AD9781BCPZRL7 [ADI]

IC PARALLEL, WORD INPUT LOADING, 14-BIT DAC, QCC72, 10 X 10 MM, ROHS COMPLIANT, MO-220VNND-3, LFCSP-72, Digital to Analog Converter;
AD9781BCPZRL7
型号: AD9781BCPZRL7
厂家: ADI    ADI
描述:

IC PARALLEL, WORD INPUT LOADING, 14-BIT DAC, QCC72, 10 X 10 MM, ROHS COMPLIANT, MO-220VNND-3, LFCSP-72, Digital to Analog Converter

输入元件 转换器
文件: 总32页 (文件大小:964K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 12-/14-/16-Bit, LVDS  
Interface 600 MSPS DACs  
AD9780/AD9781/AD9783  
Preliminary Technical Data  
FEATURES  
GENERAL DESCRIPTION  
High dynamic range, dual DAC parts  
The AD9780/AD9781/AD9783 include pin-compatible, high  
dynamic range, dual digital-to-analog converters (DACs) with  
12-/14-/16-bit resolutions, and sample rates of up to 600 MSPS.  
The devices include specific features for direct conversion  
transmit applications, including gain and offset compensation,  
and they interface seamlessly with analog quadrature  
modulators such as the ADL5370.  
Low noise and intermodulation distortion  
Single carrier WCDMA ACLR = 80 dBc @ 61.44 MHz IF  
Innovative switching output stage permits useable outputs  
beyond Nyquist frequency  
LVCMOS inputs with dual-port or optional interleaved  
single-port operation  
Differential analog current outputs are programmable from  
8.6 mA to 31.7 mA full scale  
Auxiliary 10-bit current DACs with source/sink capability for  
external offset nulling  
A proprietary, dynamic output architecture permits synthesis  
of analog outputs even above Nyquist by shifting energy away  
from the fundamental and into the image frequency.  
Full programmability is provided through a serial peripheral  
interface (SPI) port. Some pin-programmable features are also  
offered for those applications without a controller.  
Internal 1.2 V precision reference voltage source  
Operates from 1.8 V and 3.3 V supplies  
315 mW power dissipation  
Small footprint, RoHS compliant, 72-lead LFCSP  
PRODUCT HIGHLIGHTS  
1. Low noise and intermodulation distortion (IMD) enables  
high quality synthesis of wideband signals.  
APPLICATIONS  
Wireless infrastructure  
2. Proprietary switching output for enhanced dynamic  
performance.  
WCDMA, CDMA2000, TD-SCDMA, WiMAX  
Wideband communications  
LMDS/MMDS, point-to-point  
RF signal generators, arbitrary waveform generators  
3. Programmable current outputs and dual auxiliary DACs  
provide flexibility and system enhancements.  
FUNCTIONAL BLOCK DIAGRAM  
CLKP  
CLKN  
AD9783 DUAL LVDS DAC  
IOUT1P  
IOUT1N  
16-BIT  
I DAC  
INTERFACE LOGIC  
IOUT2P  
IOUT2N  
16-BIT  
Q DAC  
LVDS  
INTERFACE  
D(15:0)  
GAIN  
DAC  
V
, V  
IA IB  
GAIN  
DAC  
AUX1P  
AUX1N  
OFFSET  
DAC  
INTERNAL  
REFERENCE  
AND  
SERIAL  
PERIPHERAL  
INTERFACE  
AUX2P  
AUX2N  
OFFSET  
DAC  
BIAS  
Figure 1  
Rev. PrG  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
AD9780/AD9781/AD9783  
Preliminary Technical Data  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
General Operation of the Serial Interface............................... 18  
Instruction Byte.......................................................................... 18  
MSB/LSB Transfers .................................................................... 19  
Serial Interface Port Pin Descriptions ..................................... 19  
SPI Register Map ............................................................................ 20  
SPI Register Descriptions.............................................................. 21  
SPI Port, RESET, and Pin Mode............................................... 23  
Parallel Data Port Interface....................................................... 23  
Optimizing the Parallel Port Timing....................................... 23  
Driving the CLK Input .............................................................. 25  
Full-Scale Current Generation ................................................. 25  
DAC Transfer Function............................................................. 26  
Analog Modes of Operation ..................................................... 26  
Power Dissipation....................................................................... 27  
Outline Dimensions....................................................................... 29  
Ordering Guide .......................................................................... 29  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Functional Block Diagram .............................................................. 1  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
Digital Specifications ................................................................... 4  
AC Specifications.......................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 9  
Terminology .................................................................................... 17  
Theory of Operation ...................................................................... 18  
Serial Peripheral Interface......................................................... 18  
Rev. PrG | Page 2 of 32  
Preliminary Technical Data  
AD9780/AD9781/AD9783  
SPECIFICATIONS  
DC SPECIFICATIONS  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IOUTFS = 20 mA maximum sample rate, unless  
otherwise noted.  
Table 1.  
AD9780  
Typ  
AD9781  
Typ  
AD9783  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
RESOLUTION  
12  
14  
16  
Bits  
ACCURACY  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
MAIN DAC OUTPUTS  
Offset Error  
Gain Error (with Internal Reference)  
Full-Scale Output Current1  
Output Compliance Range  
Output Resistance  
Gain DAC Monotonicity Guaranteed  
MAIN DAC TEMPERATURE DRIFT  
Offset  
±±.13  
±±.2ꢀ  
±±.ꢀ  
±1  
±2  
±4  
LSB  
LSB  
–±.±±1  
±
±2  
2±.2  
+±.±±1  
–±.±±1  
±
±2  
2±.2  
+±.±±1  
–±.±±1  
±
±2  
+±.±±1  
% FSR  
% FSR  
mA  
V
MΩ  
8.66  
–1.±  
31.66  
+1.±  
8.66  
–1.±  
31.66  
+1.±  
8.66  
–1.±  
2±.2 31.66  
+1.±  
1±  
1±  
1±  
±.±4  
1±±  
3±  
±.±4  
1±±  
3±  
±.±4  
1±±  
3±  
ppm/°C  
ppm/°C  
ppm/°C  
Gain  
Reference Voltage  
AUX DAC OUTPUTS  
Resolution  
Full-Scale Output Current  
Output Compliance Range (Source)  
Output Compliance Range (Sink)  
