AD9712BSQ/883B [ADI]

12-Bit, 100 MSPS D/A Converters; 12位, 100 MSPS D / A转换器
AD9712BSQ/883B
型号: AD9712BSQ/883B
厂家: ADI    ADI
描述:

12-Bit, 100 MSPS D/A Converters
12位, 100 MSPS D / A转换器

转换器 数模转换器
文件: 总12页 (文件大小:333K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit, 100 MSPS  
D/A Converters  
a
AD9712B/AD9713B  
FUNCTIO NAL BLO CK D IAGRAM  
FEATURES  
100 MSPS Update Rate  
ECL/ TTL Com patibility  
SFDR @ 1 MHz: 70 dBc  
Low Glitch Im pulse: 28 pV-s  
Fast Settling: 27 ns  
Low Pow er: 725 m W  
1/ 2 LSB DNL (B Grade)  
40 MHz Multiplying Bandw idth  
AD9712B/AD9713B  
LATCH  
ENABLE  
26  
28  
1
(MSB)  
DIGITAL  
INPUTS  
14  
16  
I
OUT  
OUT  
DECODERS  
AND  
DRIVERS  
SWITCH  
NETWORK  
D
1
APPLICATIONS  
ATE  
THRU  
D
12  
I
Signal Reconstruction  
Arbitrary Waveform Generators  
Digital Synthesizers  
Signal Generators  
(LSB)  
11  
24  
REFERENCE  
IN  
17  
18  
+
R
SET  
CONTROL  
AMP  
CONTROL  
AMP OUT  
INTERNAL  
VOLTAGE  
GENERAL D ESCRIP TIO N  
T he AD9712B and AD9713B D/A converters are replacements  
for the AD9712 and AD9713 units which offer improved ac and  
dc performance. Like their predecessors, they are 12-bit, high  
speed digital-to-analog converters fabricated in an advanced  
oxide isolated bipolar process. T he AD9712B is an ECL-  
compatible device featuring update rates of 100 MSPS mini-  
mum; the T T L-compatible AD9713B will update at 80 MSPS  
minimum.  
REFERENCE  
20  
19  
REFERENCE  
OUT  
CONTROL  
AMP IN  
Designed for direct digital synthesis, waveform reconstruction,  
and high resolution imaging applications, both devices feature  
low glitch impulse of 28 pV-s and fast settling times of 27 ns.  
Both units are characterized for dynamic performance and have  
excellent harmonic suppression.  
T he AD9712B and AD9713B are available in 28-pin plastic  
DIPs and PLCCs, with an operating temperature range of  
–25°C to +85°C. Both are also available for extended tempera-  
ture ranges of –55°C to +125°C in cerdips and 28-pin LCC  
packages.  
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
AD9712B/AD9713BSPECIFICATIONS  
ELECTRICAL CHARACTERISTICS [–V = –5.2 V; +V = +5 V (AD9713B only); Reference Voltage = –1.2 V;  
RSET = 7.5 k; V = 0 V (virtual ground); unless otherwise noted]  
S
S
OUT  
AD 9712B/AD 9713B  
AN/AP  
AD 9712B/AD 9713B  
BN/BP  
AD 9712B/AD 9713B AD 9712B/AD 9713B  
Test  
SE/SQ  
TE/TQ  
P aram eter (Conditions)  
Tem p  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max Min Typ Max  
Min Typ Max Units  
RESOLUT ION  
12  
12  
12  
12  
Bits  
DC ACCURACY  
Differential Nonlinearity  
+25°C  
Full  
+25°C  
Full  
I
VI  
I
–1.25 1.0  
–2.0  
+1.25 –0.75  
0.5  
+0.75 –1.5 1.0 +1.5  
–1.0 0.5  
–1.5  
–1.25 1.0  
–1.75  
+1.0 LSB  
2.0  
1.5  
2.0  
–1.5  
–1.0  
–1.75  
1.5  
1.0  
–2.0  
2.0  
1.5  
LSB  
Integral Nonlinearity  
(“Best Fit” Straight Line)  
–1.5  
–2.0  
1.0  
0.75  
–1.75 1.5 1.75  
1.25 LSB  
1.75 LSB  
VI  
1.75 –2.0  
2.0  
AD 9712B  
All Grades  
Typ  
AD 9713B  
All Grades  
Typ  
Test  
Level  
P aram eter (Conditions)  
Tem p  
Min  
Max  
Min  
Max  
Units  
INIT IAL OFFSET ERROR  
Zero-Scale Offset Error  
+25°C  
Full  
+25°C  
Full  
I
VI  
I
VI  
V
0.5  
2.5  
5.0  
5
0.5  
2.5  
5.0  
5
µA  
µA  
%
%
µA/°C  
Full-Scale Gain Error1  
Offset Drift Coefficient  
1.0  
1.0  
8
8
+25°C  
0.01  
0.01  
REFERENCE/CONT ROL AMP  
Internal Reference Voltage  
+25°C  
Full  
Full  
Full  
+25°C  
+25°C  
I
–1.14  
–1.12  
–1.18  
50  
–1.22  
–1.24  
–1.14  
–1.12  
–1.18  
50  
–1.22  
–1.24  
V
V
VI  
V
IV  
V
V
Internal Reference Voltage Drift  
Internal Reference Output Current  
Amplifier Input Impedance  
Amplifier Bandwidth  
ppm/°C  
µA  
kΩ  
–50  
+500  
–50  
+500  
50  
300  
50  
300  
kHz  
REFERENCE INPUT2  
Reference Input Impedance  
Reference Multiplying Bandwidth3  
