AD9714_18 [ADI]

Digital-to-Analog Converters;
AD9714_18
型号: AD9714_18
厂家: ADI    ADI
描述:

Digital-to-Analog Converters

文件: 总80页 (文件大小:2985K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual, Low Power, 8-/10-/12-/14-Bit  
TxDACDigital-to-Analog Converters  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
FEATURES  
GENERAL DESCRIPTION  
Power dissipation @ 3.3 V, 2 mA output  
37 mW @ 10 MSPS  
The AD9714/AD9715/AD9716/AD9717 are pin-compatible,  
dual, 8-/10-/12-/14-bit, low power digital-to-analog converters  
(DACs) that provide a sample rate of 125 MSPS. These TxDAC®  
converters are optimized for the transmit signal path of commu-  
nication systems. All the devices share the same interface, package,  
and pinout, providing an upward or downward component  
selection path based on performance, resolution, and cost.  
86 mW @ 125 MSPS  
Sleep mode: <3 mW @ 3.3 V  
Supply voltage: 1.8 V to 3.3 V  
SFDR to Nyquist  
84 dBc @ 1 MHz output  
75 dBc @ 10 MHz output  
The AD9714/AD9715/AD9716/AD9717 offer exceptional ac and  
dc performance and support update rates up to 125 MSPS.  
AD9717 NSD @ 1 MHz output, 125 MSPS, 2 mA: −151 dBc/Hz  
Differential current outputs: 1 mA to 4 mA  
2 on-chip auxiliary DACs  
The flexible power supply operating range of 1.8 V to 3.3 V and  
low power dissipation of the AD9714/AD9715/AD9716/AD9717  
make them well-suited for portable and low power applications.  
CMOS inputs with single-port operation  
Output common mode: adjustable 0 V to 1.2 V  
Small footprint 40-lead LFCSP RoHS-compliant package  
PRODUCT HIGHLIGHTS  
APPLICATIONS  
1. Low Power.  
DACs operate on a single 1.8 V to 3.3 V supply; total power  
consumption reduces to 35 mW at 125 MSPS with a 1.8 V  
supply. Sleep and power-down modes are provided for low  
power idle periods.  
Wireless infrastructures  
Picocell, femtocell base stations  
Medical instrumentation  
Ultrasound transducer excitation  
Portable instrumentation  
2. CMOS Clock Input.  
High speed, single-ended CMOS clock input supports a  
125 MSPS conversion rate.  
Signal generators, arbitrary waveform generators  
3. Easy Interfacing to Other Components.  
Adjustable output common mode from 0 V to 1.2 V allows  
easy interfacing to other components that accept common-  
mode levels greater than 0 V.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2008–2018 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Estimating the Overall DAC Pipeline Delay........................... 42  
Reference Operation .................................................................. 43  
Reference Control Amplifier .................................................... 43  
DAC Transfer Function............................................................. 44  
Analog Output............................................................................ 44  
Self-Calibration........................................................................... 45  
Coarse Gain Adjustment........................................................... 46  
Using the Internal Termination Resistors............................... 47  
Applications Information .............................................................. 48  
Output Configurations.............................................................. 48  
Differential Coupling Using a Transformer ............................... 48  
Single-Ended Buffered Output Using an Op Amp................ 48  
Differential Buffered Output Using an Op Amp ................... 49  
Auxiliary DACs........................................................................... 49  
DAC-to-Modulator Interfacing................................................ 50  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 3  
Functional Block Diagram .............................................................. 4  
Specifications..................................................................................... 5  
DC Specifications ......................................................................... 5  
Digital Specifications ................................................................... 7  
AC Specifications.......................................................................... 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configurations and Function Descriptions ......................... 10  
Typical Performance Characteristics ........................................... 18  
Terminology .................................................................................... 31  
Theory of Operation ...................................................................... 32  
Serial Peripheral Interface (SPI) ................................................... 33  
General Operation of the Serial Interface............................... 33  
Instruction Byte .......................................................................... 33  
Serial Interface Port Pin Descriptions ..................................... 33  
MSB/LSB Transfers..................................................................... 34  
Serial Port Operation ................................................................. 34  
Pin Mode ..................................................................................... 34  
SPI Register Map............................................................................. 35  
SPI Register Descriptions .............................................................. 36  
Digital Interface Operation ........................................................... 40  
Digital Data Latching and Retimer Block............................... 41  
Correcting for Nonideal Performance of Quadrature  
Modulators on the IF-to-RF Conversion ................................ 50  
I/Q-Channel Gain Matching .................................................... 50  
LO Feedthrough Compensation .............................................. 51  
Results of Gain and Offset Correction.................................... 51  
Modifying the Evaluation Board to Use the ADL5370 On-  
Board Quadrature Modulator................................................... 52  
Evaluation Board Shematics and Artwork.................................. 53  
Schematics................................................................................... 53  
Silkscreens ................................................................................... 61  
Bill of Materials............................................................................... 76  
Outline Dimensions....................................................................... 79  
Ordering Guide .......................................................................... 79  
Rev. B | Page 2 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
REVISION HISTORY  
1/2018—Rev. A to Rev. B  
Changes to Table 13 ........................................................................36  
Changes to Table 14 ........................................................................37  
Changes to Digital Interface Operation Section and Figure 89 to  
Figure 93...........................................................................................40  
Changes to Digital Data Latching and Retimer Block Section,  
Figure 94, and Retimer Section.....................................................41  
Changes to Estimating the Overall DAC Pipeline Delay  
Changes to Figure 94 ......................................................................41  
Changes to Estimating the Overall DAC Pipeline Section........42  
Changes to Ordering Guide...........................................................79  
3/2009—Rev. 0 to Rev. A  
Changes to Figure 1...........................................................................4  
Changed DVDD = 3.3 V to DVDD = 1.8 V,  
Section ..............................................................................................42  
Added Reference Operation Section, Figure 96,  
Table 1 Conditions ............................................................................5  
Changes to Table 1 ............................................................................5  
Changed DVDD = 3.3 V to DVDD = 1.8 V,  
Recommendations When Using an External Reference Section,  
and Reference Control Amplifier Section....................................43  
Added Table 17; Renumbered Sequentially.................................43  
Added DAC Transfer Function Section and Analog Output  
Section ..............................................................................................44  
Changes to Figure 99 and Figure 100...........................................46  
Changes to Auxiliary DACs Section and Figure 107..................49  
Changes to DAC-to-Modulator Interfacing Section and  
Table 2 Conditions ............................................................................7  
Changed DVDD = 3.3 V to DVDD = 1.8 V, and DVDDIO = 1.8 V  
to DVDDIO = 3.3 V, Table 3 Conditions .......................................8  
Changed DVDD = 3.3 V to DVDD = 1.8 V, CVDD = 3.3 V to  
CVDD = 1.8 V, Table 4 Conditions.................................................8  
Changes to Table 5 and Table 6 .......................................................9  
Changes to Figure 2 and Table 7 ...................................................10  
Changes to Figure 3 and Table 8 ...................................................12  
Changes to Figure 4 and Table 9 ...................................................14  
Changes to Table 10 ........................................................................16  
Changes to Typical Performance Characteristics Section .........18  
Changes to Figure 84 and Theory of Operation Section ...........32  
Added Figure 85 to Figure 88; Renumbered Sequentially.........34  
Changes to Pin Mode Section........................................................35  
Figure 108.........................................................................................49  
Changes to Figure 108 and Figure 109.........................................50  
Added Evaluation Board Schematics and Artwork Section, and  
Figure 112 to Figure 134.................................................................53  
Added Bill of Materials Section and Table 18 .............................76  
8/2008—Revision 0: Initial Version  
Rev. B | Page 3 of 80  
AD9714/AD9715/AD9716/AD9717  
FUNCTIONAL BLOCK DIAGRAM  
Data Sheet  
AD9717  
1V  
SPI  
INTERFACE  
DB11  
QR  
IR  
SET  
SET  
16k  
16kΩ  
IR  
CML  
1kTO  
250Ω  
DB10  
RLIN  
500Ω  
500Ω  
10kΩ  
DB9  
DB8  
IOUTN  
IOUTP  
I
I DAC  
REF  
100µA  
BAND  
GAP  
RLIP  
AUX1DAC  
AUX2DAC  
DVDDIO  
1 INTO 2  
AVDD  
AVSS  
RLQP  
INTERLEAVED  
DATA  
INTERFACE  
I DATA  
DVSS  
500Ω  
500Ω  
DVDD  
DB7  
1.8V  
LDO  
QOUTP  
QOUTN  
Q DATA  
Q DAC  
RLQN  
CLOCK  
DIST  
DB6  
QR  
CML  
1kTO  
250Ω  
DB5  
Figure 1.  
Rev. B | Page 4 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
SPECIFICATIONS  
DC SPECIFICATIONS  
TMIN to TMAX, AVDD = 3.3 V, DVDD = 1.8 V, DVDDIO = 3.3 V, CVDD = 3.3 V, IxOUTFS = 2 mA, maximum sample rate, unless  
otherwise noted.  
Table 1.  
AD9714  
AD9715  
Typ  
AD9716  
Typ  
AD9717  
Typ  
Parameter  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
RESOLUTION  
8
10  
12  
14  
Bits  
ACCURACY, AVDD = DVDDIO =  
CVDD = 3.3 V  
Differential Nonlinearity (DNL)  
Precalibration  
0.02  
0.08  
0.01  
0.4  
0.2  
1.7  
1.0  
LSB  
LSB  
Postcalibration  
0.003  
Integral Nonlinearity (INL)  
Precalibration  
0.025  
0.01  
0.13  
0.05  
0.4  
0.3  
1.8  
1.3  
LSB  
LSB  
Postcalibration  
ACCURACY, AVDD = DVDDIO =  
CVDD = 1.8 V  
Differential Nonlinearity (DNL)  
Precalibration  
0.02  
0.08  
0.01  
0.4  
0.2  
1.2  
1.0  
LSB  
LSB  
Postcalibration  
0.005  
Integral Nonlinearity (INL)  
Precalibration  
0.025  
0.02  
0.12  
0.05  
0.4  
1.5  
1.1  
LSB  
LSB  
Postcalibration  
0.25  
MAIN DAC OUTPUTS  
Offset Error  
−1  
−2  
0
+1  
+2  
−1  
−2  
0
+1  
+2  
−1  
−2  
0
+1  
+2  
−1  
−2  
0
+1  
+2  
mV  
Gain Error  
Internal Reference  
Full-Scale Output Current1  
AVDD = 3.3 V  
% of FSR  
1
2
4
1
2
4
1
2
4
1
2
4
mA  
mA  
V
AVDD = 1.8 V  
1
2
2.5  
+1.2  
1
2
2.5  
+1.2  
1
2
2.5  
+1.2  
1
2
2.5  
+1.2  
Output Compliance Range  
Output Resistance  
Crosstalk, Q DAC to I DAC  
fOUT = 30 MHz  
−0.5  
0
−0.5  
0
−0.5  
0
−0.5  
0
200  
200  
200  
200  
MΩ  
97  
78  
97  
78  
97  
78  
97  
78  
dB  
dB  
fOUT = 60 MHz  
MAIN DAC TEMPERATURE DRIFT  
Offset  
0
0
0
0
ppm/°C  
ppm/°C  
ppm/°C  
Gain  
40  
25  
40  
25  
40  
25  
40  
25  
Reference Voltage  
AUXDAC OUTPUTS  
Resolution  
10  
10  
10  
10  
Bits  
µA  
Full-Scale Output Current  
(Current Sourcing Mode)  
125  
125  
125  
125  
Voltage Output Mode  
VSS  
VSS  
VDD  
VSS  
VSS  
VDD  
VSS  
VSS  
VDD  
VSS  
VSS  
VDD  
V
V
Output Compliance Range  
(Sourcing 1 mA)  
VDD  
0.25  
VDD  
0.25  
VDD  
0.25  
VDD −  
0.25  
Output Compliance Range  
(Sinking 1 mA)  
VSS +  
0.25  
VDD  
VSS +  
0.25  
VDD  
VSS +  
0.25  
VDD  
VSS +  
0.25  
VDD  
V
Output Resistance in Current  
Output Mode, AVSS to 1 V  
1
1
1
1
MΩ  
Bits  
AUX DAC Monotonicity  
Guaranteed  
REFERENCE OUTPUT  
10  
10  
10  
10  
Internal Reference Voltage  
Output Resistance  
0.98  
1.025  
10  
1.08  
0.98  
1.025  
10  
1.08  
0.98  
1.025  
10  
1.08  
0.98  
1.025  
10  
1.08  
V
kΩ  
Rev. B | Page 5 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
AD9714  
AD9715  
Typ  
AD9716  
Typ  
AD9717  
Typ  
Parameter  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
REFERENCE INPUT  
Voltage Compliance  
AVDD = 3.3 V  
0.1  
0.1  
1.25  
1.0  
0.1  
0.1  
1.25  
1.0  
0.1  
0.1  
1.25  
1.0  
0.1  
0.1  
1.25  
1.0  
V
AVDD = 1.8 V  
V
Input Resistance External  
Reference Mode  
1
1
1
1
MΩ  
DAC MATCHING  
Gain Matching  
ANALOG SUPPLY VOLTAGES  
AVDD  
−1  
+1  
−1  
+1  
−1  
+1  
−1  
+1  
% FSR  
1.7  
1.7  
3.5  
3.5  
1.7  
1.7  
3.5  
3.5  
1.7  
1.7  
3.5  
3.5  
1.7  
1.7  
3.5  
3.5  
V
V
CVDD  
DIGITAL SUPPLY VOLTAGES  
DVDD  
1.7  
1.7  
1.9  
3.5  
1.7  
1.7  
1.9  
3.5  
1.7  
1.7  
1.9  
3.5  
1.7  
1.7  
1.9  
3.5  
V
V
DVDDIO  
POWER CONSUMPTION, AVDD =  
DVDDIO = CVDD = 3.3 V  
fDAC = 125 MSPS, IF = 12.5 MHz  
IAVDD  
86  
86  
86  
86  
mW  
mA  
10  
10  
10  
10  
IDVDD + IDVDDIO  
11  
11  
11  
11  
mA  
ICVDD  
3
3
3
3
mA  
Power-Down Mode with Clock  
Power-Down Mode, No Clock  
Power Supply Rejection Ratio  
50  
50  
50  
50  
mW  
mW  
% FSR/V  
1.5  
−0.04  
1.5  
−0.04  
1.5  
−0.04  
1.5  
−0.04  
POWER CONSUMPTION, AVDD =  
DVDDIO = CVDD = 1.8 V.  
fDAC = 125 MSPS, IF = 12.5 MHz  
IAVDD  
35  
35  
35  
35  
mW  
mA  
10  
10  
10  
10  
IDVDD + IDVDDIO  
8
8
8
8
mA  
ICVDD  
1.5  
12  
1.5  
12  
1.5  
12  
1.5  
12  
mA  
Power-Down Mode with Clock  
Power-Down Mode, No Clock  
Power Supply Rejection Ratio  
OPERATING RANGE  
mW  
µW  
850  
−0.001  
+25  
850  
−0.001  
+25  
850  
−0.001  
+25  
850  
−0.001  
+25  
% FSR/V  
°C  
–40  
+85  
–40  
+85  
–40  
+85  
–40  
+85  
1 Based on a 10 kΩ external resistor.  
Rev. B | Page 6 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
DIGITAL SPECIFICATIONS  
TMIN to TMAX, AVDD = 3.3 V, DVDD = 1.8 V, DVDDIO = 3.3 V, CVDD = 3.3 V, IxOUTFS = 2 mA, maximum sample rate, unless  
otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
DAC CLOCK INPUT (CLKIN)  
VIH  
2.1  
3
0
V
VIL  
0.9  
V
Maximum Clock Rate  
125  
MSPS  
SERIAL PERIPHERAL INTERFACE  
Maximum Clock Rate (SCLK)  
25  
20  
20  
MHz  
ns  
Minimum Pulse Width High  
Minimum Pulse Width Low  
ns  
INPUT DATA  
1.8 V Q Channel or DCLKIO Falling Edge  
Setup  
0.25  
1.2  
ns  
ns  
Hold  
1.8 V I Channel or DCLKIO Rising Edge  
Setup  
0.13  
1.1  
ns  
ns  
Hold  
3.3 V Q Channel or DCLKIO Falling Edge  
Setup  
−0.2  
1.5  
ns  
ns  
Hold  
3.3 V I Channel or DCLKIO Rising Edge  
Setup  
Hold  
VIH  
−0.2  
1.6  
3
ns  
ns  
V
2.1  
VIL  
0
0.9  
V
Rev. B | Page 7 of 80  
 
