AD9779BSVZRL1 [ADI]

Dual 12-/14-/16-Bit, 1 GSPS, Digital-to-Analog Converters; 双12位/ 14位/ 16位, 1 GSPS ,数字 - 模拟转换器
AD9779BSVZRL1
型号: AD9779BSVZRL1
厂家: ADI    ADI
描述:

Dual 12-/14-/16-Bit, 1 GSPS, Digital-to-Analog Converters
双12位/ 14位/ 16位, 1 GSPS ,数字 - 模拟转换器

转换器
文件: 总56页 (文件大小:1532K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 12-/14-/16-Bit,  
1 GSPS, Digital-to-Analog Converters  
AD9776/AD9778/AD9779  
FEATURES  
GENERAL DESCRIPTION  
Low power: 1.0 W @ 1 GSPS, 600 mW @ 500 MSPS,  
full operating conditions  
SFDR = 78 dBc to fOUT = 100 MHz  
Single carrier WCDMA ACLR = 79 dBc @ 80 MHz IF  
Analog output: adjustable 8.7 mA to 31.7 mA,  
RL = 25 Ω to 50 Ω  
Novel 2×, 4×, and 8× interpolator/coarse complex modulator  
allows carrier placement anywhere in DAC bandwidth  
Auxiliary DACs allow control of external VGA and offset control  
Multiple chip synchronization interface  
High performance, low noise PLL clock multiplier  
Digital inverse sinc filter  
The AD9776/AD9778/AD9779 are dual, 12-/14-/16-bit, high  
dynamic range, digital-to-analog converters (DACs) that pro-  
vide a sample rate of 1 GSPS, permitting multicarrier generation  
up to the Nyquist frequency. They include features optimized  
for direct conversion transmit applications, including complex  
digital modulation, and gain and offset compensation. The DAC  
outputs are optimized to interface seamlessly with analog quad-  
rature modulators such as the AD8349. A serial peripheral interface  
(SPI®) provides for programming/readback of many internal  
parameters. Full-scale output current can be programmed over a  
range of 10 mA to 30 mA. The devices are manufactured on an  
advanced 0.18 μm CMOS process and operate on 1.8 V and  
3.3 V supplies for a total power consumption of 1.0 W. They are  
enclosed in 100-lead TQFP packages.  
100-lead, exposed paddle TQFP package  
APPLICATIONS  
Wireless infrastructure  
WCDMA, CDMA2000, TD-SCDMA, WiMax, GSM  
Digital high or low IF synthesis  
Internal digital upconversion capability  
Transmit diversity  
PRODUCT HIGHLIGHTS  
1. Ultralow noise and intermodulation distortion (IMD)  
enable high quality synthesis of wideband signals from  
baseband to high intermediate frequencies.  
2. A proprietary DAC output switching technique enhances  
dynamic performance.  
Wideband communications: LMDS/MMDS, point-to-point  
3. The current outputs are easily configured for various  
single-ended or differential circuit topologies.  
4. CMOS data input interface with adjustable set up and hold.  
5. Novel 2×, 4×, and 8× interpolator/coarse complex  
modulator allows carrier placement anywhere in DAC  
bandwidth.  
TYPICAL SIGNAL CHAIN  
QUADRATURE  
MODULATOR/  
MIXER/  
COMPLEX I AND Q  
AMPLIFIER  
LO  
DC  
DC  
DIGITAL INTERPOLATION FILTERS  
I DAC  
POST DAC  
ANALOG FILTER  
FPGA/ASIC/DSP  
Q DAC  
A
AD9779  
Figure 1.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2005–2007 Analog Devices, Inc. All rights reserved.  
 
AD9776/AD9778/AD9779  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
SPI Register Map ............................................................................ 27  
Interpolation Filter Architecture.................................................. 31  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Typical Signal Chain......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
DC Specifications ......................................................................... 4  
Digital Specifications ................................................................... 6  
Digital Input Data Timing Specifications ................................. 7  
AC Specifications.......................................................................... 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configurations and Function Descriptions ........................... 9  
Typical Performance Characteristics ........................................... 15  
Terminology .................................................................................... 24  
Theory of Operation ...................................................................... 25  
Serial Peripheral Interface......................................................... 25  
MSB/LSB Transfers..................................................................... 26  
Interpolation Filter Minimum and Maximum Bandwidth  
Specifications .............................................................................. 35  
Driving the REFCLK Input....................................................... 35  
Internal PLL Clock Multiplier/Clock Distribution................ 36  
Full-Scale Current Generation ................................................. 38  
Power Dissipation....................................................................... 39  
Power-Down and Sleep Modes................................................. 41  
Interleaved Data Mode .............................................................. 41  
Timing Information................................................................... 41  
Synchronization of Input Data to DATACLK  
Output (Pin 37)........................................................................... 43  
Synchronization of Input Data to the REFCLK Input (Pin 5  
and Pin 6) with PLL Enabled or Disabled............................... 43  
Evaluation Board Operation ......................................................... 46  
Modifying the Evaluation Board to Use the AD8349 On-  
Board Quadrature Modulator................................................... 48  
Evaluation Board Schematics ................................................... 49  
Outline Dimensions....................................................................... 56  
Ordering Guide .......................................................................... 56  
REVISION HISTORY  
Added Table 19, Renumbered Tables Sequentially.................... 41  
Changes to Figure 92 and Figure 93............................................. 42  
Changes to Figure 94...................................................................... 42  
Added New Figure 95, Renumbered Figures Sequentially ....... 42  
Changes to Synchronization of Input Data to the REFCLK Input  
(Pin 5 and Pin 6) with PLL Enabled or Disabled Section......... 43  
3/07—Rev. 0 to Rev. A  
Changes to Features.......................................................................... 1  
Changes to Applications .................................................................. 1  
Changes to General Product Highlights........................................ 1  
Added Figure 1, Renumbered Figures Sequentially..................... 1  
Changes to Table 1............................................................................ 4  
Changes to Table 2............................................................................ 5  
Changes to Table 3............................................................................ 5  
Changes to Figure 53 and Figure 54............................................. 26  
Changes to Table 12........................................................................ 29  
Changes to Power Dissipation Section ........................................ 39  
Added New Figure 96, Renumbered Figures Sequentially ....... 43  
Changes to Figure 106 ................................................................... 51  
7/05—Revision 0: Initial Version  
Rev. A | Page 2 of 56  
 
AD9776/AD9778/AD9779  
FUNCTIONAL BLOCK DIAGRAM  
DELAY  
LINE  
SYNC_O  
SYNC_I  
CLOCK GENERATION/DISTRIBUTION  
CLOCK  
MULTIPLIER  
2×/4×/8×  
CLK+  
CLK–  
DELAY  
DATACLK_OUT  
LINE  
DATA  
1
ASSEMBLER  
SYNC  
IOUT1_P  
IOUT1_N  
16-BIT  
IDAC  
I
P1D(15:0)  
LATCH  
2×  
2×  
2×  
2×  
2×  
2×  
n × fDAC/8  
n = 0, 1, 2 ... 7  
Q
IOUT2_P  
IOUT2_N  
16-BIT  
QDAC  
LATCH  
P2D(15:0)  
1
SYNC  
VREF  
I120  
DIGITAL CONTROLLER  
10  
10  
GAIN  
GAIN  
SERIAL  
PERIPHERAL  
INTERFACE  
POWER-ON  
RESET  
10  
10  
AUX1_P  
AUX1_N  
GAIN  
GAIN  
AUX2_P  
AUX2_N  
Figure 2. Functional Block Diagram  
Rev. A | Page 3 of 56  
 
AD9776/AD9778/AD9779  
SPECIFICATIONS  
DC SPECIFICATIONS  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 =1.8 V, IOUTF = 20 mA, maximum sample rate, unless  
S
otherwise noted.  
Table 1. AD9776, AD9778, and AD9779 DC Specifications  
AD9776  
Typ  
AD9778  
Typ  
AD9779  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
RESOLUTION  
12  
14  
16  
Bits  
ACCURACY  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
MAIN DAC OUTPUTS  
Offset Error  
Gain Error (with Internal  
Reference)  
±±.1  
±±.6  
±±.65  
±1  
±2.1  
±3.ꢀ  
LSB  
LSB  
−±.±±1  
±
±2  
+±.±±1  
−±.±±1  
±
±2  
+±.±±1  
−±.±±1  
±
±2  
+±.±±1 % FSR  
% FSR  
Full-Scale Output Current1  
Output Compliance Range  
Output Resistance  
Gain DAC Monotonicity  
MAIN DAC TEMPERATURE DRIFT  
Offset  
8.66  
−1.±  
2±.2  
31.66  
+1.±  
8.66  
−1.±  
2±.2  
31.66  
+1.±  
8.66  
−1.±  
2±.2  
31.66  
+1.±  
mA  
V
MΩ  
1±  
1±  
1±  
Guaranteed  
Guaranteed  
Guaranteed  
±.±4  
1±±  
3±  
±.±4  
1±±  
3±  
±.±4  
1±±  
3±  
ppm/°C  
ppm/°C  
ppm/°C  
Gain  
Reference Voltage  
AUX DAC OUTPUTS  
Resolution  
Full-Scale Output Current1  
Output Compliance Range  
(Source)  
1±  
1±  
1±  
Bits  
−1.998  
±
+1.998  
1.6  
−1.998  
±
+1.998  
1.6  
−1.998  
±
+1.998 mA  
1.6  
V
Output Compliance Range  
(Sink)  
±.8  
1.6  
±.8  
1.6  
±.8  
1.6  
V
Output Resistance  
1
1
1
MΩ  
Aux DAC Monotonicity  
Guaranteed  
REFERENCE  
Internal Reference Voltage  
Output Resistance  
ANALOG SUPPLY VOLTAGES  
AVDD33  
1.2  
5
1.2  
5
1.2  
5
V
kΩ  
3.13  
1.ꢀ±  
3.3  
1.8  
3.4ꢀ  
1.9±  
3.13  
1.ꢀ±  
3.3  
1.8  
3.4ꢀ  
1.9±  
3.13  
1.ꢀ±  
3.3  
1.8  
3.4ꢀ  
1.9±  
V
V
CVDD18  
DIGITAL SUPPLY VOLTAGES  
DVDD33  
DVDD18  
3.13  
1.ꢀ±  
3.3  
1.8  
3.4ꢀ  
1.9±  
3.13  
1.ꢀ±  
3.3  
1.8  
3.4ꢀ  
1.9±  
3.13  
1.ꢀ±  
3.3  
1.8  
3.4ꢀ  
1.9±  
V
V
POWER CONSUMPTION  
1× Mode, fDAC = 1±± MSPS,  
IF = 1 MHz  
2× Mode, fDAC = 32± MSPS,  
IF = 16 MHz, PLL Off  
2× Mode, fDAC = 32± MSPS,  
IF = 16 MHz, PLL On  
4× Mode, fDAC/4 Modulation,  
25±  
498  
588  
5ꢀ2  
3±±  
25±  
498  
588  
5ꢀ2  
3±±  
25±  
498  
588  
5ꢀ2  
3±±  
mW  
mW  
mW  
mW  
f
DAC = 5±± MSPS,  
IF = 13ꢀ.5 MHz, Q DAC Off  
Rev. A | Page 4 of 56  
 
AD9776/AD9778/AD9779  
AD9776  
Typ  
AD9778  
Typ  
AD9779  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
8× Mode, fDAC/4 Modulation,  
fDAC = 1 GSPS, IF = 262.5 MHz  
98±  
98±  
98±  
mW  
Power-Down Mode  
2
3.ꢀ  
2
3.ꢀ  
2
3.ꢀ  
mW  
Power Supply Rejection Ratio,  
AVDD33  
−±.3  
−4±  
+±.3  
−±.3  
−4±  
+±.3  
−±.3  
−4±  
+±.3  
% FSR/V  
OPERATING RANGE  
+25  
+85  
+25  
+85  
+25  
+85  
°C  
1 Based on a 1± kΩ external resistor.  
Rev. A | Page 5 of 56  
 
AD9776/AD9778/AD9779  
DIGITAL SPECIFICATIONS  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IOUTF = 20 mA, maximum sample rate, unless  
S
otherwise noted. LVDS driver and receiver are compliant to the IEEE-1596 reduced range link, unless otherwise noted.  
Table 2. AD9776, AD9778, and AD9779 Digital Specifications  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
CMOS INPUT LOGIC LEVEL  
Input VIN Logic High  
Input VIN Logic Low  
2.±  
V
V
±.8  
Maximum Input Data Rate at Interpolation  
1×  
2×  
4×  
8×  
3±±  
25±  
2±±  
125  
MSPS  
MSPS  
MSPS  
MSPS  
CMOS OUTPUT LOGIC LEVEL (DATACLK, PIN 3ꢀ)1  
Output VOUT Logic High  
Output VOUT Logic Low  
LVDS RECEIVER INPUTS (SYNC_I+, SYNC_I−)  
Input Voltage Range, VIA or VIB  
Input Differential Threshold, VIDTH  
Input Differential Hysteresis, VIDTHH − VIDTHL  
2.4  
V
V
±.4  
SYNC_I+ = VIA, SYNC_I− = VIB  
825  
−1±±  
15ꢀ5 mV  
+1±± mV  
mV  
2±  
2
Receiver Differential Input Impedance, RIN  
LVDS Input Rate  
8±  
12±  
125  
Ω
MSPS  
ns  
Set-Up Time, SYNC_I to DAC Clock  
Hold Time, SYNC_I to DAC Clock  
LVDS DRIVER OUTPUTS (SYNC_O+, SYNC_O−)  
Output Voltage High, VOA or VOB  
Output Voltage Low, VOA or VOB  
−±.2  
1
ns  
SYNC_O+ = VOA, SYNC_O− = VOB, 1±± Ω termination  
825  
1±25  
15±  
115±  
8±  
15ꢀ5 mV  
mV  
mV  
125± mV  
Output Differential Voltage, |VOD  
Output Offset Voltage, VOS  
Output Impedance, RO  
|
2±± 25±  
Single-ended  
1±± 12±  
Ω
Maximum Clock Rate  
1
GHz  
DAC CLOCK INPUT (CLK+, CLK−)  
Differential Peak-to-Peak Voltage (CLK+, CLK−)3  
Common-Mode Voltage  
Maximum Clock Rate4  
4±±  
3±±  
1
8±± 2±±± mV  
4±± 5±±  
mV  
GSPS  
SERIAL PERIPHERAL INTERFACE  
Maximum Clock Rate (SCLK)  
Minimum Pulse Width High  
Minimum Pulse Width Low  
4±  
MHz  
ns  
ns  
12.5  
12.5  
1 Specification is at a DATACLK frequency of 1±± MHz into a 1 kΩ load; maximum drive capability of 8 mA. At higher speeds or greater loads, best practice suggests  
using an external buffer for this signal.  
2 Guaranteed at 25°C. Can drift above 12± at temperatures above 25°C.  
3 When using the PLL, a differential swing of 2 V p-p is recommended.  
4 Typical maximum clock rate when DVDD18 = CVDD18 = 1.9 V.  
Rev. A | Page 6 of 56  
 
AD9776/AD9778/AD9779  
DIGITAL INPUT DATA TIMING SPECIFICATIONS  
Table 3. AD9776, AD9778, and AD9779 Digital Input Data Timing Specifications  
Parameter  
Min  
Typ  
Max  
Unit  
INPUT DATA (ALL MODES, −4±°C to +85°C)1  
Set-Up Time, Input Data to DATACLK  
Hold Time, Input Data to DATACLK  
Set-Up Time, Input Data to REFCLK  
Hold Time, Input Data to REFCLK  
+2.5  
−±.4  
−±.8  
+2.9  
ns  
ns  
ns  
ns  
1 Timing vs. temperature and data valid keep out windows are delineated in Table 19.  
AC SPECIFICATIONS  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IOUTF = 20 mA, maximum sample rate, unless  
S
otherwise noted.  
Table 4. AD9776, AD9778, and AD9779 AC Specifications  
AD9776  
Typ  
AD9778  
Max Min Typ  
AD9779  
Min Typ  
Parameter  
Min  
Max  
Max Unit  
SPURIOUS FREE DYNAMIC RANGE (SFDR)  
fDAC = 1±± MSPS, fOUT = 2± MHz  
fDAC = 2±± MSPS, fOUT = 5± MHz  
fDAC = 4±± MSPS, fOUT = ꢀ± MHz  
fDAC = 8±± MSPS, fOUT = ꢀ± MHz  
82  
81  
8±  
85  
82  
81  
8±  
85  
82  
82  
8±  
8ꢀ  
dBc  
dBc  
dBc  
dBc  
TWO-TONE INTERMODULATION DISTORTION  
(IMD)  
fDAC = 2±± MSPS, fOUT = 5± MHz  
fDAC = 4±± MSPS, fOUT = 6± MHz  
fDAC = 4±± MSPS, fOUT = 8± MHz  
fDAC = 8±± MSPS, fOUT = 1±± MHz  
8ꢀ  
8±  
ꢀ5  
ꢀ5  
8ꢀ  
85  
81  
8±  
91  
85  
81  
81  
dBc  
dBc  
dBc  
dBc  
NOISE SPECTRAL DENSITY (NSD) EIGHT-TONE,  
5±± kHz TONE SPACING  
fDAC = 2±± MSPS, fOUT = 8± MHz  
fDAC = 4±± MSPS, fOUT = 8± MHz  
fDAC = 8±± MSPS, fOUT = 8± MHz  
−152  
−155  
−15ꢀ.5  
−155  
−159  
−16±  
−158  
−16±  
−161  
dBm/Hz  
dBm/Hz  
dBm/Hz  
WCDMA ADJACENT CHANNEL LEAKAGE  
RATIO (ACLR), SINGLE CARRIER  
fDAC = 491.52 MSPS, fOUT = 1±± MHz  
fDAC = 491.52 MSPS, fOUT = 2±± MHz  
ꢀ6  
69  
ꢀ8  
ꢀ3  
ꢀ9  
ꢀ4  
dBc  
dBc  
WCDMA SECOND ADJACENT CHANNEL  
LEAKAGE RATIO (ACLR), SINGLE CARRIER  
fDAC = 491.52 MSPS, fOUT = 1±± MHz  
fDAC = 491.52 MSPS, fOUT = 2±± MHz  
ꢀꢀ.5  
ꢀ6  
8±  
ꢀ8  
81  
ꢀ8  
dBc  
dBc  
Rev. A | Page ꢀ of 56  
 