+25°C  
+25°C  
V
V
3
40  
3
40  
kΩ  
MHz  
DYNAMIC PERFORMANCE  
Full-Scale Output Current4  
Output Compliance Range  
Output Resistance  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
V
20.48  
20.48  
mA  
V
kΩ  
pF  
MSPS  
ns  
ns  
pV-s  
ns  
ns  
IV  
IV  
V
IV  
V
V
V
V
V
–1.2  
2.0  
+2  
3.0  
–1.2  
2.0  
+2  
3.0  
2.5  
15  
110  
27  
6
28  
2
2
2.5  
15  
100  
27  
7
28  
2
2
Output Capacitance  
Output Update Rate5  
Output Settling T ime (tST  
100  
80  
6
)
7
Output Propagation Delay (tPD  
Glitch Impulse8  
)
Output Rise T ime9  
Output Fall T ime9  
DIGIT AL INPUT S  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Current  
Logic “0” Current  
Input Capacitance  
Input Setup T ime (tS)10  
Full  
Full  
Full  
Full  
+25°C  
+25°C  
Full  
+25°C  
Full  
VI  
VI  
VI  
VI  
V
IV  
IV  
IV  
IV  
IV  
–1.0  
–0.8  
–1.7  
2.0  
V
V
–1.5  
20  
10  
0.8  
20  
600  
µA  
µA  
pF  
ns  
ns  
ns  
ns  
ns  
ns  
3
–0.3  
3
–0.3  
0.5  
0.8  
1.8  
2.0  
2.5  
2.8  
0.5  
0.8  
1.8  
2.0  
2.5  
2.8  
Input Hold T ime (tH)11  
1.2  
1.7  
1.2  
1.7  
Latch Pulse Width (tLPW) (LOW)  
(T ransparent)  
+25°C  
Full  
AC LINEARIT Y12  
Spurious-Free Dynamic Range (SFDR)  
1.23 MHz; 10 MSPS; 2 MHz Span  
5.055 MHz; 20 MSPS; 2 MHz Span  
10.1 MHz; 50 MSPS; 2 MHz Span  
16 MHz; 40 MSPS; 10 MHz Span  
+25°C  
+25°C  
+25°C  
+25°C  
V
V
V
V
70  
72  
68  
68  
70  
72  
68  
68  
dB  
dB  
dB  
dB  
–2–  
REV. B  
AD9712B/AD9713B  
AD 9712B  
All Grades  
Typ  
AD 9713B  
All Grades  
Test  
Level  
P aram eter (Conditions)  
Tem p  
Min  
Max  
Min  
Typ  
Max  
Units  
POWER SUPPLY13  
Positive Supply Current (+5.0 V)  
+25°C  
Full  
+25°C  
Full  
+25°C  
+25°C  
I
VI  
I
VI  
V
I
6
12  
14  
184  
188  
mA  
mA  
mA  
mA  
mW  
µA/V  
Negative Supply Current (–5.2 V)14  
140  
178  
183  
145  
Nominal Power Dissipation  
728  
30  
784  
30  
Power Supply Rejection Radio (PSRR)15  
100  
100  
NOT ES  
1Measured as error in ratio of full-scale current to current through R SET (160 µA nominal); ratio is nominally 128.  
2Full-scale variations among devices are higher when driving REFERENCE INPUT directly.  
3Frequency at which the gain is flat ±0.5 dB; RL = 50 ; 50% modulation at midscale.  
4Based on IFS = 128 (VREF/RSET ) when using internal amplifier.  
5Data registered into DAC accurately at this rate; does not imply settling to 12-bit accuracy.  
6Measured as voltage settling at midscale transition to ±0.024%, RL = 50 .  
7Measured as the time between the 50% point of the falling edge of LAT CH ENABLE and the point where the output signal has left a 1 LSB error band  
around its previous value.  
8Peak glitch impulse is measured as the largest area under a single positive or negative transient.  
9Measured with RL = 50 and DAC operating in latched mode.  
10Data must remain stable for specified time prior to falling edge of LAT CH ENABLE signal.  
11Data must remain stable for specified time after rising edge of LAT CH ENABLE signal.  
12SFDR is defined as the difference in signal energy between the fundamental and worst case spurious frequencies in the output spectrum window, which is  
centered at the fundamental frequency and covers the indicated span.  
13Supply voltages should remain stable within ±5% for normal operation.  
14108 mA typ on Digital –VS, 37 mA typ on Analog –VS.  
15Measured at ±5% of +VS (AD9713B only) and –VS (AD9712B or AD9713B) using external reference.  
Specifications subject to change without notice.  
ABSO LUTE MAXIMUM RATINGS1  
O RD ERING GUID E  
Positive Supply Voltage (+VS) (AD9713B Only) . . . . . . . +6 V  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
Negative Supply Voltage (–VS) . . . . . . . . . . . . . . . . . . . . . –7 V  
Analog-to-Digital Ground Voltage Differential . . . . . . . . 0.5 V  
