  
When Register 0x0274[0] = 1, Result Bits[19:7] = Peak Detector Absolute Value[12:0]; Result Bits[6:0] = 0  
Read  
only  
Updated  
based on  
Reg.  
Register 0  
(local)  
0x274[4]  
Rev. C | Page 87 of 97  
AD9680  
Data Sheet  
Reg  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB) Default  
Notes  
0x276  
0x277  
0x278  
0x279  
0x27A  
Signal  
Monitor  
Result  
Register 1  
(local)  
Signal monitor result, Bits[15:8]  
Read  
only  
Updated  
based on  
Reg.  
0x274[4]  
Signal  
Monitor  
Result  
Register 1  
(local)  
0
0
0
0
Signal monitor result, Bits[19:16]  
Read  
only  
Updated  
based on  
Reg.  
0x274[4]  
Signal  
monitor  
period  
counter  
result (local)  
Period count result, Bits[7:0]  
Read  
only  
Updated  
based on  
Reg.  
0x274[4]  
Signal  
monitor  
SPORT over  
JESD204B  
control (local)  
0
0
0
0
0
0
0
0
0
0
0
0
00 = disabled  
11 = enable  
0x00  
0x00  
SPORT over  
JESD204B  
input  
Peak  
0
detector  
0 =  
selection  
(local)  
disabled  
1 =  
enabled  
DDC Function Registers (See the Digital Downconverter (DDC) Section)  
0x300  
DDC  
0
0
0
DDC NCO  
soft reset  
0 = normal  
operation  
1 = reset  
0
0
Synchronization mode  
(triggered by SYSREF )  
00 = disabled  
synchro-  
nization  
control  
01 = continuous  
11 = one shot  
IF (intermediate  
Complex  
to real  
enable  
0 =  
0
Decimation rate select  
(complex to real  
disabled)  
11 = decimate by 2  
00 = decimate by 4  
01 = decimate by 8  
10 = decimate by 16  
(complex to real  
enabled)  
0x00  
0x310  
DDC 0  
control  
Mixer  
select  
0 = real  
mixer  
1 =  
complex  
mixer  
Gain  
select  
0 = 0 dB  
gain  
1 = 6 dB  
gain  
frequency) mode  
00 = variable IF mode  
(mixers and NCO  
enabled)  
01 = 0 Hz IF mode (mixer 1 =  
bypassed, NCO disabled) enabled  
10 = fS/4 Hz IF mode (fs/4  
downmixing mode)  
disabled  
11 = test mode (mixer  
inputs forced to +fS,  
11 = decimate by 1  
00 = decimate by 2  
01 = decimate by 4  
10 = decimate by 8  
NCO enabled)  
0x311  
DDC 0 input  
selection  
0
0
0
0
0
Q input  
select  
0 = Ch A  
1 = Ch B  
0
I input  
select  
0 = Ch A  
1 = Ch B  
0x00  
Refer to  
the DDC  
section  
0x314  
0x315  
DDC 0  
frequency  
LSB  
DDC 0 NCO frequency value, Bits[7:0]  
twos complement  
0x00  
0x00  
DDC 0  
frequency  
MSB  
X
X
X
X
X
X
X
DDC 0 NCO frequency value, Bits[11:8]  
twos complement  
0x320  
0x321  
DDC 0 phase  
LSB  
DDC 0 NCO phase value, Bits[7:0]  
twos complement  
0x00  
0x00  
DDC 0 phase  
MSB  
X
DDC 0 NCO phase value, Bits[11:8]  
twos complement  
Rev. C | Page 88 of 97  
Data Sheet  
AD9680  
Reg  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB) Default  
Notes  
DDC 0  
output test  
mode  
selection  
0
0
0
0
0
Q output  
test mode  
enable  
0 = disabled  
1 = enabled  
from  
0
I output  
test mode  
enable  
0 =  
disabled  
1 =  
0x00  
Refer to  
the DDC  
section  
0x327  
Channel B  
enabled  
from  
Channel A  
IF (intermediate  
Complex  
to real  
enable  
0 =  
0
Decimation rate select  
(complex to real  
disabled)  
11 = decimate by 2  
00 = decimate by 4  
01 = decimate by 8  
10 = decimate by 16  
(complex to real  
enabled)  
0x00  
0x330  
DDC 1  
control  
Mixer  
select  
0 = real  
mixer  
1 =  
Gain  
select  
0 = 0 dB  
gain  
1 = 6 dB  
gain  
frequency) mode  