Output Resistance  
AUX DAC Monotonicity Guaranteed  
REFERENCE  
1±  
1±  
1±  
+2  
1.6  
1.6  
1
Bits  
mA  
V
V
MΩ  
–2  
±
±.8  
+2  
1.6  
1.6  
–2  
±
±.8  
+2  
1.6  
1.6  
–2  
±
±.8  
1
1
Internal Reference Voltage  
Output Resistance  
ANALOG SUPPLY VOLTAGES  
AVDD33  
1.2  
1.2  
1.2  
V
kΩ  
3.13  
1.7±  
3.3  
1.8  
3.47  
1.9±  
3.13  
1.7±  
3.3  
1.8  
3.47  
1.9±  
3.13  
1.7±  
3.3  
1.8  
3.47  
1.9±  
V
V
CVDD18  
DIGITAL SUPPLY VOLTAGES  
DVDD33  
DVDD18  
3.13  
1.7±  
3.3  
1.8  
3.47  
1.9±  
3.13  
1.7±  
3.3  
1.8  
3.47  
1.9±  
3.13  
1.7±  
3.3  
1.8  
3.47  
1.9±  
V
V
POWER CONSUMPTION  
fDAC = ꢀ±± MSPS, IF = 2± MHz  
fDAC = 6±± MSPS, IF = 1± MHz  
Power-Down Mode  
SUPPLY CURRENTS2  
AVDD33  
CVDD18  
DVDD33  
DVDD18  
V × I  
44±  
3
V × I  
V × I V × I  
44±  
V × I V × I  
44±  
mW  
mW  
mW  
3
3
3ꢀ  
ꢀꢀ  
34  
13  
68  
ꢀ8  
38  
1ꢀ  
8ꢀ  
ꢀꢀ  
34  
13  
68  
ꢀ8  
38  
1ꢀ  
8ꢀ  
ꢀꢀ  
34  
13  
68  
ꢀ8  
38  
1ꢀ  
8ꢀ  
mA  
mA  
mA  
mA  
1 Based on a 1± kΩ external resistor.  
2 FDAC = ꢀ±± MSPS, FOUT = 2± MHz.  
Rev. PrG | Page 3 of 32  
AD9780/AD9781/AD9783  
Preliminary Technical Data  
DIGITAL SPECIFICATIONS  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IOUTFS = 20 mA, maximum sample rate, unless  
otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
DAC CLOCK INPUT (CLKP, CLKN)  
Peak-to-Peak Voltage at CLKP and CLKN  
Common-Mode Voltage  
4±±  
3±±  
6±±  
8±±  
4±±  
16±±  
ꢀ±±  
mV  
mV  
MSPS  
Maximum Clock Rate  
SERIAL PERIPHERAL INTERFACE (CMOS Interface)  
Maximum Clock Rate (SCLK)  
Minimum Pulse Width High  
4±  
12.ꢀ  
12.ꢀ  
MHz  
ns  
ns  
Minimum Pulse Width Low  
DIGITAL INPUT DATA (LVDS Interface)  
Input Voltage Range, VIA or VIB  
Input Differential Threshold, VIDTH  
Input Differential Hysteresis, VIDTHH to VIDTHL  
Input Differential Input Impedance,  
Maximum LVDS Input Rate (Per DAC)  
8±±  
-1±±  
16±±  
+1±±  
mV  
mV  
mV  
Ω
2±  
8±  
6±±  
12±  
MSPS  
AC SPECIFICATIONS  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IOUTFS = 20 mA, maximum sample rate, unless  
otherwise noted.  
Table 3.  
AD9780  
Min Typ  
AD9781  
Max Min Typ  
AD9783  
Max Min Typ  
Parameter  
Max Unit  
SPURIOUS FREE DYNAMIC RANGE (SFDR)  
fDAC = 6±± MSPS, fOUT = 2± MHz  
fDAC = 6±± MSPS, fOUT = 12± MHz  
fDAC = 6±± MSPS, fOUT = 48± MHz (Mix Mode)  
fDAC = 6±± MSPS, fOUT = ꢀ8± MHz (Mix Mode)  
TWO-TONE INTERMODULATION DISTORTION (IMD)  
fDAC = 6±± MSPS, fOUT = 2± MHz  
79  
67  
ꢀ8  
ꢀ8  
78  
66  
62  
ꢀ6  
8±  
68  
ꢀ9  
6±  
dBc  
dBc  
dBc  
dBc  
91  
8±  
6±.ꢀ  
ꢀ8  
93  
7ꢀ  
61.ꢀ  
ꢀ9  
86  
79  
66  
ꢀ9  
dBc  
dBc  
dBc  
dBc  
fDAC = 6±± MSPS, fOUT = 12± MHz  
fDAC = 6±± MSPS, fOUT = 48± MHz (Mix Mode)  
fDAC = 6±± MSPS, fOUT = ꢀ8± MHz (Mix Mode)  
NOISE SPECTRAL DENSITY (NSD) One-Tone  
fDAC = 6±± MSPS, fOUT = 4± MHz  
fDAC = 6±± MSPS, fOUT = 12± MHz  
fDAC = 6±± MSPS, fOUT = 48± MHz (Mix Mode)  
fDAC = 6±± MSPS, fOUT = ꢀ8± MHz (Mix Mode)  
−1ꢀ7  
−1ꢀ4.ꢀ  
−1ꢀ2  
−1ꢀ2  
−162  
−1ꢀ6.ꢀ  
−1ꢀ2  
−1ꢀ1  
−16ꢀ  
−1ꢀ7  
−1ꢀ3  
−1ꢀ2  
dBc  
dBc  
dBc  
dBc  
WCDMA ADJACENT CHANNEL LEAKAGE RATIO (ACLR),  
SINGLE CARRIER  
fDAC = 491.ꢀ2 MSPS, fOUT = 2± MHz  
fDAC = 491.ꢀ2 MSPS, fOUT = 8± MHz  
fDAC = 491.ꢀ2 MSPS, fOUT = 411.ꢀ2 MHz  
fDAC = 491.ꢀ2 MSPS, fOUT = 471.ꢀ2 MHz  
−81  
−8±  
−71  
−69  
−82.ꢀ  
−82.ꢀ  
−68  
−82  
−81  
−69  
−7±  
dBc  
dBc  
dBc  
dBc  
−69  
Rev. PrG | Page 4 of 32  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
AD9780/AD9781/AD9783  
Table 4.  
THERMAL RESISTANCE  
With  
Parameter  
Respect to  
Rating  
Thermal resistance tested using JEDEC standard 4-layer  
thermal test board with no airflow.  
AVDD33, DVDD33  
AGND, DGND, −±.3 V to +3.6 V  
CGND  
Table 5.  