Digital Input Voltages (D1D12, LAT CH ENABLE)  
Model  
AD9712BAN  
AD9712BBN  
AD9712BAP  
AD9712BBP  
AD9712BSQ/883B  
AD9712BSE/883B  
AD9712BT Q/883B  
AD9712BT E/883B  
–25°C to +85°C  
–25°C to +85°C  
–25°C to +85°C  
–25°C to +85°C  
–55°C to +125°C  
–55°C to +125°C  
–55°C to +125°C  
–55°C to +125°C  
28-Pin PDIP  
28-Pin PDIP  
28-Pin PLCC  
28-Pin PLCC  
28-Pin Cerdip  
28-Pin LCC  
28-Pin Cerdip  
28-Pin LCC  
N-28  
N-28  
AD9712B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V to –VS  
AD9713B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to +VS  
Internal Reference Output Current . . . . . . . . . . . . . . . . 500 µA  
Control Amplifier Input Voltage Range . . . . . . . . . 0 V to –4 V  
Control Amplifier Output Current . . . . . . . . . . . . . . . ±2.5 mA  
Reference Input Voltage Range (VREF) . . . . . . . . . . . 0 V to –VS  
Analog Output Current . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA  
Operating T emperature Range  
AD9712B/AD9713BAN/AP/BN/BP . . . . . . . –25°C to +85°C  
AD9712B/AD9713BSE/SQ/T E/T Q . . . . . . –55°C to +125°C  
Maximum Junction T emperature2  
AD9712B/AD9713BAN/AP/BN/BP . . . . . . . . . . . . . +150°C  
AD9712B/AD9713BSE/SQ/T E/T Q . . . . . . . . . . . . . +175°C  
Lead T emperature (Soldering, 10 sec) . . . . . . . . . . . . . +300°C  
Storage T emperature Range . . . . . . . . . . . . . –65°C to +150°C  
P-28A  
P-28A  
Q-28  
E-28A  
Q-28  
E-28A  
AD9713BAN  
AD9713BBN  
AD9713BAP  
AD9713BBP  
AD9713BSQ/883B  
AD9713BSE/883B  
AD9713BT Q/883B  
AD9713BT E/883B  
–25°C to +85°C  
–25°C to +85°C  
–25°C to +85°C  
–25°C to +85°C  
–55°C to +125°C  
–55°C to +125°C  
–55°C to +125°C  
–55°C to +125°C  
28-Pin PDIP  
28-Pin PDIP  
28-Pin PLCC  
28-Pin PLCC  
28-Pin Cerdip  
28-Pin LCC  
28-Pin Cerdip  
28-Pin LCC  
N-28  
N-28  
P-28A  
P-28A  
Q-28  
E-28A  
Q-28  
E-28A  
NOT ES  
EXP LANATIO N O F TEST LEVELS  
Test Level  
1Absolute maximum ratings are limiting values to be applied individually, and  
beyond which the serviceability of the circuit may be impaired. Functional  
operability is not necessarily implied. Exposure to absolute maximum rating  
conditions for an extended period of time may affect device reliability.  
2T ypical thermal impedances with parts soldered in place: 28-pin plastic DIP:  
θJA = 37°C/W, θJC = 10°C/W; 28-pin PLCC: θJA = 44°C/W, θJC = 14°C/W;  
Cerdip: θJA = 32°C/W, θJC = 10°C/W; LCC: θJA = 41°C/W, θJC = 13°C/W. No air  
flow.  
I
II  
100% production tested.  
100% production tested at +25°C, and sample tested at  
specified temperatures.  
III – Sample tested only.  
IV – Parameter is guaranteed by design and characterization  
testing.  
V
Parameter is a typical value only.  
VI – All devices are 100% tested at +25°C. 100% production  
tested at temperature extremes for extended tempera-  
ture devices; sample tested at temperature extremes for  
commercial/industrial devices.  
REV. B  
–3–  
AD9712B/AD9713B  
P IN D ESCRIP TIO NS  
P in # Nam e  
Function  
1–10  
11  
D2D11  
T en bits of twelve-bit digital input word.  
Least Significant Bit (LSB) of digital input word.  
Input Coding vs. Cur r ent O utput  
D12 (LSB)  
Input Code D1D12  
IOUT (mA)  
IOUT (mA)  
1111111111  
0000000000  
–20.475  
0
0
–20.475  
12  
13  
DIGIT AL –VS  
One of two negative digital supply pins; nominally –5.2 V.  
ANALOG RET URN  
Analog ground return. T his point and the reference side of the DAC load resistors should be  
connected to the same potential (nominally ground).  
14  
15  
16  
17  
IOUT  
Analog current output; full-scale output occurs with digital inputs at all “1.”  
One of two negative analog supply pins; nominally –5.2 V.  
ANALOG –VS  
IOUT  
Complementary analog current output; zero scale output occurs with digital inputs at all “1.”  
REFERENCE IN  