00 = variable IF mode  
(mixers and NCO  
enabled)  
01 = 0 Hz IF mode (mixer 1 =  
bypassed, NCO disabled) enabled  
10 = fADC/4 Hz IF mode  
(fADC/4 downmixing  
disabled  
complex  
mixer  
mode)  
11 = decimate by 1  
00 = decimate by 2  
01 = decimate by 4  
10 = decimate by 8  
11 = test mode (mixer  
inputs forced to +fS,  
NCO enabled)  
0x331  
DDC 1 input  
selection  
0
0
0
0
0
Q input  
select  
0 = Ch A  
1 = Ch B  
0
I input  
select  
0 = Ch A  
1 = Ch B  
0x05  
Refer to  
the DDC  
section  
0x334  
0x335  
DDC 1  
frequency  
LSB  
DDC 1 NCO frequency value, Bits[7:0]  
twos complement  
0x00  
0x00  
DDC 1  
frequency  
MSB  
X
X
X
X
DDC 1 NCO frequency value, Bits[11:8]  
twos complement  
0x340  
0x341  
0x347  
DDC 1 phase  
LSB  
DDC 1 NCO phase value, Bits[7:0]  
twos complement  
0x00  
0x00  
0x00  
DDC 1 phase  
MSB  
X
0
X
0
X
0
X
DDC 1 NCO phase value, Bits[11:8]  
twos complement  
Q output  
0
DDC 1  
output test  
mode  
0
0
I output  
test mode  
enable  
0 =  
disabled  
1 =  
Refer to  
the DDC  
section  
test mode  
enable  
0 = disabled  
1 = enabled  
from Ch B  
selection  
enabled  
from Ch A  
IF mode  
00 = variable IF mode  
(mixers and NCO  
enabled)  
01 = 0 Hz IF mode (mixer disabled  
bypassed, NCO disabled) 1 =  
10 = fADC/4 Hz IF mode  
(fADC/4 downmixing  
mode)  
Complex  
to real  
enable  
0 =  
0
Decimation rate select  
(complex to real  
disabled)  
11 = decimate by 2  
00 = decimate by 4  
01 = decimate by 8  
10 = decimate by 16  
(complex to real  
enabled)  
0x00  
0x350  
DDC 2  
control  
Mixer  
select  
0 = real  
mixer  
1 =  
Gain  
select  
0 = 0 dB  
gain  
1 = 6 dB  
gain  
complex  
mixer  
enabled  
11 = test mode (mixer  
inputs forced to +fS,  
NCO enabled)  
11 = decimate by 1  
00 = decimate by 2  
01 = decimate by 4  
10 = decimate by 8  
0x351  
DDC 2 input  
selection  
0
0
0
0
0
Q input  
select  
0 = Ch A  
0
I input  
select  
0 = Ch A  
0x00  
Refer to  
the DDC  
section  
1 = Ch B  
1 = Ch B  
0x354  
0x355  
DDC 2  
frequency  
LSB  
DDC 2 NCO frequency value, Bits[7:0]  
twos complement  
0x00  
0x00  
DDC2  
frequency  
X
X
X
X
DDC 2 NCO frequency value, Bits[11:8]  
twos complement  
MSB  
Rev. C | Page 89 of 97  
AD9680  
Data Sheet  
Reg  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB) Default  
Notes  
0x360  
0x361  
0x367  
DDC 2 phase  
LSB  
DDC 2 NCO phase value, Bits[7:0]  
twos complement  
0x00  
0x00  
0x00  
DDC 2 phase  
MSB  
X
0
X
0
X
0
X
DDC 2 NCO phase value, Bits[11:8]  
twos complement  
DDC 2  
output test  
mode  
0
0
Q output  
test mode  
enable  
0
I output  
test mode  
enable  
0 =  
disabled  
1 =  
Refer to  
the DDC  
section  
selection  
0 = disabled  
1 = enabled  
from Ch B  
enabled  
from Ch A  
IF mode  
Complex  
to real  
enable  
0 =  
0
Decimation rate select  
(complex to real  
disabled)  
11 = decimate by 2  
00 = decimate by 4  
01 = decimate by 8  
10 = decimate by 16  
(complex to real  
enabled)  
0x00  
0x370  
DDC 3  
control  
Mixer  
select  
0 = real  
mixer  
1 =  
Gain  
select  
0 = 0 db  
gain  
1 = 6 db  
gain  
00 = variable IF mode  
(mixers and NCO  
enabled)  
01 = 0 Hz IF mode(mixer  
bypassed, NCO disabled) 1 =  
10 = fADC/4 Hz IF mode  
(fADC/4 downmixing  
mode)  
disabled  
complex  
mixer  
enabled  