AD9776/AD9778/AD9779  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
With  
Respect  
To  
Parameter  
Rating  
AVDD33, DVDD33  
AGND,  
DGND,  
CGND  
−±.3 V to +3.6 V  
DVDD18, CVDD18  
AGND,  
DGND,  
CGND  
−±.3 V to +1.98 V  
THERMAL RESISTANCE  
AGND  
DGND,  
CGND  
AGND,  
CGND  
AGND,  
DGND  
AGND  
AGND  
−±.3 V to +±.3 V  
−±.3 V to +±.3 V  
−±.3 V to +±.3 V  
100-lead, thermally enhanced TQFP_EP package, θJA = 19.1°C/W  
with the bottom EPAD soldered to the PCB. With the bottom  
EPAD not soldered to the PCB, θJA = 27.4°C/W. These  
specifications are valid with no airflow movement.  
DGND  
CGND  
ESD CAUTION  
I12±, VREF, IPTAT  
−±.3 V to AVDD33 + ±.3 V  
−1.± V to AVDD33 + ±.3 V  
IOUT1-P, IOUT1-N, IOUT2-P  
IOUT2-N, Aux1-P, Aux1-N  
Aux2-P, Aux2-N  
,
,
P1D15 to P1D±,  
P2D15 to P2D±  
DGND  
−±.3 V to DVDD33 + ±.3 V  
DATACLK, TXENABLE  
CLK+, CLK−  
RESET, IRQ, PLL_LOCK, DGND  
SYNC_O+, SYNC_O−,  
SYNC_I+, SYNC_I−,  
DGND  
CGND  
−±.3 V to DVDD33 + ±.3 V  
−±.3 V to CVDD18 + ±.3 V  
−±.3 V to DVDD33 + ±.3 V  
CSB, SCLK, SDIO, SDO  
JunctionTemperature  
+125°C  
Storage Temperature  
Range  
−65°C to +15±°C  
Rev. A | Page 8 of 56  
 
AD9776/AD9778/AD9779  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
CVDD18  
I120  
PIN 1  
2
CVDD18  
VREF  
3
CGND  
CGND  
IPTAT  
AGND  
IRQ  
ANALOG DOMAIN  
DIGITAL DOMAIN  
4
5
CLK+  
6
CLK–  
RESET  
CSB  
7
CGND  
8
CGND  
SCLK  
SDIO  
9
CVDD18  
CVDD18  
CGND  
AD9776  
TOP VIEW  
(Not to Scale)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
SDO  
PLL_LOCK  
DGND  
SYNC_O+  
SYNC_O–  
DVDD33  
DVDD18  
NC  
AGND  
SYNC_I+  
SYNC_I–  
DGND  
DVDD18  
P1D<11>  
P1D<10>  
P1D<9>  
P1D<8>  
P1D<7>  
DGND  
NC  
NC  
NC  
P2D<0>  
DGND  
DVDD18  
P2D<1>  
P2D<2>  
DVDD18  
P1D<6>  
P1D<5>  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
NC = NO CONNECT  
Figure 3. AD9776 Pin Configuration  
Table 6. AD9776 Pin Function Descriptions  
Pin  
Pin  
No. Mnemonic Description  
No. Mnemonic Description  
1
2
3
4
5
6
8
CVDD18  
CVDD18  
CGND  
1.8 V Clock Supply.  
1.8 V Clock Supply.  
Clock Common.  
Clock Common.  
Differential Clock Input.  
Differential Clock Input.  
Clock Common.  
Clock Common.  
1.8 V Clock Supply.  
1.8 V Clock Supply.  
Clock Common.  
Analog Common.  
Differential Synchronization Input.  
Differential Synchronization Input.  
Digital Common.  
1.8 V Digital Supply.  
Port 1, Data Input D11 (MSB).  
Port 1, Data Input D1±.  
Port 1, Data Input D9.  
2±  
21  
22  
23  
24  
25  
26  
2ꢀ  
28  
29  
3±  
31  
32  
33  
34  
35  
36  
3ꢀ  
38  
P1D<8>  
P1D<ꢀ>  
DGND  
Port 1, Data Input D8.  
Port 1, Data Input Dꢀ.  
Digital Common.  
CGND  
DVDD18  
P1D<6>  
P1D<5>  
P1D<4>  
P1D<3>  
P1D<2>  
P1D<1>  
P1D<±>  
NC  
DGND  
DVDD18  
NC  
NC  
NC  
1.8 V Digital Supply.  
Port 1, Data Input D6.  
Port 1, Data Input D5.  
Port 1, Data Input D4.  
Port 1, Data Input D3.  
Port 1, Data Input D2.  
Port 1, Data Input D1.  
Port 1, Data Input D± (LSB).  
No Connect.  
Digital Common.  
1.8 V Digital Supply.  
No Connect.  
No Connect.  
No Connect.  
CLK+1  
CLK−1  
CGND  
CGND  
CVDD18  
CVDD18  
CGND  
9
1±  
11  
12  
13  
14  
15  
16  
1ꢀ  
18  
19  
AGND  
SYNC_I+  
SYNC_I−  
DGND  
DVDD18  
P1D<11>  
P1D<1±>  
P1D<9>  
DATACLK  
DVDD33  
Data Clock Output.  
3.3 V Digital Supply.  
Rev. A | Page 9 of 56  
 
AD9776/AD9778/AD9779  
Pin  
Pin  
No. Mnemonic Description  
No. Mnemonic Description  
39  
4±  
41  
42  
43  
44  
45  
46  
4ꢀ  
48  
49  
5±  
51  
52  
53  
54  
55  
56  
5ꢀ  
58  
59  
6±  
61  
62  
63  
64  
65  
66  
6ꢀ  
68  
69  
ꢀ±  
ꢀ1  
ꢀ2  
TXENABLE  
P2D<11>  
P2D<1±>  
P2D<9>  
DVDD18  
DGND  
P2D<8>  
P2D<ꢀ>  
P2D<6>  
P2D<5>  
P2D<4>  
P2D<3>  
P2D<2>  
P2D<1>  
DVDD18  
DGND  
P2D<±>  
NC  
NC  
NC  
NC  
DVDD18  
DVDD33  
SYNC_O−  
SYNC_O+  
DGND  
PLL_LOCK  
SDO  
SDIO  
Transmit Enable.  
ꢀ3  
IPTAT  
Factory Test Pin. Output current is  
proportional to absolute temperature,  
approximately 1± μA at 25°C with  
approximately 2± nA/°C slope. This pin  
should remain floating.  
Voltage Reference Output.  
12± μA Reference Current.  
3.3 V Analog Supply.  
Analog Common.  
3.3 V Analog Supply.  
Analog Common.  
3.3 V Analog Supply.  
Port 2, Data Input D11 (MSB).  
Port 2, Data Input D1±.  
Port 2, Data Input D9.  
1.8 V Digital Supply.  
Digital Common.  
Port 2, Data Input D8.  
Port 2, Data Input Dꢀ.  
Port 2, Data Input D6.  
Port 2, Data Input D5.  
Port 2, Data Input D4.  
Port 2, Data Input D3.  
Port 2, Data Input D2.  
Port 2, Data Input D1.  
1.8 V Digital Supply.  
Digital Common.  
Port 2, Data Input D± (LSB).  
No Connect.  
No Connect.  
No Connect.  
No Connect.  
1.8 V Digital Supply.  
3.3 V Digital Supply.  
Differential Synchronization Output.  
Differential Synchronization Output  
Digital Common  
ꢀ4  
ꢀ5  
ꢀ6  
ꢀꢀ  
ꢀ8  
ꢀ9  
8±  
81  
82  
83  
84  
85  
86  
8ꢀ  
88  
89  
9±  
91  
92  
93  
94  
95  
96  
9ꢀ  
98  
99  
VREF  
I12±  
AVDD33  
AGND  
AVDD33  
AGND  
AVDD33  
AGND  
AGND  
OUT2_P  
OUT2_N  
AGND  
AUX2_P  
AUX2_N  
AGND  
AUX1_N  
AUX1_P  
AGND  
OUT1_N  
OUT1_P  
AGND  
AGND  
AVDD33  
AGND  
Analog Common.  
Analog Common.  
Differential DAC Current Output, Channel 2.  
Differential DAC Current Output, Channel 2.  
Analog Common.  
Auxiliary DAC Current Output, Channel 2.  
Auxiliary DAC Current Output, Channel 2.  
Analog Common.  
Auxiliary DAC Current Output, Channel 1.  
Auxiliary DAC Current Output, Channel 1.  
Analog Common.  
Differential DAC Current Output, Channel 1.  
Differential DAC Current Output, Channel 1.  
Analog Common.  
Analog Common.  
3.3 V Analog Supply.  
Analog Common.  
3.3 V Analog Supply.  
Analog Common.  
3.3 V Analog Supply.  
PLL Lock Indicator  
SPI Port Data Output  
SPI Port Data Input/Output  
SPI Port Clock  
SPI Port Chip Select Bar.  
Reset, Active High.  
AVDD33  
AGND  
SCLK  
CSB  
RESET  
IRQ  
1±± AVDD33  
1 The combined differential clock input at the CLK+ and CLK– pins are referred  
to as REFCLK.  
Interrupt Request.  
Analog Common.  
AGND  
Rev. A | Page 1± of 56  
 
AD9776/AD9778/AD9779  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
CVDD18  
CVDD18  
CGND  
I120  
PIN 1  
2
VREF  
3
IPTAT  
AGND  
IRQ  
ANALOG DOMAIN  
DIGITAL DOMAIN  
4
CGND  
5
CLK+  
6
CLK–  
RESET  
CSB  
7
CGND  
8
CGND  
SCLK  
9
CVDD18  
CVDD18  
CGND  
SDIO  
AD9778  
TOP VIEW  
(Not to Scale)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
SDO  
PLL_LOCK  
DGND  
SYNC_O+  
SYNC_O–  
DVDD33  
DVDD18  
NC  
AGND  
SYNC_I+  
SYNC_I–  
DGND  
DVDD18  
P1D<13>  
P1D<12>  
P1D<11>  
P1D<10>  
P1D<9>  
DGND  
NC  
P2D<0>  
P2D<1>  
P2D<2>  
DGND  
DVDD18  
P2D<3>  
P2D<4>  
DVDD18  
P1D<8>  
P1D<7>  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
NC = NO CONNECT  
Figure 4. AD9778 Pin Configuration  
Table 7. AD9778 Pin Function Description  
Pin  
No.  
Pin  
No.  
Mnemonic  
CVDD18  
CVDD18  
CGND  
Description  
Mnemonic  
P1D<9>  
DGND  
Description  
1
2
3
4
5
6
8
1.8 V Clock Supply.  
1.8 V Clock Supply.  
Clock Common.  
Clock Common.  
Differential Clock Input.  
Differential Clock Input.  
Clock Common.  
Clock Common.  
1.8 V Clock Supply.  
21  
22  
23  
24  
25  
26  
2ꢀ  
28  
29  
3±  
31  
32  
33  
34  
35  
36  
Port 1, Data Input D9.  
Digital Common.  
DVDD18  
P1D<8>  
P1D<ꢀ>  
P1D<6>  
P1D<5>  
P1D<4>  
P1D<3>  
P1D<2>  
P1D<1>  
DGND  
1.8 V Digital Supply.  
Port 1, Data Input D8.  
Port 1, Data Input Dꢀ.  
Port 1, Data Input D6.  
Port 1, Data Input D5.  
Port 1, Data Input D4.  
Port 1, Data Input D3.  
Port 1, Data Input D2.  
Port 1, Data Input D1.  
Digital Common.  
CGND  
CLK+1  
CLK−1  
CGND  
CGND  
CVDD18  
CVDD18  
CGND  
9
1±  
11  
12  
13  
14  
15  
16  
1ꢀ  
18  
19  
2±  
1.8 V Clock Supply.  
Clock Common.  
Analog Common.  
AGND  
SYNC_I+  
SYNC_I−  
DGND  
DVDD18  
P1D<13>  
P1D<12>  
P1D<11>  
P1D<1±>  
Differential Synchronization Input.  
Differential Synchronization Input.  
Digital Common.  
1.8 V Digital Supply.  
Port 1, Data Input D13 (MSB).  
Port 1, Data Input D12.  
Port 1, Data Input D11.  
Port 1, Data Input D1±.  
DVDD18  
P1D<±>  
NC  
1.8 V Digital Supply.  
Port 1, Data Input D± (LSB).  
No Connect.  
NC  
No Connect.  
DATACLK  
DVDD33  
TXENABLE  
P2D<13>  
3ꢀ  
38  
39  
4±  
Data Clock Output.  
3.3 V Digital Supply.  
Transmit Enable.  
Port 2, Data Input D13 (MSB).  
Rev. A | Page 11 of 56  
AD9776/AD9778/AD9779  
Pin  
Pin  
No.  
No.  
41  
42  
43  
44  
45  
46  
4ꢀ  
48  
49  
5±  
51  
52  
53  
54  
55  
56  
5ꢀ  
58  
59  
6±  
61  
62  
63  
64  
65  
66  
6ꢀ  
68  
69  
ꢀ±  
ꢀ1  
ꢀ2  
ꢀ3  
Mnemonic  
P2D<12>  
P2D<11>  
DVDD18  
DGND  
P2D<1±>  
P2D<9>  
P2D<8>  
P2D<ꢀ>  
P2D<6>  
P2D<5>  
P2D<4>  
P2D<3>  
DVDD18  
DGND  
Description  
Mnemonic  
VREF  
I12±  
AVDD33  
AGND  
AVDD33  
AGND  
AVDD33  
AGND  
AGND  
Description  
Port 2, Data Input D12.  
Port 2, Data Input D11.  
1.8 V Digital Supply.  
Digital Common.  
ꢀ4  
ꢀ5  
ꢀ6  
ꢀꢀ  
ꢀ8  
ꢀ9  
8±  
81  
82  
83  
Voltage Reference Output.  
12± μA Reference Current.  
3.3 V Analog Supply.  
Analog Common.  
3.3 V Analog Supply.  
Analog Common.  
3.3 V Analog Supply.  
Analog Common.  
Analog Common.  
Differential DAC Current Output,  
Channel 2.  
Differential DAC Current Output,  
Channel 2.  
Analog Common.  
Auxiliary DAC Current Output,  
Channel 2.  
Auxiliary DAC Current Output,  
Channel 2.  
Analog Common.  
Auxiliary DAC Current Output,  
Channel 1.  
Auxiliary DAC Current Output,  
Channel 1.  
Analog Common.  
Differential DAC Current Output,  
Channel 1.  
Differential DAC Current Output,  
Channel 1.  
Port 2, Data Input D1±.  
Port 2, Data Input D9.  
Port 2, Data Input D8.  
Port 2, Data Input Dꢀ.  
Port 2, Data Input D6.  
Port 2, Data Input D5.  
Port 2, Data Input D4.  
Port 2, Data Input D3.  
1.8 V Digital Supply.  
Digital Common.  
OUT2_P  
84  
OUT2_N  
85  
86  
AGND  
AUX2_P  
P2D<2>  
P2D<1>  
P2D<±>  
NC  
Port 2, Data Input D2.  
Port 2, Data Input D1.  
Port 2, Data Input D± (LSB).  
No Connect.  
8ꢀ  
AUX2_N  
88  
89  
AGND  
AUX1_N  
NC  
No Connect.  
DVDD18  
DVDD33  
SYNC_O−  
SYNC_O+  
DGND  
PLL_LOCK  
SDO  
SDIO  
SCLK  
CSB  
RESET  
IRQ  
1.8 V Digital Supply.  
3.3 V Digital Supply.  
Differential Synchronization Output.  
Differential Synchronization Output.  
Digital Common.  
9±  
AUX1_P  
91  
92  
AGND  
OUT1_N  
PLL Lock Indicator.  
93  
OUT1_P  
SPI Port Data Output.  
SPI Port Data Input/Output.  
SPI Port Clock.  
SPI Port Chip Select Bar.  
Reset, Active High.  
Interrupt Request.  
Analog Common.  
Factory Test Pin. Output current is  
proportional to absolute temperature,  
approximately 1± μA at 25°C with  
approximately 2± nA/°C slope. This  
pin should remain floating.  
94  
95  
96  
9ꢀ  
98  
99  
1±±  
AGND  
AGND  
AVDD33  
AGND  
AVDD33  
AGND  
Analog Common.  
Analog Common.  
3.3 V Analog Supply.  
Analog Common.  
3.3 V Analog Supply.  
Analog Common.  
3.3 V Analog Supply.  
AGND  
IPTAT  
AVDD33  
1 The combined differential clock input at the CLK+ and CLK– pins are referred  
to as REFCLK.  
Rev. A | Page 12 of 56  
 