Normally connected to CONT ROL AMP OUT (Pin 18). Direct line to DAC current source  
network. Voltage changes at this point have a direct effect on the full-scale output value of  
unit. Full-scale current output = 128 (Reference voltage/RSET ) when using internal amplifier.  
18  
CONT ROL AMP OUT  
Normally connected to REFERENCE INPUT (Pin 17). Output of internal control amplifier,  
which provides a temperature-compensated drive level to the current switch network.  
19  
20  
CONT ROL AMP IN  
REFERENCE OUT  
Normally connected to REFERENCE OUT (Pin 20) if not connected to external reference.  
Normally connected to CONT ROL AMP IN (Pin 19). Internal voltage reference, nominally  
–1.18 V.  
21  
22  
23  
DIGIT AL –VS  
One of two negative digital supply pins; nominally –5.2 V.  
Ground return for the internal voltage reference and amplifier.  
REFERENCE GROUND  
DIGIT AL +VS  
Positive digital supply pin, used only on the AD9713B; nominally +5 V. No connection to this  
pin on AD9712B.  
24  
RSET  
Connection for external resistance reference. Full-scale current out = 128 (Reference voltage/  
R
SET) when using internal amplifier. Nominally 7.5 k.  
25  
26  
27  
28  
ANALOG –VS  
One of two negative analog supply pins; nominally –5.2 V.  
T ransparent latch control line. Register is transparent when LAT CH ENABLE is LOW.  
Digital ground return.  
LAT CH ENABLE  
DIGIT AL GROUND  
D1 (MSB)  
Most Significant Bit (MSB) of digital input word.  
P IN CO NFIGURATIO NS  
P LCC/LCC  
D IP  
D
(MSB0)  
D
D
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
2
3
1
3
2
3
DIGITAL GROUND  
LATCH ENABLE  
4
3
2
1
28 27 26  
D
4
D
D
D
D
4
5
5
6
ANALOG –V  
S
ANALOG –V  
S
5
6
25  
24  
23  
22  
21  
20  
19  
D
D
D
D
6
7
R
SET  
R
SET  
AD9712B  
AD9713B  
AD9712B  
AD9713B  
6
DIGITAL +V  
S
7
DIGITAL +V  
7
S
8
9
REFERENCE  
GROUND  
REFERENCE GROUND  
7
8
8
TOP VIEW  
(Not to Scale)  
TOP VIEW  
(Not to Scale)  
D
9
8
DIGITAL –V  
S
DIGITAL –V  
S
9
D
D
10  
11  
REFERENCE  
OUT  
9
10  
11  
D
D
REFERENCE OUT  
CONTROL AMP IN  
CONTROL AMP OUT  
10  
CONTROL  
AMP IN  
D
(LSB)  
10  
11  
12  
19  
18  
12  
11  
D
(LSB)  
12  
12 13 14  
16 17 18  
15  
DIGITAL –V  
17 REFERENCE IN  
S
I
ANALOG RETURN 13  
14  
16  
15  
OUT  
I
ANALOG –V  
OUT  
S
–4–  
REV. B  
AD9712B/AD9713B  
D IE LAYO UT AND METALIZATIO N INFO RMATIO N  
Die Dimensions . . . . . . . . . . . . . . . . . 220 × 196 × 15 (±2) mils  
Pad Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 × 4 mils  
Metalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aluminum  
Backing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . None  
Substrate Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –VS  
Passivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nitride  
D igital Inputs/Tim ing  
T he AD9712B employs single-ended ECL-compatible inputs  
for data inputs D1D12 and LAT CH ENABLE. T he internal  
ECL midpoint reference is designed to match 10K ECL device  
thresholds. On the AD9713B, a T T L translator is added at each  
input; with this exception, the AD9712B and AD9713B are  
identical.  
In the Decoder/Driver section, the four MSBs (D1D4) are  
decoded to 15 “thermometer code” lines. An equalizing delay is  
included for the eight Least Significant Bits (LSBs) and  
LAT CH ENABLE. T his delay minimizes data skew, and data  
setup and hold times at the latch inputs; this is important when  
operating the latches in the transparent mode. Without the  
delay, skew caused by the decoding circuits would degrade  
glitch impulse.  
T he latches operate in their transparent mode when LAT CH  
ENABLE (Pin 26) is at logic level “0.” T he latches should be  
used to synchronize data to the current switches by applying a  
narrow LAT CH ENABLE pulse with proper data setup and  
hold times as shown in the T iming Diagram. An external latch  