11 = test mode (mixer  
inputs forced to +fS,  
NCO enabled)  
11 = decimate by 1  
00 = decimate by 2  
01 = decimate by 4  
10 = decimate by 8  
0x371  
DDC 3 input  
selection  
0
0
0
0
0
Q input  
select  
0 = Ch A  
0
I input  
select  
0 = Ch A  
0x05  
Refer to  
the DDC  
section  
1 = Ch B  
1 = Ch B  
0x374  
0x375  
DDC 3  
frequency  
LSB  
DDC 3 NCO frequency value, Bits[7:0]  
twos complement  
0x00  
0x00  
DDC 3  
frequency  
MSB  
X
X
X
X
DDC 3 NCO frequency value, Bits[11:8]  
twos complement  
0x380  
0x381  
0x387  
DDC3 phase  
LSB  
DDC 3 NCO phase value, Bits[7:0]  
twos complement  
0x00  
0x00  
0x00  
DDC 3 phase  
MSB  
X
0
X
0
X
0
X
DDC 3 NCO phase value, Bits[11:8]  
twos complement  
DDC 3  
output test  
mode  
0
0
0
0
I output  
test mode  
enable  
0 =  
Refer to  
the DDC  
section  
selection  
disabled  
1 =  
enabled  
from Ch A  
Digital Outputs and Test Modes  
Reset PN  
long gen  
0 = long  
PN enable  
1 = long  
PN reset  
Reset PN  
short gen  
0 = short  
PN enable  
1 = short  
PN reset  
Test mode selection  
0000 = off, normal operation  
0001 = midscale short  
0010 = positive full scale  
0011 = negative full scale  
0100 = alternating checker board  
0101 = PN sequence, long  
0110 = PN sequence, short  
0111 = 1/0 word toggle  
0x00  
0x550  
ADC test  
modes  
(local)  
User  
0
pattern  
selection  
0 = conti-  
nuous  
repeat  
1 = single  
pattern  
1000 = the user pattern test mode (used with  
Register 0x0550, Bit 7 and User Pattern 1 to  
User Pattern 4 registers)  
1111 = ramp output  
0x551  
User Pattern  
1 LSB  
0
0
0
0
0
0
0
0
0x00  
Used  
with Reg.  
0x550  
and Reg.  
0x573  
Rev. C | Page 90 of 97  
Data Sheet  
AD9680  
Reg  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB) Default  
Notes  
0x552  
0x553  
0x554  
0x555  
0x556  
0x557  
0x558  
0x559  
User Pattern  
1 MSB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Used  
with Reg.  
0x550  
and Reg.  
0x573  
User Pattern  
2 LSB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Used  
with Reg.  
0x550  
and Reg.  
0x573  
User Pattern  
2 MSB  
Used  
with Reg.  
0x550  
and Reg.  
0x573  
User Pattern  
3 LSB  
Used  
with Reg.  
0x550  
and Reg.  
0x573  
User Pattern  
3 MSB  
Used  
with Reg.  
0x550  
and Reg.  
0x573  
User Pattern  
4 LSB  
Used  
with Reg.  
0x550  
and Reg.  
0x573  
User Pattern  
4 MSB  
Used  
with Reg.  
0x550  
and Reg.  
0x573  
Output Mode  
Control 1  
Converter Control Bit 1 selection  
000 = tie low (1’b0)  
Converter Control Bit 0 selection  
000 = tie low (1’b0)  
001 = overrange bit  
001 = overrange bit  
011 = fast detect (FD) bit  
011 = fast detect (FD) bit  
101 = SYSREF  
101 = SYSREF  
Only used when CS (Register 0x58F)  
= 2 or 3  
Only used when CS (Register 0x58F) = 3  
0x55A  
Output Mode  
Control 2  
0
0
0
0
0
Converter Control Bit 2 selection  
000 = tie low (1’b0)  
0x01  
001 = overrange bit  
011 = fast detect (FD) bit  
101 = SYSREF  
Used when CS (Register 0x58F) = 1, 2, or 3  
0x561  
0x562  
Output  
mode  
0
0
0
0
0
Sample  
invert  
0 = normal  
1 = sample  
invert  
Data format select  
00 = offset binary  
01 = twos complement  
0x01  
0x00  
Output  
Virtual  
Virtual  
Virtual  
Virtual  
Virtual  
Virtual  
Virtual  
Virtual  
overrange  
(OR) clear  