AD9776/AD9778/AD9779  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
75  
CVDD18  
CVDD18  
CGND  
I120  
PIN 1  
2
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VREF  
3
IPTAT  
ANALOG DOMAIN  
4
CGND  
AGND  
5
CLK+  
IRQ  
6
CLK–  
DIGITAL DOMAIN  
RESET  
CSB  
7
CGND  
8
CGND  
SCLK  
9
CVDD18  
CVDD18  
CGND  
SDIO  
AD9779  
TOP VIEW  
(Not to Scale)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
SDO  
PLL_LOCK  
DGND  
AGND  
SYNC_I+  
SYNC_I–  
DGND  
SYNC_O+  
SYNC_O–  
DVDD33  
DVDD18  
P2D<0>  
P2D<1>  
P2D<2>  
P2D<3>  
P2D<4>  
DGND  
DVDD18  
P1D<15>  
P1D<14>  
P1D<13>  
P1D<12>  
P1D<11>  
DGND  
DVDD18  
P1D<10>  
P1D<9>  
DVDD18  
P2D<5>  
P2D<6>  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Figure 5. AD9779 Pin Configuration  
Table 8. AD9779 Pin Function Descriptions  
Pin  
No.  
Pin  
No.  
Mnemonic  
CVDD18  
CVDD18  
CGND  
Description  
Mnemonic  
DGND  
Description  
1
2
3
4
5
6
8
1.8 V Clock Supply.  
1.8 V Clock Supply.  
Clock Common.  
Clock Common.  
Differential Clock Input.  
Differential Clock Input.  
Clock Common.  
Clock Common.  
1.8 V Clock Supply.  
22  
23  
24  
25  
26  
2ꢀ  
28  
29  
3±  
31  
32  
33  
34  
35  
36  
3ꢀ  
38  
39  
4±  
41  
42  
Digital Common.  
DVDD18  
P1D<1±>  
P1D<9>  
P1D<8>  
P1D<ꢀ>  
P1D<6>  
P1D<5>  
P1D<4>  
P1D<3>  
DGND  
DVDD18  
P1D<2>  
P1D<1>  
P1D<±>  
DATACLK  
DVDD33  
TXENABLE  
P2D<15>  
P2D<14>  
P2D<13>  
1.8 V Digital Supply.  
Port 1, Data Input D1±.  
Port 1, Data Input D9.  
Port 1, Data Input D8.  
Port 1, Data Input Dꢀ.  
Port 1, Data Input D6.  
Port 1, Data Input D5.  
Port 1, Data Input D4.  
Port 1, Data Input D3.  
Digital Common.  
1.8 V Digital Supply.  
Port 1, Data Input D2.  
Port 1, Data Input D1.  
Port 1, Data Input D± (LSB).  
Data Clock Output.  
3.3 V Digital Supply.  
Transmit Enable.  
CGND  
CLK+1  
CLK−1  
CGND  
CGND  
CVDD18  
CVDD18  
CGND  
9
1±  
11  
12  
13  
14  
15  
16  
1ꢀ  
18  
19  
2±  
21  
1.8 V Clock Supply.  
Clock Common.  
Analog Common.  
AGND  
SYNC_I+  
SYNC_I−  
DGND  
DVDD18  
P1D<15>  
P1D<14>  
P1D<13>  
P1D<12>  
P1D<11>  
Differential Synchronization Input.  
Differential Synchronization Input.  
Digital Common.  
1.8 V Digital Supply.  
Port 1, Data Input D15 (MSB).  
Port 1, Data Input D14.  
Port 1, Data Input D13.  
Port 1, Data Input D12.  
Port 1, Data Input D11.  
Port 2, Data Input D15 (MSB).  
Port 2, Data Input D14.  
Port 2, Data Input D13.  
Rev. A | Page 13 of 56  
AD9776/AD9778/AD9779  
Pin  
Pin  
No.  
No.  
43  
44  
45  
46  
4ꢀ  
48  
49  
5±  
51  
52  
53  
54  
55  
56  
5ꢀ  
58  
59  
6±  
61  
62  
63  
64  
65  
66  
6ꢀ  
68  
69  
ꢀ±  
ꢀ1  
ꢀ2  
ꢀ3  
Mnemonic  
DVDD18  
DGND  
Description  
Mnemonic  
VREF  
I12±  
AVDD33  
AGND  
AVDD33  
AGND  
AVDD33  
AGND  
AGND  
Description  
1.8 V Digital Supply.  
Digital Common.  
ꢀ4  
ꢀ5  
ꢀ6  
ꢀꢀ  
ꢀ8  
ꢀ9  
8±  
81  
82  
83  
Voltage Reference Output.  
12± μA Reference Current.  
3.3 V Analog Supply.  
Analog Common.  
3.3 V Analog Supply.  
Analog Common.  
3.3 V Analog Supply.  
Analog Common.  
Analog Common.  
P2D<12>  
P2D<11>  
P2D<1±>  
P2D<9>  
P2D<8>  
P2D<ꢀ>  
P2D<6>  
P2D<5>  
DVDD18  
DGND  
P2D<4>  
P2D<3>  
P2D<2>  
P2D<1>  
P2D<±>  
DVDD18  
DVDD33  
SYNC_O−  
SYNC_O+  
DGND  
PLL_LOCK  
SPI_SDO  
SPI_SDIO  
SCLK  
SPI_CSB  
RESET  
IRQ  
AGND  
IPTAT  
Port 2, Data Input D12.  
Port 2, Data Input D11.  
Port 2, Data Input D1±.  
Port 2, Data Input D9.  
Port 2, Data Input D8.  
Port 2, Data Input Dꢀ.  
Port 2, Data Input D6.  
Port 2, Data Input D5.  
1.8 V Digital Supply.  
Digital Common.  
Port 2, Data Input D4.  
Port 2, Data Input D3.  
Port 2, Data Input D2.  
Port 2, Data Input D1.  
Port 2, Data Input D± (LSB).  
1.8 V Digital Supply.  
3.3 V Digital Supply.  
Differential Synchronization Output.  
Differential Synchronization Output.  
Digital Common.  
OUT2_P  
Differential DAC Current Output,  
Channel 2.  
Differential DAC Current Output,  
Channel 2.  
84  
OUT2_N  
85  
86  
8ꢀ  
88  
89  
9±  
91  
92  
AGND  
Analog Common.  
AUX2_P  
AUX2_N  
AGND  
AUX1_N  
AUX1_P  
AGND  
Auxiliary DAC Current Output, Channel 2.  
Auxiliary DAC Current Output, Channel 2.  
Analog Common.  
Auxiliary DAC Current Output, Channel 1.  
Auxiliary DAC Current Output, Channel 1.  
Analog Common.  
Differential DAC Current Output,  
Channel 1.  
Differential DAC Current Output,  
Channel 1.  
Analog Common.  
Analog Common.  
3.3 V Analog Supply.  
Analog Common.  
3.3 V Analog Supply.  
Analog Common.  
3.3 V Analog Supply.  
OUT1_N  
93  
OUT1_P  
PLL Lock Indicator.  
SPI Port Data Output.  
SPI Port Data Input/Output.  
SPI Port Clock.  
SPI Port Chip Select Bar.  
Reset, Active High.  
Interrupt Request.  
Analog Common.  
Factory Test Pin. Output current is  
proportional to absolute temperature,  
approximately 1± μA at 25°C with  
approximately 2± nA/°C slope. This pin  
should remain floating.  
94  
95  
96  
9ꢀ  
98  
99  
1±±  
AGND  
AGND  
AVDD33  
AGND  
AVDD33  
AGND  
AVDD33  
1 The combined differential clock input at the CLK+ and CLK– pins are referred  
to as REFCLK.  
Rev. A | Page 14 of 56  
 
AD9776/AD9778/AD9779  
TYPICAL PERFORMANCE CHARACTERISTICS  
4
100  
90  
80  
70  
60  
50  
3
2
fDATA = 160MSPS  
fDATA = 200MSPS  
1
0
–1  
–2  
–3  
–4  
–5  
–6  
fDATA = 250MSPS  
0
10k  
20k  
30k  
CODE  
40k  
50k  
60k  
0
20  
40  
60  
80  
100  
fOUT (MHz)  
Figure 6. AD9779 Typical INL  
Figure 9. AD9779 In-Band SFDR vs. fOUT, 2× Interpolation  
100  
1.5  
1.0  
fDATA = 200MSPS  
fDATA = 100MSPS  
90  
80  
70  
60  
50  
0.5  
0
fDATA = 150MSPS  
–0.5  
–1.0  
–1.5  
–2.0  
0
20  
40  
60  
80  
100  
0
10k  
20k  
30k  
CODE  
40k  
50k  
60k  
fOUT (MHz)  
Figure 10. AD9779 In-Band SFDR vs. fOUT, 4× Interpolation  
Figure 7. AD9779 Typical DNL  
100  
90  
80  
70  
60  
50  
100  
fDATA = 100MSPS  
fDATA = 50MSPS  
90  
80  
70  
60  
50  
fDATA = 160MSPS  
fDATA = 250MSPS  
fDATA = 125MSPS  
fDATA = 200MSPS  
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
fOUT (MHz)  
fOUT (MHz)  
Figure 8. AD9779 In-Band SFDR vs. fOUT, 1x Interpolation  
Figure 11. AD9779 In-Band SFDR vs. fOUT, 8× Interpolation  
Rev. A | Page 15 of 56  
 
AD9776/AD9778/AD9779  
100  
100  
90  
80  
70  
60  
50  
90  
PLL OFF  
fDATA = 160MSPS  
80  
PLL ON  
fDATA = 200MSPS  
70  
60  
50  
fDATA = 250MSPS  
0
20  
40  
60  
80  
100  
0
10  
20  
fOUT (MHz)  
30  
40  
80  
80  
fOUT (MHz)  
Figure 12. AD9779 Out-of-Band SFDR vs. fOUT, 2× Interpolation  
Figure 15. AD9779 In-Band SFDR, 4× Interpolation,  
fDATA = 100 MSPS, PLL On/Off  
100  
100  
90  
80  
70  
60  
50  
0dBFS  
–3dBFS  
90  
80  
fDATA = 150MSPS  
–6dBFS  
70  
fDATA = 100MSPS  
60  
fDATA = 200MSPS  
50  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
fOUT (MHz)  
fOUT (MHz)  
Figure 13. AD9779 Out-of-Band SFDR vs. fOUT, 4× Interpolation  
Figure 16. AD9779 In-Band SFDR vs. Digital Full-Scale Input  
100  
100  
10mA  
90  
90  
20mA  
fDATA = 50MSPS  
80  
70  
60  
50  
80  
fDATA = 100MSPS  
70  
30mA  
60  
50  
fDATA = 125MSPS  
0
10  
20  
30  
40  
50  
0
20  
40  
60  
fOUT (MHz)  
fOUT (MHz)  
Figure 14. AD9779 Out-of-Band SFDR vs. fOUT, 8× Interpolation  
Figure 17. AD9779 In-Band SFDR vs. Output Full-Scale Current  
Rev. A | Page 16 of 56  
AD9776/AD9778/AD9779  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
fDATA = 160MSPS  
fDATA = 200MSPS  
fDATA = 250MSPS  
fDATA = 75MSPS  
fDATA = 100MSPS  
fDATA = 50MSPS  
fDATA = 125MSPS  
0
20  
40  
60  
80  
100  
120  
fOUT (MHz)  
fOUT (MHz)  
Figure 18. AD9779 Third-Order IMD vs. fOUT, 1× Interpolation  
Figure 21. AD9779 Third-Order IMD vs. fOUT, 8× Interpolation  
100  
100  
fDATA = 160MSPS  
90  
80  
90  
80  
PLL OFF  
fDATA = 200MSPS  
70  
60  
50  
70  
PLL ON  
fDATA = 250MSPS  
60  
50  
0
20 40 60 80 100 120 140 160 180 200 220  
fOUT (MHz)  
0
20  
40  
60  
80  
100 120 140 160 180 200  
fOUT (MHz)  
Figure 19. AD9779 Third-Order IMD vs. fOUT, 2× Interpolation  
Figure 22. AD9779 Third-Order IMD vs. fOUT, 4× Interpolation,  
fDATA = 100 MSPS, PLL On vs. PLL Off  
100  
90  
100  
95  
90  
85  
80  
80  
fDATA = 150MSPS  
75  
70  
65  
60  
70  
fDATA = 100MSPS  
60  
fDATA = 200MSPS  
55  
50  
50  
0
40  
80  
120 160 200 240 280 320 360 400  
fOUT (MHz)  
0
40  
80  
120 160 200 240 280 320 360 400  
fOUT (MHz)  
Figure 20. AD9779 Third-Order IMD vs. fOUT, 4× Interpolation  
Figure 23. AD9779 Third-Order IMD vs. fOUT, over 50 Parts,4× Interpolation,  
fDATA = 200 MSPS  
Rev. A | Page 1ꢀ of 56  
AD9776/AD9778/AD9779  
100  
95  
REF 0dBm  
*ATTEN 20dB  
*PEAK  
Log  
10dB/  
EXT REF  
DC COUPLED  
90  
0dBFS  
85  
–3dBFS  
80  
75  
LGAV  
51  
–6dBFS  
70  
65  
60  
55  
50  
S2  
FC  
AA  
W1  
S3  
£(f):  
FTUN  
SWP  
0
40  
80  
120 160 200 240 280 320 360 400  
fOUT (MHz)  
START 1.0MHz  
*RES BW 20kHz  
STOP 400.0MHz  
VBW 20kHz  
SWEEP 1.203s (601 pts)  
Figure 24. IMD Performance vs. Digital Full-Scale Input, 4× Interpolation,  
fDATA = 200 MSPS  
Figure 27. AD9779 Two-Tone Spectrum, 4× Interpolation,  
fDATA = 100 MSPS, fOUT = 30 MHz, 35 MHz  
100  
95  
–142  
–146  
90  
20mA  
10mA  
85  
80  
–150  
–154  
–158  
–162  
–3dBFS  
75  
0dBFS  
30mA  
70  
65  
60  
55  
50  
–6dBFS  
–166  
–170  
0
20  
40  
fOUT (MHz)  
60  
80  
0
40  
80  
120 160 200 240 280 320 360 400  
fOUT (MHz)  
Figure 28. AD9779 Noise Spectral Density vs. Digital Full-Scale of Single-Tone  
Input, fDATA = 200 MSPS, 2× Interpolation  
Figure 25. IMD Performance vs. Full-Scale Output Current, 4× Interpolation,  
fDATA = 200 MSPS  
–150  
REF 0dBm  
*ATTEN 20dB  
*PEAK  
Log  
10dB/  
EXT REF  
DC COUPLED  
–154  
fDAC = 400MSPS  
–158  
–162  
–166  
–170  
fDAC = 200MSPS  
LGAV  
51  
S2  
FC  
AA  
W1  
S3  
fDAC = 800MSPS  
£(f):  
FTUN  
SWP  
0
20  
40  
60  
80  
100  
START 1.0MHz  
*RES BW 20kHz  
STOP 400.0MHz  
SWEEP 1.203s (601 pts)  
fOUT (MHz)  
VBW 20kHz  
Figure 29. AD9779 Noise Spectral Density vs. fDAC, Eight-Tone Input  
with 500 kHz Spacing, fDATA = 200 MSPS  
Figure 26. AD9779 Single Tone, 4× Interpolation, fDATA = 100 MSPS,  
fOUT = 30 MHz  
Rev. A | Page 18 of 56  
AD9776/AD9778/AD9779  
–150  
–154  
–158  
–162  
–166  
–170  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
fDAC = 200MSPS  
fDAC = 400MSPS  
0dBFS – PLL ON  
–6dBFS  
fDAC = 800MSPS  
–3dBFS  
0dBFS  
0
20  
40  
60  
80  
100  
0
20 40 60 80 100 120 140 160 180 200 220 240 260  
fOUT (MHz)  
fOUT (MHz)  
Figure 30. AD9779 Noise Spectral Density vs. fDAC  
,
Figure 32. AD9779 ACLR for Second Adjacent Band WCDMA, 4×  
Interpolation, fDATA = 122.88 MSPS. On-Chip Modulation Translates  
Baseband Signal to IF  
Single-Tone Input at −6 dBFS  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–55  
–60  
–65  
0dBFS – PLL ON  
–3dBFS  
–70  
0dBFS  
0dBFS – PLL ON  
–75  
–6dBFS  
–6dBFS  
–80  
–3dBFS  
–85  
0dBFS  
–90  
0
20 40 60 80 100 120 140 160 180 200 220 240 260  
fOUT (MHz)  
0
20 40 60 80 100 120 140 160 180 200 220 240 260  
fOUT (MHz)  
Figure 31. AD9779 ACLR for First Adjacent Band WCDMA, 4× Interpolation,  
fDATA = 122.88 MSPS, On-Chip Modulation Translates Baseband Signal to IF  
Figure 33. AD9779 ACLR for Third Adjacent Band WCDMA, 4× Interpolation,  
fDATA = 122.88 MSPS, On-Chip Modulation Translates Baseband Signal to IF  
Rev. A | Page 19 of 56  
AD9776/AD9778/AD9779  
REF –25.28dBm  
*ATTEN 4dB  
1.5  
1.0  
*AVG  
Log  
10dB/  
EXT REF  
0.5  
0
–0.5  
–1.0  
–1.5  
PAVG  
10  
W1 S2  
0
2k  
4k  
6k  
8k  
10k  
CENTER 143.88MHz  
*RES BW 30kHz  
SPAN 50MHz  
SWEEP 162.2ms (601 pts)  
CODE  
VBW 300kHz  
LOWER  
UPPER  
RMS RESULTS FREQ OFFSET REF BW  
dBc dBm  
dBc dBm  
CARRIER POWER 5.000MHz  
3.840MHz –76.75 –89.23 –77.42 –89.91  
3.840MHz –80.94 –93.43 –80.47 –92.96  
3.840MHz –79.95 –92.44 –78.96 –91.45  
–12.49dBm/  
3.84000MHz  
10.00MHz  
15.00MHz  
Figure 34. AD9779 WCDMA Signal, 4× Interpolation,  
fDATA =122.88 MSPS, fDAC/4 Modulation  
Figure 36. AD9778 Typical INL  
0.6  
REF –30.28dBm  
*ATTEN 4dB  
*AVG  
Log  
10dB/  
0.4  
0.2  
EXT REF  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
PAVG  
10  
W1 S2  
0
2k  
4k  
6k  
8k  
10k  
12k  
14k  
16k  
CENTER 151.38MHz  
*RES BW 30kHz  
SPAN 50MHz  
SWEEP 162.2ms (601 pts)  
CODE  
VBW 300kHz  
TOTAL CARRIER POWER –12.61dBm/15.3600MHz  
REF CARRIER POWER –17.87dBm/3.84000MHz  
LOWER  
dBm  
UPPER  
dBc dBm  
FREQ OFFSET INTEG BW dBc  
1 –17.87dBm  
2 –20.65dBm  
3 –18.26dBm  
4 –18.23dBm  
5.000MHz  
10.00MHz  
15.00MHz  
3.840MHz –67.70 –85.57 –67.70 –85.57  
3.840MHz –70.00 –97.87 –69.32 –87.19  
3.840MHz –71.65 –99.52 –71.00 –88.88  
Figure 35. AD9779 Multicarrier WCDMA Signal, 4× Interpolation,  
DAC =122.88 MSPS, fDAC/4 Modulation  
Figure 37. AD9778 Typical DNL  
f
Rev. A | Page 2± of 56  
AD9776/AD9778/AD9779  
REF –25.39dBm  
*ATTEN 4dB  
*AVG  
Log  
10dB/  
100  
90  
80  
70  
60  
50  
4× 150MSPS  
4× 200MSPS  
4× 100MSPS  
PAVG  
10  
W1 S2  
CENTER 143.88MHz  
*RES BW 30kHz  
SPAN 50MHz  
SWEEP 162.2ms (601 pts)  
VBW 300kHz  
0
40  
80  
120 160 200 240 280 320 360 400  
fOUT (MHz)  
LOWER  
UPPER  
RMS RESULTS FREQ OFFSET REF BW  
CARRIER POWER 5.000MHz  
–12.74dBm/  
3.84000MHz  
dBc dBm  
dBc dBm  
3.884MHz –76.49 –89.23 –76.89 –89.63  
3.840MHz –80.13 –92.87 –80.02 –92.76  
3.840MHz –80.90 –93.64 –79.53 –92.27  
10.00MHz  
15.00MHz  
Figure 38. AD9778 IMD, 4× Interpolation  
Figure 41. AD9778 ACLR, fDATA = 122.88 MSPS, 4× Interpolation,  
fDAC/4 Modulation  
100  
90  
80  
70  
60  
50  
–150  
–154  
–158  
–162  
–166  
–170  
fDATA = 200MSPS  
fDATA = 160MSPS  
fDAC = 200MSPS  
fDAC = 400MSPS  
fDATA = 250MSPS  
fDAC = 800MSPS  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
fOUT (MHz)  
fOUT (MHz)  
Figure 39. AD9778 In-Band SFDR, 2× Interpolation  
Figure 42. AD9778 Noise Spectral Density vs. fDAC Eight-Tone Input  
with 500 kHz Spacing, fDATA = 200 MSPS  
–150  
–60  
–70  
–154  
fDAC = 200MSPS  
fDAC = 400MSPS  
–158  
–162  
–166  
–170  
1ST ADJ CHAN  
3RD ADJ CHAN  
fDAC = 800MSPS  
–80  
–90  
2ND ADJ CHAN  
0
25  
50  
75  
100 125 150 175 200 225 250  
fOUT (MHz)  
0
20  
40  
60  
80  
100  
fOUT (MHz)  
Figure 40. AD9778 ACLR, Single-Carrier WCDMA, 4× Interpolation,  
fDATA = 122.88 MSPS, Amplitude = −3 dBFS  
Figure 43. AD9778 Noise Spectral Density vs. fDAC Single-Tone Input  
at −6 dBFS, fDATA = 200 MSPS  
Rev. A | Page 21 of 56  
AD9776/AD9778/AD9779  
0.4  
100  
90  
80  
70  
60  
50  
0.3  
0.2  
fDATA = 160MSPS  
0.1  
0
fDATA = 250MSPS  
–0.1  
–0.2  
–0.3  
–0.4  
fDATA = 200MSPS  
0
512  
1024  
1536  
2048 2560  
CODE  
3072  
3584 4096  
0
20  
40  
60  
80  
100  
fOUT (MHz)  
Figure 44. AD9776 Typical INL  
Figure 47. AD9776 In-Band SFDR, 2× Interpolation  
0.20  
0.15  
0.10  
0.05  
0
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
1ST ADJ CHAN  
3RD ADJ CHAN  
–0.05  
–0.10  
–0.15  
–0.20  
2ND ADJ CHAN  
0
512  
1024 1536  
2048  
2560  
3072  
3584 4096  
0
25  
50  
75  
100 125 150 175 200 225  
(MHz)  
250  
CODE  
F
OUT  
Figure 45. AD9776 Typical DNL  
Figure 48. AD9776 ACLR, fDATA = 122.88 MSPS, 4× Interpolation,  
fDAC/4 Modulation  
REF –25.29dBm  
*ATTEN 4dB  
*AVG  
Log  
10dB/  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
4× 100MSPS  
4× 150MSPS  
4× 200MSPS  
PAVG  
10  
W1 S2  
CENTER 143.88MHz  
*RES BW 30kHz  
SPAN 50MHz  
SWEEP 162.2ms (601 pts)  
0
40  
80  
120 160 200 240 280 320 360 400  
fOUT (MHz)  
VBW 300kHz  
LOWER  
UPPER  
RMS RESULTS FREQ OFFSET REF BW  
CARRIER POWER 5.000MHz  
–12.67dBm/  
3.84000MHz  
dBc dBm  
dBc dBm  
3.884MHz –75.00 –87.67 –75.30 –87.97  
3.840MHz –78.05 –90.73 –77.99 –90.66  
3.840MHz –77.73 –90.41 –77.50 –90.17  
10.00MHz  
15.00MHz  
Figure 46. AD9776 IMD, 4× Interpolation  
Figure 49. AD9776, Single Carrier WCDMA, 4× Interpolation,  
fDATA = 122.88 MSPS, Amplitude = −3 dBFS  
Rev. A | Page 22 of 56  
AD9776/AD9778/AD9779  
–150  
–154  
–158  
–162  
–166  
–170  
–150  
–154  
–158  
–162  
–166  
–170  
fDAC = 200MSPS  
fDAC = 200MSPS  
fDAC = 400MSPS  
fDAC = 400MSPS  
fDAC = 800MSPS  
fDAC = 800MSPS  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
fOUT (MHz)  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
fOUT (MHz)  
Figure 50. AD9776 Noise Spectral Density vs. fDAC, Eight-Tone Input  
with 500 kHz Spacing, fDATA = 200 MSPS  
Figure 51. AD9776 Noise Spectral Density vs. fDAC  
Single-Tone Input at −6 dBFS, fDATA = 200 MSPS  
,
Rev. A | Page 23 of 56  
AD9776/AD9778/AD9779  
TERMINOLOGY  
Integral Nonlinearity (INL)  
In-Band Spurious Free Dynamic Range (SFDR)  
The difference, in decibels, between the peak amplitude of the  
output signal and the peak spurious signal between dc and the  
frequency equal to half the input data rate.  
INL is defined as the maximum deviation of the actual analog  
output from the ideal output, determined by a straight line  
drawn from zero scale to full scale.  
Out-of-Band Spurious Free Dynamic Range (SFDR)  
The difference, in decibels, between the peak amplitude of the  
output signal and the peak spurious signal within the band that  
starts at the frequency of the input data rate and ends at the  
Nyquist frequency of the DAC output sample rate. Normally,  
energy in this band is rejected by the interpolation filters. This  
specification, therefore, defines how well the interpolation  
filters work and the effect of other parasitic coupling paths to  
the DAC output.  
Differential Nonlinearity (DNL)  
DNL is the measure of the variation in analog value, normalized  
to full scale, associated with a 1 LSB change in digital input code.  
Monotonicity  
A DAC is monotonic if the output either increases or remains  
constant as the digital input increases.  
Offset Error  
The deviation of the output current from the ideal of zero is  
called offset error. For IOUTA, 0 mA output is expected when the  
inputs are all 0s. For IOUTB, 0 mA output is expected when all  
inputs are set to 1.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first six harmonic com-  
ponents to the rms value of the measured fundamental. It is  
expressed as a percentage or in decibels.  
Gain Error  
The difference between the actual and ideal output span. The  
actual span is determined by the difference between the output  
when all inputs are set to 1 and the output when all inputs are  
set to 0.  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the rms value of the measured output signal  
to the rms sum of all other spectral components below the  
Nyquist frequency, excluding the first six harmonics and dc.  
The value for SNR is expressed in decibels.  
Output Compliance Range  
The range of allowable voltage at the output of a current-output  
DAC. Operation beyond the maximum compliance limits can  
cause either output stage saturation or breakdown, resulting in  
nonlinear performance.  
Interpolation Filter  
If the digital inputs to the DAC are sampled at a multiple rate of  
f
DATA (interpolation rate), a digital filter can be constructed that  
has a sharp transition band near fDATA/2. Images that typically  
appear around fDAC (output data rate) can be greatly suppressed.  
Temperature Drift  
Temperature drift is specified as the maximum change from the  
ambient (25°C) value to the value at either TMIN or TMAX. For  
offset and gain drift, the drift is reported in ppm of full-scale  
range (FSR) per degree Celsius. For reference drift, the drift is  
reported in ppm per degree Celsius.  
Adjacent Channel Leakage Ratio (ACLR)  
The ratio in dBc between the measured power within a channel  
relative to its adjacent channel.  
Complex Image Rejection  
In a traditional two-part upconversion, two images are created  
around the second IF frequency. These images have the effect of  
wasting transmitter power and system bandwidth. By placing  
the real part of a second complex modulator in series with the  
first complex modulator, either the upper or lower frequency  
image near the second IF can be rejected.  
Power Supply Rejection (PSR)  
The maximum change in the full-scale output as the supplies  
are varied from minimum to maximum specified voltages.  
Settling Time  
The time required for the output to reach and remain within a  
specified error band around its final value, measured from the  
start of the output transition.  
Rev. A | Page 24 of 56  
 