at each data input, clocked out of phase with the Latch Enable,  
operates the AD9712B/AD9713B in a master slave (edge-  
triggered) mode. T his is the optimum way to operate the DAC  
because data is always stable at the DAC input. An external  
latch eases timing constraints when using the converter.  
Although the AD9712B/AD9713B chip is designed to provide  
isolation from digital inputs to the outputs, some coupling of  
digital transitions is inevitable, especially with T T L or CMOS  
inputs applied to the AD9713B. Digital feedthrough can be re-  
duced by forming a low-pass filter using a (200 ) series resistor  
in series with the capacitance of each digital input; this rolls off  
the slew rate of the digital inputs.  
TH EO RY AND AP P LICATIO NS  
T he AD9712B and AD9713B high speed digital-to-analog  
converters utilize Most Significant Bit (MSB) decoding and  
segmentation techniques to reduce glitch impulse and main-  
tain 12-bit linearity without trimming.  
Refer ences  
As shown in the functional block diagram, the internal bandgap  
reference, control amplifier, and reference input are pinned out  
for maximum user flexibility when setting the reference.  
As shown in the functional block diagram, the design is based  
on four main subsections: the Decoder/Driver circuits, the  
T ransparent Latches, the Switch Network, and the Control Am-  
plifier. An internal bandgap reference is also included to allow  
operation with a minimum of external components.  
When using the internal reference, REFERENCE OUT (Pin 20)  
should be connected to CONT ROL AMP IN (Pin 19). CON-  
T ROL AMP OUT (Pin 18) should be connected to REFER-  
ENCE IN (Pin 17) through a 20 resistor. A 0.1 µF ceramic  
capacitor from Pin 17 to –VS (Pin 15) improves settling by  
decoupling switching noise from the current sink base line. A  
reference current cell provides feedback to the control amp by  
sinking current through RSET (Pin 24).  
tLPW  
LATCH  
ENABLE  
LATCH ENABLE  
ERROR  
BAND  
tS  
tH  
OUTPUT  
ERROR  
VALID DATA  
DATA INPUTS  
OUTPUT  
tPD  
tST  
tPD  
t H  
– INPUT HOLD TIME  
tST  
tLPW  
– LATCH PULSE WIDTH  
– OUTPUT SETTLING TIME  
tS  
tPD  
– INPUT SETUP TIME  
– OUTPUT PROPAGATION DELAY  
Tim ing Diagram  
REV. B  
–5–  
AD9712B/AD9713B  
Full-scale output current is determined by CONT ROL AMP  
IN and RSET according to the equation:  
T he REFERENCE IN pin can also be driven directly for wider  
bandwidth multiplying operation. T he analog signal for this  
mode of operation must have a signal swing in the range of  
–3.75 V to –4.25 V. T his can be implemented by capacitively  
coupling into REFERENCE IN a signal with a dc bias of –3.75 V  
to –4.25 V, as shown in Figure 3; or by driving REFERENCE  
IN with a low impedance op amp whose signal swing is limited  
to the stated range.  
IOUT (FS) = (CONTROL AMP IN/RSET) × 128  
T he internal reference is nominally –1.18 V with a tolerance of  
±3.5% and typical drift over temperature of 50 ppm/°C. If  
greater accuracy or better temperature stability is required, an  
external reference can be utilized. T he AD589 reference shown  
in Figure 1 features ±10 ppm/°C drift over temperatures from  
0°C to +70°C.  
O utputs  
As indicated earlier, D1D4 (four MSBs) are decoded and drive  
15 discrete current sinks. D5 and D6 are binarily weighted; and  
D7D12 are applied to the R-2R network. T his segmented archi-  
tecture reduces frequency domain errors due to glitch impulse.  
AD9712B  
AD9713B  
+
AD589  
AD9712B  
AD9713B  
CONTROL  
AMP IN  
19  
REFERENCE  
R
11k  
1
IN  
17  
~
~
–4V  
–V  
S
Figure 1. Use of AD589 as External Reference  
–V  
–V  
S
S
T wo modes of multiplying operation are possible with the  
AD9712B/AD9713B. Signals with small signal bandwidths up  
to 300 kHz and input swings of 100 mV, or dc signals from  