Converter 7 Converter Converter 5 Converter 4 Converter  
Converter 2  
OR  
0 = OR bit  
enabled  
1 = OR bit  
cleared  
Converter 1 Converter  
OR  
6 OR  
0 = OR bit 0 = OR bit  
enabled enabled  
1 = OR bit 1 = OR bit  
OR  
OR  
3 OR  
OR  
0 OR  
0 = OR bit  
enabled  
1 = OR bit  
cleared  
0 = OR bit  
enabled  
1 = OR bit  
cleared  
0 = OR bit  
enabled  
1 = OR bit  
cleared  
0 = OR bit  
enabled  
1 = OR bit  
cleared  
0 = OR bit  
enabled  
1 = OR bit  
cleared  
cleared  
cleared  
Virtual  
Virtual  
Virtual  
Virtual  
Converter 2  
OR  
Virtual  
Converter 1 Converter  
OR  
Virtual  
0x00  
Read  
only  
0x563  
Output OR  
status  
Virtual  
Virtual  
Converter 7 Converter Converter 5 Converter 4 Converter  
OR  
6 OR  
OR  
OR  
3 OR  
0 OR  
0 = no OR  
1 = OR  
occurred  
0 = no  
OR  
1 = OR  
0 = no OR  
1 = OR  
occurred  
0 = no OR  
1 = OR  
occurred  
0 = no OR  
1 = OR  
occurred  
0 = no OR  
1 = OR  
occurred  
0 = no OR  
1 = OR  
occurred  
0 = no OR  
1 = OR  
occurred  
occurred  
Rev. C | Page 91 of 97  
AD9680  
Data Sheet  
Reg  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB) Default  
Notes  
0x564  
Output  
channel  
select  
0
0
0
0
0
0
0
Converter  
channel  
swap  
0x00  
0 =  
normal  
channel  
ordering  
1 =  
channel  
swap  
enabled  
0x00 for  
AD9680-  
1250,  
AD9680-  
1000 and  
AD9680-  
820;  
0x10 for  
AD9680-  
500  
0x56E  
JESD204B  
lane rate  
control  
0
0
0
0 = serial  
lane rate  
≥6.25 Gbps  
and  
≤12.5 Gbps  
1 = serial  
lane rate  
must be ≥  
3.125 Gbps  
and  
0
0
0
0
≤6.25 Gbps  
0x56F  
0x570  
JESD204B  
PLL lock  
status  
PLL lock  
0 = not  
locked  
0
0
0
0
0
0
0
0x00  
Read  
only  
1 = locked  
JESD204B  
quick config-  
uration  
JESD204B quick configuration  
L = number of lanes = 2Register 0x570, Bits[7:6]  
M = number of converters = 2Register 0x570, Bits[5:3]  
F = number of octets/frame = 2 Register 0x570, Bits[2:0]  
0x88 for  
AD9680-  
1250,  
Refer to  
Table 26  
and  
AD9680- Table 27  
1000 and  
AD9680-  
820;  
0x49 for  
AD9680-  
500  
Long  
Lane synch-  
ronization  
0 = disable  
FACI uses  
/K28.7/  
1 = enable  
FACI uses  
/K28.3/ and  
/K28.7/  
ILAS sequence mode  
00 = ILAS disabled  
01 = ILAS enabled  
11 = ILAS always on test  
mode  
FACI  
0 =  
enabled  
1 =  
disabled  
Link  
0x14  
0x571  
JESD204B  
Link Mode  
Control 1  
Standby  
mode  
0 = all  
converter  
outputs 0  
1 = CGS  
(/K28.5/)  
Tail bit  
(t) PN  
0 =  
disable  
1 =  
enable  
T = N΄ −  
N − CS  
transport  
layer test  
0 =  
disable  
1 =  
control  
0 = active  
1 = power  
down  
enable  
SYNCINB  
pin type  
0 =  
differential  
1 = CMOS  
0
8-bit/10-bit  
bypass  
0 = normal  
8-/10-bit  
bit invert  
0 =  
normal  
1 = invert  
the abcd  
efghij  
0
0x00  
0x00  
0x572  
0x573  
JESD204B  
Link Mode  
Control 2  
SYNCINB pin control  
00 = normal  
10 = ignore SYNCINB  
(force CGS)  
11 = ignore SYNCINB  
(force ILAS/user data)  
SYNCINB  
pin invert  
0 = active  
low  
1 = active  
high  
1 = bypass  
symbols  
JESD204B  
Link Mode  
Control 3  
CHKSUM mode  
00 = sum of all 8-bit link  
config registers  
01 = sum of individual  
link config fields  
10 = checksum set to  
zero  
Test injection point  
00 = N΄ sample input  
01 = 10-bit data at  
8-bit/10-bit output  
(for PHY testing)  