AD9776/AD9778/AD9779  
THEORY OF OPERATION  
ported, as well as MSB-first or LSB-first transfer formats. The  
serial interface ports can be configured as a single pin I/O (SDIO)  
or two unidirectional pins for input/output (SDIO/SDO).  
The AD9776/AD9778/AD9779 combine many features that  
make them very attractive DACs for wired and wireless  
communications systems. The dual digital signal path and  
dual DAC structure allow an easy interface with common  
quadrature modulators when designing single sideband  
transmitters. The speed and performance of the parts allow  
wider bandwidths and more carriers to be synthesized than  
in previously available DACs. The digital engine uses a break-  
through filter architecture that combines the interpolation with  
a digital quadrature modulator. This allows the parts to conduct  
digital quadrature frequency upconversion. They also have  
features that allow simplified synchronization with incoming  
data and between multiple parts.  
General Operation of the Serial Interface  
There are two phases to a communication cycle with the  
AD977x. Phase 1 is the instruction cycle (the writing of an  
instruction byte into the device), coincident with the first eight  
SCLK rising edges. The instruction byte provides the serial port  
controller with information regarding the data transfer cycle,  
Phase 2 of the communication cycle. The Phase 1 instruction  
byte defines whether the upcoming data transfer is a read or  
write, the number of bytes in the data transfer, and the starting  
register address for the first byte of the data transfer. The first  
eight SCLK rising edges of each communication cycle are used  
to write the instruction byte into the device.  
The serial port configuration is controlled by Register 0x00,  
Bits<6:7>. It is important to note that the configuration changes  
immediately upon writing to the last bit of the byte. For multi-  
byte transfers, writing to this register can occur during the  
middle of a communication cycle. Care must be taken to  
compensate for this new configuration for the remaining bytes  
of the current communication cycle.  
A logic high on the CSB pin followed by a logic low resets the  
SPI port timing to the initial state of the instruction cycle.  
From this state, the next eight rising SCLK edges represent the  
instruction bits of the current I/O operation, regardless of the  
state of the internal registers or the other signal levels at the  
inputs to the SPI port. If the SPI port is in an instruction cycle  
or a data transfer cycle, none of the present data is written.  
The same considerations apply to setting the software reset,  
RESET (Register 0x00, Bit 5) or pulling the RESET pin (Pin 70)  
high. All registers are set to their default values, except  
Register 0x00 and Register 0x04, which remain unchanged.  
The remaining SCLK edges are for Phase 2 of the communica-  
tion cycle. Phase 2 is the actual data transfer between the device  
and the system controller. Phase 2 of the communication cycle  
is a transfer of one, two, three, or four data bytes as determined  
by the instruction byte. Using one multibyte transfer is preferred.  
Single-byte data transfers are useful in reducing CPU overhead  
when register access requires only one byte. Registers change  
immediately upon writing to the last bit of each transfer byte.  
Use of only single-byte transfers when changing serial port  
configurations or initiating a software reset is recommended to  
prevent unexpected device behavior.  
As described in this section, all serial port data is transferred  
to/from the device in synchronization to the SCLK pin. If  
synchronization is lost, the device has the ability to asynchro-  
nously terminate an I/O operation, putting the serial port  
controller into a known state and, thereby, regaining  
synchronization.  
Instruction Byte  
The instruction byte contains the information shown in  
Table 9.  
Table 9. SPI Instruction Byte  
MSB  
SERIAL PERIPHERAL INTERFACE  
LSB  
I0  
66  
I7  
I6  
I5  
I4  
I3  
I2  
I1  
SPI_SDO  
SPI  
PORT  
R/W  
N1  
N±  
A4  
A3  
A2  
A1  
A±  
67  
SPI_SDI  
68  
SPI_SCLK  
W
R/ , Bit 7 of the instruction byte, determines whether a read or  
a write data transfer occurs after the instruction byte write.  
Logic high indicates a read operation. Logic 0 indicates a write  
operation.  
69  
SPI_CSB  
Figure 52. SPI Port  
The serial port is a flexible, synchronous serial communications  
port allowing easy interface to many industry-standard micro-  
controllers and microprocessors. The serial I/O is compatible  
with most synchronous transfer formats, including both the  
Motorola SPI® and Intel® SSR protocols. The interface allows  
read/write access to all registers that configure the AD9776/  
AD9778/AD9779. Single or multiple byte transfers are sup-  
N1 and N0, Bit 6 and Bit 5 of the instruction byte, determine  
the number of bytes to be transferred during the data transfer  
cycle. The bit decodes are listed in Table 10.  
A4, A3, A2, A1, and A0—Bit 4, Bit 3, Bit 2, Bit 1, and Bit 0, respec-  
tively, of the instruction byte determine the register that is accessed  
during the data transfer portion of the communication cycle.  
Rev. A | Page 25 of 56  
 
 
AD9776/AD9778/AD9779  
For multibyte transfers, this address is the starting byte address.  
The remaining register addresses are generated by the device  
based on the LSB-first bit (Register 0x00, Bit 6).  
When LSB-first = 1 (LSB-first) the instruction and data bit  
must be written from LSB to MSB. Multibyte data transfers in  
LSB-first format start with an instruction byte that includes the  
register address of the least significant data byte followed by mul-  
tiple data bytes. The serial port internal byte address generator  
increments for each byte of the multibyte communication cycle.  
Table 10. Byte Transfer Count  
N1  
N0  
Description  
±
±
1
1
±
1
±
1
Transfer one byte  
Transfer three bytes  
Transfer two bytes  
Transfer four bytes  
The serial port controller data address decrements from the  
data address written toward 0x00 for multibyte I/O operations if  
the MSB-first mode is active. The serial port controller address  
increments from the data address written toward 0x1F for  
multibyte I/O operations if the LSB-first mode is active.  
Serial Interface Port Pin Descriptions  
Serial Clock (SCLK)  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
The serial clock pin synchronizes data to and from the device  
and to run the internal state machines. The maximum frequency  
of SCLK is 40 MHz. All data input is registered on the rising  
edge of SCLK. All data is driven out on the falling edge of SCLK.  
CSB  
SCLK  
SDIO  
SDO  
R/W N1 N0 A4 A3 A2 A1 A0 D7 D6 D5  
N
D3 D2 D1 D0  
0 0 0  
N
0
0
Chip Select (CSB)  
Active low input starts and gates a communication cycle. It  
allows more than one device to be used on the same serial  
communications lines. The SDO and SDIO pins go to a high  
impedance state when this input is high. Chip select should  
stay low during the entire communication cycle.  
D7 D6 D5  
N
D3 D2 D1 D0  
0 0 0  
N
Figure 53. Serial Register Interface Timing MSB-First  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CSB  
SCLK  
SDIO  
SDO  
Serial Data I/O (SDIO)  
Data is always written into the device on this pin. However, this  
pin can be used as a bidirectional data line. The configuration  
of this pin is controlled by Register 0x00, Bit 7. The default is  
Logic 0, configuring the SDIO pin as unidirectional.  
A0 A1 A2 A3 A4 N0 N1 R/W D0 D1 D2  
D4 D5 D6 D7  
N N N  
0
0
0
N
N
D0 D1 D2  
D4 D5 D6 D7  
N N N  
0
0
0
Figure 54. Serial Register Interface Timing LSB-First  
Serial Data Out (SDO)  
Data is read from this pin for protocols that use separate lines  
for transmitting and receiving data. In the case where the device  
operates in a single bidirectional I/O mode, this pin does not  
output data and is set to a high impedance state.  
tDS  
tSCLK  
CSB  
tPWH  
tPWL  
MSB/LSB TRANSFERS  
SCLK  
tDS  
The serial port can support both MSB-first and LSB-first data  
formats. This functionality is controlled by Register Bit LSB_FIRST  
(Register 0x00, Bit 6). The default is MSB-first (LSB-first = 0).  
tDH  
INSTRUCTION BIT 7  
INSTRUCTION BIT 6  
SDIO  
Figure 55. Timing Diagram for SPI Register Write  
When LSB-first = 0 (MSB-first) the instruction and data bit  
must be written from MSB to LSB. Multibyte data transfers in  
MSB-first format start with an instruction byte that includes the  
register address of the most significant data byte. Subsequent data  
bytes should follow from high address to low address. In MSB-first  
mode, the serial port internal byte address generator decrements  
for each data byte of the multibyte communication cycle.  
CSB  
SCLK  
tDV  
SDIO  
SDO  
DATA BIT n  
DATA BIT n1  
Figure 56. Timing Diagram for SPI Register Read  
Rev. A | Page 26 of 56  
 
 
AD9776/AD9778/AD9779  
SPI REGISTER MAP  
Table 11.  
Register  
Name  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Def.  
Comm  
0x00  
00  
SDIO  
Bidirectional  
LSB/MSB First  
Software  
Reset  
Power-  
Down  
Mode  
Auto  
PLL Lock  
Indicator  
(Read  
0x00  
Power-  
Down  
Enable  
Only)  
Digital  
Control  
0x01  
0x02  
01  
02  
Filter Interpolation Factor<1:0>  
Filter Modulation Mode<3:0>  
Zero  
Stuffing  
Enable  
0x00  
0x00  
Data Format  
Dual/Interleaved  
Data Bus Mode  
Real Mode  
Data  
Inverse  
Sinc  
DATACLK  
Invert  
TxEnable  
Invert  
Q First  
Clock  
Delay  
Enable  
Enable  
Sync  
Control  
0x03  
0x04  
0x05  
03  
04  
05  
Data Clock Delay Mode<1:0>  
Data Clock Divide  
Ratio<1:0>  
Reserved  
0x00  
0x00  
0x00  
Data Clock Delay<3:0>  
Output Sync Pulse Divide<2:0>  
Sync Out  
Delay<4>  
Sync Out Delay<3:0>  
Sync Input Delay<3:0>  
Input Sync Pulse Frequency Ratio<2:0>  
Sync Input  
Delay<4>  
0x06  
0x07  
06  
07  
Input Sync Pulse Timing Error Tolerance<3:0>  
DAC Clock Offset<4:0>  
0x00  
0x00  
Sync  
Receiver  
Enable  
Sync Driver  
Enable  
Sync  
Triggering  
Edge  
PLL  
Control  
0x08  
0x09  
08  
09  
PLL Band Select<5:0>  
PLL VCO AGC  
Gain<1:0>  
0xCF  
0x37  
PLL Enable  
PLL VCO Divider Ratio<1:0>  
PLL Loop  
Divide  
PLL Bias Setting<2:0>  
Ratio<1:0>  
Misc  
0x0A  
10  
PLL Control Voltage Range<2:0> (Read Only)  
PLL Loop Bandwidth Adjustment<4:0>  
0x38  
Control  
I DAC  
Control  
Register  
0x0B  
0x0C  
11  
12  
I DAC Gain Adjustment<7:0>  
0xF9  
0x01  
I DAC Sleep  
I DAC Power  
Down  
I DAC Gain  
Adjustment<9:8>  
Aux DAC1 0x0D 13  
Control  
Register  
Auxiliary DAC1 Data<7:0>  
0x00  
0x00  
0x0E  
14  
Auxiliary  
DAC1 Sign  
Auxiliary DAC1  
Current Direction  
Auxiliary  
Auxiliary DAC1  
Data<9:8>  
DAC1  
Power-  
Down  
Q DAC  
Control  
Register  
0x0F  
0x10  
15  
16  
Q DAC Gain Adjustment<7:0>  
0xF9  
0x01  
Q DAC Sleep  
Q DAC Power-  
Down  
Q DAC Gain  
Adjustment<9:8>  
Aux DAC2 0x11  
17  
18  
Auxiliary DAC2 Data<7:0>  
Auxiliary  
DAC2  
Power-  
Down  
0x00  
0x00  
Control  
0x12  
Auxiliary  
DAC2 Sign  
Auxiliary DAC2  
Current Direction  
Auxiliary DAC2  
Data<9:8>  
Register  
0x13  
to  
0x18  
19 to 24  
25  
Reserved  
Interrupt  
Register  
0x19  
Sync Delay IRQ  
Sync  
Delay  
IRQ  
Internal  
Sync  
Loopback  
0x00  
Enable  
0x1A  
to  
26 to 31  
Reserved  
0x1F  
Rev. A | Page 27 of 56  
 