–0.6 V to –1.2 V can be applied to the CONT ROL AMP input  
as shown in Figure 2. Because the control amplifier is internally  
compensated, the 0.1 µF capacitor at Pin 17 can be reduced to  
0.01 µF to maximize the multiplying bandwidth. However, it  
should be noted that settling time for changes to the digital in-  
puts will be degraded.  
Figure 3. Wideband Multiplying Circuit  
T he Switch Network provides complementary current outputs  
IOUT and IOUT . T hese current outputs are based on statistical  
current source matching which provides 12-bit linearity without  
trim. Current is steered to either IOUT or IOUT in proportion to  
the digital input code. T he sum of the two currents is always  
equal to the full-scale output current minus one LSB.  
T he current output can be converted to a voltage by resistive  
loading as shown in Figure 4. Both IOUT and IOUT should be  
loaded equally for best overall performance. T he voltage which  
is developed is the product of the output current and the value  
of the load resistor.  
R
SET  
24  
19  
R
SET  
CONTROL  
AMP IN  
–0.6V TO –1.2V  
300 kHz MAX  
R
AD9712B  
AD9713B  
T
CONTROL  
AMP OUT  
18  
17  
18  
REFERENCE  
IN  
Figure 2. Low Frequency Multiplying Circuit  
–6–  
REV. B  
AD9712B/AD9713B  
DAC current across feedback resistor RFB determines the  
AD9617 output swing. A current divider formed by RL and RFF  
limits the current used in the I-to-V conversion, and provides an  
output voltage swing within the specifications of the AD9617.  
Current through R2 provides dc offset at the output of the  
AD9617. Adjusting the value of R1 adjusts the value of offset  
current. T his offset current is based on the reference of the  
AD9712B/AD9713B, to avoid coupling noise into the output  
signal.  
0.1µF  
0.01µF  
–5.2V  
0.01µF  
0.1µF  
12,21  
DIGITAL –V  
15,25  
ANALOG –V  
S
S
0.1µF  
28  
1
D
1 (MSB)  
T he resistor values in Figure 5 provide a 4.096 V swing, cen-  
tered at ground, at the output of the AD9617 amplifier.  
REFERENCE  
IN  
17  
D
2
20  
P ower and Gr ounding  
2
3
4
5
6
D
D
D
3
CONTROL  
AMP OUT  
18  
20  
19  
Maintaining low noise on power supplies and ground is critical  
for obtaining optimum results with the AD9712B or AD9713B.  
DACs are most often used in circuits which are predominantly  
digital. T o preserve 12-bit performance, especially at conversion  
speeds up to 100 MSPS, special precautions are necessary for  
power supplies and grounding.  
4
5
REFERENCE  
OUT  
D
6
CONTROL  
AMP IN  
ECL  
DRIVE  
LOGIC  
D
7
24  
16  
R
SET  
7
8
D
8
Ideally, the DAC should have a separate analog ground plane.  
All ground pins of the DAC, as well as reference and analog  
output components, should be tied directly to this analog  
ground plane. T he DACs ground plane should be connected to  
the system ground plane at a single point.  
I
OUT  
D
9
9
D
10  
R
L
L
AD9712B  
AD9713B  
10  
11  
26  
D
11  
V
=
OUT  
x R  
I
D
12  
(LSB)  
R
FS  
L
Ferrite beads such as the Stackpole 57-1392 or Amidon  
FB-43B-101, along with high frequency, low-inductance decou-  
pling capacitors, should be used for the supply connections to  
isolate digital switching currents from the DAC supply pins.  
Separate isolation networks for the digital and analog supply  
connections will further reduce supply noise coupling to the  
output.  
14  
I
LATCH ENABLE  
OUT  
ANALOG REFERENCE DIGITAL  
RETURN  
GROUND GROUND  
22 27  
13  
SYSTEM  
GROUND  
Figure 4. Typical Resistive Load Connection  
Molded socket assemblies should be avoided even when  
prototyping circuits with the AD9712B or AD9713B. When  
the DAC cannot be directly soldered into the board, individual  
pin sockets such as AMP # 6-330808-0 (knock-out end), or  
# 60330808-3 (open end) should be used. T hese have much  
less effect on inter-lead capacitance than do molded assemblies.  