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
AC SPECIFICATIONS  
TMIN to TMAX, AVDD = 3.3 V, DVDD = 1.8 V, DVDDIO = 3.3 V, C V DD = 3. 3 V, IxOUTFS = 2 mA, maximum sample rate, unless  
otherwise noted.  
Table 3.  
AD9714  
Min Typ  
AD9715  
Max Min Typ  
AD9716  
Max Min Typ  
AD9717  
Max Min Typ  
Parameter  
Max Unit  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fDAC = 125 MSPS, fOUT = 10 MHz  
fDAC = 125 MSPS, fOUT = 50 MHz  
75  
60  
82  
61  
83  
62  
84  
63  
dBc  
dBc  
TWO TONE INTERMODULATION  
DISTORTION (IMD)  
fDAC = 125 MSPS, fOUT = 10 MHz  
fDAC = 125 MSPS, fOUT = 50 MHz  
86  
71  
87  
71  
88  
71  
89  
71  
dBc  
dBc  
NOISE SPECTRAL DENSITY (NSD)  
EIGHT-TONE, 500 kHz TONE SPACING  
fDAC = 125 MSPS, fOUT = 10 MHz  
fDAC = 125 MSPS, fOUT = 50 MHz  
−129  
−123  
−141  
−135  
−149  
−137  
−152  
−141  
dBc/Hz  
dBc/Hz  
W-CDMA ADJACENT CHANNEL LEAKAGE  
RATIO (ACLR), SINGLE CARRIER  
fDAC = 61.44 MSPS, fOUT = 20 MHz  
fDAC = 122.88 MSPS, fOUT = 30 MHz  
−71  
−72  
−71  
−72  
−71  
−72  
−71  
−72  
dBc  
dBc  
TMIN to TMAX, AVDD = 1.8 V, DVDD = 1.8 V, DVDDIO = 1.8 V, CVDD = 1.8 V, IxOUTFS = 2 mA, maximum sample rate, unless  
otherwise noted.  
Table 4.  
AD9714  
Min Typ  
AD9715  
Max Min Typ  
AD9716  
Max Min Typ  
AD9717  
Max Min Typ  
Parameter  
Max Unit  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fDAC = 125 MSPS, fOUT = 10 MHz  
fDAC = 125 MSPS, fOUT = 50 MHz  
75  
55  
78  
56  
79  
57  
80  
58  
dBc  
dBc  
TWO TONE INTERMODULATION  
DISTORTION (IMD)  
fDAC = 125 MSPS, fOUT = 10 MHz  
fDAC = 125 MSPS, fOUT = 50 MHz  
79  
53  
80  
53  
84  
53  
85  
53  
dBc  
dBc  
NOISE SPECTRAL DENSITY (NSD)  
EIGHT-TONE, 500 kHz TONE SPACING  
fDAC = 125 MSPS, fOUT = 10 MHz  
fDAC = 125 MSPS, fOUT = 50 MHz  
−132  
−126  
−141  
−131  
−146  
−131  
−148  
−132  
dBc/Hz  
dBc/Hz  
W-CDMA ADJACENT CHANNEL LEAKAGE  
RATIO (ACLR), SINGLE CARRIER  
fDAC = 61.44 MSPS, fOUT = 20 MHz  
fDAC = 122.88 MSPS, fOUT = 30 MHz  
−68  
−68  
−68  
−68  
−68  
−68  
−68  
−68  
dBc  
dBc  
Rev. B | Page 8 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
THERMAL RESISTANCE  
Parameter  
Rating  
AVDD, DVDDIO, CVDD to AVSS, DVSS, CVSS  
DVDD to DVSS  
−0.3 V to +3.9 V  
Table 6.  
−0.3 V to +2.1 V  
1
1
Package Type  
θJA  
θJB  
19.0  
θJC  
3.4  
Unit  
AVSS to DVSS, CVSS  
−0.3 V to +0.3 V  
40-Lead LFCSP (with No Airflow 29.8  
Movement)  
°C/W  
DVSS to AVSS, CVSS  
−0.3 V to +0.3 V  
CVSS to AVSS, DVSS  
−0.3 V to +0.3 V  
1 These calculations are intended to represent the thermal performance of the  
indicated packages using a JEDEC multilayer test board. Do not assume the  
same level of thermal performance in actual applications without a careful  
inspection of the conditions in the application to determine that they are  
similar to those assumed in these calculations.  
REFIO, FSADJQ, FSADJI, CMLQ, CMLI to AVSS  
−0.3 V to AVDD + 0.3 V  
−1.0 V to AVDD + 0.3 V  
QOUTP, QOUTN, IOUTP, IOUTN, RLQP, RLQN,  
RLIP, RLIN to AVSS  
1
CS  
DBn (MSB) to DB0 (LSB), , SCLK, SDIO,  
RESET to DVSS  
−0.3 V to DVDDIO + 0.3 V  
CLKIN to CVSS  
−0.3 V to CVDD + 0.3 V  
125°C  
ESD CAUTION  
Junction Temperature  
Storage Temperature Range  
−65°C to +150°C  
1 n stands for 7 for the AD9714, 9 for the AD9715, 11 for the AD9716, and 13  
for the AD9717.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 9 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
PIN 1  
DB5  
DB4  
1
2
3
4
5
6
7
8
9
30 RLIN  
INDICATOR  
29 IOUTN  
28 IOUTP  
27 RLIP  
DB3  
DB2  
AD9714  
DVDDIO  
DVSS  
26 AVDD  
25 AVSS  
24 RLQP  
23 QOUTP  
22 QOUTN  
21 RLQN  
TOP VIEW  
DVDD  
DB1  
(Not to Scale)  
DB0 (LSB)  
NC 10  
NOTES  
1. NC = NO CONNECT  
2. THE EXPOSED PAD IS CONNECTED TO AVSS AND  
SHOULD BE SOLDERED TO THE GROUND PLANE.  
EXPOSED METAL AT PACKAGE CORNERS IS  
CONNECTED TO THIS PAD.  
Figure 2. AD9714 Pin Configuration  
Table 7. AD9714 Pin Function Descriptions  
Pin No.  
Mnemonic  
DB[5:2]  
DVDDIO  
DVSS  
Description  
1 to 4  
Digital Inputs.  
5
6
7
Digital I/O Supply Voltage (1.8 V to 3.3 V Nominal).  
Digital Common.  
DVDD  
Digital Core Supply Voltage (1.8 V). Strap DVDD to DVDDIO at 1.8 V. If DVDDIO > 1.8 V, bypass DVDD with a  
1.0 µF capacitor; however, do not otherwise connect it. The LDO should not drive external loads.  
8
DB1  
Digital Inputs.  
9
DB0 (LSB)  
NC  
Digital Input (LSB).  
10 to 15  
16  
No Connect. These pins are not connected to the chip.  
Data Input/Output Clock. Clock used to qualify input data.  
Sampling Clock Supply Voltage (1.8 V to 3.3 V). CVDD must be ≥ DVDD.  
LVCMOS Sampling Clock Input.  
DCLKIO  
CVDD  
CLKIN  
CVSS  
17  
18  
19  
Sampling Clock Supply Voltage Common.  
20  
CMLQ  
Q DAC Output Common-Mode Level. When the internal on chip (QRCML) is enabled, this pin is connected to  
the on-chip QRCML resistor. It is recommended to leave this pin unconnected. When the internal on chip  
(QRCML) is disabled, this pin is the common-mode load for Q DAC and must be connected to AVSS through a  
resistor (see the Using the Internal Termination Resistors section). The recommended value for this external  
resistor is 0 Ω.  
21  
RLQN  
Load Resistor (500 Ω) to the CMLQ Pin. For the internal load resistor to be used, this pin should be tied to  
QOUTN externally.  
22  
23  
24  
QOUTN  
QOUTP  
RLQP  
Complementary Q DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Q DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Load Resistor (500 Ω) to the CMLQ Pin. For the internal load resistor to be used, this pin should be tied to  
QOUTP externally.  
25  
26  
27  
AVSS  
AVDD  
RLIP  
Analog Common.  
Analog Supply Voltage (1.8 V to 3.3 V).  
Load Resistor (500 Ω) to the CMLI Pin. For the internal load resistor to be used, this pin should be tied to  
IOUTP externally.  
28  
29  
30  
IOUTP  
IOUTN  
RLIN  
I DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Complementary I DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Load Resistor (500 Ω) to the CMLI Pin. For the internal load resistor to be used, this pin should be tied to  
IOUTN externally.  
Rev. B | Page 10 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
Pin No.  
Mnemonic  
CMLI  
Description  
31  
I DAC Output Common-Mode Level. When the internal on chip (IRCML) is enabled, this pin is connected to the  
on-chip IRCML resistor. It is recommended to leave this pin unconnected. When the internal on chip (IRCML) is  
disabled, this pin is the common-mode load for I DAC and must be connected to AVSS through a resistor  
(see the Using the Internal Termination Resistors section). The recommended value for this external resistor  
is 0 Ω.  
32  
33  
FSADJQ/AUXQ Full-Scale Current Output Adjust (FSADJQ). When the internal on chip (QRSET) is disabled, this pin is the full-  
scale current output adjust for Q DAC and must be connected to AVSS through a resistor (see the Theory of  
Operation section). The nominal value for this external resistor is 16 kΩ for a 2 mA output current.  
Auxiliary Q DAC Output (AUXQ). When the internal on chip (QRSET) is enabled, this pin is the auxiliary Q DAC  
output.  
FSADJI/AUXI  
Full-Scale Current Output Adjust (FSADJI). When the internal on chip (IRSET) is disabled, this pin is full-scale  
current output adjust for I DAC and must be connected to AVSS through a resistor (see the Theory of  
Operation section). The nominal value for this external resistor is 16 kΩ for a 2 mA output current.  
Auxiliary I DAC Output (AUXI). When the internal on chip (IRSET) is enabled, this pin is the auxiliary I DAC  
output.  
34  
35  
REFIO  
Reference Input/Output. Serves as a reference input when the internal reference is disabled. Provides a 1.0 V  
reference output when in internal reference mode (a 0.1 μF capacitor to AVSS is required).  
RESET/PINMD  
This pin defines the operation mode of the part. A logic low (pull-down to DVSS) sets the part in SPI mode.  
Pulse RESET high to reset the SPI registers to their default values.  
A logic high (pull-up to DVDDIO) puts the device into pin mode (PINMD).  
36  
37  
38  
SCLK/CLKMD  
SDIO/FORMAT  
CS/PWRDN  
Clock Input for Serial Port (SCLK). In SPI mode, this pin is the clock input for the serial port.  
Clock Mode (CLKMD). In pin mode, CLKMD determines the phase of the internal retiming clock. When  
DCLKIO = CLKIN, tie it to 0. When DCLKIO ≠ CLKIN, pulse 0 to 1 to edge trigger the internal retimer (see the  
Retimer section).  
Serial Port Input/Output (SDIO). In SPI mode, this pin is the bidirectional data line for serial port.  
Format Pin (FORMAT ). In pin mode, FORMAT determines the data format of digital data. A logic low (pull-  
down to DVSS) selects the binary input data format. A logic high (pull-up to DVDDIO) selects the two  
complement input data format.  
Active Low Chip Select (CS). In SPI mode, this pin serves as the active low chip select. In pin mode, a logic  
high (pull-up to DVDDIO) powers down the device, except for the SPI port.  
Power-Down (PWRDN). In pin mode, PWRDN powers down the device except for the SPI port.  
Digital Input (MSB).  
39  
DB7 (MSB)  
DB6  
40  
Digital Input.  
41 (EPAD)  
Exposed Pad  
(EPAD)  
The exposed pad is connected to AVSS and should be soldered to the ground plane. Exposed metal at the  
package corners is connected to this pad.  
Rev. B | Page 11 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
PIN 1  
DB7  
DB6  
1
2
3
4
5
6
7
8
9
30 RLIN  
INDICATOR  
29 IOUTN  
28 IOUTP  
27 RLIP  
DB5  
DB4  
AD9715  
DVDDIO  
DVSS  
DVDD  
DB3  
26 AVDD  
25 AVSS  
24 RLQP  
23 QOUTP  
22 QOUTN  
21 RLQN  
TOP VIEW  
(Not to Scale)  
DB2  
DB1 10  
NOTES  
1. NC = NO CONNECT  
2. THE EXPOSED PAD IS CONNECTED TO AVSS AND  
SHOULD BE SOLDERED TO THE GROUND PLANE.  
EXPOSED METAL AT PACKAGE CORNERS IS  
CONNECTED TO THIS PAD.  
Figure 3. AD9715 Pin Configuration  
Table 8. AD9715 Pin Function Descriptions  
Pin No.  
Mnemonic  
DB[7:4]  
DVDDIO  
DVSS  
Description  
1 to 4  
Digital Inputs.  
5
6
7
Digital I/O Supply Voltage (1.8 V to 3.3 V Nominal).  
Digital Common.  
DVDD  
Digital Core Supply Voltage (1.8 V). Strap DVDD to DVDDIO at 1.8 V. If DVDDIO > 1.8 V, bypass DVDD with a  
1.0 µF capacitor; however, do not otherwise connect it. The LDO should not drive external loads.  
8 to 10  
11  
DB[3:1]  
DB0 (LSB)  
NC  
Digital Inputs.  
Digital Input (LSB).  
12 to 15  
16  
No Connect. These pins are not connected to the chip.  
Data Input/Output Clock. Clock used to qualify input data.  
Sampling Clock Supply Voltage (1.8 V to 3.3 V). CVDD must be ≥ DVDD.  
LVCMOS Sampling Clock Input.  
DCLKIO  
CVDD  
CLKIN  
CVSS  
17  
18  
19  
Sampling Clock Supply Voltage Common.  
20  
CMLQ  
Q DAC Output Common-Mode Level. When the internal on chip (QRCML) is enabled, this pin is connected to  
the on-chip QRCML resistor. It is recommended to leave this pin unconnected. When the internal on chip  
(QRCML) is disabled, this pin is the common-mode load for Q DAC and must be connected to AVSS through a  
resistor (see the Using the Internal Termination Resistors section). The recommended value for this external  
resistor is 0 Ω.  
21  
RLQN  
Load Resistor (500 Ω) to the CMLQ Pin. For the internal load resistor to be used, this pin should be tied to  
QOUTN externally.  
22  
23  
24  
QOUTN  
QOUTP  
RLQP  
Complementary Q DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Q DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Load Resistor (500 Ω) to the CMLQ Pin. For the internal load resistor to be used, this pin should be tied to  
QOUTP externally.  
25  
26  
27  
AVSS  
AVDD  
RLIP  
Analog Common.  
Analog Supply Voltage (1.8 V to 3.3 V).  
Load Resistor (500 Ω) to the CMLI Pin. For the internal load resistor to be used, this pin should be tied to  
IOUTP externally.  
28  
29  
30  
IOUTP  
IOUTN  
RLIN  
I DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Complementary I DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Load Resistor (500 Ω) to the CMLI Pin. For the internal load resistor to be used, this pin should be tied to  
IOUTN externally.  
Rev. B | Page 12 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
Pin No.  
Mnemonic  
CMLI  
Description  
31  
I DAC Output Common-Mode Level. When the internal on chip (IRCML) is enabled, this pin is connected to the  
on-chip IRCML resistor. It is recommended to leave this pin unconnected. When the internal on chip (IRCML) is  
disabled, this pin is the common-mode load for I DAC and must be connected to AVSS through a resistor  
(see the Using the Internal Termination Resistors section). The recommended value for this external resistor  
is 0 Ω.  
32  
33  
FSADJQ/AUXQ Full-Scale Current Output Adjust (FSADJQ). When the internal on chip (QRSET) is disabled, this pin is the full-  
scale current output adjust for Q DAC and must be connected to AVSS through a resistor (see the Theory of  
Operation section). The nominal value for this external resistor is 16 kΩ for a 2 mA output current.  
Auxiliary Q DAC Output (AUXQ). When the internal on chip (QRSET) is enabled, this pin is the auxiliary Q DAC  
output.  
FSADJI/AUXI  
Full-Scale Current Output Adjust (FSADJI). When the internal on chip (IRSET) is disabled, this pin is the full-  
scale current output adjust for I DAC and must be connected to AVSS through a resistor (see the Theory of  
Operation section). The nominal value for this external resistor is 16 kΩ for a 2 mA output current.  
Auxiliary I DAC Output (AUXI). When the internal on chip (IRSET) is enabled, this pin is the auxiliary I DAC  
output.  
34  
35  
REFIO  
Reference Input/Output. Serves as a reference input when the internal reference is disabled. Provides a 1.0 V  
reference output when in internal reference mode (a 0.1 μF capacitor to AVSS is required).  
RESET/PINMD  
This pin defines the operation mode of the part. A logic low (pull-down to DVSS) sets the part in SPI mode.  
Pulse RESET high to reset the SPI registers to their default values.  
A logic high (pull-up to DVDDIO) puts the device into pin mode (PINMD).  
36  
37  
38  
SCLK/CLKMD  
SDIO/FORMAT  
CS/PWRDN  
Clock Input for Serial Port (SCLK). In SPI mode, this pin is the clock input for the serial port.  
Clock Mode (CLKMD). In pin mode, CLKMD determines the phase of the internal retiming clock. When  
DCLKIO = CLKIN, tie it to 0. When DCLKIO ≠ CLKIN, pulse 0 to 1 to edge trigger the internal retimer (see the  
Retimer section).  
Serial Port Input/Output (SDIO). In SPI mode, this pin is the bidirectional data line for the serial port.  
Format Pin (FORMAT). In pin mode, FORMAT determines the data format of digital data. A logic low  
(pull-down to DVSS) selects the binary input data format. A logic high (pull-up to DVDDIO) selects the  
twos complement input data format.  
Active Low Chip Select (CS). In SPI mode, this pin serves as the active low chip select.  
Power-Down (PWRDN). In pin mode, a logic high (pull-up to DVDDIO) powers down the device, except for  
the SPI port.  
39  
DB9 (MSB)  
DB8  
Digital Input (MSB).  
Digital Input.  
40  
41 (EPAD)  
Exposed Pad  
(EPAD)  
The exposed pad is connected to AVSS and should be soldered to the ground plane. Exposed metal at the  
package corners is connected to this pad.  
Rev. B | Page 13 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
PIN 1  
DB9  
DB8  
1
2
3
4
5
6
7
8
9
30 RLIN  
INDICATOR  
29 IOUTN  
28 IOUTP  
27 RLIP  
DB7  
DB6  
AD9716  
DVDDIO  
DVSS  
DVDD  
DB5  
26 AVDD  
25 AVSS  
24 RLQP  
23 QOUTP  
22 QOUTN  
21 RLQN  
TOP VIEW  
(Not to Scale)  
DB4  
DB3 10  
NOTES  
1. NC = NO CONNECT  
2. THE EXPOSED PAD IS CONNECTED TO AVSS AND  
SHOULD BE SOLDERED TO THE GROUND PLANE.  
EXPOSED METAL AT PACKAGE CORNERS IS  
CONNECTED TO THIS PAD.  
Figure 4. AD9716 Pin Configuration  
Table 9. AD9716 Pin Function Descriptions  
Pin No.  
Mnemonic  
DB[9:6]  
DVDDIO  
DVSS  
Description  
1 to 4  
Digital Inputs.  
5
6
7
Digital I/O Supply Voltage (1.8 V to 3.3 V Nominal).  
Digital Common.  
DVDD  
Digital Core Supply Voltage (1.8 V). Strap DVDD to DVDDIO at 1.8 V. If DVDDIO > 1.8 V, bypass DVDD with a  
1.0 µF capacitor; however, do not otherwise connect it. The LDO should not drive external loads.  
8 to 12  
13  
DB[5:1]  
DB0 (LSB)  
NC  
Digital Inputs.  
Digital Input (LSB).  
14, 15  
16  
No Connect. These pins are not connected to the chip.  
Data Input/Output Clock. Clock used to qualify input data.  
Sampling Clock Supply Voltage (1.8 V to 3.3 V). CVDD must be ≥ DVDD.  
LVCMOS Sampling Clock Input.  
DCLKIO  
CVDD  
CLKIN  
CVSS  
17  
18  
19  
Sampling Clock Supply Voltage Common.  
20  
CMLQ  
Q DAC Output Common-Mode Level. When the internal on chip (QRCML) is enabled, this pin is connected to  
the on-chip QRCML resistor. It is recommended to leave this pin unconnected. When the internal on chip  
(QRCML) is disabled, this pin is the common-mode load for Q DAC and must be connected to AVSS through a  
resistor (see the Using the Internal Termination Resistors section). The recommended value for this external  
resistor is 0 Ω.  
21  
RLQN  
Load Resistor (500 Ω) to the CMLQ Pin. For the internal load resistor to be used, this pin should be tied to  
QOUTN externally.  
22  
23  
24  
QOUTN  
QOUTP  
RLQP  
Complementary Q DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Q DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Load Resistor (500 Ω) to the CMLQ Pin. For the internal load resistor to be used, this pin should be tied to  
QOUTP externally.  
25  
26  
27  
AVSS  
AVDD  
RLIP  
Analog Common.  
Analog Supply Voltage (1.8 V to 3.3 V).  
Load Resistor (500 Ω) to the CMLI Pin. For the internal load resistor to be used, this pin should be tied to  
IOUTP externally.  
28  
29  
30  
IOUTP  
IOUTN  
RLIN  
I DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Complementary I DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Load Resistor (500 Ω) to the CMLI Pin. For the internal load resistor to be used, this pin should be tied to  
IOUTN externally.  
Rev. B | Page 14 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
Pin No.  
Mnemonic  
CMLI  
Description  
31  
I DAC Output Common-Mode Level. When the internal on chip (IRCML) is enabled, this pin is connected to the  
on-chip IRCML resistor. It is recommended to leave this pin unconnected. When the internal on chip (IRCML) is  
disabled, this pin is the common-mode load for I DAC and must be connected to AVSS through a resistor  
(see the Using the Internal Termination Resistors section). The recommended value for this external resistor  
is 0 Ω.  
32  
33  
FSADJQ/AUXQ Full-Scale Current Output Adjust (FSADJQ). When the internal on chip (QRSET) is disabled, this pin is the full-  
scale current output adjust for Q DAC and must be connected to AVSS through a resistor (see the Theory of  
Operation section). The nominal value for this external resistor is 16 kΩ for a 2 mA output current.  
Auxiliary Q DAC Output (AUXQ). When the internal on chip (QRSET) is enabled, this pin is the auxiliary Q DAC  
output.  
FSADJI/AUXI  
Full-Scale Current Output Adjust (FSADJI). When the internal on chip (IRSET) is disabled, this pin is the full-  
scale current output adjust for I DAC and must be connected to AVSS through a resistor (see the Theory of  
Operation section). The nominal value for this external resistor is 16 kΩ for a 2 mA output current.  
Auxiliary I DAC Output (AUXI). When the internal on chip (IRSET) is enabled, this pin is the auxiliary I DAC  
output.  
34  
35  
REFIO  
Reference Input/Output. Serves as a reference input when the internal reference is disabled. Provides a 1.0 V  
reference output when in internal reference mode (a 0.1 μF capacitor to AVSS is required).  
RESET/PINMD  
This pin defines the operation mode of the part. A logic low (pull-down to DVSS) sets the part in SPI mode.  
Pulse RESET high to reset the SPI registers to their default values.  
A logic high (pull-up to DVDDIO) puts the device into pin mode (PINMD).  
36  
37  
38  
SCLK/CLKMD  
SDIO/FORMAT  
CS/PWRDN  
Clock Input for Serial Port (SCLK). In SPI mode, this pin is the clock input for the serial port.  
Clock Mode (CLKMD). In pin mode, CLKMD determines the phase of the internal retiming clock. When  
DCLKIO = CLKIN, tie it to 0. When DCLKIO ≠ CLKIN, pulse 0 to 1 to edge trigger the internal retimer (see the  
Retimer section).  
Serial Port Input/Output (SDIO). In SPI mode, this pin is the bidirectional data line for the serial port.  
Format Pin (FORMAT). In pin mode, FORMAT determines the data format of digital data. A logic low  
(pull-down to DVSS) selects the binary input data format. A logic high (pull-up to DVDDIO) selects the  
twos complement input data format.  
Active Low Chip Select (CS). In SPI mode, this pin serves as the active low chip select.  
Power-Down (PWRDN). In pin mode, a logic high (pull-up to DVDDIO) powers down the device, except for  
the SPI port.  
39  
DB11 (MSB)  
DB10  
Digital Input (MSB).  
Digital Input.  
40  
41 (EPAD)  
Exposed Pad  
(EPAD)  
The exposed pad is connected to AVSS and should be soldered to the ground plane. Exposed metal at the  
package corners is connected to this pad.  
Rev. B | Page 15 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
PIN 1  
DB11  
DB10  
DB9  
1
2
3
4
5
6
7
8
9
30 RLIN  
INDICATOR  
29 IOUTN  
28 IOUTP  
27 RLIP  
DB8  
AD9717  
DVDDIO  
DVSS  
DVDD  
DB7  
26 AVDD  
25 AVSS  
24 RLQP  
23 QOUTP  
22 QOUTN  
21 RLQN  
TOP VIEW  
(Not to Scale)  
DB6  
DB5 10  
NOTES  
1. THE EXPOSED PAD IS CONNECTED TO AVSS AND  
SHOULD BE SOLDERED TO THE GROUND PLANE.  
EXPOSED METAL AT PACKAGE CORNERS IS  
CONNECTED TO THIS PAD.  
Figure 5. AD9717 Pin Configuration  
Table 10. AD9717 Pin Function Descriptions  
Pin No.  
Mnemonic  
DB[11:8]  
DVDDIO  
DVSS  
Description  
1 to 4  
Digital Inputs.  
5
6
7
Digital I/O Supply Voltage (1.8 V to 3.3 V Nominal).  
Digital Common.  
DVDD  
Digital Core Supply Voltage (1.8 V). Strap DVDD to DVDDIO at 1.8 V. If DVDDIO > 1.8 V, bypass DVDD with a  
1.0 µF capacitor; however, do not otherwise connect it. The LDO should not drive external loads.  
8 to 14  
15  
DB[7:1]  
DB0 (LSB)  
DCLKIO  
CVDD  
Digital Inputs.  
Digital Input (LSB).  
16  
Data Input/Output Clock. Clock used to qualify input data.  
Sampling Clock Supply Voltage (1.8 V to 3.3 V). CVDD must be ≥ DVDD.  
LVCMOS Sampling Clock Input.  
17  
18  
CLKIN  
19  
CVSS  
Sampling Clock Supply Voltage Common.  
20  
CMLQ  
Q DAC Output Common-Mode Level. When the internal on chip (QRCML) is enabled, this pin is connected to  
the on-chip QRCML resistor. It is recommended to leave this pin unconnected. When the internal on chip  
(QRCML) is disabled, this pin is the common-mode load for Q DAC and must be connected to AVSS through a  
resistor (see the Using the Internal Termination Resistors section). The recommended value for this external  
resistor is 0 Ω.  
21  
RLQN  
Load Resistor (500 Ω) to the CMLQ Pin. For the internal load resistor to be used, this pin should be tied to  
QOUTN externally.  
22  
23  
24  
QOUTN  
QOUTP  
RLQP  
Complementary Q DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Q DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Load Resistor (500 Ω) to the CMLQ Pin. For the internal load resistor to be used, this pin should be tied to  
QOUTP externally.  
25  
26  
27  
AVSS  
AVDD  
RLIP  
Analog Common.  
Analog Supply Voltage (1.8 V to 3.3 V).  
Load Resistor (500 Ω) to the CMLI Pin. For the internal load resistor to be used, this pin should be tied to  
IOUTP externally.  
28  
29  
30  
IOUTP  
IOUTN  
RLIN  
I DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Complementary I DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Load Resistor (500 Ω) to the CMLI Pin. For the internal load resistor to be used, this pin should be tied to  
IOUTN externally.  
Rev. B | Page 16 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
Pin No.  
Mnemonic  
CMLI  
Description  
31  
I DAC Output Common-Mode Level. When the internal on chip (IRCML) is enabled, this pin is connected to the  
on-chip IRCML resistor. It is recommended to leave this pin unconnected. When the internal on chip (IRCML) is  
disabled, this pin is the common-mode load for I DAC and must be connected to AVSS through a resistor  
(see the Using the Internal Termination Resistors section). The recommended value for this external resistor  
is 0 Ω.  
32  
33  
FSADJQ/AUXQ Full-Scale Current Output Adjust (FSADJQ). When the internal on chip (QRSET) is disabled, this pin is the full-  
scale current output adjust for Q DAC and must be connected to AVSS through a resistor (see the Theory of  
Operation section). The nominal value for this external resistor is 16 kΩ for a 2 mA output current.  
Auxiliary Q DAC Output (AUXQ). When the internal on chip (QRSET) is enabled, this pin is the auxiliary Q DAC  
output.  
FSADJI/AUXI  
Full-Scale Current Output Adjust (FSADJI). When the internal on chip (IRSET) is disabled, this pin is the full-  
scale current output adjust for I DAC and must be connected to AVSS through a resistor (see the Theory of  
Operation section). The nominal value for this external resistor is 16 kΩ for a 2 mA output current.  
Auxiliary I DAC Output (AUXI). When the internal on chip (IRSET) is enabled, this pin is the auxiliary I DAC  
output.  
34  
35  
REFIO  
Reference Input/Output. Serves as a reference input when the internal reference is disabled. Provides a 1.0 V  
reference output when in internal reference mode (a 0.1 μF capacitor to AVSS is required).  
RESET/PINMD  
This pin defines the operation mode of the part. A logic low (pull-down to DVSS) sets the part in SPI mode.  
Pulse RESET high to reset the SPI registers to their default values.  
A logic high (pull-up to DVDDIO) puts the device into pin mode (PINMD).  
36  
37  
38  
SCLK/CLKMD  
SDIO/FORMAT  
CS/PWRDN  
Clock Input for Serial Port (SCLK). In SPI mode, this pin is the clock input for the serial port.  
Clock Mode (CLKMD). In pin mode, CLKMD determines the phase of the internal retiming clock. When  
DCLKIO = CLKIN, tie it to 0. When DCLKIO ≠ CLKIN, pulse 0 to 1 to edge trigger the internal retimer (see the  
Retimer section).  
Serial Port Input/Output (SDIO). In SPI mode, this pin is the bidirectional data line for the serial port.  
Format Pin (FORMAT). In pin mode, FORMAT determines the data format of digital data. A logic low  
(pull-down to DVSS) selects the binary input data format. A logic high (pull-up to DVDDIO) selects the  
twos complement input data format.  
Active Low Chip Select (CS). In SPI mode, this pin serves as the active low chip select.  
Power-Down (PWRDN). In pin mode, a logic high (pull-up to DVDDIO) powers down the device, except for  
the SPI port.  
39  
DB13 (MSB)  
DB12  
Digital Input (MSB).  
Digital Input.  
40  
41 (EPAD)  
Exposed Pad  
(EPAD)  
The exposed pad is connected to AVSS and should be soldered to the ground plane. Exposed metal at the  
package corners is connected to this pad.  
Rev. B | Page 17 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
IxOUTFS = 2 mA, maximum sample rate, unless otherwise noted. DVDD is always at 1.8 V.  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
Figure 6. AD9717 Precalibration INL at 1.8 V (DVDD = 1.8 V)  
Figure 9. AD9717 Postcalibration INL at 1.8 V (DVDD = 1.8 V)  
1.5  
1.5  
1.0  
0.5  
0
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
Figure 7. AD9717 Precalibration DNL at 1.8 V (DVDD = 1.8 V)  
Figure 10. AD9717 Postcalibration DNL at 1.8 V (DVDD = 1.8 V)  
1.75  
1.75  
1.25  
1.25  
0.75  
0.75  
0.25  
0.25  
–0.25  
–0.75  
–1.25  
–1.75  
–0.25  
–0.75  
–1.25  
–1.75  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
Figure 8. AD9717 Precalibration INL at 3.3 V (DVDD = 1.8 V)  
Figure 11. AD9717 Postcalibration INL at 3.3 V (DVDD = 1.8 V)  
Rev. B | Page 18 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
1.75  
1.25  
1.75  
1.25  
0.75  
0.75  
0.25  
0.25  
–0.25  
–0.75  
–1.25  
–1.75  
–0.25  
–0.75  
–1.25  
–1.75  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
Figure 12. AD9717 Precalibration DNL at 3.3 V  
Figure 15. AD9717 Postcalibration DNL at 3.3 V  
0.4  
0.4  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.1  
–0.2  
–0.3  
–0.4  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
CODE  
CODE  
Figure 13. AD9716 Precalibration INL at 1.8 V  
Figure 16. AD9716 Postcalibration INL at 1.8 V  
0.4  
0.4  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.1  
–0.2  
–0.3  
–0.4  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
CODE  
CODE  
Figure 14. AD9716 Precalibration DNL at 1.8 V  
Figure 17. AD9716 Postcalibration DNL at 1.8 V  
Rev. B | Page 19 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
0.4  
0.4  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.1  
–0.2  
–0.3  
–0.4  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
CODE  
CODE  
Figure 18. AD9716 Precalibration INL at 3.3 V  
Figure 21. AD9716 Postcalibration INL at 3.3 V  
0.4  
0.4  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.1  
–0.2  
–0.3  
–0.4  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
CODE  
CODE  
Figure 19. AD9716 Precalibration DNL at 3.3 V  
Figure 22. AD9716 Postcalibration DNL at 3.3 V  
0.13  
0.13  
0.08  
0.08  
0.03  
0.03  
–0.02  
–0.07  
–0.02  
–0.07  
–0.12  
–0.12  
0
128  
256  
384  
512  
640  
768  
896  
1024  
0
128  
256  
384  
512  
640  
768  
896  
1024  
CODE  
CODE  
Figure 20. AD9715 Precalibration INL at 1.8 V  
Figure 23. AD9715 Postcalibration INL at 1.8 V  
Rev. B | Page 20 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
0.13  
0.13  
0.08  
0.08  
0.03  
0.03  
–0.02  
–0.07  
–0.12  
–0.02  
–0.07  
–0.12  
0
128  
256  
384  
512  
640  
768  
896  
1024  
0
128  
256  
384  
512  
640  
768  
896  
1024  
CODE  
CODE  
Figure 24. AD9715 Precalibration DNL at 1.8 V  
Figure 27. AD9715 Postcalibration DNL at 1.8 V  
0.13  
0.08  
0.13  
0.08  
0.03  
0.03  
–0.02  
–0.07  
–0.02  
–0.07  
–0.12  
–0.12  
0
128  
256  
384  
512  
640  
768  
896  
1024  
0
128  
256  
384  
512  
640  
768  
896  
1024  
CODE  
CODE  
Figure 25. AD9715 Precalibration INL at 3.3 V  
Figure 28. AD9715 Postcalibration INL at 3.3 V  
0.13  
0.08  
0.13  
0.08  
0.03  
0.03  
–0.02  
–0.07  
–0.02  
–0.07  
–0.12  
–0.12  
0
128  
256  
384  
512  
640  
768  
896  
1024  
0
128  
256  
384  
512  
640  
768  
896  
1024  
CODE  
CODE  
Figure 26. AD9715 Precalibration DNL at 3.3 V  
Figure 29. AD9715 Postcalibration DNL at 3.3 V  
Rev. B | Page 21 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
0.025  
0.020  
0.015  
0.010  
0.005  
0
0.025  
0.020  
0.015  
0.010  
0.005  
0
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
0
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256  
CODE  
0
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256  
CODE  
Figure 30. AD9714 Precalibration INL at 1.8 V  
Figure 33. AD9714 Postcalibration INL at 1.8 V  
0.025  
0.020  
0.015  
0.010  
0.005  
0
0.025  
0.020  
0.015  
0.010  
0.005  
0
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
0
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256  
CODE  
0
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256  
CODE  
Figure 31. AD9714 Precalibration DNL at 1.8 V  
Figure 34. AD9714 Postcalibration DNL at 1.8 V  
0.025  
0.020  
0.015  
0.010  
0.005  
0
0.025  
0.020  
0.015  
0.010  
0.005  
0
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
0
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256  
CODE  
0
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256  
CODE  
Figure 32. AD9714 Precalibration INL at 3.3 V  
Figure 35. AD9714 Postcalibration INL at 3.3 V  
Rev. B | Page 22 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
0.025  
0.020  
0.015  
0.010  
0.005  
0
0.025  
0.020  
0.015  
0.010  
0.005  
0
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
0
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256  
0
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256  
CODE  
CODE  
Figure 36. AD9714 Precalibration DNL at 3.3 V  
Figure 39. AD9714 Postcalibration DNL at 3.3 V  
–126  
–126  
AD9714  
AD9714  
–129  
–132  
–135  
–138  
–132  
–138  
–144  
–150  
AD9715  
AD9715  
–141  
–144  
AD9716  
AD9717  
–147  
–150  
–153  
AD9716  
AD9717  
–156  
–156  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
fOUT (MHz)  
fOUT (MHz)  
Figure 37. AD9714/AD9715/AD9716/AD9717 Noise Spectral Density at 1.8 V  
Figure 40. AD9714/AD9715/AD9716/AD9717 Noise Spectral Density at 3.3 V  
–133  
–133  
–136  
–136  
–40°C  
+85°C  
–139  
–139  
+25°C  
–142  
–142  
+25°C  
–40°C  
–145  
–148  
–151  
–154  
–145  
+85°C  
–148  
–151  
–154  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
fOUT (MHz)  
fOUT (MHz)  
Figure 38. AD9717 Noise Spectral Density at Three Temperatures, 1.8 V  
Figure 41. AD9717 Noise Spectral Density at Three Temperatures, 3.3 V  
Rev. B | Page 23 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
–130  
–133  
–136  
–139  
–130  
–133  
–136  
–139  
–142  
–145  
–148  
–151  
–154  
–157  
3.3V, 1mA  
1.8V, 1mA  
–142  
1.8V, 2mA  
–145  
3.3V, 4mA  
3.3V, 2mA  
–148  
–151  
–154  
–157  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
fOUT (MHz)  
fOUT (MHz)  
Figure 42. AD9717 Noise Spectral Density at Two Output Currents, 1.8 V  
Figure 45. AD9717 Noise Spectral Density at Three Output Currents, 3.3 V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
START 1MHz  
1.5MHz/DIV  
STOP 16MHz  
START 1MHz  
1.4MHz/DIV  
STOP 15MHz  
Figure 43. AD9717 Two Tone Spectrum, 1.8 V  
Figure 46. AD9717 Two Tone Spectrum, 3.3 V  
88  
100  
AD9717  
82  
76  
70  
64  
58  
52  
94  
88  
AD9716  
AD9715  
AD9714  
AD9715  
AD9716  
AD9717  
82  
AD9714  
76  
70  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
fOUT (MHz)  
fOUT (MHz)  
Figure 44. AD9714/AD9715/AD9716/AD9717 IMD at 1.8 V  
Figure 47. AD9714/AD9715/AD9716/AD9717 IMD at 3.3 V  
Rev. B | Page 24 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
90  
90  
84  
78  
72  
66  
60  
54  
+85°C  
84  
+25°C  
+25°C  
–40°C  
78  
+85°C  
–40°C  
72  
66  
60  
54  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
fOUT (MHz)  
fOUT (MHz)  
Figure 48. AD9717 IMD at Three Temperatures, 1.8 V  
Figure 51. AD9717 IMD at Three Temperatures, 3.3 V  
88  
82  
91  
88  
85  
82  
0dB  
–3dB  
76  
70  
–3dB  
–6dB  
–6dB  
64  
0dB  
79  
76  
58  
52  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
fIN (MHz)  
fIN (MHz)  
Figure 49. AD9717 IMD at Three Digital Input Levels, 1.8 V  
Figure 52. AD9717 IMD at Three Digital Input Levels, 3.3 V  
90  
90  
2mA  
84  
78  
72  
66  
60  
54  
84  
78  
72  
66  
60  
54  
4mA  
1mA  
1mA  
2mA  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
fOUT (MHz)  
fOUT (MHz)  
Figure 50. AD9717 IMD at Two Output Currents, 1.8 V  
Figure 53. AD9717 IMD at Three Output Currents, 3.3 V  
Rev. B | Page 25 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
START 1MHz  
1.5MHz/DIV  
STOP 16MHz  
START 1MHz  
1.4MHz/DIV  
STOP 15MHz  
Figure 54. AD9717 Single-Tone Spectrum, 1.8 V  
Figure 57. AD9717 Single-Tone Spectrum, 3.3 V  
86  
80  
74  
68  
62  
56  
50  
93  
90  
87  
84  
81  
78  
75  
72  
69  
66  
AD9717  
AD9716  
AD9715  
AD9714  
AD9717  
AD9716  
AD9715  
AD9714  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
fOUT (MHz)  
fOUT (MHz)  
Figure 55. AD9714/AD9715/AD9716/AD9717 SFDR at 1.8 V  
Figure 58. AD9714/AD9715/AD9716/AD9717 SFDR at 3.3 V  
90  
84  
90  
84  
3.3V, +85°C  
78  
+85°C  
78  
+25°C  
72  
72  
66  
3.3V, –40°C  
3.3V, +25°C  
66  
60  
54  
–40°C  
60  
54  
48  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
fOUT (MHz)  
fOUT (MHz)  
Figure 59. AD9717 SFDR at Three Temperatures, 3.3 V  
Figure 56. AD9717 SFDR at Three Temperatures, 1.8 V  
Rev. B | Page 26 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
90  
90  
85  
80  
75  
70  
85  
80  
75  
70  
–6dB  
–6dB  
0dB  
–3dB  
–3dB  
65  
60  
55  
50  
65  
60  
55  
50  
0dB  
0
10  
20  
30  
fIN (MHz)  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
fIN (MHz)  
Figure 60. SFDR at Three Digital Input Levels vs. fIN, 1.8 V  
Figure 63. SFDR at Three Digital Input Levels vs. fIN, 3.3 V  
90  
84  
78  
72  
66  
60  
54  
48  
90  
84  
78  
72  
66  
60  
54  
4mA  
1mA  
2mA  
2mA  
1mA  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
fOUT (MHz)  
fOUT (MHz)  
Figure 61. SFDR at Two Output Currents, 1.8 V  
Figure 64. SFDR at Three Output Currents, 3.3 V  
AC-COUPLED: UNSPECIFIED  
BELOW 20MHz  
AC-COUPLED: UNSPECIFIED  
BELOW 20MHz  
CENTER 22.90MHz  
RES BW 30kHz  
SPAN 38.84MHz  
CENTER 22.90MHz  
RES BW 30kHz  
SPAN 38.84MHz  
VBW 300kHz  
VBW 300kHz  
SWEEP 126ms (601pts)  
SWEEP 126ms (601pts)  
TOTAL CARRIER POWER –19.81dBm/7.87420MHz  
REF CARRIER POWER –19.81dBm/4.03420MHz  
RCC FILTER: OFF FILTER ALPHA 0.22  
TOTAL CARRIER POWER –25.42dBm/7.68000MHz  
REF CARRIER POWER –25.42dBm/3.84000MHz  
RCC FILTER: OFF FILTER ALPHA 0.22  
OFFSET INTEG  
FREQ BW  
LOWER  
dBc dBm  
UPPER  
dBc dBm  
OFFSET INTEG  
FREQ BW  
LOWER  
dBc dBm  
UPPER  
dBc dBm  
1. –19.81dBm 5.000MHz 3.840MHz –70.32 –90.13 –72.61 –92.42  
2. –85.75dBm 10.00MHz 3.840MHz –71.81 –91.61 –71.60 –91.41  
15.00MHz 3.840MHz –72.59 –92.40 –65.50 –85.31  
1. –25.42dBm 5.000MHz 3.840MHz –72.52 –97.94 –72.44 –97.86  
2. –88.16dBm 10.00MHz 3.840MHz –72.82 –98.24 –73.02 –98.44  
15.00MHz 3.840MHz –72.18 –97.60 –71.88 –97.30  
Figure 62. AD9717 One-Carrier ACLR, 1.8 V  
Figure 65. AD9717 One-Carrier ACLR, 3.3 V  
Rev. B | Page 27 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
–60  
–60  
–65  
1mA PRECAL  
1mA PRECAL  
1mA POSTCAL  
–65  
2mA POSTCAL  
1mA POSTCAL  
–70  
–75  
–80  
2mA POSTCAL  
–70  
2mA PRECAL  
4mA POSTCAL  
2mA PRECAL  
4mA PRECAL  
fOUT (MHz)  
–75  
15  
25  
35  
45  
15  
25  
35  
45  
fOUT (MHz)  
Figure 66. AD9717 One-Carrier W-CDMA First ACLR, 1.8 V  
Figure 69. AD9717 One-Carrier W-CDMA First ACLR, 3.3 V  
–60  
–60  
1mA PRECAL  
2mA PRECAL  
1mA PRECAL  
–65  
–70  
–75  
–80  
–65  
1mA POSTCAL  
1mA POSTCAL  
2mA PRECAL  
–70  
–75  
2mA POSTCAL  
4mA PRECAL  
2mA POSTCAL  
4mA POSTCAL  
fOUT (MHz)  
15  
25  
35  
45  
15  
25  
35  
45  
fOUT (MHz)  
Figure 67. AD9717 One-Carrier W-CDMA Second ACLR, 1.8 V  
Figure 70. AD9717 One-Carrier W-CDMA Second ACLR, 3.3 V  
–60  
–60  
1mA PRECAL  
1mA PRECAL  
–65  
–65  
2mA POSTCAL  
1mA POSTCAL  
2mA PRECAL  
1mA POSTCAL  
–70  
4mA PRECAL  
–70  
2mA POSTCAL  
–75  
2mA PRECAL  
4mA POSTCAL  
–80  
20  
–75  
20  
30  
fOUT (MHz)  
40  
30  
fOUT (MHz)  
40  
Figure 68. AD9717 One-Carrier W-CDMA Third ACLR, 1.8 V  
Figure 71. AD9717 One-Carrier W-CDMA Third ACLR, 3.3 V  
Rev. B | Page 28 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
AC-COUPLED:UNSPECIFIED  
BELOW 20MHz  
AC-COUPLED: UNSPECIFIED  
BELOW 20MHz  
CENTER 22.90MHz  
RES BW 30kHz  
SPAN 38.84MHz  
CENTER 22.90MHz  
RES BW 30kHz  
SPAN 38.84MHz  
VBW 300kHz  
VBW 300kHz  
SWEEP 126ms (601pts)  
SWEEP 126ms (601pts)  
TOTAL CARRIER POWER –23.08dBm/7.87420MHz  
REF CARRIER POWER –25.84dBm/4.03420MHz  
RCC FILTER: OFF FILTER ALPHA 0.22  
TOTAL CARRIER POWER –33.14dBm/7.87420MHz  
REF CARRIER POWER –25.86dBm/4.03420MHz  
RCC FILTER: OFF FILTER ALPHA 0.22  
OFFSET INTEG  
FREQ BW  
LOWER  
dBc dBm  
UPPER  
dBc dBm  
OFFSET INTEG  
FREQ BW  
LOWER  
dBc dBm  
UPPER  
dBc dBm  
1. –25.84dBm 5.000MHz 3.840MHz –65.45 –91.30 –65.63 –91.47  
2. –26.35dBm 10.00MHz 3.840MHz –67.01 –92.85 –67.05 –92.89  
15.00MHz 3.840MHz –65.22 –91.06 –65.33 –91.18  
1. –25.86dBm 5.000MHz 3.840MHz –66.28 –92.13 –66.68 –92.53  
2. –26.47dBm 10.00MHz 3.840MHz –68.17 –94.02 –66.93 –92.78  
15.00MHz 3.840MHz –64.89 –90.73 –65.84 –91.69  
Figure 72. AD9717 Two-Carrier ACLR, 1.8 V  
Figure 75. AD9717 Two-Carrier ACLR, 3.3 V  
–55  
–55  
1mA POSTCAL  
1mA PRECAL  
1mA PRECAL  
1mA POSTCAL  
–60  
2mA PRECAL  
–60  
2mA PRECAL  
–65  
2mA POSTCAL  
2mA POSTCAL  
4mA PRECAL  
–65  
–70  
–70  
4mA POSTCAL  
–75  
15  
20  
25  
30  
35  
40  
15  
20  
25  
30  
35  
40  
fOUT (MHz)  
fOUT (MHz)  
Figure 73. AD9717 Two-Carrier W-CDMA First ACLR, 1.8 V  
Figure 76. AD9717 Two-Carrier W-CDMA First ACLR, 3.3 V  
–55  
–55  
1mA PRECAL  
1mA PRECAL  
–60  
–65  
–70  
–75  
–60  
1mA POSTCAL  
2mA PRECAL  
1mA POSTCAL  
2mA PRECAL  
–65  
–70  
2mA POSTCAL  
2mA POSTCAL  
4mA POSTCAL  
35  
4mA PRECAL  
25  
15  
20  
25  
30  
35  
40  
15  
20  
30  
40  
fOUT (MHz)  
fOUT (MHz)  
Figure 74. AD9717 Two-Carrier W-CDMA Second ACLR, 1.8 V  
Figure 77. AD9717 Two-Carrier W-CDMA Second ACLR, 3.3 V  
Rev. B | Page 29 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
–55  
–55  
–60  
–65  
–70  
–75  
1mA PRECAL  
1mA PRECAL  
–60  
1mA POSTCAL  
2mA PRECAL  
1mA POSTCAL  
2mA PRECAL  
–65  
–70  
2mA POSTCAL  
4mA PRECAL  
2mA POSTCAL  
4mA POSTCAL  
35  
20  
25  
30  
fOUT (MHz)  
35  
40  
20  
25  
30  
40  
fOUT (MHz)  
Figure 78. AD9717 Two-Carrier W-CDMA Third ACLR, 1.8 V  
Figure 81. AD9717 Two-Carrier W-CDMA Third ACLR, 3.3 V  
0.4  
1.0  
0.3  
0.2  
0.8  
0.6  
0.4  
0.1  
0.2  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
128  
256  
384  
512  
640  
768  
896  
1024  
0
128  
256  
384  
512  
640  
768  
896  
1024  
CODE  
CODE  
Figure 82. AUXDAC INL  
Figure 79. AUXDAC DNL  
25  
TOTAL CURRENT @ 1mA OUT  
TOTAL CURRENT @ 2mA OUT  
TOTAL CURRENT @ 4mA OUT  
30  
20  
10  
20  
15  
10  
5
TOTAL CURRENT @ 2mA OUT  
AVDD @ 4mA OUT  
TOTAL CURRENT @ 1mA OUT  
AVDD @ 2mA OUT  
AVDD @ 1mA OUT  
DVDD  
AVDD @ 2mA OUT  
AVDD @ 1mA OUT  
DVDD  
CVDD  
CVDD  
0
0
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
fCLK (MHz)  
fCLK (MHz)  
Figure 80. Supply Current vs. Clock Frequency at 1.8 V  
Figure 83. Supply Current vs. Clock Frequency at 3.3 V  
Rev. B | Page 30 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
TERMINOLOGY  
Linearity Error or Integral Nonlinearity (INL)  
Linearity error is defined as the maximum deviation of the  
actual analog output from the ideal output, determined by  
a straight line drawn from zero scale to full scale.  
Power Supply Rejection  
Power supply rejection is the maximum change in the full-scale  
output as the supplies are varied from minimum to maximum  
specified voltages.  
Differential Nonlinearity (DNL)  
Settling Time  
DNL is the measure of the variation in analog value, normalized  
to full scale, associated with a 1 LSB change in digital input code.  
Settling time is the time required for the output to reach and  
remain within a specified error band around its final value,  
measured from the start of the output transition.  
Monotonicity  
A DAC is monotonic if the output either increases or remains  
constant as the digital input increases.  
Spurious Free Dynamic Range (SFDR)  
SFDR is the difference, in decibels (dB), between the peak  
amplitude of the output signal and the peak spurious signal  
between dc and the frequency equal to half the input data rate.  
Offset Error  
Offset error is the deviation of the output current from the  
ideal of zero. For IOUTP, 0 mA output is expected when the  
inputs are all 0. For IOUTN, 0 mA output is expected when all  
inputs are set to 1.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first six harmonic  
components to the rms value of the measured fundamental.  
It is expressed as a percentage or in decibels.  
Gain Error  
Gain error is the difference between the actual and the ideal  
output span. The actual span is determined by the difference  
between the output when all inputs are set to 1 and the output  
when all inputs are set to 0.  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the rms value of the measured output signal  
to the rms sum of all other spectral components below the  
Nyquist frequency, excluding the first six harmonics and dc.  
The value for SNR is expressed in decibels (dB).  
Output Compliance Range  
Output compliance range is the range of allowable voltage at  
the output of a current-output DAC. Operation beyond the  
maximum compliance limits can cause either output stage  
saturation or breakdown, resulting in nonlinear performance.  
Adjacent Channel Leakage Ratio (ACLR)  
ACLR is the ratio in decibels relative to the carrier (dBc)  
between the measured power within a channel relative to its  
adjacent channel.  
Temperature Drift  
Complex Image Rejection  
Temperature drift is specified as the maximum change from  
In a traditional two-part upconversion, two images are created  
around the second IF frequency. These images have the effect of  
wasting transmitter power and system bandwidth. By placing  
the real part of a second complex modulator in series with the  
first complex modulator, either the upper or lower frequency  
image near the second IF can be rejected.  
the ambient value (25°C) to the value at either TMIN or TMAX  
.
For offset and gain drift, the drift is reported in ppm of full-  
scale range per degree Celsius (ppm FSR/°C). For reference  
drift, the drift is reported in parts per million per degree  
Celsius (ppm/°C).  
Rev. B | Page 31 of 80  
AD9714/AD9715/AD9716/AD9717  
THEORY OF OPERATION  
Data Sheet  
1V  
AD9717  
SPI  
INTERFACE  
DB11  
QR  
16kΩ  
IR  
SET  
16kΩ  
SET  
IR  
CML  
1kΩ TO  
250Ω  
DB10  
RLIN  
500Ω  
500Ω  
10kΩ  
DB9  
DB8  
IOUTN  
IOUTP  
I
I DAC  
REF  
100µA  
BAND  
GAP  
RLIP  
AUX1DAC  
AUX2DAC  
DVDDIO  
1 INTO 2  
AVDD  
AVSS  
RLQP  
INTERLEAVED  
DATA  
INTERFACE  
I DATA  
DVSS  
500Ω  
500Ω  
DVDD  
1.8V  
LDO  
QOUTP  
QOUTN  
Q DATA  
Q DAC  
DB7  
DB6  
CLOCK  
DIST  
RLQN  
QR  
CML  
1kΩ TO  
250Ω  
DB5  
Figure 84. Simplified Block Diagram  
Figure 84 shows a simplified block diagram of the AD9714/  
AD9715/AD9716/AD9717 that consists of two DACs, digital  
control logic, and a full-scale output current control. Each DAC  
contains a PMOS current source array capable of providing a  
nominal full-scale current (IxOUTFS) of 2 mA and a maximum of  
4 mA. The arrays are divided into 31 equal currents that make  
up the five most significant bits (MSBs). The next four bits, or  
middle bits, consist of 15 equal current sources whose value is  
1/16 of an MSB current source. The remaining LSBs are binary  
weighted fractions of the current sources of the middle bits.  
Implementing the middle and lower bits with current sources,  
instead of an R-2R ladder, enhances its dynamic performance  
for multitone or low amplitude signals and helps maintain the  
high output impedance of the DACs (that is, >200 MΩ).  
LDO is provided for DVDDIO supplies greater than 1.8 V, or the  
1.8 V can be supplied directly through DVDD. A 1.0 µF bypass  
capacitor at DVDD (Pin 7) is required when using the LDO.  
The core is capable of operating at a rate of up to 125 MSPS. It  
consists of edge-triggered latches and the segment decoding logic  
circuitry. The analog section includes PMOS current sources,  
associated differential switches, a 1.0 V band gap voltage  
reference, and a reference control amplifier.  
Each DAC full-scale output current is regulated by the reference  
control amplifier and can be set from 1 mA to 4 mA via an external  
resistor, xRSET, connected to its full-scale adjust pin (FSADJx).  
The external resistor, in combination with both the reference  
control amplifier and voltage reference, VREFIO, sets the reference  
current, IxREF, which is replicated to the segmented current sources  
with the proper scaling factor. The full-scale current, IxOUTFS, is  
All of these current sources are switched to one or the other  
of the two output nodes (IOUTP or IOUTN) via PMOS differential  
current switches. The switches are based on the architecture that  
was pioneered in the AD976x family, with further refinements  
to reduce distortion contributed by the switching transient. This  
switch architecture also reduces various timing errors and  
provides matching complementary drive signals to the inputs  
of the differential current switches.  
32 × IxREF  
.
Optional on-chip xRSET resistors are provided that can be pro-  
grammed between a nominal value of 8 kΩ to 32 kΩ (4 mA to  
1 mA IxOUTFS, respectively).  
The AD9714/AD9715/AD9716/AD9717 provide the option of  
setting the output common mode to a value other than AVSS  
via the output common-mode pins (CMLI and CMLQ). This  
facilitates directly interfacing the output of the AD9714/AD9715/  
AD9716/AD9717 to components that require common-mode  
levels greater than 0 V.  
The analog and digital I/O sections of the AD9714/AD9715/  
AD9716/AD9717 have separate power supply inputs (AVDD and  
DVDDIO) that can operate independently over a 1.8 V to 3.3 V  
range. The core digital section requires 1.8 V. An optional on-chip  
Rev. B | Page 32 of 80  
 