Package Type  
DVDD18, CVDD18  
AGND, DGND, −±.3 V to +1.98 V  
CGND  
θJA  
Unit  
AGND  
DGND  
CGND  
REFIO  
DGND, CGND  
AGND, CGND  
AGND, DGND  
AGND  
−±.3 V to +±.3 V  
−±.3 V to +±.3 V  
−±.3 V to +±.3 V  
−±.3 V to  
AVDD33 + ±.3 V  
CP-72-1 (Exposed Pad Soldered to PCB)  
2ꢀ  
°C/W  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
IOUT1P, IOUT1N, IOUT2P,  
IOUT2N, AUX1P, AUX1N,  
AUX2P, AUX2N  
AGND  
−1.± V to  
AVDD33 + ±.3 V  
D1ꢀ to D±  
DGND  
CGND  
DGND  
−±.3 V to  
DVDD33 + ±.3 V  
−±.3 V to  
CVDD18 + ±.3 V  
CLKP, CLKN  
ESD CAUTION  
CSB, SCLK, SDIO, SDO  
–±.3 V to  
DVDD33 + ±.3 V  
Junction Temperature  
Storage Temperature  
+12ꢀ°C  
−6ꢀ°C to +1ꢀ±°C  
Rev. PrG | Page ꢀ of 32  
AD9780/AD9781/AD9783  
Preliminary Technical Data  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
CVDD18  
CVSS  
CLKP  
CLKN  
CVSS  
CVDD18  
DVSS  
DVDD18  
D11P  
1
2
3
4
5
6
7
8
9
54 FS ADJ  
PIN 1  
INDICATOR  
53 RESET  
52 CSB  
51 SCLK  
50 SDIO  
49 SDO  
48 DVSS  
47 DVDD18  
46 NC  
AD9780  
(TOP VIEW)  
D11N 10  
D10P 11  
D10N 12  
D9P 13  
D9N 14  
D8P 15  
D8N 16  
D7P 17  
D7N 18  
45 NC  
44 NC  
43 NC  
42 NC  
41 NC  
40 NC  
39 NC  
38 D0N  
37 D0P  
NC = NO CONNECT  
Figure 2. AD9780 Pin Configuration  
Table 6. AD9780 Pin Function Descriptions  
Pin No.  
Mnemonic  
CVDD18  
CVSS  
Description  
1, 6  
2, ꢀ  
Clock Supply Voltage (1.8 V).  
Clock Supply Return.  
3, 4  
CLKP, CLKN  
DVSS  
DVDD18  
D11P, D11N  
Differential DAC Sampling Clock Input.  
Digital Common.  
Digital Supply Voltage (1.8 V).  
LVDS Data Input (MSB)  
7, 28, 48  
8, 47  
9, 1±  
11 to 24, 31 to 36 D1±P to D1P, D1±N toD1N LVDS Data Inputs.  
2ꢀ, 26  
27  
29, 3±  
37, 38  
DCOP, DCON  
DVDD33  
DCIP, DCIN  
P, D±N  
NC  
Differential Data Clock Output. LVDS clock at the DAC sample rate.  
Digital Input and Output Pad Ring Supply Voltage (3.3 V).  
Differential Data Clock Input. LVDS clock aligned with input data.  
LVDS Data Input (LSB).  
39 to 46  
No Connection. Leave these pins floating.  
49  
SDO  
Serial Port Data Output.  
ꢀ±  
ꢀ1  
SDIO  
SCLK  
Serial Port Data Input (4-Wire Mode). Bidirectional serial data line (3-wire mode).  
Serial Port Clock Input.  
ꢀ2  
CSB  
Serial Port Chip Select (Active Low).  
ꢀ3  
RESET  
Chip Reset (Active High).  
ꢀ4  
FS ADJ  
Full-Scale Current Output Adjust.  
ꢀꢀ  
REFIO  
AVDD33  
AVSS  
Analog Reference Input/Output (1.2 V Nominal).  
Analog Supply Voltage (3.3 V).  
Analog Common.  
ꢀ6, ꢀ7, 71, 72  
ꢀ8, 61, 64, 67, 7±  
ꢀ9  
6±  
62, 63  
6ꢀ, 66  
68  
IOUT2P  
IOUT2N  
AUX2P,AUX2N  
AUX1N,AUX1P  
IOUT1N  
IOUT1P  
DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Complementary DAC Current Output. Full-scale current is sourced when all data bits are ±s.  
Differential Auxiliary DAC current output (Channel 2).  
Differential Auxiliary DAC current output (Channel 1).  
Complementary DAC Current Output. Full-scale current is sourced when all data bits are ±s.  
DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
69  
Rev. PrG | Page 6 of 32  
Preliminary Technical Data  
AD9780/AD9781/AD9783  
CVDD18  
CVSS  
CLKP  
CLKN  
CVSS  
CVDD18  
DVSS  
DVDD18  
D13P  
1
2
3
4
5
6
7
8
9
54 FS ADJ  
PIN 1  
INDICATOR  
53 RESET  
52 CSB  
51 SCLK  
50 SDIO  
49 SDO  
48 DVSS  
47 DVDD18  
46 NC  
AD9781  
(TOP VIEW)  
D13N 10  
D12P 11  
D12N 12  
D11P 13  
D11N 14  
D10P 15  
D10N 16  
D9P 17  
45 NC  
44 NC  
43 NC  
42 D0N  
41 D0P  
40 D1N  
39 D1P  
38 D2N  
37 D2P  
D9N 18  
NC = NO CONNECT  
Figure 3. AD9781 Pin Configuration  
Table 7. AD9781 Pin Function Descriptions  
Pin No.  
Mnemonic  
CVDD18  
CVSS  
Description  
1, 6  
2, ꢀ  
Clock Supply Voltage (1.8 V).  
Clock Supply Return.  
3, 4  
CLKP, CLKN  
DVSS  
DVDD18  
D13P, D13N  
Differential DAC Sampling Clock Input.  
Digital Common.  
Digital Supply Voltage (1.8 V).  
LVDS Data Input (MSB).  
7, 28, 48  
8, 47  
9, 1±  
11 to 24, 31 to 4± D12P, D12N to D1P, D1N LVDS Data Inputs.  
2ꢀ, 26  
27  
29, 3±  
41, 42  
DCOP,DCON  
DVDD33  
DCIP, DCIN  
P, D±N  
NC  
Differential Data Clock Output. LVDS clock at the DAC sample rate.  
Digital Input and Output pad ring supply voltage (3.3 V).  
Differential Data Clock Input. LVDS clock aligned with input data.  
LVDS Data Input (LSB).  
43 to 46  
No connection. Leave these pins floating.  
49  
SDO  
Serial Port Data Output.  
ꢀ±  
ꢀ1  
SDIO  
SCLK  
Serial Port Data Input (4-Wire Mode). Bidirectional serial data line (3-wire mode).  
Serial Port Clock Input.  