AD9776/AD9778/AD9779  
Table 12. SPI Register Description  
Address  
Register Name  
Reg. No. Bits Description  
Function  
Default  
Comm Register  
±±  
SDIO bidirectional  
±: use SDIO pin as input data only  
1: use SDIO as both input and output data  
±: first bit of serial data is MSB of data byte  
1: first bit of serial data is LSB of data byte  
Bit must be written with a 1, then ± to soft  
reset SPI register map  
±
±±  
6
LSB/MSB first  
±
±
±±  
±±  
5
4
Software reset  
Power-down mode  
±: all circuitry is active  
1: disable all digital and analog circuitry,  
only SPI port is active  
±±  
±±  
3
1
Auto power-down enable  
PLL lock (read only)  
Controls auto power-down mode, see the  
Power-Down and Sleep Modes section  
±: PLL is not locked  
±
1: PLL is locked  
±
Digital Control Register  
±1  
ꢀ:6  
Filter interpolation factor  
±±: 1× interpolation  
±±  
±1: 2× interpolation  
1±: 4× interpolation  
11: 8× interpolation  
±1  
±1  
5:2  
±
Filter modulation mode  
Zero stuffing  
See Table 21 for filter modes  
±: zero stuffing off  
±±±±  
±
1: zero stuffing on  
±2  
±2  
±2  
6
5
Data format  
±: signed binary  
1: unsigned binary  
±: both input data ports receive data  
1: Data Port 1 only receives data  
±: enable Q path for signal processing  
±
±
±
Dual/interleaved data bus mode  
Real mode  
1: disable Q path data (internal Q channel  
clocks disabled, I and Q modulators  
disabled)  
±2  
±2  
4
3
DATACLK delay enable  
Inverse sinc enable  
See the Using Data Delay to Meet Timing  
Requirements section.  
±: inverse sinc filter disabled  
1: inverse sinc filter enabled  
±: output DATACLK same phase as internal  
capture clock  
±
±
±2  
2
DATACLK invert  
1: output DATACLK opposite phase as  
internal capture clock  
±2  
±2  
1
±
TxEnable invert  
Q first  
Inverts the function of TxEnable Pin 39, see  
the Interleaved Data Mode section  
±: first byte of data is always I data at  
beginning of transmit  
±
1: first byte of data is always Q data at  
beginning of transmit  
Sync Control Register  
±3  
±3  
ꢀ:6  
5:4  
Data clock delay mode  
Extra data clock divide ratio  
±±: manual  
Data clock output divider (see Table 22 for  
divider ratio)  
±±  
±±  
±3  
±4  
±4  
±4  
±5  
±5  
3:±  
ꢀ:4  
3:1  
±
ꢀ:4  
3:1  
Reserved  
±±±  
±±±±  
±±±  
Data clock delay  
Output sync pulse divide  
Sync out delay  
Sync out delay  
Input sync pulse frequency  
Sets delay of REFCLK in to DATACLK out  
Sets frequency of SYNC_O pulses  
Sync output delay, Bit 4  
Sync output delay, Bits<3:±>  
Input sync pulse frequency divider, see the  
AN-822 application note  
±
±±±  
±5  
±
Sync input delay  
Sync input delay, Bit 4  
±
Rev. A | Page 28 of 56  
AD9776/AD9778/AD9779  
Address  
Register Name  
Reg. No. Bits Description  
Function  
Default  
Sync Control Register  
±6  
ꢀ:4  
Sync input delay  
See the Multiple DAC Synchronization  
section for details on using these registers  
to synchronize multiple DACs  
±
±6  
3:±  
Input sync pulse timing error  
tolerance  
±
±ꢀ  
±ꢀ  
±ꢀ  
±ꢀ  
6
5
4:±  
Sync receiver enable  
Sync driver enable  
Sync triggering edge  
SYNC_I to input data sampling  
clock offset  
±
±
±
±
PLL Control  
±8  
±8  
±9  
ꢀ:2  
1:±  
PLL band select  
VCO AGC gain control  
PLL enable  
VCO frequency range vs. PLL band select  
value (see Table 18)  
111±±1  
Lower number (low gain) is generally better 11  
for performance  
±: PLL off, DAC rate clock supplied by  
outside source  
±
1: PLL on, DAC rate clock synthesized  
internally from external reference clock via  
PLL clock multiplier  
±9  
±9  
6:5  
4:3  
PLL VCO divide ratio  
PLL loop divide ratio  
FVCO/fDAC  
±± × 1  
±1 × 2  
1± × 4  
11 × 8  
fDAC/fREF  
±± × 2  
±1 × 4  
1± × 8  
11 × 16  
Always set to ±1±  
±9  
±A  
2:±  
ꢀ:5  
PLL bias setting  
±1±  
Misc Control  
PLL control voltage range  
±±± to 111, proportional to voltage at PLL  
loop filter output, readback only  
±A  
±B  
±C  
4:±  
ꢀ:±  
PLL loop bandwidth adjustment  
I DAC gain adjustment  
I DAC sleep  
See PLL Loop Filter Bandwidth section for  
details  
I DAC Control Register  
(ꢀ:±) LSB slice of 1±-bit gain setting word  
for I DAC  
±: I DAC on  
1: I DAC off  
±: I DAC on  
1: I DAC off  
11111±±1  
±
±C  
6
I DAC power-down  
±
±C  
±D  
±E  
1:±  
ꢀ:±  
I DAC gain adjustment  
Aux DAC1 gain adjustment  
Aux DAC1 sign  
(9:8) MSB slice of 1±-bit gain setting word  
for I DAC  
±1  
Aux DAC1 Control  
Register  
(ꢀ:±) LSB slice of 1±-bit gain setting word for ±±±±±±±±  
Aux DAC1  
±: positive  
1: negative  
±E  
±E  
±E  
6
Aux DAC1 current direction  
Aux DAC1 power-down  
±: source  
1: sink  
±
5
±: Aux DAC1 on  
1: Aux DAC1 off  
(9:8) MSB slice of 1±-bit gain setting word  
for Aux DAC1  
±
1:±  
Aux DAC1 gain adjustment  
±±  
Rev. A | Page 29 of 56  
AD9776/AD9778/AD9779  
Address  
Register Name  
Reg. No. Bits Description  
Function  
Default  
Q DAC Control Register ±F  
ꢀ:±  
Q DAC gain adjustment  
(ꢀ:±) LSB slice of 1±-bit gain setting word for 11111±±1  
Q DAC  
1±  
1±  
1±  
Q DAC sleep  
±: Q DAC on  
1: Q DAC off  
±: Q DAC on  
1: Q DAC off  
(9:8) MSB slice of 1±-bit gain setting word  
for Q DAC  
±
6
Q DAC power-down  
±
1:±  
ꢀ:±  
Q DAC gain adjustment  
Aux DAC2 gain adjustment  
Aux DAC2 sign  
Aux DAC2 Control  
Register  
11  
12  
(ꢀ:±) LSB slice of 1±-bit gain setting word for ±±±±±±±±  
Aux DAC2  
±: positive  
1: negative  
12  
12  
12  
6
Aux DAC2 current direction  
Aux DAC2 power-down  
±: source  
1: sink  
±
5
±: Aux DAC2 on  
1: Aux DAC2 off  
(9:8) MSB slice of 1±-bit gain setting word  
for Aux DAC2  
±
1:±  
Aux DAC2 gain adjustment  
±±  
Interrupt Register  
19  
19  
19  
19  
19  
19  
19  
6
5
3
2
1
±
±
±
±
±
±
±
±
Sync delay IRQ  
Readback, must write ± to clear  
Sync delay IRQ enable  
Internal sync loopback  
Rev. A | Page 3± of 56  
AD9776/AD9778/AD9779  
INTERPOLATION FILTER ARCHITECTURE  
Table 15. Half-Band Filter 3  
The AD9776/AD9778/AD9779 can provide up to 8× interpola-  
tion, or the interpolation filters can be entirely disabled. It is  
important to note that the input signal should be backed off by  
approximately 0.01 dB from full scale to avoid overflowing the  
interpolation filters. The coefficients of the low-pass filters and  
the inverse sinc filter are given in Table 13, Table 14, Table 15,  
and Table 16. Spectral plots for the filter responses are shown in  
Figure 57, Figure 58, and Figure 59.  
Lower Coefficient  
Upper Coefficient  
Integer Value  
H(1)  
H(2)  
H(3)  
H(4)  
H(5)  
H(6)  
H(ꢀ)  
H(8)  
H(15)  
H(14)  
H(13)  
H(12)  
H(11)  
H(1±)  
H(9)  
−39  
±
+2ꢀ3  
±
−11±2  
±
+4964  
+8192  
Table 13. Half-Band Filter 1  
Lower Coefficient  
Upper Coefficient  
H(55)  
H(54)  
H(53)  
H(52)  
H(51)  
H(5±)  
H(49)  
H(48)  
H(4ꢀ)  
H(46)  
H(45)  
H(44)  
H(43)  
H(42)  
H(41)  
H(4±)  
H(39)  
H(38)  
H(3ꢀ)  
H(36)  
H(35)  
H(34)  
H(33)  
H(32)  
H(31)  
H(3±)  
H(29)  
Integer Value  
H(1)  
H(2)  
H(3)  
H(4)  
H(5)  
H(6)  
H(ꢀ)  
H(8)  
−4  
±
+13  
±
−34  
±
+ꢀ2  
±
−138  
±
+245  
±
−4±8  
±
+65±  
±
−1±±3  
±
+1521  
±
Table 16. Inverse Sinc Filter  
Lower Coefficient  
Upper Coefficient  
Integer Value  
H(1)  
H(2)  
H(3)  
H(4)  
H(5)  
H(9)  
H(8)  
H(ꢀ)  
H(6)  
+2  
−4  
+1±  
−35  
+4±1  
H(9)  
10  
0
H(1±)  
H(11)  
H(12)  
H(13)  
H(14)  
H(15)  
H(16)  
H(1ꢀ)  
H(18)  
H(19)  
H(2±)  
H(21)  
H(22)  
H(23)  
H(24)  
H(25)  
H(26)  
H(2ꢀ)  
H(28)  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
−2315  
±
+36ꢀ1  
±
−6642  
±
+2±,ꢀ55  
+32,ꢀ68  
–4  
–3  
–2  
–1  
0
1
2
3
4
fOUT (× Input Data Rate)  
Figure 57. 2× Interpolation, Low-Pass Response to 4× Input Data Rate  
(Dotted Lines Indicate 1 dB Roll-Off)  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
Table 14. Half-Band Filter 2  
Lower Coefficient  
Upper Coefficient  
Integer Value  
H(1)  
H(2)  
H(3)  
H(4)  
H(5)  
H(6)  
H(ꢀ)  
H(8)  
H(9)  
H(1±)  
H(11)  
H(12)  
H(23)  
H(22)  
H(21)  
H(2±)  
H(19)  
H(18)  
H(1ꢀ)  
H(16)  
H(15)  
H(14)  
H(13)  
−2  
±
+1ꢀ  
±
−ꢀ5  
±
+238  
±
−66±  
±
+253±  
+4±96  
–4  
–3  
–2  
–1  
0
1
2
3
4
fOUT (× Input Data Rate)  
Figure 58. 4× Interpolation, Low-Pass Response to 4× Input Data Rate  
(Dotted Lines Indicate 1 dB Roll-Off)  
Rev. A | Page 31 of 56  
 
 
 
 
 
 
 
AD9776/AD9778/AD9779  
10  
10  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–4  
–3  
–2  
–1  
0
1
2
3
4
–4  
–3  
–2  
–1  
0
1
2
3
4
fOUT (× Input Data Rate)  
fOUT (× Input Data Rate)  
Figure 59. 8× Interpolation, Low-Pass Response to 4× Input Data Rate  
(Dotted Lines Indicate 1 dB Roll-Off)  
Figure 62. Interpolation/Modulation Combination of −3 fDAC/8 Filter  
10  
0
With the interpolation filter and modulator combined, the  
incoming signal can be placed anywhere within the Nyquist  
region of the DAC output sample rate. When the input signal is  
complex, this architecture allows modulation of the input signal  
to positive or negative Nyquist regions (see Table 17).  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
The Nyquist regions of up to 4× the input data rate can be seen  
in Figure 60.  
–8 –7 –6 –5 –4 –3 –2 –1  
1
2
3
4
5
6
7
8
–4×  
–3×  
–2×  
–1×  
DC  
1×  
2×  
3×  
4×  
–4  
–3  
–2  
–1  
0
1
2
3
4
Figure 60. Nyquist Zones  
fOUT (× Input Data Rate)  
Figure 57, Figure 58, and Figure 59 show the low-pass response  
of the digital filters with no modulation. By turning on the  
modulation feature, the response of the digital filters can be  
tuned to anywhere within the DAC bandwidth. As an example,  
Figure 61 to Figure 67 show the nonshifted mode filter responses  
(refer to Table 17 for shifted/nonshifted mode filter responses).  
Figure 63. Interpolation/Modulation Combination of −2 fDAC/8 Filter  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–4  
–3  
–2  
–1  
0
1
2
3
4
fOUT (× Input Data Rate)  
Figure 64. Interpolation/Modulation Combination of −1 fDAC/8 Filter  
–4  
–3  
–2  
–1  
0
1
2
3
4
fOUT (× Input Data Rate)  
Figure 61. Interpolation/Modulation Combination of 4 fDAC/8 Filter  
Rev. A | Page 32 of 56  
 
 
 
AD9776/AD9778/AD9779  
10  
0
Shifted mode filter responses allow the pass band to be centered  
around 0.5 fDATA, 1.5 fDATA, 2.5 fDATA, and 3.5 fDATA. Switching  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
to the shifted mode response does not modulate the signal.  
Instead, the pass band is simply shifted. For example, picture  
the response shown in Figure 67 and assume the signal in-band  
is a complex signal over the bandwidth 3.2 fDATA to 3.3 fDATA. If  
the even mode filter response is then selected, the pass band  
becomes centered at 3.5 fDATA. However, the signal remains at  
the same place in the spectrum. The shifted mode capability  
allows the filter pass band to be placed anywhere in the DAC  
Nyquist bandwidth.  
The AD9776/AD9778/AD9779 are dual DACs with internal  
complex modulators built into the interpolating filter response.  
In dual channel mode, the devices expect the real and the  
imaginary components of a complex signal at Digital Input  
Port 1 and Digital Input Port 2 (I and Q, respectively). The DAC  
outputs then represent the real and imaginary components of  
the input signal, modulated by the complex carrier fDAC/2,  
–4  
–3  
–2  
–1  
0
1
2
3
4
fOUT (× Input Data Rate)  
Figure 65. Interpolation/Modulation Combination of fDAC/8 Filter  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
f
DAC/4, or fDAC/8.  
With Register 2, Bit 6 set, the device accepts interleaved data on  
Port 1 in the I, Q, I, Q . . . sequence. Note that in interleaved  
mode, the channel data rate at the beginning of the I and the Q  
data paths are now half the input data rate because of the inter-  
leaving. The maximum input data rate is still subject to the  
maximum specification of the device. This limits the synthesis  
bandwidth available at the input in interleaved mode.  
–4  
–3  
–2  
–1  
0
1
2
3
4
With Register 0x02, Bit 5 (real mode) set, the Q channel and the  
internal I and Q digital modulation are turned off. The output  
spectrum at the I DAC then represents the signal at Digital  
Input Port 1, interpolated by 1×, 2×, 4×, or 8×.  
fOUT (× Input Data Rate)  
Figure 66. Interpolation/Modulation Combination of  
2 fDAC/8 Filter in Shifted Mode  
10  
0
The general recommendation is that if the desired signal is  
within 0.4 × fDATA, the odd filter mode should be used. Outside  
of this, the even filter mode should be used. In any situation, the  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
total bandwidth of the signal should be less than 0.8 × fDATA  
.
–4  
–3  
–2  
–1  
0
1
2
3
4
fOUT (× Input Data Rate)  
Figure 67. Interpolation/Modulation Combination of  
3 fDAC/8 Filter in Shifted Mode  
Rev. A | Page 33 of 56  
 
AD9776/AD9778/AD9779  
Table 17. Interpolation Filter Modes, (Register 0x01, Bits<5:2>)  
Nyquist  
Zone  
Pass  
Filter  
Mode  
<5:2>  
Interpolation  
Factor <7:6>  
Modulation  
DC  
Band  
F_Low1  
−±.±5  
±.±125  
±.±ꢀ5  
±.13ꢀ5  
±.2  
±.2625  
±.325  
±.38ꢀ5  
−±.55  
−±.48ꢀ5  
−±.425  
−±.3625  
−±.3  
−±.23ꢀ5  
−±.1ꢀ5  
−±.1125  
−±.1  
±.±25  
±.15  
±.2ꢀ5  
−±.6  
−±.4ꢀ5  
−±.35  
−±.225  
−±.2  
±.±5  
−±.ꢀ  
−±.45  
Center1  
±
±.±625  
±.125  
±.18ꢀ5  
±.25  
±.3125  
±.3ꢀ5  
±.43ꢀ5  
−±.5  
−±.43ꢀ5  
−±.3ꢀ5  
−±.3125  
−±.25  
−±.18ꢀ5  
−±.125  
−±.±625  
±
±.125  
±.25  
±.3ꢀ5  
−±.5  
−±.3ꢀ5  
−±.25  
−±.125  
±
F_High1  
+±.±5  
±.1125  
±.1ꢀ5  
±.23ꢀ5  
±.3  
±.3625  
±.425  
±.48ꢀ5  
−±.45  
−±.38ꢀ5  
−±.343  
−±.2625  
−±.2  
−±.13ꢀ5  
−±.±ꢀ5  
−±.±125  
+±.1  
±.225  
±.35  
±.4ꢀ5  
−±.4  
−±.2ꢀ5  
−±.15  
−±.±25  
+±.2  
±.45  
−±.3  
−±.±5  
Comments  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
4
4
4
4
4
4
4
4
2
2
2
2
±x±±  
±x±1  
±x±2  
±x±3  
±x±4  
±x±5  
±x±6  
±x±ꢀ  
±x±8  
±x±9  
±x±A  
±x±B  
±x±C  
±x±D  
±x±E  
±x±F  
±x±±  
±x±1  
±x±2  
±x±3  
±x±4  
±x±5  
±x±6  
±x±ꢀ  
±x±±  
±x±1  
±x±2  
±x±3  
1
In 8× interpolation;  
BW (min) = ±.±3ꢀ5 × fDAC  
BW (max) = ±.1 × fDAC  
DC shifted  
F/8  
F/8 shifted  
F/4  
F/4 shifted  
3F/8  
3F/8 shifted  
F/2  
F/2 shifted  
−3F/8  
−3F/8 shifted  
−F/4  
−F/4 shifted  
−F/8  
−F/8 shifted  
DC  
DC shifted  
F/4  
F/4 shifted  
F/2  
F/2 shifted  
−F/4  
−F/4 shifted  
DC  
2
3
4
5
6
8
−8  
−ꢀ  
−6  
−5  
−4  
−3  
−2  
−1  
1
In 4× interpolation;  
BW (min) = ±.±ꢀ5 × fDAC  
BW (max) = ±.2 × fDAC  
2
3
4
−4  
−3  
−2  
−1  
1
2
−2  
−1  
In 2× interpolation;  
BW (min) = ±.15 × fDAC  
BW (max) = ±.4 × fDAC  
DC shifted  
F/2  
F/2 shifted  
±.25  
−±.5  
−±.25  
1 Frequency normalized to fDAC  
.
Rev. A | Page 34 of 56  
 
 
 