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
SERIAL PERIPHERAL INTERFACE (SPI)  
The serial port of the AD9714/AD9715/AD9716/AD9717 is a  
flexible, synchronous serial communications port that allows easy  
interfacing to many industry-standard microcontrollers and  
microprocessors. The serial I/O is compatible with most synchron-  
ous transfer formats, including both the Motorola SPI and Intel®  
SSR protocols. The interface allows read/write access to all registers  
that configure the AD9714/AD9715/AD9716/AD9717. Single or  
multiple byte transfers are supported, as well as MSB first or  
LSB first transfer formats. The serial interface port of the AD9714/  
AD9715/AD9716/AD9717 is configured as a single I/O pin on  
the SDIO pin.  
INSTRUCTION BYTE  
The instruction byte contains the information shown in Table 11.  
Table 11.  
MSB  
DB7  
R/W  
LSB  
DB6  
DB5  
DB4 DB3 DB2 DB1 DB0  
N1  
N0  
A4  
A3  
A2  
A1  
A0  
W
R/ (Bit 7 of the instruction byte) determines whether a read or a  
write data transfer occurs after the instruction byte write. Logic 1  
indicates a read operation. Logic 0 indicates a write operation.  
N1 and N0 (Bit 6 and Bit 5 of the instruction byte) determine the  
number of bytes to be transferred during the data transfer cycle.  
The bit decodes are shown in Table 12.  
GENERAL OPERATION OF THE SERIAL INTERFACE  
There are two phases to a communications cycle on the AD9714/  
AD9715/AD9716/AD9717. Phase 1 is the instruction cycle, which  
is the writing of an instruction byte into the AD9714/AD9715/  
AD9716/AD9717, coinciding with the first eight SCLK rising  
edges. In Phase 2, the instruction byte provides the serial port  
controller of the AD9714/AD9715/AD9716/AD9717 with infor-  
mation regarding the data transfer cycle. The Phase 1 instruction  
byte defines whether the upcoming data transfer is a read or write,  
the number of bytes in the data transfer, and the starting register  
address for the first byte of the data transfer. The first eight SCLK  
rising edges of each communication cycle are used to write the  
instruction byte into the AD9714/AD9715/AD9716/AD9717.  
Table 12. Byte Transfer Count  
N1  
0
N0  
0
Description  
Transfer 1 byte  
Transfer 2 bytes  
Transfer 3 bytes  
Transfer 4 bytes  
0
1
1
0
1
1
A4, A3, A2, A1, and A0 (Bit 4, Bit 3, Bit 2, Bit 1, and Bit 0 of the  
instruction byte) determine which register is accessed during the  
data transfer portion of the communications cycle. For multi-  
byte transfers, this address is the starting byte address. The  
following register addresses are generated internally by the  
AD9714/AD9715/AD9716/AD9717, based on the LSBFIRST bit  
(Register 0x00, Bit 6).  
A Logic 1 on Pin 35 (RESET/PINMD), followed by a Logic 0,  
resets the SPI port timing to the initial state of the instruction  
cycle. This is true regardless of the present state of the internal  
registers or the other signal levels present at the inputs to the  
SPI port. If the SPI port is in the midst of an instruction cycle  
or a data transfer cycle, none of the present data is written.  
SERIAL INTERFACE PORT PIN DESCRIPTIONS  
SCLK—Serial Clock  
The serial clock pin is used to synchronize data to and from the  
AD9714/AD9715/AD9716/AD9717 and to run the internal state  
machines. The SCLK maximum frequency is 20 MHz. All data  
input to the AD9714/AD9715/AD9716/AD9717 is registered on  
the rising edge of SCLK. All data is driven out of the AD9714/  
AD9715/AD9716/AD9717 on the falling edge of SCLK.  
The remaining SCLK edges are for Phase 2 of the communication  
cycle. Phase 2 is the actual data transfer between the AD9714/  
AD9715/AD9716/AD9717 and the system controller. Phase 2 of  
the communication cycle is a transfer of one, two, three, or four  
data bytes, as determined by the instruction byte. Using one multi-  
byte transfer is the preferred method. Single-byte data transfers  
are useful to reduce CPU overhead when register access requires  
one byte only. Registers change immediately upon writing to the  
last bit of each transfer byte.  
CS  
—Chip Select  
An active low input starts and gates a communications cycle.  
It allows more than one device to be used on the same serial  
communications lines. The SDIO/FORMAT pin reaches a  
high impedance state when this input is high. Chip select  
should stay low during the entire communications cycle.  
SDIO—Serial Data I/O  
The SDIO pin is used as a bidirectional data line to transmit  
and receive data.  
Rev. B | Page 33 of 80  
 