ꢀ2  
CSB  
Serial Port Chip Select (Active Low).  
ꢀ3  
RESET  
Chip Reset (Active High).  
ꢀ4  
FS ADJ  
Full-Scale Current Output Adjust.  
ꢀꢀ  
REFIO  
AVDD33  
AVSS  
Analog Reference Input/Output (1.2 V nominal).  
Analog Supply Voltage (3.3 V).  
Analog Common.  
ꢀ6, ꢀ7, 71, 72  
ꢀ8, 61, 64, 67, 7±  
ꢀ9  
6±  
62, 63  
6ꢀ, 66  
68  
IOUT2P  
IOUT2N  
AUX2P,AUX2N  
AUX1N,AUX1P  
IOUT1N  
IOUT1P  
DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Complementary DAC Current Output. Full-scale current is sourced when all data bits are ±s.  
Differential Auxiliary DAC current output (Channel 2).  
Differential Auxiliary DAC current output (Channel 1).  
Complementary DAC Current Output. Full-scale current is sourced when all data bits are ±s.  
DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
69  
Rev. PrG | Page 7 of 32  
AD9780/AD9781/AD9783  
Preliminary Technical Data  
CVDD18  
CVSS  
CLKP  
CLKN  
CVSS  
1
2
3
4
5
6
7
8
9
54 FS ADJ  
PIN 1  
INDICATOR  
53 RESET  
52 CSB  
51 SCLK  
50 SDIO  
49 SDO  
48 DVSS  
47 DVDD18  
46 D0N  
45 D0P  
44 D1N  
43 D1P  
42 D2N  
41 D2P  
40 D3N  
39 D3P  
38 D4N  
37 D4P  
CVDD18  
DVSS  
DVDD18  
D15P  
D15N 10  
D14P 11  
D14N 12  
D13P 13  
D13N 14  
D12P 15  
D12N 16  
D11P 17  
D11N 18  
AD9783  
(TOP VIEW)  
Figure 4. AD9783 Pin Configuration  
Table 8. AD9783 Pin Function Descriptions  
Pin No.  
Mnemonic  
CVDD18  
CVSS  
Description  
1, 6  
2, ꢀ  
Clock Supply Voltage (1.8 V).  
Clock Supply Return.  
3, 4  
CLKP, CLKN  
DVSS  
DVDD18  
D1ꢀP, D1ꢀN  
Differential DAC Sampling Clock Input.  
Digital Common.  
Digital Supply Voltage (1.8 V).  
LVDS Data Input (MSB).  
7, 28, 48  
8, 47  
9, 1±  
11 to 24, 31 to 44 D14P, D14N to D1P, D1N LVDS Data Inputs.  
2ꢀ, 26  
27  
29, 3±  
4ꢀ, 46  
DCOP, DCON  
DVDD33  
DCIP, DCIN  
P, D±N  
SDO  
Differential Data Clock Output. LVDS clock at the DAC sample rate.  
Digital Input and Output Pad Ring Supply Voltage (3.3 V).  
Differential Data Clock Input. LVDS clock aligned with input data.  
LVDS Data Input (LSB).  
49  
Serial Port Data Output.  
ꢀ±  
ꢀ1  
SDIO  
SCLK  
Serial Port Data Input (4-Wire Mode). Bidirectional serial data line (3-wire mode).  
Serial Port Clock Input.  
ꢀ2  
CSB  
Serial Port Chip Select (Active Low).  
ꢀ3  
RESET  
Chip RESET (active High).  
ꢀ4  
FS ADJ  
Full-Scale Current Output Adjust.  
ꢀꢀ  
REFIO  
AVDD33  
AVSS  
Analog Reference Input/Output (1.2 V nominal).  
Analog Supply Voltage (3.3 V).  
Analog Common.  
ꢀ6, ꢀ7, 71, 72  
ꢀ8, 61, 64, 67, 7±  
ꢀ9  
6±  
62, 63  
6ꢀ, 66  
68  
IOUT2P  
IOUT2N  
AUX2P,AUX2N  
AUX1N,AUX1P  
IOUT1N  
IOUT1P  
DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Complementary DAC Current Output. Full-scale current is sourced when all data bits are ±s.  
Differential Auxiliary DAC Current Output (Channel 2).  
Differential Auxiliary DAC Current Output (Channel 1).  
Complementary DAC Current Output. Full-scale current is sourced when all data bits are ±s.  
DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
69  
Rev. PrG | Page 8 of 32  
Preliminary Technical Data  
AD9780/AD9781/AD9783  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.5  
0.4  
0.2  
0
1.0  
0.5  
–0.2  
–0.4  
–0.6  
0
–0.5  
–1.0  
–0.8  
–1.0  
–1.2  
–1.4  
–1.5  
–2.0  
–2.5  
–1.6  
0
0
0
16384  
32768  
CODE  
49152  
49152  
49152  
65535  
65535  
65535  
0
0
0
16384  
32768  
CODE  
49152  
65535  
65535  
65535  
Figure 5. AD9783 INL 85°C  
Figure 8. AD9783 DNL 85°C  
5
4
3
2
1
0
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1  
–2  
–3  
–1.6  
16384  
32768  
CODE  
16384  
32768  
CODE  
49152  
Figure 6. AD9783 INL 25°C  
Figure 9. AD9783 DNL 25°C  
5
4
3
2
1
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
–2  
–3  
–1.0  
16384  
32768  
CODE  
16384  
32768  
CODE  
49152  
Figure 7. AD9783 INL −40°C  
Figure 10. AD9783 DNL −40°C  
Rev. PrG | Page 9 of 32  
AD9780/AD9781/AD9783  
Preliminary Technical Data  
0.059  
–0.060  
–0.179  
–0.297  
–0.416  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
0
0
0
0
0
4096  
8192  
12288  
16383  
16383  
4096  
4096  
8192  
12288  
16383  
CODE  
CODE  
Figure 11. AD9781 INL 85°C  
Figure 14. AD9781 DNL 20mA FS 85°C  
0.1  
0
0.6  
0.4  
0.2  
–0.1  
0
–0.2  
–0.3  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.4  
–0.5  
0
4096  
8192  
12288  
16383  
4096  
8192  
12288  
CODE  
CODE  
Figure 12. AD9781 INL −40°C  
Figure 15. AD9781 DNL −40°C  
0.2  
0.2  
0.1  
0
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.6  
0
1024  
2048  
3072  
1024  
2048  
3072  
4096  
CODE  
CODE  
Figure 13. AD9780 INL −40°C  
Figure 16. AD9780 INL 85°C  
Rev. PrG | Page 1± of 32  
Preliminary Technical Data  
AD9780/AD9781/AD9783  
90  
85  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
250MSPS  
80  
75  
70  
65  
60  
55  
50  
45  
40  
+25°C  
400MSPS  
–40°C  
600MSPS  
+85°C  
0
60  
120 180 240 300 360 420 480 540 600  
fOUT (MHz)  
0
30  
60  
90  
120 150 180 210 240 270 300  
fOUT (MHz)  
Figure 17. AD9783 SFDR vs. FOUT Over FDAC in Baseband and Mix Modes  