AD9776/AD9778/AD9779  
10  
0
INTERPOLATION FILTER MINIMUM AND  
MAXIMUM BANDWIDTH SPECIFICATIONS  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
The AD977x uses a novel interpolation filter architecture that  
allows DAC IF frequencies to be generated anywhere in the  
spectrum. Figure 68 shows the traditional choice of DAC IF  
output bandwidth placement. Note that there are no possible  
filter modes in which the carrier can be placed near 0.5 × fDATA  
1.5 × fDATA, 2.5 × fDATA, and so on.  
,
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–4  
–3  
–2  
–1  
fOUT  
ASSUMING 8  
0
1
2
3
4
(×  
Input Data Rate),  
INTERPOLATION  
×
Figure 70. Shifted Bandwidths Accessible with the Filter Architecture  
With this filter architecture, a signal placed anywhere in the  
spectrum is possible. However, the signal bandwidth is limited  
by the input sample rate of the DAC and the specific placement  
of the carrier in the spectrum. The bandwidth restriction  
resulting from the combination of filter response and input  
sample rate is often referred to as the synthesis bandwidth, since  
this is the largest bandwidth that the DAC can synthesize.  
–4  
–3  
–2  
–1  
fOUT (× Input Data Rate),  
ASSUMING 8× INTERPOLATION  
0
1
2
3
4
Figure 68. Traditional Bandwidth Options for TxDAC Output IF  
The maximum bandwidth condition exists if the carrier is  
placed directly in the center of one of the filter pass bands. In  
this case, the total 0.1 dB bandwidth of the interpolation filters  
is equal to 0.8 × fDATA. As Table 17 shows, the synthesis band-  
width as a fraction of DAC output sample rate drops by a factor  
of 2 for every doubling of interpolation rate. The minimum  
bandwidth condition exists, for example, if a carrier is placed at  
0.25 × fDATA. In this situation, if the nonshifted filter response is  
The filter architecture not only allows the interpolation filter  
pass bands to be centered in the middle of the input Nyquist  
zones (as explained in this section), but also allows the possi-  
bility of a 3 × fDAC/8 modulation mode. With all of these filter  
combinations, a carrier of given bandwidth can be placed  
anywhere in the spectrum and fall into a possible pass band of  
the interpolation filters. The possible bandwidths accessible  
with the filter architecture are shown in Figure 69 and  
Figure 70. Note that the shifted and nonshifted filter modes  
are all accessible by programming the filter mode for the  
particular interpolation rate.  
enabled, the high end of the filter response cuts off at 0.4 × fDATA  
,
thus limiting the high end of the signal bandwidth. If the shifted  
filter response is enabled instead, then the low end of the filter  
response cuts off at 0.1 × fDATA, thus limiting the low end of the  
signal bandwidth. The minimum bandwidth specification that  
applies for a carrier at 0.25 × fDATA is therefore 0.3 × fDATA. The  
minimum bandwidth behavior is repeated over the spectrum  
for carriers placed at ( n 0.25) × fDATA, where n is any integer.  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
DRIVING THE REFCLK INPUT  
The REFCLK input requires a low jitter differential drive signal.  
It is a PMOS input differential pair powered from  
the 1.8 V supply, therefore, it is important to maintain the  
specified 400 mV input common-mode voltage. Each input  
pin can safely swing from 200 mV p-p to 1 V p-p about the  
400 mV common-mode voltage. While these input levels are  
not directly LVDS-compatible, REFCLK can be driven by an  
offset ac-coupled LVDS signal, as shown in Figure 71.  
–4  
–3  
–2  
–1  
0
1
2
3
4
fOUT (× Input Data Rate),  
ASSUMING 8× INTERPOLATION  
Figure 69. Nonshifted Bandwidths Accessible with the Filter Architecture  
Rev. A | Page 35 of 56  
 
 
 
 
AD9776/AD9778/AD9779  
0.1μF  
PLL Enabled (Register 0x09, Bit 7 = 1)  
LVDS_P_IN  
CLK+  
50Ω  
50Ω  
The PLL enable switch shown in Figure 74 is connected to the  
junction of the N1 dividers (PLL VCO divide ratio) and N2  
dividers (PLL loop divide ratio). Divider N3 determines the  
interpolation rate of the DAC, and the ratio N3/N2 determines  
the ratio of reference clock/input data rate. The VCO runs  
optimally over the range of 1.0 GHz to 2.0 GHz, so that N1  
keeps the speed of the VCO within this range, although the  
DAC sample rate can be lower. The loop filter components are  
entirely internal and no external compensation is necessary.  
V
= 400mV  
CM  
LVDS_N_IN  
CLK–  
0.1μF  
Figure 71. LVDS REFCLK Drive Circuit  
If a clean sine clock is available, it can be transformer-coupled  
to REFCLK, as shown in Figure 71. Use of a CMOS or TTL  
clock is also acceptable for lower sample rates. It can be routed  
through a CMOS to LVDS translator, then ac-coupled, as  
described in this section. Alternatively, it can be transformer-  
coupled and clamped, as shown in Figure 72.  
PLL Disabled (Register 0x09, Bit 7 = 0)  
The PLL enable switch shown in Figure 74 is connected to the  
reference clock input. The differential reference clock input is  
the same as the DAC output sample rate. N3 determines the  
interpolation rate.  
0.1μF  
50Ω  
TTL OR CMOS  
CLK INPUT  
CLK+  
0x0A (7:5)  
ADC  
CLK–  
PLL CONTROL  
VOLTAGE RANGE  
50Ω  
BAV99ZXCT  
0x0A (4:0)  
LOOP FILTER  
BANDWIDTH  
HIGH SPEED  
DUAL DIODE  
0x08 (7:2)  
VCO RANGE  
REFERENCE CLOCK  
(PINS 5 AND 6)  
INTERNAL  
LOOP  
FILTER  
V
= 400mV  
PHASE  
DETECTION  
CM  
VCO  
Figure 72. TTL or CMOS REFCLK Drive Circuit  
A simple bias network for generating VCM is shown in  
Figure 73. It is important to use CVDD18 and CGND for the  
clock bias circuit. Any noise or other signal that is coupled onto  
the clock is multiplied by the DAC digital input signal and can  
degrade DAC performance.  
÷N2  
÷N1  
0x09 (4:3)  
PLL LOOP  
DIVIDE RATIO DIVIDE RATIO  
0x09 (6:5)  
PLL VCO  
DAC  
INTERPOLATION  
RATE  
÷N3  
DATACLK OUT (PIN 37)  
0x01 (7:6)  
0x09 (7)  
PLL ENABLE  
V
= 400mV  
CM  
INTERNAL DAC SAMPLE  
RATE CLOCK  
CVDD18  
1kΩ  
Figure 74. Internal Clock Architecture  
1nF  
0.1μF  
1nF  
287Ω  
CGND  
Figure 73. REFCLK VCM Generator Circuit  
INTERNAL PLL CLOCK MULTIPLIER/CLOCK  
DISTRIBUTION  
The internal clock structure on the devices allows the user to  
drive the differential clock inputs with a clock at 1× or an  
integer multiple of the input data rate or at the DAC output  
sample rate. An internal PLL provides input clock multiplication  
and provides all the internal clocks required for the interpolation  
filters and data synchronization.  
The internal clock architecture is shown in Figure 74. The  
reference clock is the differential clock at Pin 5 and Pin 6. This  
clock input can be run differentially or singled-ended by  
driving Pin 5 with a clock signal and biasing Pin 6 to the  
midswing point of the signal at Pin 5. The clock architecture  
can be run in the following configurations:  
Rev. A | Page 36 of 56  
 
 
 
 
 
AD9776/AD9778/AD9779  
Table 18. VCO Frequency Range vs. PLL Band Select Value  
Typical PLL Lock Ranges  
Typical PLL Lock Ranges  
PLL Band Select  
VCO Frequency Range in MHz  
Typ at 25°C Typ over Temp  
PLL Band Select  
VCO Frequency Range in MHz  
Typ at 25°C  
Typ over Temp  
fLOW  
fHIGH  
fLOW  
fHIGH  
fLOW  
fHIGH  
1184  
11ꢀ1  
1152  
1138  
1119  
11±ꢀ  
1±9±  
1±ꢀ6  
1±59  
1±46  
1±1ꢀ  
989  
fLOW  
fHIGH  
11ꢀ±  
115ꢀ  
1138  
1124  
11±6  
1±93  
1±ꢀ6  
1±62  
1±46  
1±32  
1±±4  
9ꢀ6  
111111 (63)  
11111± (62)  
1111±1 (61)  
1111±± (6±)  
111±11 (59)  
111±1± 58)  
111±±1 (5ꢀ)  
111±±± (56)  
11±111 (55)  
11±11± (54)  
11±1±1 (53)  
11±1±± (52)  
11±±11 (51)  
11±±1± (5±)  
11±±±1 (49)  
11±±±± (48)  
1±1111 (4ꢀ)  
1±111± (46)  
1±11±1 (45)  
1±11±± (44)  
1±1±11 (43)  
1±1±1± (42)  
1±1±±1 (41)  
1±1±±± (4±)  
1±±111 (39)  
1±±11± (38)  
1±±1±1 (3ꢀ)  
1±±1±± (36)  
1±±±11 (35)  
1±±±1± (34)  
1±±±±1 (33)  
1±±±±± (32)  
±11111 (31)  
±1111± (3±)  
±111±1 (29)  
±111±± (28)  
±11±11 (2ꢀ)  
±11±1± (26)  
±11±±1 (25)  
±11±±± (24)  
±1±111 (23)  
±1±11± (22)  
±1±1±1 (21)  
±1±1±± (2±)  
±1±±11 (19)  
±1±±1± (18)  
±1±±±1 (1ꢀ)  
±1±±±± (16)  
±±1111 (15)  
Auto mode  
2±56  
Auto mode  
±±111± (14)  
±±11±1 (13)  
±±11±± (12)  
±±1±11 (11)  
±±1±1± (1±)  
±±1±±1 (9)  
±±1±±± (8)  
±±±111 (ꢀ)  
±±±11± (6)  
±±±1±1 (5)  
±±±1±± (4)  
±±±±11 (3)  
±±±±1± (2)  
±±±±±1 (1)  
±±±±±± (±)  
1116  
11±6  
1±86  
1±ꢀ5  
1±55  
1±45  
1±2ꢀ  
1±16  
998  
98ꢀ  
96±  
933  
9±8  
113ꢀ  
112ꢀ  
11±6  
1±95  
1±ꢀ5  
1±65  
1±4ꢀ  
1±34  
1±16  
1±±5  
9ꢀꢀ  
21ꢀ±  
2113  
2±93  
2±ꢀ5  
2±5ꢀ  
2±3ꢀ  
2±16  
2±±3  
1981  
196±  
1948  
1923  
19±3  
1895  
18ꢀ1  
1853  
1842  
182±  
18±4  
1ꢀ9±  
1ꢀ5ꢀ  
1ꢀ38  
1ꢀ±ꢀ  
1689  
1661  
1641  
1613  
1595  
15ꢀ±  
1552  
1525  
15±9  
1485  
1469  
1443  
1429  
14±5  
139±  
1368  
1351  
1331  
1313  
1255  
12ꢀ5  
1221  
124±  
1218  
12±4  
21±5  
2138  
2±81  
2±61  
2±43  
2±26  
2±±6  
1986  
19ꢀ2  
1952  
1931  
192±  
1895  
18ꢀ4  
186ꢀ  
1844  
1826  
1815  
1ꢀ94  
1ꢀꢀ9  
1ꢀ64  
1ꢀ34  
1ꢀ14  
1684  
1666  
1639  
161ꢀ  
1592  
15ꢀ2  
1549  
1528  
15±4  
148ꢀ  
1464  
144ꢀ  
1423  
14±ꢀ  
1385  
1369  
135±  
1332  
1313  
1295  
124±  
1259  
12±ꢀ  
1224  
12±4  
1189  
2±±2  
1982  
1964  
194ꢀ  
192ꢀ  
19±ꢀ  
1894  
18ꢀ2  
1852  
1841  
1816  
1ꢀ96  
1ꢀ89  
1ꢀ64  
1ꢀ46  
1ꢀ38  
1ꢀ14  
1ꢀ±±  
1689  
165ꢀ  
1641  
161±  
159ꢀ  
1568  
1553  
1525  
1511  
1484  
14ꢀ±  
1441  
1429  
14±3  
139±  
1362  
1352  
1325  
1314  
129±  
12ꢀ6  
1253  
1239  
1183  
12±4  
1151  
11ꢀ1  
1148  
113ꢀ  
2±48  
2±29  
2±1±  
1992  
19ꢀ1  
1951  
1936  
1913  
1892  
1881  
1855  
1835  
1828  
18±3  
1ꢀ84  
1ꢀꢀ6  
1ꢀ52  
1ꢀ3ꢀ  
1ꢀ26  
1695  
16ꢀ9  
1649  
1635  
16±ꢀ  
1592  
1562  
1548  
1519  
15±6  
14ꢀ4  
1463  
1433  
1422  
1391  
138±  
1352  
134±  
1315  
13±2  
12ꢀꢀ  
1264  
12±5  
122ꢀ  
11ꢀ2  
1193  
11ꢀ±  
1159  
949  
923  
898  
8ꢀ3  
962  
936  
911  
95±  
925  
899  
883  
859  
VCO Frequency Ranges  
Because the PLL band covers greater than a 2× frequency range,  
there can be two options for the PLL band select: one at the low  
end of the range and one at the high end of the range. Under  
these conditions, the VCO phase noise is optimal when the user  
selects the band select value corresponding to the high end of the  
frequency range. Figure 75 shows how the VCO bandwidth and  
the optimal VCO frequency varies with the band select value.  
VCO Frequency Ranges over Temperature  
The specifications given over temperature in Table 18 are for a  
single part in a single lot. Part-to-part, and lot-to-lot, these  
specifications can exhibit a mean shift of several register  
settings. Systems should be designed to take this potential shift  
into account to maintain optimal PLL performance.  
PLL Loop Filter Bandwidth  
The loop filter bandwidth of the PLL is programmed via SPI  
Register 0x0A, Bits<4:0>. Changing these values switches  
capacitors on the internal loop filter. No external loop filter  
components are required. This loop filter has a pole at 0 (P1),  
and then a zero (Z1) pole (P2) combination. Z1 and P2 occur  
within a decade of each other. The location of the zero pole is  
determined by Bits<4:0>. For a setting of 00000, the zero pole  
occurs near 10 MHz. By setting Bits<4:0> to 11111, the Z1/P2  
combination can be lowered to approximately 1 MHz. The  
relationship between Bits<4:0> and the position of the zero pole  
between 1 MHz and 10 MHz is linear. The internal components  
are not low tolerance, however, and can drift by as much as 30%.  
For optimal performance, the bandwidth adjustment  
(Register 0x0A, Bits<4:0>) should be set to 11111 for all  
operating modes with PLL enabled. The PLL bias settings  
Rev. A | Page 3ꢀ of 56  
 
 
 
AD9776/AD9778/AD9779  
(Register 0x09, Bits<2:0>) should be set to 111. The PLL control  
voltage (Register 0x0A, Bits<7:5>) is read back and is propor-  
tional to the dc voltage at the internal loop filter output. With  
the PLL bias settings given in this section, the readback from  
the PLL control voltage should typically be 010, or possibly 001  
or 011. Anything outside of this range indicates that the PLL is  
not operating correctly.  
external resistor is 10 kΩ, which sets up an IREFERENCE in the  
resistor of 120 μA, which in turn provides a DAC output full-  
scale current of 20 mA. Because the gain error is a linear  
function of this resistor, a high precision resistor improves gain  
matching to the internal matching specification of the devices.  
Internal current mirrors provide a current-gain scaling, where  
I DAC or Q DAC gain is a 10-bit word in the SPI port register  
(Register 0x0A, Register 0x0B, Register 0x0E, and Register 0x0F).  
The default value for the DAC gain registers gives an IFS of  
approximately 20 mA, where IFS is equal to  
60  
56  
52  
48  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
1.2V  
R
27  
6
×
+
×DAC gain ×32  
12 1024  
AD9779  
I DAC GAIN  
I DAC  
1.2V BAND GAP  
VREF  
I120  
DAC FULL-SCALE  
REFERENCE  
CURRENT  
CURRENT  
SCALING  
0.1μF  
4
10kΩ  
0
Q DAC  
Q DAC GAIN  
Figure 77. Reference Circuitry  
F
(MHz)  
VCO  
Figure 75. Typical PLL Band Select vs. Frequency at 25°C  
35  
60  
30  
25  
20  
15  
10  
5
56  
52  
48  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
0
4
0
200  
400  
600  
800  
1000  
0
DAC GAIN CODE  
Figure 78. IFS vs. DAC Gain Code  
F
(MHz)  
VCO  
Application of Auxiliary DACs in Single Sideband  
Transmitter  
Figure 76. Typical PLL Band Select vs. Frequency over Temperature  
The AD977x has an autosearch feature that determines the  
optimal settings for the PLL. To enable the autosearch mode, set  
Register 0x08, Bits<7:2> to 11111b, and read back the value  
from Register 0x08, Bits<7:2>. Autosearch mode is intended to  
find the optimal PLL settings only, after which the same settings  
should be applied in manual mode. It is not recommended that  
the PLL be set to autosearch mode during regular operation.  
Two auxiliary DACs are provided on the AD977x. The full-scale  
output current on these DACs is derived from the 1.2 V band  
gap reference and external resistor. The gain scale from the ref-  
erence amplifier current IREFERENCE to the auxiliary DAC reference  
current is 16.67 with the auxiliary DAC gain set to full scale  
(10-bit values, SPI Register 0x0D and SPI Register 0x11), this  
gives a full-scale current of approximately 2 mA for auxiliary  
DAC1 and auxiliary DAC2. The auxiliary DAC outputs are not  
differential. Only one side of the auxiliary DAC (P or N) is  
active at one time. The inactive side goes into a high impedance  
state (>100 kΩ). In addition, the P or N outputs can act as  
current sources or sinks. The control of the P and N side for  
both auxiliary DACs is via Register 0x0E and Register 0x10,  
Bits<7:6>. When sourcing current, the output compliance  
FULL-SCALE CURRENT GENERATION  
Internal Reference  
Full-scale current on the I DAC and Q DAC can be set from  
8.66 mA to 31.66 mA. Initially, the 1.2 V band gap reference is  
used to set up a current in an external resistor connected to  
I120 (Pin 75). A simplified block diagram of the reference  
circuitry is shown in Figure 77. The recommended value for the  
Rev. A | Page 38 of 56  
 
 
 