An operational amplifier can also be used to perform the I to V  
conversion of the DAC output. Figure 5 shows an example of a  
circuit which uses the AD9617, a high speed, current feedback  
amplifier.  
10k  
D D S Applications  
Numerically controlled oscillators (NCOs) are digital devices  
which generate samples of a sine wave. When the NCO is com-  
bined with a high performance D/A converter (DAC), the com-  
bination system is referred to as a Direct Digital Synthesizer  
(DDS).  
10k  
+
1/2 AD708  
200  
1/2 AD708  
R
1
+
T he digital samples generated by the NCO are reconstructed by  
the DAC and the resulting sine wave is usable in any system  
which requires a stable, spectrally pure, frequency-agile refer-  
ence. T he DAC is often the limiting factor in DDS applications,  
since it is the only analog function in the circuit. T he AD9712B/  
AD9713B D/A converters offer the highest level of performance  
available for DDS applications.  
100  
R
2
I
OS  
20  
19  
400  
REF CONTROL  
OUT AMP IN  
25  
R
I
FS  
V
OUT  
FF  
R
FB  
±2.048V  
14  
I
OUT  
AD9617  
25  
R
AD9712B  
AD9713B  
L
+
DC linearity errors of a DAC are the dominant effect in low-  
frequency applications and can affect both noise and harmonic  
content in the output waveform. Differential Nonlinearity  
(DNL) errors determine the quantization error between adja-  
cent codes, while Integral Nonlinearity (INL) is a measure of  
how closely the overall transfer function of the DAC compares  
with an ideal device. T ogether, these errors establish the limits  
of phase and amplitude accuracy in the output waveform.  
12.5  
16  
I
OUT  
Figure 5. I/VConversion Using Current Feedback  
REV. B  
–7–  
AD9712B/AD9713B  
SYSTEM  
CLOCK  
LATCH  
ENABLE  
NUMERICALLY-CONTROLLED OSCILLATOR  
D
1
AD9712B  
AD9713B  
OUTPUT  
TTL  
REGISTER  
TUNING 32  
WORD  
14  
12  
12  
PHASE  
ACCUMULATOR  
PHASE-TO-AMPLITUDE  
CONVERSION  
SINE DATA  
D/A CONVERTER  
D
12  
Figure 6. Direct Digital Synthesizer Block Diagram  
When the analog frequency (fA) is exactly fC/N and N is an even  
integer, the DDS continually uses a small subset of the available  
DAC codes. T he DNL of the converter is effectively the DNL  
error of the codes used, and is typically worse than the error  
measured against all available DAC codes. T his increase in  
DNL is translated into higher harmonic and noise levels at the  
output.  
100  
90  
5mV/div  
Glitch impulse, often considered a figure of merit in DDS appli-  
cations, is simply the initial transient response of the DAC as it  
moves between two output levels. T his nonlinearity is com-  
monly associated with external data skew, but this effect is mini-  
mized by using the on-board registers of the AD9712B/AD9713B  
converters (see Digital Inputs/T iming section). T he majority of  
the glitch impulse, shown below, is produced as the current in  
the R-2R ladder network settles, and is fairly constant over the  
full-scale range of the DAC. T he fast transients which form the  
glitch impulse appear as high-frequency spurs in the output  
spectrum.  
10  
0%  
5ns/div  
Figure 7. AD9712B/AD9713B Glitch Im pulse  
200mV/div  
100  
90  
While it is difficult to predict the effects of glitch on the output  
waveform, slew rate limitations translate directly into harmonics.  
T his makes slew rate the dominant effect in ac linearity of the  
DAC. Applications in which the ratio of analog frequency (fA)  
to clock frequency (fC) is relatively high will benefit from the  
high slew rate and low output capacitance of the AD9712B/  
AD9713B devices.  
10  
0%  
Another concern in DDS applications is the presence of aliased  
harmonics in the output spectrum. Aliased harmonics appear as  
spurs in the output spectrum at frequencies which are deter-  
mined by:  