10 = 8-bit data at  
scrambler input  
JESD204B test mode patterns  
0000 = normal operation (test mode disabled)  
0001 = alternating checker board  
0010 = 1/0 word toggle  
0011 = 31-bit PN sequence—X31 + X28 + 1  
0100 = 23-bit PN sequence—X23 + X18 + 1  
0101 = 15-bit PN sequence—X15 + X14 + 1  
0110 = 9-bit PN sequence—X9 + X5 + 1  
0111 = 7-bit PN sequence—X7 + X6 + 1  
1000 = ramp output  
1110 = continuous/repeat user test  
1111 = single user test  
Rev. C | Page 92 of 97  
Data Sheet  
AD9680  
Reg  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB) Default  
Notes  
0x574  
JESD204B  
Link Mode  
Control 4  
ILAS delay  
0
Link layer test mode  
000 = normal operation (link layer test  
mode disabled)  
001 = continuous sequence of /D21.5/  
characters  
0x00  
0000 = transmit ILAS on first LMFC after SYNCINB  
deasserted  
0001 = transmit ILAS on second LMFC after  
SYNCINB deasserted  
100 = modified RPAT test sequence  
101 = JSPAT test sequence  
110 = JTSPAT test sequence  
1111 = transmit ILAS on 16th LMFC after SYNCINB  
deasserted  
0x578  
0x580  
0x581  
0x583  
0x584  
0x585  
0x586  
0x58B  
JESD204B  
LMFC offset  
0
0
0
LMFC phase offset value[4:0]  
JESD204B Tx DID value[7:0]  
0
0x00  
0x00  
0x00  
0x00  
0x01  
0x01  
0x03  
0x8X  
JESD204B  
DID config  
JESD204B  
BID config  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
JESD204B Tx BID value, Bits[3:0]  
JESD204B LID  
Config 1  
Lane 0 LID value, Bits[4:0]  
Lane 1 LID value, Bits[4:0]  
Lane 2 LID value, Bits[4:0]  
Lane 3 LID value, Bits[4:0]  
0
JESD204B LID  
Config 2  
JESD204B LID  
Config 3  
JESD204B LID  
Config 4  
JESD204B  
parameters  
SCR/L  
JESD204B  
scrambling  
(SCR)  
0
0
JESD204B lanes (L)  
00 = 1 lane  
01 = 2 lanes  
0 =  
11 = 4 lanes  
disabled  
1 =  
Read only, see  
Register 0x570  
enabled  
0x58C  
JESD204B F  
config  
Number of octets per frame, F = Register 0x58C[7:0] + 1  
0x88  
0x1F  
Read  
only,  
see Reg.  
0x570  
0x58D  
0x58E  
JESD204B K  
config  
0
0
0
Number of frames per multiframe, K = Register 0x58D[4:0] + 1  
Only values where (F × K) mod 4 = 0 are supported  
See Reg.  
0x570  
JESD204B M  
config  
Number of Converters per Link[7:0]  
0x00 = link connected to one virtual converter (M = 1)  
0x01 = link connected to two virtual converters (M = 2)  
Read  
only  
0x03 = link connected to four virtual converters (M = 4)  
0x07 = link connected to eight virtual converters (M = 8)  
ADC converter resolution (N)  
0x0F  
0x58F  
JESD204B  
CS/N config  
Number of control bits  
(CS) per sample  
00 = no control bits  
(CS = 0)  
01 = 1 control bit (CS =  
1); Control Bit 2 only  
10 = 2 control bits  
(CS = 2); Control Bit 2  
and 1 only  
0
0x06 = 7-bit resolution  
0x07 = 8-bit resolution  
0x08 = 9-bit resolution  
0x09 = 10-bit resolution  
0x0A = 11-bit resolution  
0x0B = 12-bit resolution  
0x0C = 13-bit resolution  
0x0D = 14-bit resolution  
0x0E = 15-bit resolution  
0x0F = 16-bit resolution  
11 = 3 control bits  
(CS = 3); all control bits  
(2, 1, 0)  
0x590  
JESD204B N’  
config  
0
0
Subclass  
support  
(Subclass V)  
0 =  
ADC number of bits per sample (N’)  
0x7 = 8 bits  
0x2F  
0xF = 16 bits  
Subclass 0  
(no deter-  
ministic  
latency)  
1 =  
Subclass 1  
0x591  
JESD204B S  
config  
0
0
1