AD9776/AD9778/AD9779  
voltage is 0 V to 1.6 V. When sinking current, the output  
compliance voltage is 0.8 V to 1.6 V.  
of the 3.3 V supply (mode and speed independent) in single  
DAC mode is 102 mW/31 mA. In dual DAC mode, this is  
182 mW/55 mA. Furthermore, when the PLL is enabled, it adds  
90 mW/50 mA to the 1.8 V clock supply regardless of the mode  
of the AD9779.  
The auxiliary DACs can be used for local oscillator (LO) cancella-  
tion when the DAC output is followed by a quadrature modulator.  
This LO feedthrough is caused by the input referred dc offset  
voltage of the quadrature modulator (and the DAC output offset  
voltage mismatch) and can degrade system performance. Typical  
DAC-to-quadrature modulator interfaces are shown in Figure 79  
and Figure 80. Often, the input common-mode voltage for the  
modulator is much higher than the output compliance range of  
the DAC, so that ac coupling or a dc level shift is necessary. If the  
required common-mode input voltage on the quadrature  
modulator matches that of the DAC, then the dc blocking  
capacitors in Figure 79 can be removed. A low-pass or band-pass  
passive filter is recommended when spurious signals from the  
DAC (distortion and DAC images) at the quadrature modulator  
inputs can affect the system performance. Placing the filter at the  
location shown in Figure 79 and Figure 80 allows easy design of  
the filter, as the source and load impedances can easily be  
designed close to 50 ꢀ.  
0.7  
8×  
INTERPOLATION  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4
×
INTERPOLATION  
4×  
INTERPOLATION,  
ZERO STUFFING  
8
×
INTERPOLATION,  
ZERO STUFFING  
2×  
INTERPOLATION,  
ZERO STUFFING  
2×  
INTERPOLATION  
1×  
INTERPOLATION,  
ZERO STUFFING  
1× INTERPOLATION  
0
25  
50  
75  
100 125 150 175 200 225 250  
fDATA (MSPS)  
Figure 81. Total Power Dissipation, I Data Only, Real Mode  
QUADRATURE  
MODULATOR V+  
0.4  
0.3  
0.2  
0.1  
0
AD9779  
AUX  
DAC1  
8× INTERPOLATION  
4× INTERPOLATION  
QUADRATURE  
MODULATOR V+  
0.1μF  
AD9779  
OPTIONAL  
AUX  
AD9779  
I DAC  
QUAD MOD  
I INPUTS  
PASSIVE  
DAC2  
FILTERING  
2
×
×
INTERPOLATION  
INTERPOLATION  
0.1μF  
25Ω TO 50Ω  
0.1μF  
0.1μF  
OPTIONAL  
AD9779  
Q DAC  
QUAD MOD  
Q INPUTS  
PASSIVE  
FILTERING  
1
25Ω TO 50Ω  
0
25  
50  
75  
100 125 150 175 200 225 250  
fDATA (MSPS)  
Figure 79. Typical Use of Auxiliary DACs AC Coupling to  
Quadrature Modulator  
Figure 82. Power Dissipation, Digital 1.8 V Supply, I Data Only, Real Mode,  
Does Not Include Zero Stuffing  
QUADRATURE  
MODULATOR V+  
0.08  
AD9779  
QUAD MOD  
I OR Q INPUTS  
AUX  
DAC1 OR 2  
0.06  
8× INTERPOLATION  
4× INTERPOLATION  
OPTIONAL  
PASSIVE  
0.04  
0.02  
0
AD9779  
I OR Q DAC  
2× INTERPOLATION  
FILTERING  
25Ω TO 50Ω  
25Ω TO 50Ω  
1× INTERPOLATION  
Figure 80. Typical Use of Auxiliary DACs DC Coupling to Quadrature  
Modulator with DC Shift  
0
25  
50  
75  
100 125 150 175 200 225 250  
fDATA (MSPS)  
POWER DISSIPATION  
Figure 81 to Figure 89 show the power dissipation of the 1.8 V  
and 3.3 V digital and clock supplies in single DAC and dual  
DAC modes. In addition to this, the power dissipation/current  
Figure 83. Power Dissipation, Clock 1.8 V Supply, I Data Only, Real Mode,  
Includes Modulation Modes, Does Not Include Zero Stuffing  
Rev. A | Page 39 of 56  
 
 
 
 
AD9776/AD9778/AD9779  
0.125  
0.100  
0.075  
0.050  
0.025  
0
0.075  
8× INTERPOLATION, f  
/8,  
/4,  
/2,  
DAC  
DAC  
DAC  
f
f
NO MODULATION  
4× INTERPOLATION  
ALL INTERPOLATION MODES  
0.050  
0.025  
0
2× INTERPOLATION  
1× INTERPOLATION,  
NO MODULATION  
0
25  
50  
75  
100 125 150 175 200 225 250  
fDATA (MSPS)  
0
25  
50  
75  
100 125 150 175 200 225 250  
fDATA (MSPS)  
Figure 87. Power Dissipation, Clock 1.8 V Supply, I and Q Data, Dual DAC  
Mode, Does Not Include Zero Stuffing  
Figure 84. Digital 3.3 V Supply, I Data Only, Real Mode, Includes Modulation  
Modes and Zero Stuffing  
0.075  
1.0  
8× INTERPOLATION, ALL  
MODULATION MODES  
8× INTERPOLATION,  
0.9  
ZERO STUFFING  
4× INTERPOLATION,  
ALL MODULATION  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
MODES  
ALL INTERPOLATION MODES  
0.050  
0.025  
0
2× INTERPOLATION,  
ALL MODULATION MODES  
2× INTERPOLATION,  
ZERO STUFFING  
4× INTERPOLATION,  
ZERO STUFFING  
1× INTERPOLATION,  
ZERO STUFFING  
1× INTERPOLATION  
0
25  
50  
75  
100 125 150 175 200 225 250  
fDATA (MSPS)  
0
25 50 75 100 125 150 175 200 225 250 275 300  
fDATA (MSPS)  
Figure 88. Digital 3.3 V Supply, I and Q Data, Dual DAC Mode  
Figure 85. Total Power Dissipation, Dual DAC Mode  
0.8  
0.7  
0.6  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
8× INTERPOLATION, f  
/8,  
/4,  
/2,  
DAC  
DAC  
DAC  
f
f
NO MODULATION  
4× INTERPOLATION  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2× INTERPOLATION  
1× INTERPOLATION,  
NO MODULATION  
0
25  
50  
75  
100 125 150 175 200 225 250  
fDATA (MSPS)  
0
200  
400  
600  
800  
1000  
1200  
fDAC (MSPS)  
Figure 86. Power Dissipation, Digital 1.8 V Supply, I and Q Data, Dual DAC  
Mode, Does Not Include Zero Stuffing  
Figure 89. Power Dissipation of Inverse Sinc Filter  
Rev. A | Page 4± of 56  
 
AD9776/AD9778/AD9779  
POWER-DOWN AND SLEEP MODES  
INTERLEAVED DATA MODE  
The AD977x has a variety of power-down modes, so that the  
digital engine, main TxDACs, or auxiliary DACs can be powered  
down individually or together. Via the SPI port, the main TxDACs  
can be placed in sleep or power-down mode. In sleep mode, the  
TxDAC output is turned off, thus reducing power dissipation.  
The reference remains powered on, however, so that recovery  
from sleep mode is very fast. With the power-down mode bit  
set (Register 0x00, Bit 4), all analog and digital circuitry, including  
the reference, is powered down. The SPI port remains active in  
this mode. This mode offers more substantial power savings  
than sleep mode, but the turn-on time is much longer. The  
auxiliary DACs also have the capability to be programmed into  
sleep mode via the SPI port. The auto power-down enable bit  
(Register 0x00, Bit 3) controls the power-down function for the  
digital section of the devices. The auto power-down function  
works in conjunction with the TXENABLE pin (Pin 39) according  
to the following:  
The TxEnable bit is dual function. In dual port mode, it is  
simply used to power down the digital section of the devices. In  
interleaved mode, the IQ data stream is synchronized to  
TXENABLE. Therefore, to achieve IQ synchronization,  
TXENABLE should be held low until an I data word is present at  
the inputs to Data Port 1. If a DATACLK rising edge occurs  
while TXENABLE is at a high logic level, IQ data becomes  
synchronized to the DATACLK output. TXENABLE can remain  
high and the input IQ data remains synchronized. To be  
backwards-compatible with previous DACs from Analog  
Devices, Inc. such as the AD9777 and AD9786, the user can  
also toggle TXENABLE once during each data input cycle, thus  
continually updating the synchronization. If TXENABLE is  
brought low and held low for multiple REFCLK cycles, then the  
devices flush the data in the interpolation filters, and shut down  
the digital engine after the filters are flushed. The amount of  
REFCLK cycles it takes to go into this power-down mode is  
then a function of the length of the equivalent 2×, 4×, or 8×  
interpolation filter. The timing of TXENABLE, I/Q select, filter  
flush, and digital power-down are shown in Figure 91.  
TXENABLE (Pin 39) =  
0: autopower-down enable =  
0: flush data path with 0s  
1: flush data for multiple REFCLK cycles; then  
automatically place the digital engine in power-down  
state. DACs, reference, and SPI port are not affected.  
INTERLEAVED  
INPUT DATA  
I1  
Q1  
I2  
Q2  
TxENABLE  
or TXENABLE (Pin 39) =  
1: normal operation  
TxENABLE CAN REMAIN  
HIGH OR TOGGLE FOR  
I/Q SYNCHRONIZATION  
FLUSHING  
INTERPOLATION  
FILTERS  
POWER  
DOWN DIGITAL  
SECTION  
As shown in Figure 90, the power dissipation saved by using the  
power down mode is nearly proportional to the duty cycle of  
the signal at the TXENABLE pin.  
Figure 91. TXENABLE Function  
The TXENABLE function can be inverted by changing the  
status of Register 0x02, Bit 1. The other bit that controls IQ  
ordering is the Q-first bit (Register 0x02, Bit 0). With the Q-first  
bit reset to the default of 0, the IQ pairing that is latched is the  
I1Q1, I2Q2, and so on. With IQ first set to 1, the first I data is  
discarded and the pairing is I2Q1, I3Q2, and so on. Note that  
with IQ-first set, the I data is still routed to the internal I  
channel, the Q data is routed to the internal Q channel, and  
only the pairing changes.  
0.9  
2× INT fDATA = 50MSPS  
2× INT fDATA = 200MSPS  
4× INT fDATA = 50MSPS  
4× INT fDATA = 200MSPS  
8× INT fDATA = 50MSPS  
8× INT fDATA = 200MSPS  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
TIMING INFORMATION  
Figure 92 to Figure 95 show some of the various timing  
possibilities when the PLL is enabled. The combination of the  
settings of N2 and N3 from Figure 74 means that the reference  
clock frequency can be a multiple of the actual input data rate.  
Figure 92 to Figure 95 show, respectively, what the timing looks  
like when N2/N3 = 1 and 2.  
0
20  
40  
60  
80  
100  
DUTY CYCLE (%)  
Figure 90. Power Savings Based on Duty Cycle of TxEnable  
If the TxEnable invert bit (Register 0x02, Bit 1) is set, the  
function of this TXENABLE pin is inverted.  
In interleaved mode, set-up and hold times of DATACLK out to  
data in are the same as those shown in Figure 92 to Figure 95. It  
is recommended that any toggling of TXENABLE occur  
concurrently with the digital data input updating. In this way,  
timing margins between DATACLK, TXENABLE, and digital  
input data are optimized.  
Rev. A | Page 41 of 56  
 
 
 
 
AD9776/AD9778/AD9779  
REFERENCE  
CLOCK IN  
DATA  
CLOCK OUT  
tSREFCLK  
tSDATACLK  
tHREFCLK  
tHDATACLK  
INPUT  
DATA  
Figure 92. Timing Specifications, PLL Enabled or Disabled, Interpolation = 1×  
SYNC_IN  
tH_SYNC  
tS_SYNC  
REFERENCE  
CLOCK IN  
DATA  
CLOCK OUT  
tHREFCLK  
tHDATACLK  
tSREFCLK  
tSDATACLK  
INPUT  
DATA  
Figure 93. Timing Specifications, PLL Enabled or Disabled, Interpolation = 2×  
SYNC_IN  
tH_SYNC  
tS_SYNC  
REFERENCE  
CLOCK IN  
DATA  
CLOCK OUT  
tSREFCLK  
tSDATACLK  
tHREFCLK  
tHDATACLK  
INPUT  
DATA  
Figure 94. Timing Specifications, PLL Enabled or Disabled, Interpolation = 4×  
SYNC_IN  
tH_SYNC  
tS_SYNC  
REFERENCE  
CLOCK IN  
DATA  
CLOCK OUT  
tSREFCLK  
tSDATACLK  
tHREFCLK  
tHDATACLK  
INPUT  
DATA  
Figure 95. Timing Specifications, PLL Enabled or Disabled, Interpolation = 8×  
Rev. A | Page 42 of 56  
 
 
AD9776/AD9778/AD9779  
and must be no greater than DATACLK for proper  
Specifications are given in Table 19 for the drift of input data set  
up and hold time vs. temperature, as well as the data keep out  
window (KOW). Note that although these specifications do  
drift, the length of the keep out window, where input data is  
invalid, changes very little over temperature.  
synchronization. There is no limit on how slow the SYNC_I  
signal can be driven. As long as the set up and hold timing  
relationship between SYNC_I and REFCLK given in Table 19 is  
met, the input data is latched on the immediate next rising edge  
of REFCLK. Note that a rising edge of DATACLK out occurs  
concurrently with the next REFCLK rising edge, after a short  
propagation delay. Although this propagation delay is not  
specified, input data setup and hold timing information is given  
with respect to REFCLK in and DATACLK out in Figure 92 to  
Figure 95. Also, note that in 1× interpolation, because there is  
no phase ambiguity, there is no need to use the SYNC_I signal.  
Table 19. AD9779 Timing Specifications vs. Temperature  
Min  
tS  
(ns)  
Min  
tH  
(ns)  
Max  
KOW  
(ns)  
Timing  
Parameter  
Temperature  
−4±°C  
+25°C  
REFCLK to DATA  
−±.8  
−1.1  
−1.3  
+1.8  
+2.1  
+2.5  
+2.2  
+2.5  
+2.9  
−±.4  
−±.ꢀ  
−±.9  
+1.±  
+1.3  
+1.4  
+1.5  
+1.3  
+1.4  
+1.5  
+±.8  
+85°C  
Valid Timing Window  
DATACLK to DATA −4±°C  
In addition to the timing requirements of SYNC_I with respect  
to REFCLK, it is important to understand that the valid timing  
window for SYNC_I is limited by the internal DAC sample rate.  
This is shown in Figure 96. When the tS and tH requirements are  
met, the valid timing window for SYNC_I extends only as far as  
one period of the internal DAC sample rate (minus tS and tH).  
Failure to meet this timing specification can potentially result in  
erroneous data being latched into the AD9779 digital inputs.  
+25°C  
+85°C  
SYNC_I to  
REFCLK  
−4±°C to +85°C −±.2  
SYNCHRONIZATION OF INPUT DATA TO DATACLK  
OUTPUT (PIN 37)  
As an example, if the AD9779 input data rate is 122.88 MSPS  
and the REFCLK is the same, with the AD9779 in 4× interpola-  
tion, the DAC sample rate is 1/491.52 MHz or about 2 ns. With  
a tS of −0.2 ns and tH of 1.0 ns, this gives a valid timing window  
for SYNC_I of  
Synchronizing the input data bus to the DATACLK out signal is  
achieved by meeting the timing relationships between DATACLK  
and DATA timing specified in Table 19. If the user is synchro-  
nizing the input data to the DATACLK out, the sync input  
(SYNC_I) signal does not need to be applied and can be ignored  
(connect to GND).  
2 ns − 0.8 ns = 1.2 ns  
SYNCHRONIZATION OF INPUT DATA TO THE  
REFCLK INPUT (PIN 5 AND PIN 6) WITH PLL  
ENABLED OR DISABLED  
The timing window of the digital input data to REFCLK can be  
moved in increments of one internal REFCLK cycle by using  
the REFCLK OFFSET register (Register 0x7, Bits<4:0>).  
Synchronizing the input data bus to the REFCLK input requires  
the use of the SYNC_I input pins (Pin 13 and Pin 14). If the  
SYNC_I input is not used, there is a phase ambiguity between  
the DATACLK out and the REFCLK in. This ambiguity matches  
the interpolation rate in which the AD9779, for example, is  
currently operating. Because input data is latched on the rising  
edge of DATACLK, it is impossible for the user to determine  
onto which one of the multiple internal DACCLK edges (as an  
example, one of four edges in 4× interpolation) the input data  
actually latches. For the user to specifically determine the exact  
edge of REFCLK on which the data is being latched, a rising  
edge must be periodically applied to SYNC_I. The frequency of  
the SYNC_I signal must be equal to fDAC/2N, N being an integer,  
Because SYNC_I can be run at the same frequency as REFCLK  
when the PLL is enabled, best practice suggests that in this con-  
dition, REFCLK and SYNC_I originate from the same source.  
This limits the variation in time between these two signals and  
makes the overall timing budget easier to achieve. A slight delay  
may be necessary on the REFCLK path in this configuration to  
add more timing margin between REFCLK and SYNC_I (see  
Table 19 for timing relationship).  
REFCLK  
tS  
tH  
tDAC_SAMPLE  
tDAC_SAMPLE  
SYNC_I  
Figure 96. Valid Timing Relationship for SYNC_I to REFCLK  
Rev. A | Page 43 of 56  
 
 
 
 
AD9776/AD9778/AD9779  
TEK RUN: 5.00GS/s  
SAMPLE  
Using Data Delay to Meet Timing Requirements  
Δ
: 7.84nS  
To meet strict timing requirements at input data rates of up to  
250 MSPS, the AD977x has a fine timing feature. Fine timing  
adjustments are made by programming values into the data  
clock delay register (Register 0x04, Bits<7:4>). This register can  
be used to add delay between the REFCLK in and the  
@: 32.44nS  
2
DATACLK out. Figure 97 shows the default delay present when  
DATACLK delay is disabled. The disable function bit is found  
in Register 0x02, Bit 4. Figure 98 shows the delay present when  
DATACLK delay is enabled and set to 0000. Figure 99 indicates  
the delay when DATACLK delay is enabled and set to 1111.  
Note that the setup and hold times specified for data to  
DATACLK are defined for DATACLK delay disabled.  
1
CH1 1.00V  
Ω
CH2 500mV  
Ω
M2.00ns  
CH1  
420mV  
Figure 99. Delay from REFCLK to DATACLK Out with DATACLK Delay = 1111  
TEK RUN: 5.00GS/s  
SAMPLE  
The difference between the minimum delay shown in Figure 98  
and the maximum delay shown in Figure 99 is the range  
programmable using the DATACLK delay register. The delay  
(in absolute time) when programming DATACLK delay  
between 0000 and 1111 is a linear extrapolation between these  
two figures. The typical delays per increment over temperature  
are shown in Table 20.  
Δ: 4.48nS  
@: 40.28nS  
2
Table 20. Data Delay Line Typical Delays Over Temperature  
Delays  
−40°C +25°C +85°C Unit  
Delay Between Disabled and  
Enabled  
3ꢀ±  
416  
432  
ps  
1
Average Delay per Increment 1ꢀ1  
183  
19ꢀ  
ps  
CH1 1.00VΩ  
CH2 500mVΩ M2.00ns  
CH1  
420mV  
The frequency of DATACLK out depends on several program-  
mable settings: interpolation, zero stuffing, and interleaved/  
dual port mode, all of which have an effect on the REFCLK  
frequency. The divisor function between REFCLK and  
DATACLK is equal to the values shown in Table 21.  
Figure 97. Delay from REFCLK to DATACLK with DATACLK Delay Disabled  
TEK RUN: 5.00GS/s  
SAMPLE  
Δ
: 4.76nS  
@: 35.52nS  
Table 21. REFCLK to DATACLK Divisor Ratio  
Interpolation Zero Stuffing  
Input Mode  
Divisor  
2
1
2
4
8
1
2
4
8
1
2
4
8
1
2
4
8
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Dual port  
Dual port  
Dual port  
Dual port  
Interleaved  
Interleaved  
Interleaved  
Interleaved  
Dual port  
Dual port  
Dual port  
Dual port  
Interleaved  
Interleaved  
Interleaved  
Interleaved  
1
2
4
8
Invalid  
1
2
4
2
4
8
16  
1
2
4
8
1
CH1 1.00V  
Ω
CH2 500mV  
Ω
M2.00ns  
CH1  
420mV  
Figure 98. Delay from REFCLK to DATACLK Out with DATACLK Delay = 0000  
Rev. A | Page 44 of 56  
 