 
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
MSB/LSB TRANSFERS  
CS  
The serial port of the AD9714/AD9715/AD9716/AD9717 can  
support both most significant bit (MSB) first or least significant  
bit (LSB) first data formats. This functionality is controlled by  
the LSBFIRST bit (Register 0x00, Bit 6). The default is MSB first  
(LSBFIRST = 0).  
SCLK  
R/W N1 N0 A4 A3 A2 A1 A0  
D7  
D6 D5  
N
D3 D2 D1 D0  
0 0 0 0  
N
SDIO  
SDO  
When LSBFIRST = 0 (MSB first), the instruction and data bytes  
must be written from the most significant bit to the least significant  
bit. Multibyte data transfers in MSB first format start with an  
instruction byte that includes the register address of the most  
significant data byte. Subsequent data bytes should follow in  
order from a high address to a low address. In MSB first mode,  
the serial port internal byte address generator decrements for  
each data byte of the multibyte communications cycle.  
Figure 86. Serial Register Interface Timing, MSB First Read  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
SDIO  
A0 A1 A2 A3 A4 N0 N1 R/W D00 D10 D20  
D4N D5N D6N D7N  
When LSBFIRST = 1 (LSB first), the instruction and data bytes  
must be written from the least significant bit to the most signifi-  
cant bit. Multibyte data transfers in LSB first format start with  
an instruction byte that includes the register address of the least  
significant data byte followed by multiple data bytes. The serial  
port internal byte address generator increments for each byte  
of the multibyte communication cycle.  
Figure 87. Serial Register Interface Timing, LSB First Write  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
The serial port controller data address of the AD9714/AD9715/  
AD9716/AD9717 decrements from the data address written  
toward 0x00 for multibyte I/O operations if the MSB first mode  
is active. The serial port controller address increments from the  
data address written toward 0x1F for multibyte I/O operations  
if the LSB first mode is active.  
A0 A1 A2 A3 A4 N0 N1 R/W  
D0  
D10 D20  
D4N D5N D6N D7N  
SDIO  
SDO  
Figure 88. Serial Register Interface Timing, LSB First Read  
PIN MODE  
The AD9714/AD9715/AD9716/AD9717 can also be operated  
without ever writing to the serial port. With the RESET/PINMD  
pin tied high, the SCLK pin becomes CLKMD to provide for  
clock mode control (see the Retimer section), the SDIO pin  
becomes FORMAT and selects the input data format, and the  
SERIAL PORT OPERATION  
The serial port configuration of the AD9714/AD9715/AD9716/  
AD9717 is controlled by Register 0x00. It is important to note  
that the configuration changes immediately upon writing to the  
last bit of the register. For multibyte transfers, writing to this  
register can occur during the middle of the communications  
cycle. Care must be taken to compensate for this new configu-  
ration for the remaining bytes of the current communications cycle.  
CS  
/PWRDN pin serves to power down the device.  
Operation is otherwise exactly as defined by the default register  
values in Table 13; therefore, external resistors at FSADJI and  
FSADJQ are needed to set the DAC currents, and both DACs  
are active. This is also a convenient quick checkout mode.  
The same considerations apply to setting the software reset bit  
(Register 0x00, Bit 5). All registers are set to their default values  
except Register 0x00, which remains unchanged.  
DAC currents can be externally adjusted in pin mode by sourcing  
or sinking currents at the FSADJI/AUXI and FSADJQ/AUXQ  
pins as desired with the fixed resistors installed. An op amp  
output with appropriate series resistance is one of many possibili-  
ties. This has the same effect as changing the resistor value.  
Place at least 10 kΩ resistors in series right at the DAC to guard  
against accidental short circuits and noise modulation. The  
REFIO pin can be adjusted ±±5ꢀ in a similar manner, if desired.  
Use of single-byte transfers or initiating a software reset is  
recommended when changing serial port configurations to  
prevent unexpected device behavior.  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
SDIO  
R/W N1 N0 A4 A3 A2 A1 A0 D7 D6 D5  
D3 D2 D1 D0  
0 0 0 0  
N
N
N
Figure 85. Serial Register Interface Timing, MSB First Write  
Rev. B | Page 34 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
SPI REGISTER MAP  
Table 13.  
Name  
Addr Default Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI Control  
Power-Down  
Data Control  
I DAC Gain  
IRSET  
0x00 0x00  
0x01 0x40  
0x02 0x34  
0x03 0x00  
0x04 0x00  
0x05 0x00  
0x06 0x00  
0x07 0x00  
0x08 0x00  
0x09 0x00  
0x0A 0x00  
0x0B 0x00  
0x0C 0x00  
Reserved  
LDOOFF  
TWOS  
LSBFIRST Reset  
LDOSTAT PWRDN  
Reserved IFIRST  
LNGINS  
Q DACOFF I DACOFF  
IRISING SIMULBIT  
QCLKOFF  
DCI_EN  
ICLKOFF EXTREF  
DCOSGL DCODBL  
Reserved  
I DACGAIN[5:0]  
IRSETEN  
Reserved  
Reserved  
IRSET[5:0]  
IRCML[5:0]  
IRCML  
IRCMLEN  
Q DAC Gain  
QRSET  
Reserved  
Q DACGAIN[5:0]  
QRSET[5:0]  
QRSETEN  
Reserved  
QRCML  
QRCMLEN Reserved  
QRCML[5:0]  
AUXDAC Q  
AUX CTLQ  
AUXDAC I  
AUX CTLI  
QAUXDAC[7:0]  
QAUXOFS[2:0]  
IAUXDAC[7:0]  
IAUXOFS[2:0]  
RREF[5:0]  
CALCLK DIVSEL[2:0]  
CALMEMQ[1:0]  
MEMADDR[5:0]  
MEMDATA[5:0]  
SMEMWR SMEMRD  
QAUXEN  
QAUXRNG[1:0]  
IAUXRNG[1:0]  
QAUXDAC[9:8]  
IAUXDAC[9:8]  
IAUXEN  
Reference Resistor 0x0D 0x00  
Reserved  
PRELDQ PRELDI  
Cal Control  
Cal Memory  
Memory Address  
Memory Data  
Memory R/W  
CLKMODE  
0x0E 0x00  
0x0F 0x00  
0x10 0x00  
0x11 0x34  
0x12 0x00  
0x14 0x00  
0x1F 0x03  
CALSELQ CALSELI  
CALSTATQ CALSTATI  
Reserved  
CALMEMI[1:0]  
Reserved  
CALRSTQ  
CALRSTI  
CALEN  
UNCALQ UNCALI  
CLKMODEQ[1:0]  
Searching Reacquire  
Version[7:0]  
CLKMODEN CLKMODEI[1:0]  
Version  
Rev. B | Page 35 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
SPI REGISTER DESCRIPTIONS  
Reading these registers returns previously written values for all defined register bits, unless otherwise noted.  
Table 14.  
Register  
Address Bit  
Name  
Description  
SPI Control  
0x00  
6
5
LSBFIRST  
0 (default): MSB first, per SPI standard.  
1: LSB first, per SPI standard.  
Note that the user must always change the LSB/MSB order in single-byte  
instructions to avoid erratic behavior due to bit order errors.  
Reset  
Execute software reset of SPI and controllers, reload default register values except  
Register 0x00.  
1: sets software reset; write 0 on the next (or any following) cycle to release reset.  
0 (default): the SPI instruction word uses a 5-bit address.  
1: the SPI instruction word uses a 13-bit address.  
0 (default): LDO voltage regulator on.  
4
7
6
5
4
3
2
1
0
7
5
4
3
2
LNGINS  
LDOOFF  
LDOSTAT  
PWRDN  
Q DACOFF  
I DACOFF  
QCLKOFF  
ICLKOFF  
EXTREF  
0x01  
Power-Down  
1: turns core LDO voltage regulator off.  
0: indicates that the core LDO voltage regulator is off.  
1 (default) : indicates that the core LDO voltage regulator is on.  
0 (default): all analog and digital circuitry and SPI logic are powered on.  
1: powers down all analog and digital circuitry except for SPI logic.  
0 (default): turns on Q DAC output current.  
1: turns off Q DAC output current.  
0 (default): turns on I DAC output current.  
1: turns off I DAC output current.  
0 (default): turns on Q DAC clock.  
1: turns off Q DAC clock.  
0 (default): turns on I DAC clock.  
1: turns off I DAC clock.  
0 (default): turns on internal voltage reference.  
1: powers down internal voltage reference (external reference required).  
0 (default): unsigned binary input data format.  
1: twos complement input data format.  
Data Control  
0x02  
TWOS  
IFIRST  
0: pairing of data—Q first of pair on data input pads.  
1 (default): pairing of data—I first of pair on data input pads.  
0: Q data latched on DCLKIO rising edge.  
IRISING  
1 (default): I data latched on DCLKIO rising edge.  
0 (default): allows simultaneous input and output enable on DCLKIO.  
1: disallows simultaneous input and output enable on DCLKIO.  
Controls the use of the DCLKIO pad for data clock input.  
0: data clock input disabled.  
SIMULBIT  
DCI_EN  
1 (default): data clock input enabled.  
1
0
DCOSGL  
DCODBL  
Controls the use of the DCLKIO pad for data clock output.  
0 (default): data clock output disabled.  
1: data clock output enabled; regular strength driver.  
Controls the use of the DCLKIO pad for data clock output.  
0 (default): DCODBL data clock output disabled.  
1: DCODBL data clock output enabled; paralleled with DCOSGL for 2× drive  
current.  
I DAC Gain  
0x03  
5:0  
I DACGAIN[5:0]  
DAC I fine gain adjustment; alters the full-scale current as shown in Figure 100.  
Default IDACGAIN = 0x00.  
Rev. B | Page 36 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
Register  
Address Bit  
Name  
Description  
IRSET  
0x04  
7
IRSETEN  
0 (default): IRSET resistor value for I channel is set by an external resistor connected  
to the FADJI/AUXI pin. Nominal value for this external resistor is 16 kΩ.  
1: enables the on-chip IRSET value to be changed for I channel.  
5:0  
IRSET[5:0]  
Changes the value of the on-chip IRSET resistor for I channel; this scales the full-scale  
current of the DAC in ~0.25 dB steps twos complement (nonlinear); see Figure 99.  
000000 (default): IRSET = 16 kΩ.  
011111: IRSET = 32 kΩ.  
100000: IRSET = 8 kΩ.  
111111: IRSET = 16 kΩ.  
IRCML  
0x05  
7
IRCMLEN  
0 (default): IRCML resistor value for the I channel is set by an external resistor  
connected to the CMLI pin. Recommended value for this external resistor is 0 Ω.  
1: enables on-chip IRCML adjustment for I channel.  
5:0  
IRCML[5:0]  
Changes the value of the on-chip IRCML resistor for I channel; this adjusts the  
common-mode level of the DAC output stage.  
000000 (default): IRCML = 250 Ω.  
100000: IRCML= 625 Ω.  
111111: IRCML = 1 kΩ.  
Q DAC Gain  
QRSET  
0x06  
0x07  
5:0  
7
Q DACGAIN[5:0] DAC Q fine gain adjustment; alters the full-scale current as shown in Figure 100.  
Default QDACGAIN = 0x00.  
QRSETEN  
0 (default): QRSET resistor value for Q channel is set by an external resistor connected  
to the FADJQ/AUXQ pin. Recommended value for this external resistor is 16 kΩ.  
1: enables on-chip QRSET adjustment for Q channel.  
5:0  
QRSET[5:0]  
Changes the value of the on-chip QRSET resistor for Q channel; this scales the full-  
scale current of the DAC in ~0.25 dB steps twos complement (nonlinear); see  
Figure 99.  
000000 (default): QRSET = 16 kΩ.  
011111: QRSET = 32 kΩ.  
100000: QRSET = 8 kΩ.  
111111: QRSET = 16 kΩ.  
QRCML  
0x08  
7
QRCMLEN  
0 (default): QRCML resistor value for the Q channel is set by an external resistor  
connected to CMLQ pin. Recommended value for this external resistor is 0 Ω.  
1: enables on-chip QRCML adjustment for Q channel.  
5:0  
QRCML[5:0]  
Changes the value of the on-chip QRCML resistor for Q channel; this adjusts the  
common-mode level of the DAC output stage.  
000000 (default): QRCML = 250 Ω.  
100000: QRCML = 625 Ω.  
111111: QRCML = 1 kΩ.  
AUXDAC Q  
AUX CTLQ  
0x09  
0x0A  
7:0  
QAUXDAC[7:0]  
AUXDAC Q output voltage adjustment word LSBs.  
0x3FF: sets AUXDAC Q output to full scale.  
0x200: sets AUXDAC Q output to midscale.  
0x000 (default): sets AUXDAC Q output to bottom of scale.  
0 (default): AUXDAC Q output disabled.  
7
QAUXEN  
1: enables AUXDAC Q output.  
6:5  
QAUXRNG[1:0]  
00 (default): sets AUXDAC Q output voltage range to 2 V.  
01: sets AUXDAC Q output voltage range to 1.5 V.  
10: sets AUXDAC Q output voltage range to 1.0 V.  
11: sets AUXDAC Q output voltage range to 0.5 V.  
000 (default): sets AUXDAC Q top of range to 1.0 V.  
001: sets AUXDAC Q top of range to 1.5 V.  
010: sets AUXDAC Q top of range to 2.0 V.  
011: sets AUXDAC Q top of range to 2.5 V.  
100: sets AUXDAC Q top of range to 2.9 V.  
AUXDAC Q output voltage adjustment word MSBs (default = 00).  
4:2  
1:0  
QAUXOFS[2:0]  
QAUXDAC[9:8]  
Rev. B | Page 37 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
Register  
Address Bit  
Name  
Description  
AUXDAC I  
0x0B  
7:0  
IAUXDAC[7:0]  
AUXDAC I output voltage adjustment word LSBs.  
0x3FF: sets AUXDAC I output to full scale.  
0x200: sets AUXDAC I output to midscale.  
0x000 (default): sets AUXDAC I output to bottom of scale.  
0 (default): AUXDAC I output disabled.  
AUX CTLI  
0x0C  
7
IAUXEN  
1: enables AUXDAC I output.  
6:5  
IAUXRNG[1:0]  
00 (default): sets AUXDAC I output voltage range to 2 V.  
01: sets AUXDAC I output voltage range to 1.5 V.  
10: sets AUXDAC I output voltage range to 1.0 V.  
11: sets AUXDAC I output voltage range to 0.5 V.  
000 (default): sets AUXDAC I top of range to 1.0 V.  
001: sets AUXDAC I top of range to 1.5 V.  
010: sets AUXDAC I top of range to 2.0 V.  
011: sets AUXDAC I top of range to 2.5 V.  
100: sets AUXDAC I top of range to 2.9 V.  
AUXDAC I output voltage adjustment word MSBs (default = 00).  
4:2  
IAUXOFS[2:0]  
1:0  
5:0  
IAUXDAC[9:8]  
RREF[5:0]  
Reference  
Resistor  
0x0D  
0x0E  
Permits an adjustment of the on-chip reference voltage and output at REFIO (see  
Figure 98) twos complement.  
000000 (default): sets the value of RREF to 10 kΩ, VREF = 1.0 V.  
011111: sets the value of RREF to 12 kΩ, VREF = 1.2 V.  
100000: sets the value of RREF to 8 kΩ, VREF = 0.8 V.  
111111: sets the value of RREF to 10 kΩ, VREF = 1.0 V.  
0 (default): preload Q DAC calibration reference set to 32.  
1: preload Q DAC calibration reference set by user (Cal Address 1).  
0 (default): preload I DAC calibration reference set to 32.  
1: preload I DAC calibration reference set by user (Cal Address 1).  
0 (default): Q DAC self-calibration done.  
1: select Q DAC self-calibration.  
Cal Control  
7
PRELDQ  
PRELDI  
6
5
CALSELQ  
CALSELI  
CALCLK  
4
0 (default): I DAC self-calibration done.  
1: select I DAC self-calibration.  
3
0 (default): calibration clock disabled.  
1: calibration clock enabled.  
2:0  
DIVSEL[2:0]  
Calibration clock divide ratio from DAC clock rate.  
000 (default): divide by 256.  
001: divide by 128.  
110: divide by 4.  
111: divide by 2.  
Cal Memory  
0x0F  
7
CALSTATQ  
0 (default): Q DAC calibration in progress.  
1: calibration of Q DAC complete.  
0 (default): I DAC calibration in progress.  
1: calibration of I DAC complete.  
6
CALSTATI  
3:2  
CALMEMQ[1:0]  
Status of Q DAC calibration memory.  
00 (default): uncalibrated.  
01: self-calibrated.  
10: user calibrated.  
1:0  
CALMEMI[1:0]  
Status of I DAC calibration memory.  
00 (default): uncalibrated.  
01: self-calibrated.  
10: user calibrated.  
Memory Address 0x10  
Memory Data 0x11  
5:0  
5:0  
MEMADDR[5:0]  
MEMDATA[5:0]  
Address of static memory to be accessed.  
Data for static memory access.  
Rev. B | Page 38 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
Register  
Address Bit  
Name  
Description  
Memory R/W  
0x12  
7
CALRSTQ  
0 (default): no action.  
1: clear CALSTATQ.  
0 (default): no action.  
1: clear CALSTATI.  
0 (default): no action.  
6
CALRSTI  
CALEN  
4
1: initiate device self-calibration.  
3
SMEMWR  
SMEMRD  
UNCALQ  
UNCALI  
0 (default): no action.  
1: write to static memory (calibration coefficients).  
0 (default): no action.  
2
1: read from static memory (calibration coefficients).  
0 (default): no action.  
1
1: reset Q DAC calibration coefficients to default (uncalibrated).  
0 (default): no action.  
0
1: reset I DAC calibration coefficients to default (uncalibrated).  
CLKMODE  
0x14  
7:6  
CLKMODEQ[1:0] Depending on the CLKMODEN bit setting, these two bits reflect the phase  
relationship between DCLKIO and CLKIN, as described in Table 16.  
If CLKMODEN = 0, read only; reports the clock phase chosen by the retimer.  
If CLKMODEN = 1, read/write; value in this register sets Q clock phases; force if  
needed to better synchronize the DACs (see the Retimer section).  
4
Searching  
Data path retimer status bit.  
0 (default): clock relationship established.  
1: indicates that the internal data path retimer is searching for clock relationship  
(device output is not usable while this bit is high).  
3
2
Reacquire  
Edge triggered, 0 to 1 causes the retimer to reacquire the clock relationship.  
CLKMODEN  
0 (default): CLKMODEI/CLKMODEQ values computed by the two retimers and  
read back in CLKMODEI[1:0] and CLKMODEQ[1:0].  
1: CLKMODE values set in CLKMODEI[1:0] override both I and Q retimers.  
1:0  
7:0  
CLKMODEI[1:0]  
Version[7:0]  
Depending on CLKMODEN bit setting, these two bits reflect the phase  
relationship between DCLKIO and CLKIN as described in Table 16.  
If CLKMODEN = 0, read only; reports the clock phase chosen by the retimer.  
If CLKMODEN = 1, read/write; value in this register sets I clock phases; force if  
needed to better synchronize the DACs (see the Retimer section).  
Version  
0x1F  
Hardware version of the device. This register is set to 0x03 for the latest version of  
the device.  
Rev. B | Page 39 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
DIGITAL INTERFACE OPERATION  
Digital data for the I and Q DACs is supplied over a single  
parallel bus (DB[n:0), where n is 7 for the AD9714, 9 for  
the AD9715, 11 for the AD9716, and 13 for the AD9717)  
accompanied by a qualifying clock (DCLKIO). The I and Q  
data are provided to the chip in an interleaved double data  
rate (DDR) format. The maximum guaranteed data rate is  
±50 MSPS with a 1±5 MHz clock. The order of data pairing  
and the sampling edge selection is user programmable using  
the IFIRST and IRISING data control bits, resulting in four  
possible timing diagrams. These are shown in Figure 89,  
Figure 90, Figure 91, and Figure 9±.  
DCLKIO  
DB[n:0]  
I DATA  
Z
A
B
C
D
E
F
G
H
Z
B
D
F
Q DATA  
NOTES:  
A
C
E
G
1. DB[n:0], WHERE n IS 7 FOR THE AD9714, 9 FOR THE AD9715, 11 FOR THE  
AD9716, AND 13 FOR THE AD9717.  
Figure 91. Timing Diagram with IFIRST = 1, IRISING = 0  
DCLKIO  
DCLKIO  
DB[n:0]  
I DATA  
Z
A
B
C
D
E
F
G
H
DB[n:0]  
I DATA  
Z
A
B
C
D
E
F
G
H
Z
B
D
F
E
Y
A
C
E
F
Q DATA  
NOTES:  
Y
A
C
Q DATA  
NOTES:  
Z
B
D
1. DB[n:0], WHERE n IS 7 FOR THE AD9714, 9 FOR THE AD9715, 11 FOR THE  
AD9716, AND 13 FOR THE AD9717.  
Figure 89. Timing Diagram with IFIRST = 0, IRISING = 0  
1. DB[n:0], WHERE n IS 7 FOR THE AD9714, 9 FOR THE AD9715, 11 FOR THE  
AD9716, AND 13 FOR THE AD9717.  
Figure 92. Timing Diagram with IFIRST = 1, IRISING = 1  
DCLKIO  
Ideally, the rising and falling edges of the clock fall in the center  
of the keep-in-window formed by the setup and hold times, tS  
and tH. Refer to Table ± for setup and hold times. A detailed  
timing diagram is shown in Figure 93.  
DB[n:0]  
I DATA  
Z
A
B
C
D
E
F
G
H
Y
A
C
E
D
DCLKIO  
Q DATA  
NOTES:  
X
Z
B
tS tH  
tS tH  
1. DB[n:0], WHERE n IS 7 FOR THE AD9714, 9 FOR THE AD9715, 11 FOR THE  
AD9716, AND 13 FOR THE AD9717.  
DB[n:0]  
NOTES:  
Figure 90. Timing Diagram with IFIRST = 0, IRISING = 1  
1. DB[n:0], WHERE n IS 7 FOR THE AD9714, 9 FOR THE  
AD9715, 11 FOR THE AD9716, AND 13 FOR THE AD9717.  
Figure 93. Setup and Hold Times for All Input Modes  
In addition to the different timing modes listed in Table ±, the  
input data can also be presented to the device in either unsigned  
binary or twos complement format. The format type is chosen  
via the TWOS data control bit.  
Rev. B | Page 40 of 80  
 