Samples per converter frame cycle (S)  
S value = Register 0x591[4:0] + 1  
0x20  
Read  
only  
Rev. C | Page 93 of 97  
AD9680  
Data Sheet  
Reg  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB) Default  
Notes  
0x592  
JESD204B HD HD value  
0
0
Control words per frame clock cycle per link (CF)  
CF value = Register 0x592, Bits[4:0]  
0x80  
Read  
only  
and CF  
0 =  
config  
disabled  
1 =  
enabled  
0x5A0  
0x5A1  
0x5A2  
0x5A3  
0x5B0  
JESD204B  
CHKSUM 0  
CHKSUM value for SERDOUT0 , Bits[7:0]  
CHKSUM value for SERDOUT1 , Bits[7:0]  
CHKSUM value for SERDOUT2 , Bits[7:0]  
CHKSUM value for SERDOUT3 , Bits[7:0]  
0x81  
0x82  
0x82  
0x84  
0xAA  
Read  
only  
JESD204B  
CHKSUM 1  
Read  
only  
JESD204B  
CHKSUM 2  
Read  
only  
JESD204B  
CHKSUM 3  
Read  
only  
JESD204B  
lane power-  
down  
1
SERD-  
OUT3  
0 = on  
1 = off  
1
SERD-  
OUT2  
0 = on  
1 = off  
1
SERD-  
OUT1  
0 = on  
1 = off  
1
SERD-  
OUT0  
0 = on  
1 = off  
0x5B2  
0x5B3  
0x5B5  
0x5B6  
0x5BF  
JESD204B  
lane  
SERDOUT0  
assign  
X
X
X
X
X
0
X
X
X
X
X
0
0
SERDOUT0 lane assignment  
000 = Logical Lane 0  
001 = Logical Lane 1  
010 = Logical Lane 2  
011 = Logical Lane 3  
0x00  
0x11  
0x22  
0x33  
0x05  
JESD204B  
lane  
SERDOUT1  
assign  
X
X
X
0
X
X
X
0
0
0
0
SERDOUT1 lane assignment  
000 = Logical Lane 0  
001 = Logical Lane 1  
010 = Logical Lane 2  
011 = Logical Lane 3  
JESD204B  
lane  
SERDOUT2  
assign  
SERDOUT2 lane assignment  
000 = Logical Lane 0  
001 = Logical Lane 1  
010 = Logical Lane 2  
011 = Logical Lane 3  
JESD204B  
lane  
SERDOUT3  
SERDOUT3 lane assignment  
000 = Logical Lane 0  
001 = Logical Lane 1  
010 = Logical Lane 2  
011 = Logical Lane 3  
assign  
JESD  
Swing voltage  
serializer  
drive adjust  
0000 = 237.5 mV  
0001 = 250 mV  
0010 = 262.5 mV  
0011 = 275 mV  
0100 = 287.5 mV  
0101 = 300 mV (default)  
0110 = 312.5 mV  
0111 = 325 mV  
1000 = 337.5 mV  
1001 = 350 mV  
1010 = 362.5 mV  
1011 = 375 mV  
1100 = 387.5 mV  
1101 = 400 mV  
1110 = 412.5 mV  
1111 = 425 mV  
SERDOUT1  
0 = disable  
1 = enable  
0
SERD-  
OUT0  
0 = disable  
1 = enable  
0x00  
0x5C1  
De-emphasis  
select  
0
SERD-  
OUT3  
0 =  
0
SERD-  
OUT2  
0 =  
0
disable  
disable  
1 =  
enable  
1 =  
enable  
Rev. C | Page 94 of 97  
Data Sheet  
AD9680  
Reg  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB) Default  
Notes  
0x5C2  
0x5C3  
0x5C4  
0x5C5  
De-emphasis  
setting for  
SERDOUT0  
0
0
0
0
0
0
0
SERDOUT0 de-emphasis settings  
0000 = 0 dB  
0x00  
0001 = 0.3 dB  
0010 = 0.8 dB  
0011 = 1.4 dB  
0100 = 2.2 dB  
0101 = 3.0 dB  
0110 = 4.0 dB  
0111 = 5.0 dB  
De-emphasis  
setting for  
SERDOUT1  
0
0
0
0
0
0
0
0
0
SERDOUT1 de-emphasis settings  
0000 = 0 dB  
0x00  
0x00  
0x00  
0001 = 0.3 dB  
0010 = 0.8 dB  
0011 = 1.4 dB  
0100 = 2.2 dB  
0101 = 3.0 dB  
0110 = 4.0 dB  
0111 = 5.0 dB  
De-emphasis  
setting for  
SERDOUT2  
SERDOUT2 de-emphasis settings  
0000 = 0 dB  
0001 = 0.3 dB  
0010 = 0.8 dB  
0011 = 1.4 dB  
0100 = 2.2 dB  
0101 = 3.0 dB  
0110 = 4.0 dB  
0111 = 5.0 dB  
De-emphasis  
setting for  
SERDOUT3 de-emphasis settings  
0000 = 0 dB  
SERDOUT3  
0001 = 0.3 dB  
0010 = 0.8 dB  
0011 = 1.4 dB  
0100 = 2.2 dB  
0101 = 3.0 dB  
0110 = 4.0 dB  
0111 = 5.0 dB  
Rev. C | Page 95 of 97  
AD9680  
Data Sheet  
APPLICATIONS INFORMATION  