 
 
 
 
 
AD9776/AD9778/AD9779  
In addition to this divisor function, DATACLK can be divided  
by up to an additional factor of 4, according to the state of the  
DATACLK divide register (Register 0x03, Bits<5:4>). For more  
details, see Table 22).  
Necessary corrections can be made by adjusting DATACLK  
delay and the DATACLK invert bit (Register 2, Bit 2).  
DATACLK delay can then be swept to find the range over which  
the timing is valid. The final value for data delay should be the  
value that corresponds to the middle of the valid timing range.  
If a valid timing range is not found during this sweep, the user  
should invert the DATACLK invert bit and repeat the process.  
Table 22. Extra DATACLK Divisor Ratio  
Register 0x03, Bits<5:4>  
Divider Ratio  
±±  
±1  
1±  
11  
1
2
4
1
Multiple DAC Synchronization  
The AD9779 has programmable features that allow the CMOS  
digital data bus inputs and internal filters on multiple devices to  
be synchronized. This means that the DATACLK output signal  
on one AD9779 can be used to register the output data for a data  
bus delivering data to multiple AD9779s. The details of this opera-  
tion are given in the Analog Devices Application Note AN-822.  
The maximum divisor resulting from the combination of the  
values in Table 21, and the DATACLK divide register is 32.  
Manual Input Timing Correction  
Correction of input timing can be achieved manually. The  
correction function is controlled by Register 0x03, Bits<7:6>.  
The function is programmed as shown in Table 23.  
Table 23. Input Timing Correction Mode  
Register 0x03, Bits<7:6>  
Function  
±±  
±1  
1±  
11  
Error check disabled  
Reserved  
Reserved  
Reserved  
Rev. A | Page 45 of 56  
 
 
 
AD9776/AD9778/AD9779  
EVALUATION BOARD OPERATION  
The AD977x evaluation board is designed to optimize the DAC  
performance and the speed of the digital interface, yet remains  
user friendly. To operate the board, the user needs a power  
source, a clock source, and a digital data source. The user also  
needs a spectrum analyzer or an oscilloscope to look at the DAC  
output. The diagram in Figure 100 illustrates the test setup. A  
sine or square wave clock works well as a clock source. The dc  
offset on the clock is not a problem, since the clock is ac-coupled  
on the evaluation board before the REFCLK inputs. All  
necessary connections to the evaluation board are shown in  
more detail in Figure 101.  
The evaluation board comes with software that allows the user  
to program the SPI port. Via the SPI port, the devices can be  
programmed into any of its various operating modes. When  
first operating the evaluation board, it is useful to start with a  
simple configuration, that is, a configuration in which the SPI  
port settings are as close as possible to the default settings. The  
default software window is shown in Figure 102. The arrows  
indicate which settings need to be changed for an easy first time  
evaluation. Note that this implies that the PLL is not being used  
and that the clock being used is at the speed of the DAC output  
sample rate. For a more detailed description of how to use the  
PLL, see the PLL Loop Filter Bandwidth section.  
CLOCK  
GENERATOR  
ADAPTER  
CABLES  
CLKIN  
SPI PORT  
SPECTRUM  
ANALYZER  
DIGITAL  
PATTERN  
GENERATOR  
AD9779  
EVALUATION  
BOARD  
CLOCK IN  
1.8V POWER SUPPLY  
3.3V POWER SUPPLY  
DATACLK OUT  
Figure 100. Typical Test Setup  
AUX33  
DVDD18  
DVDD33  
CVDD18  
AVDD33  
J2  
5V Supply  
P4 Digital Input Connector  
J1 CLOCK IN  
MODULATOR  
OUTPUT  
S5 OUTPUT 1  
JP4  
JP15  
JP8  
+5V  
JP14  
AD9779  
AD8349  
JP3  
JP16  
JP2  
GND  
JP17  
S6 OUTPUT 2  
LOCAL OSC  
INPUT  
S7 DCLKOUT  
ANALOG  
DEVICES  
AD9779/8/6  
REV D  
SPI PORT  
Figure 101. AD977x Evaluation Board Showing All Connections  
Rev. A | Page 46 of 56  
 
 
 
AD9776/AD9778/AD9779  
1. SET INTERPOLATION RATE  
2. SET INTERPOLATION FILTER MODE  
3. SET INPUT DATA FORMAT  
4. SET DATACLK POLARITY TO MATCH INPUT TIMING  
Figure 102. SPI Port Software Window  
The default settings for the evaluation board allow the user to  
view the differential outputs through a transformer that  
converts the DAC output signal to a single-ended signal. On the  
evaluation board, these transformers are designated T1A, T2A,  
T3A, and T4A. There are also four common-mode transformers  
on the board that are designated T1B, T2B, T3B, and T4B. The  
recommended operating setup places the transformer and  
common-mode transformer in series. A pair of transformers  
and common-mode transformers are installed on each DAC  
output, so that the pairs can be set up in either order. As an  
example, for the frequency range of dc to 30 MHz, it is  
recommended that the transformer be placed right after the  
DAC. Above DAC output frequencies of 30 MHz, it is  
recommended that the common-mode transformer is placed  
right after the DAC outputs, followed by the transformer.  
Rev. A | Page 4ꢀ of 56  
 
AD9776/AD9778/AD9779  
MODIFYING THE EVALUATION BOARD TO USE  
THE AD8349 ON-BOARD QUADRATURE  
MODULATOR  
The evaluation board contains an Analog Devices AD8349  
quadrature modulator. The AD977x and AD8349 provide an  
easy-to-interface DAC/modulator combination that can be  
easily evaluated on the evaluation board. To route the DAC  
output signal to the quadrature modulator, the following  
jumper settings must be made:  
Unsoldered: JP14, JP15, JP16, JP17  
Soldered: JP2, JP3, JP4, JP8  
The DAC output area of the evaluation board is shown in  
Figure 103. The jumpers that need to be changed to use the  
AD8349 are circled. Also circled are the 5 V and GND  
connections for the AD8349.  
Figure 103. Photo of Evaluation Board, DAC Output Area  
Rev. A | Page 48 of 56  
 
 
AD9776/AD9778/AD9779  
EVALUATION BOARD SCHEMATICS  
Figure 104. Evaluation Board, Rev. D, Power Supply Decoupling and SPI Interface  
Rev. A | Page 49 of 56  
 
AD9776/AD9778/AD9779  
R10  
50  
T2B  
T1B  
R7  
T3A  
T4A  
S6  
1
JP16  
JP17  
0Ω  
1
3
6
4
1
3
6
4
3
2
1
4
6
3
2
1
4
6
2
R8  
0Ω  
P
S
P
S
R11  
50Ω  
ADTL1-12  
T2A  
ADTL1-12  
T1A  
TC1-1T  
T3B  
TC1-1T  
T4B  
R9  
50Ω  
R6  
JP14  
JP15  
0Ω  
6
4
1
6
4
1
4
6
3
1
4
6
3
1
2
3
2
3
R5  
0Ω  
2
S
P
S
P
1
R11  
50Ω  
S5  
TC1-1T  
TC1-1T  
ADTL1-12  
ADTL1-12  
DGND;5  
JP3  
JP2  
C62  
0.1µF  
C33  
1nF  
C34  
1nF  
D2N  
D2P  
DPWR33  
JP4  
JP8  
C40  
0.1µF  
D1P  
D1N  
C61  
1nF  
C37  
0.1µF  
C38  
0.1µF  
R63  
10Ω  
C35  
1nF  
C18  
1nF  
C60  
0.1µF  
C24  
1nF  
C25  
1nF  
CR1  
VAL  
C39  
0.1µF  
C9  
0.1µF  
6.3V  
C59  
1nF  
C10  
0.1µF  
CR2  
C36  
1nF  
VAL  
C8  
C1  
4.7µF  
C2  
4.7µF  
10µF  
R56  
10Ω  
VOLT  
R64  
1kΩ  
R64  
1kΩ  
VOLT  
C27  
1nF  
AVDD33  
C58  
C11  
1nF  
0.1µF  
DVDD33  
DVDD18  
C57  
0.1µF  
C3  
4.7µF  
VOLT  
C56  
1nF  
C29  
1nF  
C55  
0.1µF  
C12  
0.1µF  
C31  
1nF  
C30  
1nF  
C14  
0.1µF  
C13  
0.1µF  
+
C6  
4.7µF  
C4  
4.7µF  
C5  
4.7µF  
VOLT  
VOLT  
DVDD33  
CVDD18  
DVDD18  
CLK_N  
CLK_P  
JP7  
P2D15  
S15  
S2  
R59  
1
2
3
6
5
4
S16  
1
22Ω  
1
2
2
R58  
22Ω  
DPWR33  
1
DPWR33  
2
DATACLK  
S7  
1
U11  
U10  
Q
U10  
Q
R26  
22Ω  
4
10  
R32  
C84  
0.1µF  
25Ω  
4
5
3
2
1
3
1
2
5
11  
13  
12  
9
JP18  
PRE  
PRE  
Y
GND  
A
NC  
J
J
2
6
7
JP13  
VCC  
K
Q_  
K
Q_  
DPWR33  
R26  
22Ω  
CLR  
CLR  
14  
74LCX112  
15  
74LCX112  
C78  
SN74LVC1G34  
4.7µF  
VOLT  
C7  
4.7µF  
VOLT  
C15  
1nF  
C32  
0.1µF  
Figure 105. Evaluation Board, Rev. D, Circuitry Local to Devices  
Rev. A | Page 5± of 56  
AD9776/AD9778/AD9779  
R15  
20  
C80  
2.1pF  
C53  
0.1µF  
D1N  
C64  
17.2pF  
C50  
17.2pF  
R20  
40Ω  
R17  
150Ω  
L10  
55nH  
AUX1_N  
R4  
150Ω  
R19  
300Ω  
C81  
2.1pF  
JP13  
AUX1_P  
R12  
150Ω  
C63  
17.2pF  
L11  
55nH  
C52  
17.2pF  
R21  
40Ω  
R22  
147.5Ω  
D1P  
R16  
20Ω  
MODULATED OUTPUT  
J4  
C47  
100pF  
1
VDDM  
2
2
+
C41  
10µF  
10V  
C73  
0.1µF  
C72  
0.1µF  
DGND2  
DGND2  
2
DGND2  
VDDM  
R14  
1kΩ  
JP1  
2
DGND2  
C51  
0.1µF  
LOCAL OSC OUTPUT  
J5  
C74  
T4  
100pF  
1
1
2
3
5
4
2
2
S
P
DGND2  
DGND2  
C75  
100pF  
2
ETC1-1-13  
DGND2  
R24  
20Ω  
C83  
2.1pF  
C54  
0.1µF  
D2N  
C44  
17.2pF  
C65  
17.2pF  
R60  
40Ω  
JP9  
R25  
150Ω  
L10  
55nH  
JP10  
AUX2_N  
2
R2  
150Ω  
R27  
300Ω  
C82  
2.1pF  
JP13  
DGND2  
AUX2_P  
R3  
150Ω  
C43  
17.2pF  
L11  
55nH  
C79  
17.2pF  
R61  
40Ω  
R62  
147.5Ω  
D2P  
R23  
20Ω  
Figure 106. Evaluation Board, Rev. D, AD8349 Quadrature Modulator  
CLK_P  
CVDD18  
C19  
T2  
0.1  
μ
F
J1  
CLKIN  
C16  
R28  
25  
R30  
1k  
4
5
3
2
1
DNB  
Ω
Ω
R13  
VAL  
P
S
C17  
0.1μF  
R29  
25  
R31  
300  
Ω
Ω
C23  
0.1μF  
ETC1-1-13  
CLK_N  
Figure 107. Evaluation Board, Rev. D, DAC Clock Interface  
Rev. A | Page 51 of 56  
AD9776/AD9778/AD9779  
P4  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
P4  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
B11  
P4  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
P4  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
P4  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
E10  
E11  
CSB  
SD1  
SCLK  
SD0  
P2D0  
P2D2  
P2D4  
P2D6  
P2D8  
P2D10  
P2D12  
P2D14  
P2D1  
P2D3  
P2D5  
P2D7  
P2D9  
P2D11  
P2D13  
P2D15  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
P1D0  
P1D2  
P1D4  
P1D6  
P1D8  
P1D10  
P1D12  
P1D14  
P1D1  
P1D3  
P1D5  
P1D7  
P1D9  
P1D11  
P1D13  
P1D15  
PKG_TYPE = MOLEX110  
VAL  
PKG_TYPE = MOLEX110  
VAL  
PKG_TYPE = MOLEX110  
PKG_TYPE = MOLEX110  
VAL  
PKG_TYPE = MOLEX110  
VAL  
VAL  
DGND  
BLK  
DGND1  
BLK  
Figure 108. Evaluation Board, Rev. D, Digital Input Buffers  
5V  
1
J2  
2
U2  
1
2
3
4
CVDD18_IN  
JP19  
P2  
1
C86  
1μF  
C85  
1μF  
ADP3339-1-8  
2
VAL  
CNTERM_2P  
U3  
4
1
2
3
DVDD18_IN  
JP20  
C89  
1μF  
C88  
1μF  
ADP3339-1-8  
U4  
4
1
2
3
DVDD33_IN  
AVDD33_IN  
DPWR33_IN  
JP21  
JP22  
JP23  
C92  
1μF  
C91  
1μF  
ADP3339-3-3  
U7  
4
1
2
3
C93  
1μF  
C94  
1μF  
ADP3339-3-3  
U8  
4
1
2
3
C96  
1μF  
C97  
1μF  
ADP3339-3-3  
Figure 109. Evaluation Board, On-Board Voltage Regulators  
Rev. A | Page 52 of 56  
AD9776/AD9778/AD9779  
Figure 110. Evaluation Board, Rev. D, Top Silk Screen  
Figure 111. Evaluation Board, Rev. D, Top Layer  
Rev. A | Page 53 of 56  
AD9776/AD9778/AD9779  
Figure 112. Evaluation Board, Rev. D, Layer 2  
Figure 113. Evaluation Board, Rev. D, Layer 3  
Rev. A | Page 54 of 56  
AD9776/AD9778/AD9779  
Figure 114. Evaluation Board, Rev. D, Bottom Layer  
Figure 115. Evaluation Board, Rev. D, Bottom Silkscreen  
Rev. A | Page 55 of 56  
AD9776/AD9778/AD9779  
OUTLINE DIMENSIONS  
16.00 BSC SQ  
1.20  
0.75  
0.60  
0.45  
MAX  
14.00 BSC SQ  
100  
1
76  
75  
76  
100  
75  
1
SEATING  
PLANE  
PIN 1  
BOTTOM VIEW  
(PINS UP)  
TOP VIEW  
(PINS DOWN)  
CONDUCTIVE  
HEAT SINK  
51  
51  
25  
25  
26  
50  
50  
26  
0.20  
0.09  
1.05  
1.00  
0.95  
6.50  
NOM  
7°  
3.5°  
0°  
0.15  
0.05  
COPLANARITY  
0.08  
0.27  
0.22  
0.17  
0.50 BSC  
COMPLIANT TO JEDEC STANDARDS MS-026-AED-HD  
1. CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED.  
NOTES  
2. THE PACKAGE HAS A CONDUCTIVE HEAT SLUG TO HELP DISSIPATE HEAT AND ENSURE RELIABLE OPERATION OF  
THE DEVICE OVER THE FULL INDUSTRIAL TEMPERATURE RANGE. THE SLUG IS EXPOSED ON THE BOTTOM OF  
THE PACKAGE AND ELECTRICALLY CONNECTED TO CHIP GROUND. IT IS RECOMMENDED THAT NO PCB SIGNAL  
TRACES OR VIAS BE LOCATED UNDER THE PACKAGE THAT COULD COME IN CONTACT WITH THE CONDUCTIVE  
SLUG. ATTACHING THE SLUG TO A GROUND PLANE WILL REDUCE THE JUNCTION TEMPERATURE OF THE  
DEVICE WHICH MAY BE BENEFICIAL IN HIGH TEMPERATURE ENVIRONMENTS.  
Figure 116. 100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]  
(SV-100-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD9ꢀꢀ6BSVZ1  
AD9ꢀꢀ6BSVZRL1  
AD9ꢀꢀ8BSVZ1  
AD9ꢀꢀ8BSVZRL1  
AD9ꢀꢀ9BSVZ1  
AD9ꢀꢀ9BSVZRL1  
Temperature Range  
−4±°C to +85°C  
−4±°C to +85°C  
−4±°C to +85°C  
−4±°C to +85°C  
−4±°C to +85°C  
−4±°C to +85°C  
Package Description  
1±±-lead TQFP_EP  
1±±-lead TQFP_EP  
1±±-lead TQFP_EP  
1±±-lead TQFP_EP  
1±±-lead TQFP_EP  
1±±-lead TQFP_EP  
Package Option  
SV-1±±-1  
SV-1±±-1  
SV-1±±-1  
SV-1±±-1  
SV-1±±-1  
SV-1±±-1  
AD9ꢀꢀ6-EB  
AD9ꢀꢀ8-EB  
AD9ꢀꢀ9-EBZ1  
Evaluation Board  
Evaluation Board  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2005–2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05361-0-3/07(A)  
Rev. A | Page 56 of 56  
 
 
 

相关型号:

AD9779PCB

Dual 16-Bit, 1.0 GSPS D/A Converter
ADI

AD9779_15

Dual 12-/14-/16-Bit, 1 GSPS, Digital-to-Analog Converters
ADI

AD977A

16-Bit, 100 kSPS/200 kSPS BiCMOS A/D Converter
ADI

AD977AAN

16-Bit, 100 kSPS/200 kSPS BiCMOS A/D Converter
ADI

AD977AANZ

16-Bit, 200 kSPS, Serial I/O A/D Converter
ADI

AD977AAR

16-Bit, 100 kSPS/200 kSPS BiCMOS A/D Converter
ADI

AD977AAR

3-CH 16-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO20, SOIC-20
ROCHESTER

AD977AARS

16-Bit, 100 kSPS/200 kSPS BiCMOS A/D Converter
ADI

AD977AARS

3-CH 16-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO28, SSOP-28
ROCHESTER

AD977AARSZ

16-Bit, 200 kSPS, Serial I/O A/D Converter
ADI

AD977AARSZ

3-CH 16-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO28, SSOP-28
ROCHESTER

AD977AARZ

3-CH 16-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO20, SOIC-20
ROCHESTER