 
 
 
 
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
OR  
RETIMER-CLK  
D-FF  
D-FF  
D-FF  
1
D-FF  
2
D-FF  
3
D-FF  
5
0
4
TO DAC CORE  
CLKIN-INT  
I
OUT  
DB[n:0]  
(INPUT)  
DCLKIO-INT  
I
OUT  
NOTES  
D-FFs:  
0: RISING OR FALLING EDGE  
TRIGGERED FOR I OR Q DATA.  
1, 2, 3, 4: RISING EDGE TRIGGERED.  
IE  
IE  
OE  
DELAY2  
DCLKIO  
(INPUT/OUTPUT)  
CLKIN  
(INPUT)  
Figure 94. Simplified Diagram of AD9714/AD9715/AD9716/AD9717 Timing  
Setting Bit 1 or Bit 0 of SPI Address 0x02, DCOSGL or DCODBL,  
respectively, to logic high allows the user to obtain a DCLKIO  
output from the CLKIN input for use in the users PCB system.  
DIGITAL DATA LATCHING AND RETIMER BLOCK  
The AD9714/AD9715/AD9716/AD9717 have two clock inputs,  
DCLKIO and CLKIN. The CLKIN is the analog clock whose  
jitter affects DAC performance, and the DCLKIO is a digital  
clock from an FPGA that needs to have a fixed relationship with  
the input data to ensure that the data is picked  
It is strongly recommended that DCI_EN = DCOSGL = high or  
DCI_EN = DCODBL = high not be used even though the  
device may appear to function correctly. Similarly, do not set  
DCOSGL and DCODBL to logic high simultaneously.  
up correctly by the flip-flops on the pads.  
Retimer  
Figure 94 is a simplified diagram of the entire data capture  
system in the AD9714/AD9715/AD9716/AD9717. The double  
data rate input data (DB[n:0), where n is 7 for the AD9714, 9  
for the AD9715, 11 for the AD9716, and 13 for the AD9717) is  
latched at the pads/pins either on the rising edge or the falling edge  
of the DCLKIO-INT clock, as determined by IRISING, Bit 4 of  
SPI Address 0x02. Bit 5 of SPI Address 0x02, IFIRST, determines  
which channel data is latched first (that is, I or Q). The captured  
data is then retimed to the internal clock (CLKIN-INT) in the  
retimer block before being sent to the final analog DAC core  
(D-FF 4), which controls the current steering output switches. All  
delay blocks depicted in Figure 94 are noninverting, and any wires  
without an explicit delay block can be assumed to have no delay.  
The AD9714/AD9715/AD9716/AD9717 have an internal data  
retimer circuit that compares the CLKIN-INT and DCLKIO-INT  
clocks and, depending on their phase relationship, selects a  
retimer clock (RETIMER-CLK) to safely transfer data from  
the DCLKIO used at the chip’s input interface to the CLKIN  
used to clock the analog DAC cores (D-FF 4).  
The retimer selects one of the three phases shown in Figure 95.  
The retimer is controlled by the CLKMODE SPI bits, as shown  
in Table 15.  
RETIMER-CLKs  
1/2 PERIOD  
DATA  
CLOCK  
180°  
90°  
270°  
Only one channel is shown in Figure 94 with the data pads  
(DB[n:0), where n is 7 for the AD9714, 9 for the AD9715, 11 for  
the AD9716, and 13 for the AD9717) serving as double data  
rate pads for both channels.  
1/4 PERIOD 1/2 PERIOD  
Figure 95. RETIMER-CLK Phases  
Note that, in most cases, more than one retimer phase works  
and ,in such cases, the retimer arbitrarily picks one phase that  
works. The retimer cannot pick the best or safest phase. If the  
user has a working knowledge of the exact phase relationship  
between DCLKIO and CLKIN (and thus DCLKIO-INT and  
CLKIN-INT because the delay is approximately the same for  
both clocks and equal to DELAY1), then the retimer can be  
forced to this phase with CLKMODEN = 1, as described in  
Table 15 and the following paragraphs.  
The default PINMD and SPI settings are IE = high (closed)  
and OE = low (open). These settings are enabled when RESET/  
PINMD (Pin 35) is held high. In this mode, the user has to supply  
both DCLKIO and CLKIN. In PINMD, it is also recommended  
that the DCLKIO and the CLKIN be in phase for proper func-  
tioning of the DAC, which can easily be ensured by tying the  
pins together on the PCB. If the user can access the SPI, setting  
Bit 2 of SPI Address 0x02, DCI_EN, to logic low causes the  
CLKIN to be used as the DCLKIO also.  
Rev. B | Page 41 of 80  
 
 
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
Table 15. Timer Register List  
Bit Name  
Description  
CLKMODEQ[1:0] Q data path retimer clock selected output. Valid after the searching bit goes low.  
Searching  
Reacquire  
CLKMODEN  
High indicates that the internal data path retimer is searching for the clock relationship (DAC is not usable until it is low again).  
Changing this bit from 0 to 1 causes the data path retimer circuit to reacquire the clock relationship.  
0: uses CLKMODEI/CLKMODEQ values (as computed by the two internal retimers) for I and Q clocking.  
1: uses the CLKMODE value set in CLKMODEI[1:0] to override the bits for both I and Q retimers (that is, force the retimer).  
I data path retimer clock selected output. Valid after searching goes low.  
CLKMODEI[1:0]  
If CLKMODEN = 1, a value written to this register overrides both the I and Q automatic retimer values.  
Table 16. CLKMODEI/CLKMODEQ Details  
CLKMODEI[1:0]/CLKMODEQ[1:0] DCLKIO-to-CLKIN Phase Relationship  
RETIMER-CLK Selected  
Phase 2  
00  
01  
10  
11  
0° to 90°  
90° to 180°  
180° to 270°  
270° to 360°  
Phase 3  
Phase 3  
Phase 1  
When RESET is pulsed high and then returns low (the part is in  
SPI mode), the retimer runs and automatically selects a suitable  
clock phase for the RETIMER-CLK within 128 clock cycles. The  
SPI searching bit, Bit 4 of SPI Address 0x14, returns to low,  
indicating that the retimer has locked and the part is ready for  
use. The reacquire bit, Bit 3 of SPI Address 0x14, can be used to  
reinitiate phase detection in the I and Q retimers at any time.  
CLKMODEQ[1:0] and CLKMODEI[1:0] of SPI Address 0x14  
provide readback for the values picked by the internal phase  
detectors in the retimer (see Table 16).  
ESTIMATING THE OVERALL DAC PIPELINE DELAY  
DAC pipeline latency is affected by the phase of the RETIMER-  
CLK that is selected. If latency is critical to the system and must  
be constant, the retimer should be forced to a particular phase and  
not be allowed to automatically select a phase each time.  
Consider the case in which DCLKIO = CLKIN (that is, in  
phase), and the RETIMER-CLK is forced to Phase 2. Assume  
that IRISING is 1 (that is, I data is latched on the rising edge  
and Q data is latched on the falling edge). Then the latency to the  
output for the I channel is four clock cycles total; one clock cycle  
from the input interface (D-FF 1, not D-FF0, as it latches data  
on either edge and does not cause any delay); two clock cycles  
from the retimer (D-FF 2 and D-FF 4, but not D-FF 3, because  
it is latched on the half clock cycle or 180°); and one clock cycle  
going through the analog core (D-FF 5). The latency to the output  
for the Q channel from the time the falling edge latches it at the  
pads in D-FF 0 is 3.5 clock cycles (no delay due to D-FF0, 1 clock  
cycle due to D-FF 1, ½ clock cycle to D-FF 2, 1 clock cycle to D-  
FF 4, and 1 clock cycle to D-FF 5). This latency for the AD9714/  
AD9715/AD9716/AD9717 is case specific and needs to be calcu-  
lated based on the RETIMER-CLK phase that is automatically  
selected or manually forced.  
To force the two retimers (I and Q) to pick a particular phase  
for the retimer clock (they must both be forced to the same  
value), CLKMODEN, Bit 2 of SPI Address 0x14, should be set  
high and the required phase value is written into CLKMODEI[1:0]  
and CLKMODEQ[1:0]. For example, if the DCLKIO and the  
CLKIN are in phase to the first order, the user can safely force the  
retimers to pick Phase 2 for the RETIMER-CLK. This forcing  
function may be useful for synchronizing multiple devices.  
In pin mode, it is expected that the user tie CLKIN and DCLKIO  
together. The device has a small amount of programmable  
CS  
functionality using the unused SPI pins (SCLK, SDIO, and ).  
If the two chip clocks are tied together, the SCLK pin can be  
tied to ground, and the chip uses a clock for the retimer that is  
180° out of phase with the two input clocks (that is, Phase 2,  
which is the safest and best option). The chip has an additional  
option in pin mode when the redefined SCLK pin is high. Use  
this mode if using pin mode, but CLKIN and DCLKIO are not  
tied together (that is, not in phase). Holding SCLK high causes  
the internal clock detector to use the phase detector output to  
determine which clock to use in the retimer (that is, select a  
suitable RETIMER-CLK phase). The action of taking SCLK  
high causes the internal phase detector to reexamine the two  
clocks and determine the relative phase. Whenever the user  
wants to reevaluate the relative phase of the two clocks, the  
SCLK pin can be taken low and then high again.  
Rev. B | Page 42 of 80  
 
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
REFERENCE OPERATION  
REFERENCE CONTROL AMPLIFIER  
The AD9714/AD9715/AD9716/AD9717 contain an internal  
1.0 V band gap reference. The internal reference can be disabled  
by setting Bit 0 (EXTREF) of the power-down register (Address  
0x01) through the SPI interface. To use the internal reference,  
decouple the REFIO pin to AVSS with a 0.1 μF capacitor, enable  
the internal reference, and clear Bit 0 of the power-down register  
(Address 0x01) through the SPI interface. Note that this is the  
default configuration. The internal reference voltage is present  
at REFIO. If the voltage at REFIO is to be used anywhere else in  
the circuit, an external buffer amplifier with an input bias current  
of less than 100 nA must be used to avoid loading the reference.  
An example of the use of the internal reference is shown in  
Figure 96.  
The AD9714/AD9715/AD9716/AD9717 contain a control  
amplifier that regulates the full-scale output current, IxOUTFS  
.
The control amplifier is configured as a V-I converter, as shown  
in Figure 96. The output current, IxREF, is determined by the  
ratio of the VREFIO and an external resistor, xRSET, as stated in  
Equation 4 (see the DAC Transfer Function section). IxREF, is  
mirrored to the segmented current sources with the proper scale  
factor to set IxOUTFS, as stated in Equation 3.  
The control amplifier allows a 2.5:1 adjustment span of IxOUTFS  
from 1 mA to 4 mA by setting IxREF between 125 μA and 31.25 μA  
(set xRSET between 8 kΩ and 32 kΩ). The wide adjustment span  
of IxOUTFS provides several benefits. The first relates directly to  
the power dissipation of the AD9714/AD9715/AD9716/AD9717,  
which is proportional to IxOUTFS (see the DAC Transfer Function  
section). The second benefit relates to the ability to adjust the  
output over a 8 dB range with 0.25 dB steps, which is useful for  
controlling the transmitted power. The small signal bandwidth  
of the reference control amplifier is approximately 500 kHz.  
This allows the device to be used for low frequency, small signal  
multiplying applications.  
AD9714/AD9715/  
AD9716/AD9717  
I DAC  
OR  
V
BG  
1.0V  
Q DAC  
REFIO  
+
FSADJx  
CURRENT  
SCALING  
×32  
0.1µF  
I
xOUTFS  
xR  
SET  
When an external resistor greater than 16 kΩ is used on the  
FSADJx pins, care must be taken to maintain the high frequency  
equivalent circuit to an impedance lower than 16 kΩ by  
splitting the resistor into two resistors in series with a 10 nF  
capacitor in parallel with the resistor to AVSS (see Figure 97).  
I
xREF  
AVSS  
Figure 96. Internal Reference Configuration  
REFIO serves as either an input or an output, depending on  
whether the internal or an external reference is used. Table 17  
summarizes the reference operation.  
AD9714/AD9715/  
AD9716/AD9717  
REFIO  
Table 17. Reference Operation  
Reference Mode  
REFIO Pin  
Connect 0.1 µF Register 0x01, Bit 0 = 0  
capacitor (default)  
Apply external Register 0x01, Bit 0 = 1  
capacitor (for power saving)  
Register Setting  
FSADJx  
0.1µF  
Internal  
R < 16kΩ  
External  
xR  
SET  
10nF  
An external reference can be used in applications requiring  
tighter gain tolerances or lower temperature drift. Also, a  
variable external voltage reference can be used to implement a  
method for gain control of the DAC output.  
AVSS  
Figure 97. xRSET Configuration for Values > 16 kΩ  
Recommendations When Using an External Reference  
Apply the external reference to the REFIO pin. The internal  
reference can be directly overdriven by the external reference,  
or the internal reference can be powered down to save power  
consumption  
The external 0.1 μF compensation capacitor on REFIO is not  
required unless specified by the external voltage reference  
manufacturer. The input impedance of REFIO is 10 kΩ when  
the internal reference is powered up and 1 MΩ when it is  
powered down.  
Rev. B | Page 43 of 80  
 
 
 