Figure 20. AD9783 SFDR vs. FOUT Over Temperature, 600 MSPS  
100  
95  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
250MSPS  
90  
85  
20mA  
80  
75  
70  
65  
60  
55  
50  
45  
40  
30mA  
600MSPS  
400MSPS  
10mA  
0
30  
60  
90  
120 150 180 210 240 270 300  
fOUT (MHz)  
0
60  
120 180 240 300 360 420 480 540 600  
fOUT (MHz)  
Figure 18. AD9783 SFDR vs. FOUT Over Analog Output, 25°C, 600 MSPS  
Figure 21. AD9783 IMD vs. FOUT Over FDAC in Baseband and Mix Modes  
95  
90  
100  
95  
90  
20mA  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
85  
–3dBFS  
80  
30mA  
75  
70  
10mA  
65  
–6dBFS  
0dBFS  
60  
55  
50  
45  
40  
0
30  
60  
90  
120 150 180 210 240 270 300  
fOUT (MHz)  
0
30  
60  
90  
120 150 180 210 240 270 300  
fOUT (MHz)  
Figure 19. AD9783 SFDR vs. FOUT Over Digital Input Level, 25°C, 600 MSPS  
Figure 22. AD9783 IMD vs. FOUT Over Analog Output, 25°C, 600 MSPS  
Rev. PrG | Page 11 of 32  
AD9780/AD9781/AD9783  
Preliminary Technical Data  
95  
–140  
–143  
–146  
–149  
–152  
–155  
–158  
–161  
–164  
–167  
–170  
0dBFS  
90  
–3dBFS  
85  
–6dBFS  
80  
75  
70  
65  
60  
55  
50  
45  
40  
250MSPS  
400MSPS  
600MSPS  
0
30  
60  
90  
120 150 180 210 240 270 300  
fOUT (MHz)  
0
60  
120 180 240 300 360 420 480 540 600  
fOUT (MHz)  
Figure 23. AD9783 IMD vs. FOUT Over Digital Input Level, 25C, 600MSPS  
Figure 26. AD9783 8-Tone NSD vs. FOUT Over FDAC Baseband and Mix Modes  
95  
90  
85  
–140  
–143  
–146  
–40°C  
80  
–149  
+85°C  
–152  
75  
+25°C  
70  
–155  
65  
60  
55  
50  
45  
40  
+85°C  
–158  
–40°C  
+25°C  
–161  
–164  
–167  
–170  
0
30  
60  
90  
120 150 180 210 240 270 300  
fOUT (MHz)  
0
50  
100  
150  
150  
150  
300  
fOUT (MHz)  
Figure 24. AD9783 IMD vs. FOUT Over Temperature, 600MSPS  
Figure 27. AD9783 1-Tone NSD vs. FOUT Over Temperature, 600MSPS  
–140  
–140  
–143  
–146  
–149  
–152  
–143  
–146  
–149  
–152  
–155  
–158  
–161  
–164  
–167  
–170  
250MSPS  
400MSPS  
–155  
+25°C  
600MSPS  
–158  
+85°C  
–161  
–164  
–40°C  
–167  
–170  
0
60  
120 180 240 300 360 420 480 540 600  
fOUT (MHz)  
0
50  
100  
150  
200  
250  
300  
fOUT (MHz)  
Figure 25. AD9783 1-Tone NSD vs. FOUT Over FDAC Baseband and Mix Modes  
Figure 28. AD9783 8-Tone NSD vs. FOUT Over Temperature, 600MSPS  
Rev. PrG | Page 12 of 32  
Preliminary Technical Data  
AD9780/AD9781/AD9783  
–50  
–55  
–60  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
491.52MSPS  
–65  
–70  
–75  
–80  
–85  
–90  
0dB  
245.76MSPS  
–3dB  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
fOUT (MHz)  
fOUT (MHz)  
Figure 29. AD9783 ACLR For First Adjacent Band 1-Carrier WCDMA Baseband  
and Mix Modes  
Figure 32. AD9783 ACLR for First Adjacent Channel 2-Carrier WCDMA Over  
Digital Input Level Baseband and Mix Modes, 491.52 MSPS  
–50  
–55  
–60  
–65  
–50  
–55  
–60  
–65  
–70  
–70  
–3dB  
245.76MSPS  
491.52MSPS  
–75  
–75  
–80  
–85  
–90  
–80  
0dB  
–85  
–90  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
fOUT (MHz)  
fOUT (MHz)  
Figure 30. AD9783 ACLR For Second Adjacent Band 1-Carrier WCDMA  
Baseband and Mix Modes  
Figure 33. AD9783 ACLR for Second Adjacent Channel 2-Carrier WCDMA  
Over Digital Input Level Baseband and Mix Modes, 491.52 MSPS  
–50  
–55  
–60  
–65  
–50  
–55  
–60  
–65  
245.76MSPS  
491.52MSPS  
–70  
–75  
–80  
–85  
–90  
–70  
–75  
–80  
–85  
–90  
–3dB  
0dB  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
fOUT (MHz)  
fOUT (MHz)  
Figure 31. AD9783 ACLR For Third Adjacent Band 1-Carrier WCDMA  
Baseband and Mix Modes  
Figure 34. AD9783 ACLR for Third Adjacent Channel 2-Carrier WCDMA Over  
Digital Input Level Baseband and Mix Modes, 491.52 MSPS  
Rev. PrG | Page 13 of 32  
AD9780/AD9781/AD9783  
Preliminary Technical Data  
–50  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
0dB  
NORMAL MODE  
–3dB  
MIX MODE  
0
100  
200  
300  
400  
500  
0
60  
120 180 240 300 360 420 480 540 600  
fOUT (MHz)  
fOUT (MHz)  
Figure 35. AD9783 ACLR for First Adjacent Channel 4-Carrier WCDMA Over  
Digital Input Level Baseband and Mix Modes, 491.52 MSPS  
Figure 38. Nominal Power In The Fundamental, 20 mA FS 600 MSPS  
–50  
–55  
–60  
0.8  
0.6  
0.4  
–3dB  
–65  
0.2  
0
–70  
0dB  
–0.2  
–0.4  
–0.6  
–0.8  
–75  
–80  
–85  
–90  
0
4096  
8192  
12288  
16383  
0
100  
200  
300  
400  
500  
fOUT (MHz)  
CODE  
Figure 39. AD9781 INL 20 mA FS  
Figure 36. AD9783 ACLR for Second Adjacent Channel 4-Carrier WCDMA  
Over Digital Input Level Baseband and Mix Modes, 491.52 MSPS  
0.1  
0
–50  
–55  
–60  
–0.1  
–65  
–70  
–75  
–80  
–85  
–90  
–3dB  
–0.2  
–0.3  
0dB  
–0.4  
–0.5  
0
4096  
8192  
12288  
16383  
0
100  
200  
300  
400  
500  
fOUT (MHz)  
CODE  
Figure 40. AD9781 DNL 20 mA FS  
Figure 37. AD9783 ACLR for Third Adjacent Channel 4-Carrier WCDMA Over  
Digital Input Level Baseband and Mix Modes, 491.52 MSPS  
Rev. PrG | Page 14 of 32  
Preliminary Technical Data  
AD9780/AD9781/AD9783  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
FIRST  
ADJACENT  
CHANNEL  