plane must have several vias to achieve the lowest possible  
POWER SUPPLY RECOMMENDATIONS  
resistive thermal path for heat dissipation to flow through the  
bottom of the PCB. These vias must be solder filled or plugged.  
The number of vias and the fill determine the resulting θJA  
measured on the board.  
The AD9680 must be powered by the following seven supplies:  
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, AVDD1_SR =  
1.25 V, DVDD = 1.25 V, DRVDD = 1.25 V, and SPIVDD = 1.80 V.  
For applications requiring an optimal high power efficiency and  
low noise performance, it is recommended that the ADP2164  
and ADP2370 switching regulators be used to convert the 3.3 V,  
5.0 V, or 12 V input rails to an intermediate rail (1.8 V and 3.8 V).  
These intermediate rails are then postregulated by very low  
noise, low dropout (LDO) regulators (ADP1741, ADM7172,  
and ADP125). Figure 174 shows the recommended power  
supply scheme for the AD9680.  
To maximize the coverage and adhesion between the ADC and  
PCB, partition the continuous copper plane by overlaying a  
silkscreen on the PCB into several uniform sections. This  
provides several tie points between the ADC and PCB during  
the reflow process, whereas using one continuous plane with no  
partitions only guarantees one tie point. See Figure 175 for a  
PCB layout example. For detailed information on packaging  
and the PCB layout of chip scale packages, see the AN-772  
Application Note, A Design and Manufacturing Guide for the  
Lead Frame Chip Scale Package (LFCSP).  
AVDD1  
1.25V  
ADP1741  
1.8V  
AVDD1_SR  
1.25V  
DVDD  
1.25V  
ADP1741  
ADP125  
DRVDD  
1.25V  
SPIVDD  
(1.8V OR 3.3V)  
3.6V  
3.3V  
AVDD3  
3.3V  
ADM7172  
OR  
AVDD2  
2.5V  
ADP1741  
Figure 174. High Efficiency, Low Noise Power Solution for the AD9680  
It is not necessary to split all of these power domains in all cases.  
The recommended solution shown in Figure 174 provides the  
lowest noise, highest efficiency power delivery system for the  
AD9680. If only one 1.25 V supply is available, route to AVDD1  
first and then tap it off and isolate it with a ferrite bead or a filter  
choke, preceded by decoupling capacitors for AVDD1_SR, DVDD,  
and DRVDD, in that order. This is shown as the optional path  
in Figure 174. The user can employ several different decoupling  
capacitors to cover both high and low frequencies. These capacitors  
must be located close to the point of entry at the PCB level and  
close to the devices, with minimal trace lengths.  
Figure 175. Recommended PCB Layout of Exposed Pad for the AD9680  
AVDD1_SR (PIN 57) AND AGND (PIN 56 AND PIN 60)  
AVDD1_SR (Pin 57) and AGND (Pin 56 and Pin 60) can be  
used to provide a separate power supply node to the SYSREF  
circuits of AD9680. If running in Subclass 1, the AD9680 can  
support periodic one-shot or gapped signals. To minimize the  
coupling of this supply into the AVDD1 supply node, adequate  
supply bypassing is needed.  
EXPOSED PAD THERMAL HEAT SLUG  
RECOMMENDATIONS  
The exposed pad on the underside of the ADC must be connected  
to AGND to achieve the best electrical and thermal performance  
of the AD9680. Connect an exposed continuous copper plane  
on the PCB to the AD9680 exposed pad, Pin 0. The copper  
Rev. C | Page 96 of 97  
 