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
Substituting the values of IOUTP, IOUTN, and IxREF, VIDIFF can  
be expressed as  
DAC TRANSFER FUNCTION  
The AD9714/AD9715/AD9716/AD9717 provide two differen-  
tial current outputs, IOUTP/IOUTN and QOUTP/QOUTN.  
IOUTP and QOUTP provide a near full-scale current output,  
VIDIFF = {(2 × IDAC CODE – (2N − 1))/2N} ×  
(8)  
(32 × VREFIO/IRSET) × IRLOAD  
I
xOUTFS, when all bits are high (that is, DAC CODE = 2N − 1,  
Equation 8 highlights some of the advantages of operating the  
AD9714/AD9715/AD9716/AD9717 differentially. First, the  
differential operation helps cancel common-mode error sources  
associated with IOUTP and IOUTN, such as noise, distortion,  
and dc offsets. Second, the differential code-dependent current and  
subsequent voltage, VIDIFF, is twice the value of the single-ended  
voltage output (that is, VIOUTP or VIOUTN), thus providing twice  
the signal power to the load. Note that the gain drift temperature  
performance for a single-ended output (VIOUTP and VIOUTN) or  
differential output (VIDIFF) of the AD9714/AD9715/AD9716/  
AD9717 can be enhanced by selecting temperature-tracking  
resistors for xRLOAD and xRSET because of their ratiometric  
relationship, as shown in Equation 8.  
where N = 8, 10, 12, or 14 for the AD9714, AD9715, AD9716,  
and AD9717, respectively), while IOUTN and QOUTN, the  
complementary outputs, provide no current. The current  
outputs appearing at the positive DAC outputs, IOUTP and  
QOUTP, and at the negative DAC outputs, IOUTN and QOUTN,  
are a function of both the input code and IxOUTFS and can be  
expressed as follows:  
IOUTP = (IDAC CODE/2N) × IIOUTFS  
(1)  
QOUTP = (QDAC CODE/2N) × IQOUTFS  
IOUTN = ((2N − 1) − IDAC CODE)/2N × IIOUTFS  
QOUTN = ((2N − 1) − QDAC CODE)/2N × IQOUTFS  
(2)  
where:  
IDAC CODE and QDAC CODE = 0 to 2N − 1 (that is, decimal  
ANALOG OUTPUT  
The complementary current outputs in each DAC, IOUTP/  
IOUTN and QOUTP/QOUTN, can be configured for single-  
ended or differential operation. IOUTP/IOUTN and QOUTP/  
QOUTN can be converted into complementary single-ended  
voltage outputs, VIOUTP and VIOUTN, as well as VQOUTP and VQOUTN  
via a load resistor, xRLOAD, as described in the DAC Transfer  
Function section by Equation 6 through Equation 8. The differen-  
representation).  
IIOUTFS and IQOUTFS are functions of the reference currents, IIREF  
and IQREF, respectively, which are nominally set by a reference  
voltage, VREFIO, and external resistors, IRSET and QRSET, respec-  
tively. IIOUTFS and IQOUTFS can be expressed as follows:  
IIOUTFS = 32 × IIREF  
IQOUTFS = 32 × IQREF  
(3)  
tial voltages, VIDIFF and VQDIFF, existing between VIOUTP and VIOUTN  
,
and VQOUTP and VQOUTN, can also be converted to a single-ended  
voltage via a transformer or a differential amplifier configuration.  
The ac performance of the AD9714/AD9715/AD9716/AD9717  
is optimum and is specified using a differential transformer-  
coupled output in which the voltage swing at IOUTP and IOUTN  
is limited to 0.5 V. The distortion and noise performance of  
the AD9714/AD9715/AD9716/AD9717 can be enhanced when  
it is configured for differential operation. The common-mode  
error sources of both IOUTP/IOUTN and QOUTP/QOUTN  
can be significantly reduced by the common-mode rejection  
of a transformer or differential amplifier. These common-mode  
error sources include even-order distortion products and noise.  
The enhancement in distortion performance becomes more  
significant as the frequency content of the reconstructed wave-  
form increases and/or its amplitude increases. This is due to  
the first-order cancellation of various dynamic common-mode  
distortion mechanisms, digital feedthrough, and noise. Performing  
a differential-to-single-ended conversion via a transformer also  
provides the ability to deliver twice the reconstructed signal  
power to the load (assuming no source termination). Because  
the output currents of IOUTP/IOUTN and QOUTP/QOUTN  
are complementary, they become additive when processed  
differentially.  
where:  
IIREF = VREFIO/IRSET  
IQREF = VREFIO/QRSET  
(4)  
(5)  
or  
IIOUTFS = 32 × VREFIO/IRSET  
I
QOUTFS = 32 × VREFIO/QRSET  
A differential pair (IOUTP/IOUTN or QOUTP/QOUTN)  
typically drives a resistive load directly or via a transformer. If  
dc coupling is required, the differential pair (IOUTP/IOUTN or  
QOUTP/QOUTN) should be connected to matching resistive  
loads, xRLOAD, that are tied to analog common, AVSS. The  
single-ended voltage output appearing at the positive and  
negative nodes is  
VIOUTP = IOUTP × IRLOAD  
VQOUTP = QOUTP × QRLOAD  
VIOUTN = IOUTN × IRLOAD  
VQOUTN = QOUTN × QRLOAD  
(6)  
(7)  
To achieve the maximum output compliance of 1 V at the  
nominal 4 mA output current, IRLOAD = QRLOAD must be set  
to 250 Ω.  
Rev. B | Page 44 of 80  
 
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
The AD9714/AD9715/AD9716/AD9717 allow reading and  
writing of the calibration coefficients. There are 32 coefficients  
in total. The read/write feature of the coefficients can be useful  
for improving the results of the self-calibration routine by  
averaging the results of several self-calibration cycles and  
loading the averaged results back into the device.  
SELF-CALIBRATION  
The AD9714/AD9715/AD9716/AD9717 have a self-calibration  
feature that improves the DNL of the device. Performing a self-  
calibration on the device improves device performance in low  
frequency applications. The device performance in applications  
where the analog output frequencies are above 5 MHz are generally  
influenced more by dynamic device behavior than by DNL and,  
in these cases, self-calibration is unlikely to provide much benefit.  
The calibration clock frequency is equal to the DAC clock  
divided by the division factor chosen by the DIVSEL value. Each  
calibration clock cycle is between 32 and 2048 DAC input clock  
cycles, depending on the value of DIVSEL[2:0] (Register 0x0E,  
Bits[2:0]). The frequency of the calibration clock should be  
between 0.5 MHz and 4 MHz for reliable calibrations. Best  
results are obtained by setting DIVSEL[2:0] (Register 0x0E,  
Bits[2:0]) to produce a calibration clock frequency between  
these values. Separate self-calibration hardware is included  
for each DAC. The DACs can be self-calibrated individually or  
simultaneously.  
To read the calibration coefficients, use the following steps:  
1. Select which DAC core to read by setting either Bit 4  
(CALSELI) for the I DAC or Bit 5 (CALSELQ) for the  
Q DAC in Register 0x0E. Write the address of the first  
coefficient (0x01) to Register 0x10.  
2. Set the SMEMRD bit (Register 0x12, Bit 2) by writing 0x04  
to Register 0x12.  
3. Read the 6-bit value of the first coefficient by reading the  
contents of Register 0x11.  
4. Clear the SMEMRD bit by writing 0x00 to Register 0x12.  
5. Repeat Step 2 through Step 4 for each of the remaining 31  
coefficients by incrementing the address by 1 for each read.  
6. Deselect the DAC core by clearing either Bit 4 (CALSELI)  
for the I DAC or Bit 5 (CALSELQ) for the Q DAC in  
Register 0x0E.  
To perform a device self-calibration, the following procedure  
can be used:  
1. Write 0x00 to Register 0x12. This ensures that the  
UNCALI and UNCALQ bits are reset.  
To write the calibration coefficients to the device, use the  
following steps:  
2. Set up a calibration clock between 0.5 MHz and 4 MHz  
using DIVSEL[2:0], and then enable the calibration clock  
by setting the CALCLK bit (Register 0x0E, Bit 3).  
3. Select the DAC(s) to self-calibrate by setting either Bit 4  
(CALSELI) for the I DAC and/or Bit 5 (CALSELQ) for the  
Q DAC in Register 0x0E. Note that each DAC contains  
independent calibration hardware so that they can be  
calibrated simultaneously.  
1. Select which DAC core to write to by setting either Bit 4  
(CALSELI) for the I DAC or Bit 5 (CALSELQ) for the Q  
DAC in Register 0x0E.  
2. Set the SMEMWR bit (Register 0x12, Bit 3) by writing 0x08  
to Register 0x12.  
3. Write the address of the first coefficient (0x01) to  
Register 0x10.  
4. Write the value of the first coefficient to Register 0x11.  
5. Repeat Step 2 through Step 4 for each of the remaining 31  
coefficients by incrementing the address by one for each  
write.  
4. Start self-calibration by setting the CALEN bit (Register 0x12,  
Bit 4). Wait approximately 300 calibration clock cycles.  
5. Check if the self-calibration has completed by reading  
the CALSTATI bit (Bit 6) and CALSTATQ bit (Bit 7) in  
Register 0x0F. Logic 1 indicates that the calibration has  
completed.  
6. Clear the SMEMWR bit by writing 0x00 to Register 0x12.  
7. Deselect the DAC core by clearing either Bit 4 (CALSELI)  
for the I DAC or Bit 5 (CALSELQ) for the Q DAC in  
Register 0x0E.  
6. When the self-calibration has completed, write 0x00 to  
Register 0x12.  
7. Disable the calibration clock by clearing the CALCLK bit  
(Register 0x0E, Bit 3).  
Rev. B | Page 45 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
Option 3  
COARSE GAIN ADJUSTMENT  
Even when the device is in pin mode, full-scale values can be  
adjusted by sourcing or sinking current from the FSADJx pins.  
Any noise injected here appears as amplitude modulation of the  
output. Thus, a portion of the required series resistance (at least  
±0 kꢁ) must be installed right at the pin. A range of ±10ꢀ is  
quite practical using this method.  
Option 1  
A coarse full-scale output current adjustment can be achieved  
using the lower six bits in Register 0x0D. This adds or subtracts  
up to ±0ꢀ from the band gap voltage on Pin 34 (REFIO), and  
the voltage on the FSADJx resistors tracks this change. As a  
result, the DAC full-scale current varies by the same amount.  
A secondary effect to changing the REFIO voltage is that the  
full-scale voltage in the AUXDAC also changes by the same  
magnitude. The register uses twos complement format, in  
which 011111 maximizes the voltage on the REFIO node  
and 100000 minimizes the voltage.  
Option 4  
As in Option 3, when the device is in pin mode, both full-scale  
values can be adjusted by sourcing or sinking current from the  
REFIO pin. Noise injected here appears as amplitude modulation  
of the output; therefore, a portion of the required series resis-  
tance (at least 10 kꢁ) must be installed at the pin. A range of  
±±5ꢀ is quite practical when using this method.  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
Fine Gain  
Each main DAC has independent fine gain control using the  
lower six bits in Register 0x03 (I DAC gain) and Register 0x06  
(Q DAC gain). Unlike Coarse Gain Option 1, this impacts only  
the main DAC full-scale output current. These registers use straight  
binary format. One application in which straight binary format  
is critical is for side-band suppression while using a quadrature  
modulator. This is described in more detail in the Applications  
Information section.  
2.22  
0
8
16  
24  
32  
40  
48  
56  
3.3V DAC1  
CODE  
3.3V DAC2  
1.8V DAC1  
2.20  
Figure 98. Typical VREF Voltage vs. Code  
1.8V DAC2  
Option 2  
2.18  
While using the internal FSADJx resistors, each main DAC can  
achieve independently controlled coarse gain using the lower  
six bits of Register 0x04 (IRSET[5:0]) and Register 0x07  
(QRSET[5:0]). Unlike Coarse Gain Option 1, this impacts only  
the main DAC full-scale output current. The register uses twos  
complement format and allows the output current to be changed  
in approximately 0.±5 dB steps.  
2.16  
2.14  
2.12  
2.10  
4.0  
0
8
16  
24  
32  
40  
48  
56  
64  
GAIN DAC CODE  
3.5  
3.0  
Figure 100. Typical DAC Gain Characteristics  
V
_
OR V _  
OUT I  
OUT  
Q
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
10  
20  
30  
40  
50  
60  
xR  
CODE  
SET  
Figure 99. Effect of xRSET Code  
Rev. B | Page 46 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
USING THE INTERNAL TERMINATION RESISTORS  
The AD9717/AD9716/AD9715/AD9714 have four 500 ꢁ  
termination internal resistors (two for each DAC output).  
To use these resistors to convert the DAC output current to a  
voltage, connect each DAC output pin to the adjacent load pin.  
For example, on the I DAC, IOUTP must be shorted to RLIP  
and IOUTN must be shorted to RLIN. In addition, the CMLI  
or CMLQ pin must be connected to ground directly or through  
a resistor. If the output current is at the nominal ± mA and the  
CMLI or CMLQ pin is tied directly to ground, this produces a  
dc common-mode bias voltage on the DAC output equal to 0.5 V.  
If the DAC dc bias must be higher than 0.5 V, an external  
resistor can be connected between the CMLI or CMLQ pin and  
ground. This part also has an internal common-mode resistor  
that can be enabled. This is explained in the Using the Internal  
Common-Mode Resistor section.  
0
8
16  
24  
32  
40  
48  
56  
CODE  
Figure 102. Typical CML Resistor Value vs. Register Code  
Using the CMLx Pins for Optimal Performance  
CML  
The CMLx pins also serve to change the DAC bias voltages  
in the parts allowing them to run at higher dc output bias  
voltages. When running the bias voltage below 0.9 V and an  
AVDD of 3.3 V, the parts perform optimally when the CMLx  
pins are tied to ground. When the dc bias increases above 0.9 V,  
set the CMLx pins at 0.5 V for optimal performance. The maxi-  
mum dc bias on the DAC output should be kept at or below 1.± V  
when the supply is 3.3 V. When the supply is 1.8 V, keep the dc  
bias close to 0 V and connect the CMLx pins directly to ground.  
R
CML  
RLIN  
500  
500Ω  
IOUTN  
IOUTP  
RLIP  
I DAC  
OR  
Q DAC  
Figure 101. Simplified Internal Load Options  
Using the Internal Common-Mode Resistor  
These devices contain an adjustable internal common-mode  
resistor that can be used to increase the dc bias of the DAC  
outputs. By default, the common-mode resistor is not con-  
nected. When enabled, it can be adjusted from ~±50 ꢁ to  
~1 kꢁ. Each main DAC has an independent adjustment  
using the lower six bits in Register 0x05 (IRCML[5:0]) and  
Register 0x08 (QRCML[5:0]).  
Rev. B | Page 47 of 80  
 
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
APPLICATIONS INFORMATION  
OUTPUT CONFIGURATIONS  
A differential resistor, RDIFF, can be inserted in applications  
where the output of the transformer is connected to the load,  
RLOAD, via a passive reconstruction filter or cable. RDIFF, as  
reflected by the transformer, is chosen to provide a source  
termination that results in a low voltage standing wave ratio  
(VSWR). Note that approximately half the signal power is  
The following sections illustrate some typical output confi-  
gurations for the AD9714/AD9715/AD9716/AD9717. Unless  
otherwise noted, it is assumed that IxOUTFS is set to a nominal  
± mA. For applications requiring the optimum dynamic perfor-  
mance, a differential output configuration is suggested. A  
differential output configuration can consist of either an  
RF transformer or a differential op amp configuration. The  
transformer configuration provides the optimum high fre-  
quency performance and is recommended for any application  
that allows ac coupling. The differential op amp configuration  
is suitable for applications requiring dc coupling, signal gain,  
and/or a low output impedance.  
dissipated across RDIFF  
.
SINGLE-ENDED BUFFERED OUTPUT USING  
AN OP AMP  
An op amp such as the ADA4899-1 can be used to perform  
a single-ended current-to-voltage conversion, as shown in  
Figure 104. The AD9714/AD9715/AD9716/AD9717 are config-  
ured with a pair of series resistors, RS, off each output. For best  
distortion performance, RS should be set to 0 ꢁ. The feedback  
resistor, RFB, determines the peak-to-peak signal swing by the  
formula  
A single-ended output is suitable for applications in which low  
cost and low power consumption are primary concerns.  
DIFFERENTIAL COUPLING USING A TRANSFORMER  
VOUT = RFB × IFS  
An RF transformer can be used to perform a differential-to-  
single-ended signal conversion, as shown in Figure 103. The  
distortion performance of a transformer typically exceeds  
that available from standard op amps, particularly at higher  
frequencies. Transformer coupling provides excellent rejection  
of common-mode distortion (that is, even-order harmonics)  
over a wide frequency range. It also provides electrical isolation  
and can deliver voltage gain without adding noise. Transformers  
with different impedance ratios can also be used for impedance  
matching purposes. The main disadvantages of transformer  
coupling are low frequency roll-off, lack-of-power gain, and  
high output impedance.  
The common-mode voltage of the output is determined by the  
formula  
RFB  
RB  
R
FB IFS  
VCM VREF 1  
2
The maximum and minimum voltages out of the amplifier are,  
respectively,  
RFB  
RB  
VMAX VREF 1  
VMIN = VMAX IFS × RFB  
C
F
29  
IOUTN  
R
R
FB  
B
AD9714/AD9715/  
AD9716/AD9717  
+5V  
AD9714/AD9715/  
AD9716/AD9717  
R
LOAD  
R
S
28  
IOUTP  
28  
IOUTP  
ADA4899-1  
+
V
OUT  
OPTIONAL R  
DIFF  
34  
REFIO  
C
R
–5V  
S
Figure 103. Differential Output Using a Transformer  
29  
25  
IOUTN  
AVSS  
The center tap on the primary side of the transformer must be  
connected to a voltage that keeps the voltages on IOUTP and  
IOUTN within the output common-mode voltage range of the  
device. Note that the dc component of the DAC output current  
is equal to IxOUTFS and flows out of both IOUTP and IOUTN.  
The center tap of the transformer should provide a path for  
this dc current. In most applications, AGND provides the most  
convenient voltage for the transformer center tap. The complemen-  
tary voltages appearing at IOUTP and IOUTN (that is, VIOUTP  
and VIOUTN) swing symmetrically around AGND and should be  
maintained with the specified output compliance range of the  
AD9714/AD9715/AD9716/AD9717.  
Figure 104. Single-Supply Single-Ended Buffer  
Rev. B | Page 48 of 80  
 
 
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
To keep the pin count reasonable, these auxiliary DACs each  
share a pin with the corresponding FSADJx resistor. They are,  
therefore, usable only when enabled and when that DAC is  
operated on its internal full-scale resistors. A simple I-to-V  
converter is implemented on chip with selectable shunt resistors  
(3.± kꢁ to 16 kꢁ) such that if REFIO is set to exactly 1 V, REFIO/±  
equals 0.5 V and the following equation describes the no load  
output voltage:  
DIFFERENTIAL BUFFERED OUTPUT  
USING AN OP AMP  
A dual op amp (see the circuit shown in Figure 105) can be used  
in a differential version of the single-ended buffer shown in  
Figure 104. The same RC network is used to form a one-pole  
differential, low-pass filter to isolate the op amp inputs from  
the high frequency images produced by the DAC outputs. The  
feedback resistors, RFB, determine the differential peak-to-peak  
signal swing by the formula  
1.5  
VOUT 0.5 V IDAC  
16 k   
RS  
VOUT = ± × RFB × IFS  
The maximum and minimum single-ended voltages out of the  
amplifier are, respectively,  
Figure 106 illustrates the function of all the SPI bits controlling  
these DACs with the exception of the QAUXEN (Register 0x0A,  
Bit 7) and IAUXEN (Register 0x0C, Bit 7) bits and gating to  
prohibit RS < 3.± kꢁ.  
RFB  
RB  
VMAX VREF 1  
AVDD  
RNG0  
RNG1  
VMIN = VMAX RFB × IFS  
RNG: 00 = > 125µA fS  
01 = > 62µA fS  
AUXDAC  
[9:0]  
10 = > 31µA fS  
The common-mode voltage of the differential output is  
determined by the formula  
11 = > 16µA fS  
(OFS > 4 = 4)  
VCM = VMAX RFB × IFS  
OFS2  
OFS1  
OFS0  
C
F
16k  
AUX  
PIN  
R
R
FB  
B
4k8k16k16kΩ  
AD9714/AD9715/  
AD9716/AD9717  
IOUTP  
OP AMP  
+
R
S
28  
34  
REFIO  
2
ADA4841-2  
+
REFIO  
V
C
OUT  
Figure 106. AUXDAC Simplified Circuit Diagram  
AVSS  
25  
29  
+
R
S
The SPI speed limits the update rate of the auxiliary DACs. The  
data is inverted such that IAUXDAC is full scale at 0x000 and zero  
at 0x1FF, as shown in Figure 107.  
IOUTN  
ADA4841-2  
C
F
3.0  
OP AMP OUTPUT VOLTAGE vs. CHANGES  
2.8  
R
R
IN R  
AND DAC CURRENT IN µA  
FB  
B
OFFSET  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
R
R
R
R
R
= 3.3kΩ  
= 4kΩ  
= 5.3kΩ  
= 8kΩ  
OFFSET  
OFFSET  
OFFSET  
OFFSET  
OFFSET  
Figure 105. Single-Supply Differential Buffer  
AUXILIARY DACs  
= 16kΩ  
The DACs of the AD9714/AD9715/AD9716/AD9717 feature  
two versatile and independent 10-bit auxiliary DACs suitable  
for dc offset correction and similar tasks.  
Because the AUXDACs are driven through the SPI port, they  
should never be used in timing-critical applications, such  
as inside analog feedback loops.  
0
10 20 30 40 50 60 70 80 90 100 110 120 130  
(µA)  
I
AUXDAC  
Figure 107. AUXDAC Op Amp Output vs. Current, AVDD = 3.3 V, No Load,  
AUXDAC 0x1FF to 0x000  
Rev. B | Page 49 of 80  
 
 
 