THIRD  
ADJACENT  
SECOND  
CHANNEL  
ADJACENT  
CHANNEL  
0
60  
120 180 240 300 360 420 480 540 600  
fOUT (MHz)  
0
100  
200  
300  
400  
500  
fOUT (MHz)  
Figure 41. AD9781 SFDR vs. FOUT in Baseband and Mix Modes, 600 MSPS  
Figure 44. AD9781 ACLR For 1-Carrier WCDMA Baseband and Mix Modes,  
491.52 MSPS  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
60  
120 180 240 300 360 420 480 540 600  
fOUT (MHz)  
–0.6  
0
1024  
2048  
3072  
4096  
CODE  
Figure 42. AD9781 IMD vs. FOUT in Baseband and Mix Modes, 600 MSPS  
Figure 45. AD9780 INL 20 mA FS  
–140  
–142  
–144  
–146  
–148  
–150  
0.04  
0.02  
0
1-TONE  
–152  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–154  
–156  
–158  
–160  
8-TONE  
–162  
–164  
–166  
–168  
–170  
0
60  
120 180 240 300 360 420 480 540 600  
fOUT (MHz)  
0
1024  
2048  
3072  
4096  
CODE  
Figure 43. AD9781 1-Tone, 8-Tone NSD vs. FOUT in Baseband and Mix Modes,  
600 MSPS  
Figure 46. AD9780 DNL, 20 mA FS  
Rev. PrG | Page 1ꢀ of 32  
AD9780/AD9781/AD9783  
Preliminary Technical Data  
–140  
–142  
–144  
–146  
–148  
–150  
–152  
–154  
–156  
–158  
–160  
–162  
–164  
–166  
–168  
–170  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
1-TONE  
8-TONES  
0
60  
120 180 240 300 360 420 480 540 600  
fOUT (MHz)  
0
60  
120 180 240 300 360 420 480 540 600  
fOUT (MHz)  
Figure 47. AD9780 SFDR vs. FOUT in Baseband and Mix Modes, 600 MSPS  
Figure 49. AD9780 1-Tone, 8-Tone NSD vs. FOUT in Baseband and Mix Modes,  
600 MSPS  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
–50  
–55  
–60  
FIRST  
–65  
–70  
–75  
–80  
–85  
–90  
ADJACENT  
CHANNEL  
SECOND  
THIRD  
ADJACENT  
CHANNEL  
ADJACENT  
CHANNEL  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
fOUT (MHz)  
fOUT (MHz)  
Figure 48. AD9780 IMD vs. FOUT in Baseband and Mix Modes, 600 MSPS  
Figure 50. AD9780 ACLR For 1-Carrier WCDMA Baseband and Mix Modes,  
491.52 MSPS  
Rev. PrG | Page 16 of 32  
Preliminary Technical Data  
TERMINOLOGY  
AD9780/AD9781/AD9783  
Power Supply Rejection  
Linearity Error (Integral Nonlinearity or INL)  
The maximum change in the full-scale output as the supplies  
are varied from minimum to maximum specified voltages.  
Linearity error is defined as the maximum deviation of the  
actual analog output from the ideal output, determined by a  
straight line drawn from zero scale to full scale.  
Settling Time  
The time required for the output to reach and remain within a  
specified error band around its final value, measured from the  
start of the output transition.  
Differential Nonlinearity (DNL)  
DNL is the measure of the variation in analog value, normalized  
to full scale, associated with a 1 LSB change in digital input  
code.  
Spurious Free Dynamic Range (SFDR)  
The difference, in decibels, between the peak amplitude of the  
output signal and the peak spurious signal between dc and the  
frequency equal to half the input data rate.  
Monotonicity  
A DAC is monotonic if the output either increases or remains  
constant as the digital input increases.  
Total Harmonic Distortion (THD)  
Offset Error  
THD is the ratio of the rms sum of the first six harmonic com-  
ponents to the rms value of the measured fundamental. It is  
expressed as a percentage or in decibels.  
The deviation of the output current from the ideal of zero is  
called offset error. For IOUTA, 0 mA output is expected when the  
inputs are all 0s. For IOUTB, 0 mA output is expected when all  
inputs are set to 1.  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the rms value of the measured output signal  
to the rms sum of all other spectral components below the  
Nyquist frequency, excluding the first six harmonics and dc.  
The value for SNR is expressed in decibels.  
Gain Error  
The difference between the actual and ideal output span. The  
actual span is determined by the difference between the output  
when all inputs are set to 1 and the output when all inputs are  
set to 0.  
Adjacent Channel Leakage Ratio (ACLR)  
The ratio in dBc between the measured power within a channel  
relative to its adjacent channel.  
Output Compliance Range  
The range of allowable voltage at the output of a current-output  
DAC. Operation beyond the maximum compliance limits can  
cause either output stage saturation or breakdown, resulting in  
nonlinear performance.  
Complex Image Rejection  
In a traditional two-part upconversion, two images are created  
around the second IF frequency. These images have the effect of  
wasting transmitter power and system bandwidth. By placing  
the real part of a second complex modulator in series with the  
first complex modulator, either the upper or lower frequency  
image near the second IF can be rejected.  
Temperature Drift  
Temperature drift is specified as the maximum change from the  
ambient (25°C) value to the value at either TMIN or TMAX. For  
offset and gain drift, the drift is reported in ppm of full-scale  
range (FSR) per degree Celsius. For reference drift, the drift is  
reported in ppm per degree Celsius.  