 
 
 
 
 
Data Sheet  
AD9680  
OUTLINE DIMENSIONS  
9.10  
9.00 SQ  
8.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
49  
64  
1
48  
0.50  
BSC  
EXPOSED  
PAD  
7.70  
7.60 SQ  
7.50  
33  
16  
32  
17  
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
7.50 REF  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WMMD  
Figure 176. 64-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
9 mm × 9 mm Body, Very Thin Quad  
(CP-64-15)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
Package Description2  
Package Option  
CP-64-15  
CP-64-15  
CP-64-15  
CP-64-15  
CP-64-15  
CP-64-15  
CP-64-15  
CP-64-15  
AD9680BCPZ-1250  
AD9680BCPZ-1000  
AD9680BCPZ-820  
AD9680BCPZ-500  
AD9680BCPZRL7-1250  
AD9680BCPZRL7-1000  
AD9680BCPZRL7-820  
AD9680BCPZRL7-500  
AD9680-1250EBZ  
AD9680-1000EBZ  
AD9680-LF1000EBZ  
AD9680-820EBZ  
64-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
Evaluation Board for AD9680-1250  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Evaluation Board for AD9680-1000  
Evaluation Board for AD9680-1000 with 1 GHz Bandwidth  
Evaluation Board for AD9680-820  
AD9680-LF820EBZ  
AD9680-500EBZ  
Evaluation Board for AD9680-820 with 1 GHz Bandwidth  
Evaluation Board for AD9680-500  
AD9680-LF500EBZ  
Evaluation Board for AD9680-500 with 1 GHz Bandwidth  
1 Z = RoHS Compliant Part.  
2 The AD9680-1250EBZ, AD9680-1000EBZ, AD9680-820EBA, and AD9680-500EBZ evaluation boards are optimized for full analog input frequency range of 2 GHz.  
©2014–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11752-0-11/15(C)  
Rev. C | Page 97 of 97  
 
 

相关型号:

AD9680-1000EBZ

Dual Analog-to-Digital Converter
ADI

AD9680-1250EBZ

Dual Analog-to-Digital Converter
ADI

AD9680-500EBZ

Dual Analog-to-Digital Converter
ADI

AD9680-820EBZ

Dual Analog-to-Digital Converter
ADI

AD9680-LF1000EBZ

Dual Analog-to-Digital Converter
ADI

AD9680-LF500EBZ

Dual Analog-to-Digital Converter
ADI

AD9680-LF820EBZ

Dual Analog-to-Digital Converter
ADI

AD9680BCPZ-1000

Dual Analog-to-Digital Converter
ADI

AD9680BCPZ-1250

Dual Analog-to-Digital Converter
ADI

AD9680BCPZ-500

Dual Analog-to-Digital Converter
ADI

AD9680BCPZ-820

Dual Analog-to-Digital Converter
ADI

AD9680BCPZRL7-1000

14-Bit, 1.25 GSPS/1 GSPS/820 MSPS/500 MSPS JESD204B, Dual Analog-to-Digital Converter
ADI