 
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
ADL537x  
FAMILY  
AD9714/AD9715/  
AD9716/AD9717  
I OR Q DAC  
OPTIONAL  
LOW-PASS  
FILTERING  
Two registers are assigned to each DAC with 10 bits for the actual  
DAC current to be generated, a 3-bit offset (and gain) adjust-  
ment, a ±-bit current range adjustment, and an enable/disable  
bit. Setting the QAUXOFS (Register 0x0A, Bits[4:±]) and  
IAUXOFS (Register 0x0C, Bits[4:±]) bits to all 1s disables the  
respective op amp and routes the DAC current directly to the  
respective FSADJI/AUXI or FSADJQ/AUXQ pins. This is  
especially useful when the loads to be driven are beyond the  
limited capability of the on-chip amplifier.  
1k  
I OR Q  
INPUTS  
500Ω  
500Ω  
AD9714/AD9715/  
AD9716/AD9717  
AUX DAC  
50kΩ  
Figure 109. Simplified DC Coupling to Quadrature Modulator ADL537x  
Family or Equivalent Is Enabled By Using Internal Components  
CORRECTING FOR NONIDEAL PERFORMANCE OF  
QUADRATURE MODULATORS ON THE IF-TO-RF  
CONVERSION  
When not enabled (QAUXEN or IAUXEN = 0), the respective  
DAC output is in open circuit.  
Analog quadrature modulators make it very easy to realize  
single sideband radios. However, there are several nonideal  
aspects of quadrature modulator performance. Among these  
analog degradations are gain mismatch and LO feedthrough.  
DAC-TO-MODULATOR INTERFACING  
The auxiliary DACs can be used for local oscillator (LO) cancella-  
tion when the DAC output is followed by a quadrature modulator.  
This LO feedthrough is caused by the input referred dc offset  
voltage of the quadrature modulator (and the DAC output offset  
voltage mismatch) and can degrade system performance. Typical  
DAC-to-quadrature modulator interfaces are shown in Figure 108  
and Figure 109, with the series resistor value chosen to give an  
appropriate adjustment range. Figure 108 also shows external  
load resistors in use. Often, the input common-mode voltage for  
the modulator is much higher than the output compliance range  
of the DAC, so that ac coupling or a dc level shift is necessary. If  
the required common-mode input voltage on the quadrature  
modulator matches that of the DAC, the dc blocking capacitors in  
Figure 108 can be removed and the on-chip resistors can be  
connected.  
Gain Mismatch  
The gain in the real and imaginary signal paths of the quad-  
rature modulator may not be matched perfectly. This leads  
to less than optimal image rejection because the cancellation of  
the negative frequency image is less than perfect.  
LO Feedthrough  
The quadrature modulator has a finite dc referred offset, as well  
as coupling from its LO port to the signal inputs. These can lead  
to a significant spectral spur at the frequency of the quadrature  
modulator LO.  
The AD9714/AD9715/AD9716/AD9717 have the capability  
to correct for both of these analog degradations. However,  
understand that these degradations drift over temperature;  
therefore, if close to optimal single sideband performance  
is desired, a scheme for sensing these degradations over  
temperature and correcting them may be necessary.  
MODULATOR  
V+  
0.1µF  
QUADRATURE  
AD9714/AD9715/  
AD9716/AD9717  
I OR Q DAC  
OPTIONAL  
PASSIVE  
FILTERING  
MODULATOR  
I OR Q  
INPUTS  
0.1µF  
I/Q-CHANNEL GAIN MATCHING  
AD9714/AD9715/  
AD9716/AD9717  
AUX DAC  
5k  
TO  
100kΩ  
Fine gain matching is achieved by adjusting the values in the  
DAC fine gain adjustment registers. For the I DAC, these values  
are in the I DAC gain register (Register 0x03). For the Q DAC,  
these values are in the Q DAC gain register (Register 0x06). These  
are 6-bit values that cover ±±ꢀ of full scale. To perform gain  
compensation starting from the default values of zero, raise the  
value of one of these registers a few steps until it can be deter-  
mined if the amplitude of the unwanted image is increased or  
decreased. If the unwanted image increases in amplitude, remove  
the step and try the same adjustment on the other DAC control  
register. Iterate register changes until the rejection cannot be  
improved further. If the fine gain adjustment range is not sufficient  
to find a null (that is, the register goes full scale with no null  
apparent), adjust the course gain settings of the two DACs  
accordingly and try again. Variations on this simple method  
are possible.  
499Ω  
499Ω  
Figure 108. Typical Use of Auxiliary DACs and External Components for  
Coupling to Quadrature Modulators  
Figure 109 shows a greatly simplified circuit that takes full  
advantage of the internal components supplied in the DAC. A  
low-pass or band-pass passive filter is recommended when  
spurious signals from the DAC (distortion and DAC images)  
at the quadrature modulator inputs can affect the system  
performance. In the example shown in Figure 109, the filter  
must be able to pass dc to properly bias the modulator. Placing  
the filter at the location shown in Figure 108 and Figure 109  
allows easy design of the filter because the source and load imped-  
ances can easily be designed close to 500 Ω for a ± mA full-scale  
output. Once the resistance at the modulator inputs is known,  
the user can easily look up the range of input offsets that may be  
encountered and compute a value for the series resistor on the  
AUXDAC output.  
Rev. B | Page 50 of 80  
 
 
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
5
0
–5  
Note that LO feedthrough compensation is independent of  
phase compensation. However, gain compensation can affect  
the LO compensation because the gain compensation may  
change the common-mode level of the signal. The dc offset of  
some modulators is common-mode level dependent. Therefore,  
it is recommended that the gain adjustment be performed prior  
to LO compensation.  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
LO FEEDTHROUGH COMPENSATION  
To achieve LO feedthrough compensation in a circuit, each  
output of the two AUXDACs must be connected through a  
100 kꢁ resistor to one side of the differential DAC output. See  
the Auxiliary DACS section for details of how to use AUXDACs.  
The purpose of these connections is to drive a very small amount  
of current into the nodes at the quadrature modulator inputs,  
thereby adding a slight dc bias to one or the other of the  
quadrature modulator signal inputs.  
447.5  
449.0  
450.0  
451.0  
452.5  
FREQUENCY (MHz)  
Figure 110. AD9714/AD9715/AD9716/AD9717 and ADL5370 with a Single-  
Tone Signal at 450 MHz, No Gain or LO Compensation  
5
0
To achieve LO feedthrough compensation, the user should start  
with the default conditions of the AUXDAC registers, and then  
increment the magnitude of one or the other AUXDAC output  
voltages. While this is being done, the amplitude of the LO  
feedthrough at the quadrature modulator output should be  
sensed. If the LO feedthrough amplitude increases, try either  
decreasing the output voltage of the AUXDAC being adjusted,  
or try adjusting the output voltage of the other AUXDAC. It  
may take practice before an effective algorithm is achieved. The  
AD9714/AD9715/AD9716/AD9717 evaluation board can be  
used to adjust the LO feedthrough down to the noise floor,  
although this is not stable over temperature.  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
447.5  
449.0  
450.0  
451.0  
452.5  
FREQUENCY (MHz)  
RESULTS OF GAIN AND OFFSET CORRECTION  
Figure 111. AD9714/AD9715/AD9716/AD9717 and ADL5370 with a Single-  
Tone Signal at 450 MHz, Gain and LO Compensation Optimized  
The results of gain and offset correction can be seen in Figure 110  
and Figure 111. Figure 110 shows the output spectrum of the  
quadrature demodulator before gain and offset correction.  
Figure 111 shows the output spectrum after correction. The  
LO feedthrough spur at 450 MHz has been suppressed to the  
noise level. This result can be achieved by applying the correc-  
tion, but the correction must be repeated after a large change in  
temperature.  
Note that gain matching improves the negative frequency image  
rejection, but it is also related to the phase mismatch in the  
quadrature modulator. It can be improved by adjusting the  
relative phase between the two quadrature signals at the digital  
side or properly designing the low-pass filter between the DACs  
and quadrature modulators. Phase mismatch is frequency depen-  
dent; therefore, routines must be developed to adjust it if  
wideband signals are desired.  
Rev. B | Page 51 of 80  
 