Rev. PrG | Page 17 of 32  
AD9780/AD9781/AD9783  
THEORY OF OPERATION  
Preliminary Technical Data  
The Phase 1 instruction byte defines whether the upcoming  
data transfer is a read or write, the number of bytes in the data  
transfer, and a reference register address for the first byte of the  
data transfer. A logic high on the CSB pin followed by a logic  
low resets the SPI port to its initial state and defines the start of  
the instruction cycle. From this point, the next eight rising  
SCLK edges define the eight bits of the instruction byte for the  
current communication cycle.  
The AD9780/AD9781/AD9783 combine many features to make  
them very attractive for wired and wireless communications  
systems. The dual DAC architecture facilitates easy interface to  
common quadrature modulators when designing single  
sideband transmitters. In addition, the speed and performance  
of the devices allows wider bandwidths and more carriers to be  
synthesized than in previously available products.  
All features and options are software programmable through  
the SPI port.  
The remaining SCLK edges are for Phase 2 of the communication  
cycle, which is the data transfer between the serial port control-  
ler and the system controller. Phase 2 can be a transfer of 1, 2, 3,  
or 4 data bytes as determined by the instruction byte. Using  
multibyte transfers is usually preferred although single-byte  
data transfers are useful to reduce CPU overhead or when only  
a single register access is required.  
SERIAL PERIPHERAL INTERFACE  
SDO  
AD9780  
SPI  
PORT  
SDIO  
SCLK  
CSB  
All serial port data is transferred to and from the device in  
synchronization with the SCLK pin. Input data is always latched  
on the rising edge of SCLK whereas output data is always valid  
after the falling edge of SCLK. Register contents change  
immediately upon writing to the last bit of each transfer byte.  
Figure 51. SPI Port  
The serial peripheral interface (SPI) port is a flexible,  
synchronous serial communications port allowing easy  
interface to many industry-standard microcontrollers and  
microprocessors. The port is compatible with most  
synchronous transfer formats including both the Motorola SPI®  
and Intel® SSR protocols.  
Anytime synchronization is lost, the device has the ability to  
asynchronously terminate an I/O operation whenever the CSB  
pin is taken to logic high. Any unwritten register content data is  
lost if the I/O operation is aborted. Taking CSB low then resets the  
serial port controller and restarts the communication cycle.  
The interface allows read and write access to all registers that  
configure the AD9780/AD9781/AD9783. Single or multiple  
byte transfers are supported as well as MSB-first or LSB-first  
transfer formats. Serial data input/output can be accomplished  
through a single bidirectional pin (SDIO) or through two  
unidirectional pins (SDIO/SDO).  
INSTRUCTION BYTE  
The instruction byte contains the information shown in Table 9.  
Table 9.  
MSB  
LSB  
B0  
The serial port configuration is controlled by Register 0x00,  
Bits<7:6>. It is important to note that any change made to the  
serial port configuration occurs immediately upon writing to  
the last bit of this byte. Therefore, it is possible with a multibyte  
transfer to write to this register and change the configuration in  
the middle of a communication cycle. Care must be taken to  
compensate for the new configuration within the remaining  
bytes of the current communication cycle.  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
R/W  
N1  
N±  
A4  
A3  
A2  
A1  
A±  
Bit 7, R/W, determines whether a read or a write data transfer  
occurs after the instruction byte write. Logic high indicates a  
read operation. Logic 0 indicates a write operation.  
Bits<6:5>, N1 and N0, determine the number of bytes to be  
transferred during the data transfer cycle. The bits decode as  
shown in Table 10.  
Use of a single-byte transfer when changing the serial port  
configuration is recommended to prevent unexpected device  
behavior.  
Table 10. Byte Transfer Count  
N1  
N0  
Description  
GENERAL OPERATION OF THE SERIAL INTERFACE  
±
±
1
1
±
1
±
1
Transfer one byte  
Transfer two bytes  
Transfer three bytes  
Transfer four bytes  
There are two phases to any communication cycle with the  
AD9780/AD9781/AD9783: Phase1 and Phase 2. Phase 1 is the  
instruction cycle, which writes an instruction byte into the  
device. This byte provides the serial port controller with  
information regarding Phase 2 of the communication cycle: the  
data transfer cycle.  
Rev. PrG | Page 18 of 32  
Preliminary Technical Data  
AD9780/AD9781/AD9783  
Serial Port Data I/O (SDIO)  
Bits<4:0>, A4, A3, A2, A1, and A0, determine which register is  
accessed during the data transfer of the communications cycle.  
For multibyte transfers, this address is a starting or ending  
address depending on the current data transfer mode. For MSB-  
first format, the specified address is an ending address or the  
most significant address in the current cycle. Remaining  
register addresses for multiple byte data transfers are generated  
internally by the serial port controller by decrementing from  
the specified address. For LSB-first format, the specified address  
is a beginning address or the least significant address in the  
current cycle. Remaining register addresses for multiple byte  
data transfers are generated internally by the serial port  
controller by incrementing from the specified address.  
Data is always written into the device on this pin. However,  
SDIO can also function as a bidirectional data output line. The  
configuration of this pin is controlled by Register 0x00, Bit 7.  
The default is Logic 0, which configures the SDIO pin as  
unidirectional.  
Serial Port Data Output (SDO)  
Data is read from this pin for protocols that use separate lines  
for transmitting and receiving data. The configuration of this  
pin is controlled by Register 0x00, Bit 7. If this bit is set to a  
Logic 1, the SDO pin does not output data and is set to a high  
impedance state.  
MSB/LSB TRANSFERS  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
The serial port can support both MSB-first and LSB-first data  
formats. This functionality is controlled by Register 0x00, Bit 6.  
The default is Logic 0, which is MSB-first format.  
CSB  
SCLK  
SDIO  
SDO  
When using MSB-first format (LSBFIRST = 0), the instruction  
and data bit must be written from MSB to LSB. Multibyte data  
transfers in MSB-first format start with an instruction byte that  
includes the register address of the most significant data byte.  
Subsequent data bytes are loaded into sequentially lower  
address locations. In MSB-first mode, the serial port internal  
address generator decrements for each byte of the multibyte  
data transfer.  
R/W N1 N0 A4 A3 A2 A1 A0 D7 D6 D5  
D3 D2 D1 D0  
0 0 0  
N
N
0
0
D7 D6 D5  
D3 D2 D1 D0  
0 0 0  
N
N
Figure 52. Serial Register Interface, MSB First  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CSB  
SCLK  
SDIO  
SDO  
When using LSB-first format (LSBFIRST = 1), the instruction  
and data bit must be written from LSB to MSB. Multibyte data  
transfers in LSB-first format start with an instruction byte that  
includes the register address of the least significant data byte.  