1ns/div  
Figure 8. Rise and Fall Characteristics  
MfA ± NfC  
where M and N are integers.  
T he effects of these spurs are most easily observed in applica-  
tions where fA is nearly equal to an integer fraction of the clock  
rate. T his condition causes the aliased harmonics to fold near  
the fundamental output frequency (see Performance Curves.)  
–8–  
REV. B  
AD9712B/AD9713B  
Figure 9a.  
Figure 9b.  
Figure 9c.  
Figure 9d.  
Figure 9e.  
Figure 9f.  
Figure 9. Typical Spectral Perform ance  
REV. B  
–9–  
AD9712B/AD9713B  
Figure 10c.  
Figure 10a.  
Figure 10d.  
Figure 10b.  
Figure 10e.  
Figure 10. Typical Spectral Perform ance  
–10–  
REV. B  
AD9712B/AD9713B  
+5V  
10 k  
CONTROL  
AMP IN  
19  
TTL  
IN  
ECL V  
MID  
ECL  
IN  
–5.2 V  
–5.2 V  
TTL Input Buffer  
ECL Input Buffer  
Control Am plifier Input  
±
24  
R
SET  
REFERENCE  
20  
OUT  
V
BIAS  
CONTROL  
AMP OUT  
18  
+
CONTROL  
AMP  
18  
17  
CONTROL  
19  
AMP IN  
CONTROL  
AMP OUT  
REFERENCE  
IN  
–5.2 V  
–5.2 V  
Control Am p Output  
Full-Scale Current Control Loop  
ANALOG  
RETURN  
13  
14  
138 CURRENT SOURCES  
2R  
R
2R  
2R  
2R  
2R  
R
R
R
R
R
R
REFERENCE  
IN  
I
17  
OUT  
or  
16  
I
OUT  
D
D
D
9
D
D
D
7
D
D
6
8
1
11  
10  
12  
–5.2 V  
Reference Input  
R-2R DAC (for 6 LSBs)  
ANALOG  
RETURN  
I
I
OUT  
16  
OUT  
14  
13  
16pF  
16pF  
2.5kΩ  
2.5kΩ  
REFERENCE  
OUT  
20  
–5.2 V  
–V  
S
Reference Output  
Output Circuit  
Figure 11. Equivalent Circuits  
REV. B  
–11–  
AD9712B/AD9713B  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
28-P in P lastic D IP (Suffix N)  
28-P in P lastic Leaded Chip Carrier (Suffix P )  
0.048 (1.21)  
0.042 (1.07)  
0.048 (1.21)  
0.042 (1.07)  
28  
1
15  
14  
0.550 (13.97)  
0.530 (13.46)  
4
26  
25  
5
PIN 1  
0.625 (15.8)  
0.050  
(1.27)  
BSC  
IDENTIFIER  
1.565 (39.70)  
1.380 (35.10)  
0.600 (15.24)  
0.060 (1.52)  
0.015 (0.38)  
0.430 (10.92)  
0.390 (9.91)  
0.250 (6.35)  
MAX  
0.140  
(3.56)  
MIN  
0.015 (0.381)  
0.008 (0.204)  
0.021 (0.53)  
0.013 (0.33)  
0.032 (0.81)  
11  
19  
0.70 (1.77)  
MAX  
0.026 (0.66)  
0.100 (2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
12  
18  
0.025 (0.63)  
0.015 (0.38)  
0.456 (11.58)  
0.450 (11.43)  
0.040 (1.01)  
0.025 (0.64)  
0.110 (2.79)  
0.085 (2.16)  
0.495 (12.57)  
0.485 (12.32)  
0.180 (4.57)  
0.165 (4.19)  
28-P in Cerdip (Suffix Q)  
28-P in LCC P ackage (Suffix E)  
1.490 (37.84) MAX  
15  
28  
0.075  
(1.91)  
REF  
0.055 (1.40)  
0.045 (1.14)  
0.610 (15.49)  
0.500 (12.70)  
27  
28  
1
2
3
4
26  
0.028 (0.71)  
0.022 (0.56)  
1
25  
5
14  
0.620 (15.74)  
0.590 (14.93)  
24  
23  
22  
21  
20  
19  
6
GLASS SEALANT  
0.22  
(5.59)  
MAX  
7
8
0.018 (0.45)  
BOTTOM VIEW  
0.008 (0.20)  
0.050 (1.27)  
15  
0
9
0.026 (0.660) 0.110 (2.79) 0.07 (1.78)  
0.125  
(3.175)  
MIN  
0.014 (0.356)  
0.03 (0.76)  
10  
11  
0.098 (2.45)  
18  
17  
16  
15 14  
13  
12  
0.458 (11.63)  
0.442 (11.23)  
0.100 (2.54)  
0.064 (1.63)  
–12–  
REV. B  

相关型号:

AD9712BTE

12-Bit Digital-to-Analog Converter
ETC

AD9712BTE/883B

12-Bit, 100 MSPS D/A Converters
ADI

AD9712BTE/883B

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.027us Settling Time, CQCC28, CERAMIC, LCC-28
ROCHESTER

AD9712BTQ

12-Bit Digital-to-Analog Converter
ETC

AD9712BTQ/883B

12-Bit, 100 MSPS D/A Converters
ADI

AD9712BTQ/883B

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.027us Settling Time, CDIP28, CERDIP-28
ROCHESTER

AD9712JN

12-BIT, 100MSPS D/A CONVERTERS
ADI

AD9712JP

12-BIT, 100MSPS D/A CONVERTERS
ADI

AD9712KN

12-Bit Digital-to-Analog Converter
ETC

AD9712KP

12-Bit Digital-to-Analog Converter
ETC

AD9713

12-BIT, 100MSPS D/A CONVERTERS
ADI

AD9713AJN

IC PARALLEL, WORD INPUT LOADING, 0.027 us SETTLING TIME, 12-BIT DAC, PDIP28, PLASTIC, DIP-28, Digital to Analog Converter
ADI