 
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
To evaluate the ADL5370 on this board, the population of these  
same components should be reversed so that they are in the  
following positions:  
MODIFYING THE EVALUATION BOARD TO  
USE THE ADL5370 ON-BOARD QUADRATURE  
MODULATOR  
JP55, JP56, JP76, JP82—soldered  
R13, R14, R52, R53—populated  
R50, R57, T1, T2—unpopulated  
The evaluation board contains an Analog Devices, Inc.,  
ADL5370 quadrature modulator. The AD9714/AD9715/  
AD9716/AD9717 and the ADL5370 provide an easy-to-  
interface DAC/modulator combination that can be easily  
characterized on the evaluation board. Solderable jumpers  
can be configured to evaluate the single-ended or differential  
outputs of the AD9714/AD9715/AD9716/AD9717. This setup  
is the default configuration from the factory and consists of  
the following population of the components:  
The AUXDAC outputs can be connected to Test Point TP44 and  
Test Point TP45 if LO feedthrough compensation is necessary.  
JP55, JP56, JP76, JP82—unsoldered  
R13, R14, R52, R53—unpopulated  
R50, R57, T1, T2—populated  
Rev. B | Page 52 of 80  
JP6  
5VGND;3,4,5  
L1  
SMAEDGE  
CVDD  
DVDD  
AVDD  
DVDDX  
CVDDX  
3
3
3
3
1
CVDD_IN  
DVDD_IN  
LC1812  
EXC-CL4532U1  
1
J2  
B
A
2
TP12  
RED  
C14  
CC0603  
0.1UF  
C2  
10UF  
6.3V  
0.1UF  
2
5V  
CC0603  
ACASE  
ACASE  
ACASE  
ACASE  
ACASE  
CC0603  
IN4  
IN3  
SD  
OUT5  
OUT6  
FB  
R2  
76.8K  
4
3
2
1
5
6
7
8
C13  
100PF  
CVDD_IN  
1UF  
EXC-CL4532U1  
L5  
C3  
C10  
TP14  
BLK  
C
C12  
CC0603  
5V  
U2  
LC1812  
5V  
5V  
5V  
5V  
5V  
1UF  
GND  
ADP3334  
NC  
R8 64.9K  
2
L2  
5V  
5V  
A
B
3
RC0603  
1
LC1812  
EXC-CL4532U1  
JP22  
78.7K R5  
TP13  
RED  
3.3  
1.8  
0.1UF  
CC0603  
C4  
10UF  
6.3V  
0.1UF  
CC0603  
EXC-CL4532U1  
RC0603  
5VGND;3,4,5  
SMAEDGE  
5V  
C7  
C6  
TP4  
BLK  
JP10  
1
L6  
1
J4  
B
A
2
LC1812  
C17  
CC0603  
2
IN3  
OUT5  
OUT6  
R23  
76.8K  
L3  
4
3
2
1
5
6
7
8
C19  
5V  
100PF  
DVDD_IN  
1UF  
IN4  
AVDD_IN  
LC1812  
EXC-CL4532U1  
C18  
CC0603  
5V  
SD  
TP5  
U4  
FB  
NC  
0.1UF  
CC0603  
C5  
10UF  
6.3V  
0.1UF  
CC0603  
1UF  
RED  
GND  
R12  
64.9K  
EXC-CL4532U1  
2
ADP3334  
5V  
5V  
C9  
C8  
TP6  
BLK  
A
B
3
L7  
1
JP26  
LC1812  
78.7K  
R10  
3.3  
1.8  
RC0603  
L4  
5VGND;3,4,5  
SMAEDGE  
5V  
JP54  
DVDDX_IN  
LC1812  
EXC-CL4532U1  
1
1
J5  
TP8  
B
A
2
0.1UF  
CC0603  
C1  
10UF  
6.3V  
0.1UF  
CC0603  
C20  
RED  
2
EXC-CL4532U1  
L12  
CC0603  
IN3  
IN4  
SD  
OUT5  
R31  
76.8K  
4
3
2
1
5
6
7
8
C30  
5V  
100PF  
C15  
C16  
TP9  
BLK  
1UF  
AVDD_IN  
OUT6  
C21  
LC1812  
5V  
CC0603  
FB  
NC  
U6  
1UF  
GND  
R30 64.9K  
L16  
2
A
JP29  
ADP3334  
5V  
5V  
B
3
CVDDX_IN  
LC1812  
RC0603  
1
EXC-CL4532U1  
TP24  
RED  
C57  
10UF  
6.3V  
0.1UF  
CC0603  
0.1UF  
CC0603  
78.7K R29  
3.3  
1.8  
EXC-CL4532U1  
L19  
RC0603  
5VGND;3,4,5  
C61  
C60  
TP23  
BLK  
SMAEDGE  
5V  
JP15  
1
1
LC1812  
J8  
C
B
A
2
C31  
2
CC0603  
IN3  
IN4  
SD  
OUT5  
OUT6  
FB  
R36  
76.8K  
4
3
2
1
5
6
7
8
C38  
5V  
100PF  
1UF  
DVDDX_IN  
CVDDX_IN  
2
C37  
CC0603  
5V  
5VGND;3,4,5  
U7  
SMAEDGE  
1UF  
GND  
NC  
R32  
64.9K  
1
2
A
J11  
B
A
ADP3334  
3
1
5V  
5V  
B
RC0603  
C86  
1
3
JP78  
2
JP88  
1.8  
CC0603  
IN4  
4
OUT5  
OUT6  
R25  
76.8K  
5
C89  
5V  
100PF  
3.3  
1UF  
78.7K  
R3  
IN3  
C88  
3
6
7
8
CC0603  
SD  
2
FB  
NC  
U11  
RC0603  
5V  
1UF  
GND  
R92 64.9K  
1
2
A
5VINT  
ADP3334  
5V  
5V  
B
3
RC0603  
1
5VGND;3,4,5  
5VIN  
JP89  
SMAEDGE  
JP28  
JP3  
3.3  
1.8  
1
78.7K R4  
J3  
5VUSB  
RC0603  
5V  
2
5V  
TP22  
WHT  
TP10  
BLK  
R6  
RC0402  
0
2
MSB  
No stub  
Match length  
to path from  
S5 to Pin 18  
of U1.  
1
RP3  
1
22  
16  
15  
14  
13  
12  
11  
10  
9
PCB Bottom Side  
2
DB13X  
DB12X  
DB11X  
DB10X  
DB9X  
DB13  
DB12  
DB11  
DB10  
DB9  
1
3
5
7
9
2
3
DB13X  
DB12X  
DB11X  
DB10X  
DB9X  
DB8X  
DB7X  
DB6X  
DB5X  
DB4X  
DB3X  
DB2X  
DB1X  
DB0X  
4
4
6
5
8
6
10  
7
DB8X  
DB8  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
8
DB7X  
DB7  
RNETCTS743-8  
RP4  
22  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
DB6X  
DB5X  
DB4X  
DB3X  
DB2X  
DB1X  
DB0X  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
RNETCTS743-8  
SSW-120-02-SM-D-R-A  
1
J1  
DIGITAL INPUTS  
1
IN J1 AND RP3, THE MSB IS DB13, DB11, DB9, OR DB7, DEPENDING ON THE PART.  
=
SHARE COMPONENT PAD.  
OUT2R  
DVDDX  
CLKIN  
C59  
4.7UF  
6.3V  
00.1UF  
1NF  
C56  
DCLKIO  
ACASE  
CC0402  
CC0402  
OUT0R  
R65  
R64  
C55  
DNP R122  
0
R33  
0
0
DVDDX  
RC0402  
RC0402  
RC0402  
CVDDX  
R70  
10K  
R66  
DNP  
R34  
0
TP25  
WHT  
TP26  
WHT  
DGND;3  
DVDDX;5  
C34 00.1UF  
DNP R110  
0
R72  
2
4
S5  
S11  
00.1UF  
00.01UF  
CC0402 C78  
RC0402  
RC0402  
R108  
10K  
CC0402  
C
SN74LVC1G34DCK  
CGND;3,4,5  
DGND;3,4,5  
C77  
R68  
DNP  
R17  
DNP  
U8  
C101  
00.1UF  
C
R71  
10K  
C
C
R67  
R107  
DNP  
U12  
RC0402  
0
1
2
4
EN  
OVCC  
Keep parallel  
R18  
49.9  
3
GND  
OUT  
C
R69  
DNP  
OSC-S1703  
C
R46  
RC0402  
0
R47  
RC0402  
0
R48  
RC0402  
0
C
CVDD  
DNP  
R80  
1
2
40  
DB11  
DB10  
DB11  
DB10  
DB9  
DB12  
DB12  
REFIO  
RC0402  
39  
DB13 (MSB)  
CS/PWRDN  
DB13  
0.1UF  
CC0603  
0.01UF  
DVDD  
3
38  
CC0603  
DB9  
SLEEP-CSB  
MODE-SDIO  
RMODE-SCLK  
4
37  
JP11  
C27  
C28  
DB8  
DB8  
SDIO/FORMAT  
SCLK/CLKMD  
RESET/PINMD  
REFIO  
5
36  
DVDDIO  
DVSS  
DVDD  
DB7  
DVDDIO  
TP30  
WHT  
6
35  
SW1  
7
34  
4
2
TP3  
WHT  
C11  
0.1UF  
AVDD  
8
33  
3
1
DB7  
DB6  
FSADJI/AUXI  
FSADJQ/AUXQ  
CMLI  
FSADJ1  
9
32  
1UF  
CC0603  
DB6  
FSADJ2  
IOTC  
0.1UF  
CC0603  
0.01UF  
CC0603  
DGND;5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
31  
CC0603  
DB5  
DB5  
C39  
30 JP35  
29  
10K  
C26  
C25  
DB4  
DB4  
RLIN  
DB3  
DB3  
IOUTN  
IOUTB  
28  
DB2  
DB2  
IOUTP  
IOUTA  
27  
40-LEAD LFCSP  
AD9717  
DB1  
DB1  
RLIP  
AVDD  
DVDD  
JP34  
26  
DB0 (LSB)  
DCLKIO  
CVDD  
CLKIN  
DB0 (LSB)  
DCLKIO  
CVDD  
AVDD  
0
R19  
RC0402  
25  
AVSS  
IOTC  
IOT_CML  
0.1UF  
CC0603  
0.01UF  
CC0603  
24 JP33  
RLQP  
DNP  
R20  
RC0402  
23  
22  
C24  
C23  
CLKIN  
QOUTP  
QOUTN  
RLQN  
QOUTA  
QOUTB  
AGND;41  
U1  
CVSS  
0
R21  
RC0402  
21  
QOTC  
CMLQ  
QOTC  
QOT_CML  
JP32  
DNP  
R26  
RC0402  
C
THE AD9714/AD9715/AD9716  
CAN BE USED IN U1.  
TP32  
DNP  
OPAMPIN  
JP55  
D1P  
AGND;3,4,5  
S3  
R11  
0
R111  
10-DNP  
RC0603  
0
R9  
DNP  
DNP  
IOUTA  
RC0603  
RC0603  
R93  
TP31  
WHT  
R118  
T8  
TP33  
DNP  
ADTL1-12  
6
5
4
S
P
1
2
3
JP56  
R57  
453  
3
1
4
P
S
D1N  
6
T2  
ADT9-1T  
DNP  
AGND;3,4,5  
S4  
R79  
0
0
RC0603  
RC0603  
IOUTB  
RC0603  
R119  
R35  
100K  
R94  
R37  
DNP  
R123  
0-DNP  
RC0603  
R14  
DNP  
R13  
DNP  
WHT  
TP44  
WHEN R13 AND R14 ARE NOT  
DNP, 499 IS RECOMMENDED  
IOT_CML  
C22  
0.1UF  
R22  
DNP  
R15  
0-DNP  
CC0603  
TP40  
ORG  
TP39  
RED  
C102  
TP1  
WHT  
0.2NF  
DNP  
JP90  
FSADJ1  
N5V  
P5V  
S9  
AGND;3,4,5  
R113 499  
10V  
10UF  
C103  
C104  
10UF  
10V  
RC0402  
ACASE  
ACASE  
R116 0  
P5V  
TP41  
BLK  
C106  
TP34  
WHT  
0.1UF  
OPAMPIN  
RC0402  
R115 499  
R1  
R49  
16K  
R51  
7
R99  
100K  
R98  
DNP  
8
+V  
-IN  
RC0402  
2
1
DIS  
DNP  
FB  
R114 15  
32K  
0.1%  
8K  
C105  
CERAMIC  
ADA4899-1  
U13  
1UF  
1
R97  
DNP  
OUT 6  
R117 0  
S12  
AGND;3,4,5  
-V2  
0.1%  
0.1%  
RC0402  
-V1  
3
DNP  
CC0603  
+IN  
REFIO  
2
RC0402  
5
DNP  
4
AGND;9  
C95  
0.1UF  
C108  
CC0603  
0.1UF  
C107  
WHEN C95 IS NOT  
DNP, 10pF TO 1nF IS RECOMMENDED  
FSADJ resistors must have low TC  
N5V  
IOUT NETWORK AND FSADJ1  
OPAMPIN  
TP36  
DNP  
JP76  
D2P  
R38  
0
WHEN R112 IS NOT DNP,  
10 IS RECOMMENDED  
R112  
DNP  
S6  
RC0603  
AGND;3,4,5  
R105  
0
R42  
DNP  
R120 DNP  
QOUTA  
RC0603  
RC0603  
TP38  
WHT  
T1  
ADT9-1T  
TP37  
DNP  
1
3
6
JP82  
R50  
453  
4
5
6
3
2
1
P
S
D2N  
4
S
P
ADTL1-12  
T5  
AGND;3,4,5  
S8  
R83  
0
R106  
0
R121 DNP  
RC0603  
QOUTB  
RC0603  
RC0603  
R56  
DNP  
R55 100k  
0
R52  
DNP  
R53  
DNP  
R124  
RC0603  
WHT  
TP45  
WHEN R52 AND R53 ARE NOT  
DNP, 499 IS RECOMMENDED  
QOT_CML  
C48  
0.1UF  
R54  
DNP  
R16  
0
CC0603  
TP17  
WHT  
DNP  
JP91  
1
FSADJ2  
S10  
AGND;3,4,5  
2
TP35  
WHT  
R58  
32K  
R59  
16K  
R60  
8K  
R102  
100K  
R101  
DNP  
0.1%  
0.1%  
0.1%  
R100  
DNP  
DNP  
CC0603  
C96  
WHEN C96 IS NOT DNP,  
10pF TO 1nF IS RECOMMENDED  
FSADJ resistors must have low TC  
QOUT NETWORK AND FSADJ2  
5VUSB  
0.1UF  
CC0603  
0.1UF  
CC0603  
0.1UF  
CC0603  
0.1UF  
CC0603  
C32  
10UF  
6.3V  
C99  
C98  
C97  
C84  
L15  
EXC-CL3225U1  
2
GND-4  
ID-X  
PIC18F4450  
5
1
2
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
RC7-RX-DT  
5V  
MOSI  
EN1  
RC6-TX-CK  
RC5-D+-VP  
RC4-D--VM  
RD3  
4
3
2
1
RD4  
D+  
pcb Top side  
3
RD5  
D-  
EN2  
4
RD6  
VBUS  
5VUSB  
5
RD7  
P1  
R63  
RD2  
U3  
6
VSS1  
RD1  
499  
7
AVDD1  
5VGND;45  
RD0  
RC0403  
8
VDD1  
5VUSB  
MISO  
VUSB  
2
1
9
RB0-AN12-INT0  
RB1-AN10-INT1  
RB2-AN8-INT2-VMO  
RB3-AN9-VPO  
RC2-CCP1  
RC1-T1OSI-UOE  
470NF  
CC0603  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
D1  
SCK  
C110  
LNJ312G8TRA  
SSEL1  
SSEL2  
RC0-TIOSO-T1CKI  
OSC2-CLKO-RA6  
OSC1-CLK1  
VSS2  
5V  
N31C  
0
0
R82  
RC0402  
MP1  
1M  
R27  
Y1CC0603  
RB4-AN11-KBI0  
RB5-KBI1-PGM  
RB6-KBI2-PGC  
RB7-KBI3-PGD  
MCLR-VPP-RE3  
RA0-AN0  
1
2
5VUSB  
AVSS  
20.000MHZ  
VDD2  
5VUSB  
3
3
AVDD2  
5VGND;2  
10PF-1%  
4
RE2-AN7  
10PF-1%  
CC0603  
5
CC0603  
RA0  
RE1-AN6  
0.1UF  
CC0603  
MP2  
R62  
RC0402  
C49  
C33  
RA1-AN1  
RE0-AN5  
C114  
RA2-AN2-VREF-  
RA3-AN3-VREF+  
RA5-AN4-HLVDIN  
RA4-T0CKI-RCV  
P3  
pcb bottom side  
5V  
5V  
TP2  
TP7  
BLK  
R87  
0
DNP  
DVDD  
5VUSB  
DVDDX  
5VUSB  
0.1UF  
CC0603  
0.1UF  
CC0603  
0.1UF  
CC0603  
0.1UF  
CC0603  
RC1206  
C100  
C109  
C111  
C112  
R43  
5V  
0
MISO  
MOSI  
RC0402  
TP18  
WHT  
1
2
3
4
5
6
7
1
14  
14  
13  
12  
11  
10  
9
VCCA  
A1  
VCCY  
VCCA  
A1  
VCCY  
22  
R103  
R44  
22  
22  
22  
R28  
R39  
R40  
2
3
4
5
6
7
13  
12  
11  
10  
9
Y1  
Y2  
Y1  
Y2  
Y3  
Y4  
MODE-SDO  
MISO  
SDIO  
TP19  
MISO  
MOSI  
SCK  
RC0402  
U5  
U14  
A2  
A2  
MODE-SDIO  
RMODE-SCLK  
SLEEP-CSB  
MOSI  
SCK  
22  
WHT  
Y3  
A3  
A3  
SCLK  
ADG3304  
ADG3304  
22RC0402 R41  
22 RC0402R45  
A4  
Y4  
A4  
SSEL1  
CSB  
SSEL2  
RC0402  
NCA  
NCY  
EN  
TP20  
WHT  
NCA  
GND  
8
8
GND  
EN  
EN1  
EN2  
MOD_IP  
MOD_IN  
MOD_QN  
MOD_QP  
4.7PF  
CC0805  
7.5PF  
CC0805  
DNP  
CC0805  
0
R73  
RC0603  
MOD_IP  
C82  
L17  
C92  
T6  
C81  
L10  
VDDM  
DNP  
DNP  
1.8UH  
1
3
6
D1N  
D1P  
LC1008  
LC1008  
NC=2,5  
P
S
4
C52  
C51  
L11  
L14  
1.8UH  
C44  
ACASE  
CC0402  
CC0402  
DNP  
LC1008  
LC1008  
ADTL1-12  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
10UF  
10V  
DNP  
0.1UF  
100PF  
COM1A  
COM1B  
VPS1A  
VPS1B  
VPS1C  
VPS1D  
COM2A  
LOIP  
QBBP  
QBBN  
COM4B  
COM4A  
IBBN  
CC0805  
CC0805  
CC0805  
0
R74  
RC0603  
VDDM  
C80  
4.7PF  
C79  
C91  
MOD_IN  
3
7.5PF  
4
5
C43  
CC0402  
CC0402  
C83  
ACASE  
6
10UF  
10V  
CC0402  
C50  
100PF  
IBBP  
C47  
0.1UF  
7
100PF  
VPS5  
8
VPS4  
VDDM  
C90  
ADL5370  
U9  
9
LOIN  
VPS3  
VPS2B  
VPS2A  
VOUT  
10  
11  
12  
CC0402  
COM2B  
COM3A  
COM3B  
C87  
0.1UF  
CC0402  
CC0402  
CC0402  
100PF  
0
R75  
RC0603  
AGND;25  
4.7PF  
CC0805  
7.5PF  
CC0805  
DNP  
CC0805  
MOD_QN  
T3  
C75  
L20  
C94  
C74  
L8  
VDDM  
C41  
DNP  
DNP  
1.8UH  
CC0402  
1
3
6
D2N  
D2P  
C72  
LC1008  
LC1008  
LC1008  
C63  
P
S
4
CC0402  
NC=2,5  
CC0402  
L9  
L18  
ACASE  
1.8UH  
10UF  
10V  
0.1UF  
100PF  
AGND;3,4,5  
SMAEDGE  
AGND;3,4,5  
SMAEDGE  
LC1008  
ADTL1-12  
DNP  
CC0805  
1
1
0
CC0805  
CC0805  
R78  
RC0603  
J6  
J7  
MOD_QP  
C65  
4.7PF  
C64  
7.5PF  
C93  
2
2
RED  
RED  
TP16  
TP42  
L13  
VDDM  
VDDM_IN  
LC1812  
EXC-CL4532U1  
C35  
22UF  
16V  
0.1UF  
CC0402  
0.1UF  
ACASE  
CC0402  
BLK  
TP21  
BLK  
TP43  
C36  
C29  
MODULATED OUTPUT  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VS18  
VS17  
CVDDX  
CVDDX  
DSYNC  
DSYNCB  
VS1  
3
CVDDX  
CVDDX  
GND6  
RSET  
VS16  
4.12K  
R81  
RC0402  
4
VS2  
5
C
CVDDX  
NC1  
6
CVDDX  
CVDDX  
GND5  
OUT0  
OUT0B  
VS15  
VS3  
7
CLK2  
CLK2B  
VS4  
8
9
C45 0.1UF  
T9  
CGND;3,4,5  
J10  
CVDDX  
CVDDX  
1
2
3
6
5
4
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
P
S
VS14  
CLK1  
CLK1B  
FUNC  
STATUS  
SCLK  
SDIO  
SDO  
GND4  
GND3  
VS13  
3
1
R91  
49.9  
CVDDX  
JTX-4-10T+  
1:4  
C
C
0
0
R88  
RC0402  
2
D3  
RMODE-SCLK  
MODE-SDIO  
MODE-SDO  
SLEEP-CSB  
CVDDX  
OUT3  
OUT3B  
VS12  
OUT0R  
DNP R90  
C46  
0.1UF  
RC0402  
CVDDX  
CVDDX  
C
C
VS11  
CSB  
AD9512BCPZ  
R89  
1.8K R77  
1.8K R76  
CVDDX  
OUT4  
OUT4B  
VS10  
OUT2R  
DNP R109  
VS5  
RC0402  
RC0402  
RC0402  
CGND;49  
GND1  
OUT2B  
OUT2  
VS6  
1NF  
CC0402  
CVDDX  
CVDDX  
SW2  
RC0402  
C62  
2
4
VS9  
C
U10  
WHEN R90 AND R109  
ARE NOT DNP, 49.9  
IS RECOMMENDED  
1
3
CVDDX  
CVDDX  
OUT1  
OUT1B  
VS8  
C
C
CGND;5  
VS7  
CVDDX  
GND2  
C
C
0
R86  
RC0402  
RA0  
CVDDX  
0.1UF  
C42  
0.1UF  
C66  
0.1UF  
0.1UF  
C68  
CC0402  
CC0402  
CC0402  
CC0402  
CC0402  
CC0402  
CC0402  
CC0402  
C67  
0.1UF  
C69  
0.1UF  
C70  
0.1UF  
C71  
0.1UF  
C76  
CC0402  
CC0402  
0.1UF  
C113  
0.1UF  
C85  
0.1UF  
C58  
0.1UF  
C40  
CC0402  
CC0402  
C
CLOCK DRIVER CHIP  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
SILKSCREENS  
Figure 120. Layer 2, Ground Plane  
Rev. B | Page 61 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
Figure 121. Layer 3, Power Plane  
Rev. B | Page 62 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
Figure 122. Assembly—Primary Side  
Rev. B | Page 63 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
Figure 123. Assembly—Secondary Side  
Rev. B | Page 64 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
Figure 124. Solder Mask—Primary Side with Socket  
Rev. B | Page 65 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
Figure 125. Solder Mask—Secondary Side  
Rev. B | Page 66 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
Figure 126. Hard Gold Plated with Bumps and Socket  
Rev. B | Page 67 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
Figure 127. Primary Side Paste  
Rev. B | Page 68 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
Figure 128. Secondary Side Paste  
Rev. B | Page 69 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
Figure 129. Silkscreen—Primary Side  
Rev. B | Page 70 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
Figure 130. Silkscreen—Secondary Side  
Rev. B | Page 71 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
Figure 131. Layer 1—Primary Side  
Rev. B | Page 72 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
Figure 132. Layer 4—Secondary Side  
Rev. B | Page 73 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
Figure 133. Immersion Gold, No Socket, No Bumps  
Rev. B | Page 74 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
Figure 134. Solder Mask—Primary Side, No Socket  
Rev. B | Page 75 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
BILL OF MATERIALS  
Table 18.  
Part No./  
Manufacturer  
Qty Reference Designator  
Device  
Package  
ACASE  
Description  
6
C1, C2, C4, C5, C32, C57  
CAPSMDA  
CC0603  
10 µF, 6.3 V capacitor  
0.1 µF capacitor  
17  
C3, C6, C7, C8, C9, C10, C11,  
C15, C16, C22, C24, C26,  
C27, C48, C60, C61, C107  
CC0603  
11  
C12, C14, C17, C18, C20,  
C21, C31, C37, C39, C86, C88  
CC0603  
CC0603  
1 µF capacitor  
5
C13, C19, C30, C38, C89  
C23, C25, C28  
CC0603  
CC0603  
CC0603  
CC0603  
CC0402  
CC0603  
CC0402  
100 pF capacitor  
0.01 µF capacitor  
0.1 µF capacitor  
10 pF, 1% capacitor  
0.1 µF capacitor  
3
6
C29, C36, C47, C52, C72, C90 CC0402  
2
C33, C49  
CC0603  
CC0402  
18  
C34, C40, C42, C45, C46,  
C55, C58, C66, C67, C68,  
C69, C70, C71, C76, C77,  
C85, C101, C113  
1
3
8
C35  
CAPSMDA  
CAPSMDB  
CC0402  
ACASE  
ACASE  
CC0402  
22 µF,16 V capacitor  
10 µF, 10 V capacitor  
100 pF capacitor  
C41, C43, C44  
C50, C51, C53, C54, C63,  
C73, C83, C87  
2
C56, C62  
CC0402  
CAPSMDA  
CC0805  
CC0805  
CC0402  
CC0603  
CC0402  
ACASE  
1 nF capacitor  
1
C59  
4.7 µF, 6.3 V capacitor  
7.5 pF, 1% capacitor  
4.7 pF, 1% capacitor  
0.01 µF capacitor  
0.1 µF capacitor  
4
C64, C75, C79, C82  
C65, C74, C80, C81  
C78  
CC0805  
CC0805  
CC0402  
CC0603  
4
1
11  
C84, C97, C98, C99, C100,  
C106, C108, C109, C111,  
C112, C114  
4
2
1
2
1
1
1
1
1
C91, C92, C93, C94  
CC0805  
CC0805  
DNP  
C95, C96  
C102  
C103, C104  
C105  
C110  
D1  
CC0603  
CC0603  
DNP  
CC0402  
CC0402  
0.2 nF capacitor  
10 µF, 10 V capacitor  
1 µF ceramic capacitor  
470 nF capacitor  
LED-SMD-TSS-GRN  
HSMS-281C  
CAPSMDA  
CC0805  
ACASE  
CC0805  
CC0603  
CC0603  
Panasonic LNJ312G8TRA  
HSMS-281C  
1.6 mm x 0.8 mm  
SOT323-3  
LNJ312G8TRA  
HSMS-281C  
D3  
J1  
Samtec  
SSW-120-02-SM-D-RA  
40-pin through  
hole  
40-pin right angle  
header female  
SSW-120-02-SM-D-RA/  
Samtec  
6
2
5
J2, J3, J4, J5, J8, J11  
J6, J7  
SMAEDGE  
SMAEDGE  
SMAUPA04  
SMAUPA04  
SMAEDGE  
SMAEDGE  
SMA200UP  
DNP SMA connector  
edge right angle  
SMA connector  
edge right angle  
J10, S3, S5, S6, S11  
SMA connector RF  
5-pin upright  
5
S4, S8, S9, S10, S12  
SMA200UP  
JPRBLK02  
DNP  
11  
JP3, JP7, JP8, JP9, JP11, JP12, JPRBLK02  
JP16, JP20, JP21, JP28, JP77  
2-pin jumper header  
10  
10  
JP6, JP10, JP15, JP22, JP26,  
JP29, JP54, JP78, JP88, JP89  
JPRBLK03  
JPRBLK03  
JPRSLD02  
3-pin jumper header  
Solder jumper  
JP32, JP33, JP34, JP35, JP55,  
JP56, JP76, JP82, JP90, JP91  
JPRSLD02  
Rev. B | Page 76 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
Part No./  
Manufacturer  
Qty Reference Designator  
Device  
Package  
Description  
11  
L1, L2, L3, L4, L5, L6, L7,  
L12, L13, L16, L19  
IND1812  
LC1812  
EXC-CL4532U1  
EXC-CL4532U1  
4
4
1
1
1
L8, L9, L10, L11  
IND1008  
LC1008  
1.8 µH, 10%  
DNP  
L14, L17, L18, L20  
IND1008  
LC1008  
L15  
P1  
IND1210  
LC1210  
EXC-CL3225U1  
USB mini 5-pin  
EXC-CL3225U1  
USB-MINIB  
Molex 0532610571  
USB-MINIB  
Molex 0532610571  
P3  
1.25 mm, 5-pin wire-  
to-board connector  
0532610571/  
Molex  
2
R1, R58  
RC0805  
RC0805  
32 kΩ, 0.1% resistor  
ERA6YEB323V,  
ERA6Y  
5
5
6
7
R2, R23, R25, R31, R36  
R3, R4, R5, R10, R29  
RC0603  
RC0603  
RC0402  
RC0402  
RC0603  
RC0603  
RC0402  
RC0402  
76.8 kΩ resistor  
78.7 kΩ resistor  
0 Ω resistor  
DNP  
R6, R33, R34, R64, R65, R67  
R17, R66, R68, R69, R107,  
R110, R122  
1
5
8
R7  
RC0603  
RC0603  
RC0603  
RC0603  
RC0603  
RC0603  
10 kΩ resistor  
64.9 kΩ resistor  
DNP  
R8, R12, R30, R32, R92  
R9, R37, R42, R56, R97, R98,  
R100, R101  
4
R11, R38, R79, R83  
R13, R14, R52, R53  
RC0603  
RC0603  
RC0603  
RC0603  
RC0603  
RC0603  
0 Ω resistor  
DNP  
4
10  
R15, R16, R123, R124,  
R73 to R75, R78, R93, R94,  
R105, R106  
0 Ω resistor  
6
R22, R54, R118, R119,  
R120, R121  
RC0603  
RC0603  
DNP  
1
2
3
2
1
7
R18  
RC0402  
RC0402  
RC0402  
RC0603  
RC0603  
RC0402  
RC0402  
RC0402  
RC0402  
RC0603  
RC0603  
RC0402  
49.9 Ω resistor  
0 Ω resistor  
DNP  
R19, R21  
R20 , R26, R80  
R24, R61  
R27  
1 kΩ resistor  
1 MΩ resistor  
22 Ω resistor  
R28, R39, R40, R41, R44,  
R45, R103  
4
1
8
R35, R55, R99, R102  
R43  
RC0603  
RC0402  
RC0402  
RC0603  
RC0402  
RC0402  
100 kΩ resistor  
0 Ω resistor  
R46, R47, R48, R62, R82,  
R86, R116, R117  
0 Ω resistor  
2
R49, R59  
RC0805  
RC0805  
16 kΩ, 0.1% resistor  
ERA6YEB323V,  
ERA6Y  
2
2
R50, R57  
R51, R60  
RC0603  
RC0805  
RC0603  
RC0805  
453 Ω resistor  
8 kΩ, 0.1% resistor  
ERA6YEB323V,  
ERA6Y  
3
3
1
2
1
1
2
2
1
2
1
2
R63, R113, R115  
R70, R71, R108  
R72  
RC0402  
RC0402  
RC0402  
RC0402  
RC0402  
RC1206  
RC0402  
RC0402  
RC0805  
RC0603  
RC0402  
RNETCTS743-8  
RC0402  
RC0402  
RC0402  
RC0402  
RC0402  
RC1206  
RC0402  
RC0402  
RC0805  
RC0603  
RC0402  
RNETCTS743-8  
499 Ω resistor  
10 kΩ resistor  
25 Ω resistor  
1.8 kΩ resistor  
4.12 kΩ resistor  
0 Ω resistor  
0 Ω resistor  
DNP  
R76, R77  
R81  
R87  
R88, R89  
R90, R109  
R91  
49.9 Ω resistor  
DNP  
R111, R112  
R114  
15 Ω resistor  
DNP  
RP1, RP5  
Rev. B | Page 77 of 80  
AD9714/AD9715/AD9716/AD9717  
Data Sheet  
Part No./  
Manufacturer  
Qty Reference Designator  
Device  
Package  
Description  
2
2
4
1
RP3, RP4  
SW1, SW2  
T1, T2, T3, T6  
T4  
RNETCTS743-8  
KEYBDSWG  
ADTL1-12  
ETC1-1-13  
RNETCTS743-8  
OMRONB3SG  
MINI_CD542  
SM-22  
22 Ω resistor  
B3S-1100 push-button  
DNP  
M/A COM ETC1-1-13  
ETC1-1-13/  
M/A-COM  
2
T5, T8  
T9  
ADT9-1T  
MINI_CD542  
MINI_BH292  
LOOPMINI  
ADT9-1T  
ADT9-1T/  
Mini-Circuits  
1
JTX-4-10T  
LOOPMINI  
JTX-4-10T+  
White test point  
JTX-4-10T/  
Mini-Circuits  
16  
TP1, TP3, TP17, TP18,  
TP19, TP20, TP22, TP25,  
TP26, TP30, TP31, TP34,  
TP35, TP38, TP44, TP45  
4
8
TP32, TP33, TP36, TP37  
LOOPMINI  
LOOPMINI  
LOOPMINI  
LOOPMINI  
DNP  
TP5, TP8, TP12, TP13,  
TP16, TP24, TP39, TP42  
Red test point  
1
TP2  
LOOPMINI  
LOOPMINI  
LOOPMINI  
LOOPMINI  
DNP  
12  
TP4, TP6, TP7, TP9, TP10,  
TP11, TP14, TP15, TP21,  
TP23, TP41, TP43  
Black test point  
1
1
TP40  
U1  
LOOPMINI  
LOOPMINI  
Orange test point  
40-lead LFCSP, AD9717  
LFCSP040-CP1  
40-lead LFCSP,  
AD9717  
AD9717/  
Analog Devices  
5
1
U2, U4, U6, U7, U11  
U3  
ADP3334  
8-lead SOIC  
ADP3334 voltage  
regulator  
ADP3334/  
Analog Devices  
USB-PIC18F4550-I/ML-ND  
QFN044P65MM-EP1  
PIC18F4550,  
microchip USB  
port chip  
PIC18F4550  
QFN44 8X8MM  
2
1
1
1
U5, U14  
U8  
ADG3304BRUZ  
74LVC1G34  
ADL5370  
14-lead TSSOP  
SC70-05  
ADG3304,  
14-lead TSSOP  
ADG3304BRUZ/  
Analog Devices  
SN74LVC1G34DCK,  
TI buffer  
TI-DCK =  
SC70_05 PKG  
U9  
LFCSP024P5MM-EP1  
LFCSP048-CP1  
ADL5370ACPZ  
ADL5370ACPZ/  
Analog Devices  
U10  
AD9512  
AD9512BCPZ  
AD9512BCPZ/  
Analog Devices  
1
1
U12  
U13  
OSC-S1703  
OSC-S1703  
SOIC8-N-EP  
DNP  
8-lead SOIC, ADA4899-1  
Op amp, ADA4899-1  
ADA4899-1/  
Analog Devices  
1
Y1  
ABM3B-20.000MHZ-10-1-U-T SMD 3.2 mm × 5.0 mm 20 MHz  
300-8214-1-ND/  
Digi-Key  
Rev. B | Page 78 of 80  
Data Sheet  
AD9714/AD9715/AD9716/AD9717  
OUTLINE DIMENSIONS  
6.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
31  
40  
1
30  
PIN 1  
INDICATOR  
0.50  
BSC  
TOP  
VIEW  
4.25  
4.10 SQ  
3.95  
5.75  
BSC SQ  
EXPOSED  
PAD  
(BOT TOM VIEW)  
0.50  
0.40  
0.30  
21  
10  
20  
11  
0.25 MIN  
4.50  
REF  
12° MAX  
0.80 MAX  
0.65 TYP  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2  
Figure 135. 40-Lead Lead Frame Chip Scale Package [LFCSP]  
6 mm × 6 mm and 0.85 mm Package Height  
(CP-40-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
40-Lead LFCSP  
40-Lead LFCSP  
40-Lead LFCSP  
40-Lead LFCSP  
40-Lead LFCSP  
40-Lead LFCSP  
40-Lead LFCSP  
40-Lead LFCSP  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Package Option  
CP-40-1  
AD9714BCPZ  
AD9714BCPZRL7  
AD9715BCPZ  
CP-40-1  
CP-40-1  
AD9715BCPZRL7  
AD9716BCPZ  
CP-40-1  
CP-40-1  
AD9716BCPZRL7  
AD9717BCPZ  
CP-40-1  
CP-40-1  
AD9717BCPZRL7  
AD9714-DPG2-EBZ  
AD9715-DPG2-EBZ  
AD9716-DPG2-EBZ  
AD9717-DPG2-EBZ  
CP-40-1  
1 Z = RoHS Compliant Part.  
Rev. B | Page 79 of 80  
AD9714/AD9715/AD9716/AD9717  
NOTES  
Data Sheet  
©2008–2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07265-0-1/18(B)  
Rev. B | Page 80 of 80  

相关型号:

AD9715

Dual, 8-/10-/12-/14-Bit Low Power Digital-to-Analog Converters
ADI

AD9715-DPG2-EBZ

Digital-to-Analog Converters
ADI

AD9715-EBZ

Dual, 8-/10-/12-/14-Bit Low Power Digital-to-Analog Converters
ADI

AD9715BCPZ

Dual, 8-/10-/12-/14-Bit Low Power Digital-to-Analog Converters
ADI

AD9715BCPZRL7

Dual, 8-/10-/12-/14-Bit Low Power Digital-to-Analog Converters
ADI

AD9716

Dual, 8-/10-/12-/14-Bit Low Power Digital-to-Analog Converters
ADI

AD9716-DPG2-EBZ

Digital-to-Analog Converters
ADI

AD9716-EBZ

Dual, 8-/10-/12-/14-Bit Low Power Digital-to-Analog Converters
ADI

AD9716BCPZ

Dual, 8-/10-/12-/14-Bit Low Power Digital-to-Analog Converters
ADI

AD9716BCPZRL7

Dual, 8-/10-/12-/14-Bit Low Power Digital-to-Analog Converters
ADI

AD9717

Dual, 8-/10-/12-/14-Bit Low Power Digital-to-Analog Converters
ADI

AD9717-DPG2-EBZ

Digital-to-Analog Converters
ADI