Subsequent data bytes are loaded into sequentially higher  
address locations. In LSB-first mode, the serial port internal  
address generator increments for each byte of the multibyte data  
transfer.  
A0 A1 A2 A3 A4 N0 N1 R/W D0 D1 D2  
D4 D5 D6 D7  
N N N  
0
0
0
N
N
D0 D1 D2  
D4 D5 D6 D7  
N N N  
0
0
0
Figure 53. Serial Register Interface Timing LSB First  
Use of a single-byte transfer when changing the serial port data  
format is recommended to prevent unexpected device behavior.  
–1  
tS  
fSCLK  
CSB  
SERIAL INTERFACE PORT PIN DESCRIPTIONS  
tPWH  
tPWL  
Chip Select Bar (CSB)  
SCLK  
Active low input starts and gates a communication cycle. It  
allows more than one device to be used on the same serial  
communication lines. CSB must stay low during the entire  
communication cycle. Incomplete data transfers are aborted  
anytime the CSB pin goes high. SDO and SDIO pins go to a  
high impedance state when this input is high.  
tDS  
tDH  
INSTRUCTION BIT 7  
INSTRUCTION BIT 6  
SDIO  
Figure 54. Timing Diagram for SPI Write Register  
CSB  
Serial Clock (SCLK)  
The serial clock pin is used to synchronize data to and from the  
device and to run the internal state machines. The maximum  
frequency of SCLK is 40 MHz. All data input is registered on  
the rising edge of SCLK. All data is driven out on the falling  
edge of SCLK.  
SCLK  
tDV  
SDIO  
SDO  
DATA BIT N  
DATA BIT N – 1  
Figure 55. Timing Diagram for SPI Read Register  
Rev. PrG | Page 19 of 32  
AD9780/AD9781/AD9783  
Preliminary Technical Data  
SPI REGISTER MAP  
Table 11.  
Register Name  
Addr Default Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI Control  
±x±±  
±x±2  
±x±3  
±x±4  
±x±ꢀ  
±x±6  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
SDIO_DIR  
DATA  
LSBFIRST  
ONEPORT  
PD_INPT  
RESET  
Data Control  
Power Down  
Setup and Hold  
Timing Adjust  
Seek  
INVDCO  
PD_DCO  
SET<3:±>  
PD_AUX2 PD_AUX1 PD_BIAS PD_CLK  
HLD<3:±>  
PD_DAC2 PD_DAC1  
SAMP_DLY<4:±>  
LVDS  
Low  
LVDS  
High  
SEEK  
Mix Mode  
±x±A  
±x±B  
±x±C  
±x±±  
±xF9  
±x±1  
DAC1MIX<1:±>  
DAC2MIX<1:±>  
DAC1FSC<9:8>  
AUXDAC1<9:8>  
DAC2FSC<9:8>  
AUXDAC2<9:8>  
DAC1 FSC  
DAC1FSC<7:±>  
DAC1 FSC MSBs  
AUXDAC1  
±x±D ±x±±  
AUXDAC1<7:±>  
AUXDAC1 MSB  
DAC2 FSC  
±x±E  
±x±F  
±x1±  
±x11  
±x12  
±x1A  
±x±±  
±xF9  
±x±1  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
AUX1SGN AUX1DIR  
DAC2FSC<7:±>  
DAC2 FSC MSBs  
AUXDAC2  
AUXDAC2<7:±>  
BISTCLR  
AUXDAC2 MSB  
BIST Control  
AUX2SGN AUX2DIR  
BISTEN  
BISTRD  
BIST Result 1 Low ±x1B  
BIST Result 1 High ±x1C  
BISTRES1<7:±>  
BISTRES1<1ꢀ:8>  
BISTRES2<7:±>  
BISTRES2<1ꢀ:8>  
VERSION<3:±>  
BIST Result 2 Low ±x1D ±x±±  
BIST Result 2 High  
Hardware Version  
±x1E  
±x1F  
±x±±  
N/A  
DEVICE<2:±>  
Rev. PrG | Page 2± of 32  
Preliminary Technical Data  
SPI REGISTER DESCRIPTIONS  
AD9780/AD9781/AD9783  
Reading these registers returns previously written values for all defined register bits, unless otherwise noted.  
Table 12.  
Register  
Address Bit Name  
Function  
SPI Control  
±x±±  
7
SDIO_DIR  
±, Operate SPI in 4-wire mode. The SDI pin operates as an input only pin.  
1, Operate SPI in 3-wire mode. The SDI pin operates as a bidirectional data line.  
±, MSB first per SPI Standard  
6
LSBFIRST  
1, LSB first per SPI Standard  
Note: Only Change LSB/MSB order in single-byte instructions to avoid erratic behavior  
due to bit order errors.  
7
RESET  
DATA  
±, Execute Software reset of SPI and controllers, reload default register values except  
register ±x±±.  
1, Set Software reset, write ± on the next (or any following) cycle to release the reset.  
Data  
Control  
±x±2  
±x±3  
±, DAC input data is two’s compliment binary format.  
1, DAC input data is unsigned binary format.  
1, Inverts the Data Clock Output. Used for adjusting timing of input data.  
1, Power down Data Clock Output driver circuit.  
1, Power Down Input..  
4
7
6
4
3
2
1
±
INVDCO  
Power  
Down  
PD_DCO  
PD_INPT  
PD_AUX2  
PD_AUX1  
PD_BIAS  
PD_CLK  
1, Power down AUX2 DAC  
1, Power down AUX1 DAC.  
1, Power down Voltage Reference Bias circuit.  
1, Power down DAC Clock input circuit..  
1, Power down DAC2  
PD_DAC2  
PD_DAC1  
1, Power down DAC1.  
Setup and  
Hold  
±x±4  
7:4 SET<3:±>  
4-bit value used to determine input data setup timing.  
3:± HLD<3:±>  
4-bit value used to determine input data hold timing.  
Timing  
Adjust  
±x±ꢀ  
±x±6  
4:± SAMP_DLY<4:±> ꢀ-bit values used to optimally posiion input data relative to internal sampling clock.  
Seek  
2
1
±
LVDS High  
LVDS Low  
SEEK  
One of the LVDS inputs is above the input voltage limits of the IEEE reduced link  
specification  
One of the LVDS inputs is below the input voltage limits of the IEEE reduced link  
specification  
Indicator bit used with LVDS_SET and LVDS_HLD to determine input data timing  
margin.  
Mix Mode  
±x±A  
3:2 DAC1MIX<1:±>  
1:± DAC2MIX<1:±>  
DAC1FSC<9:±>  
±± – Selects Normal Mode, DAC2.  
±1 – Selects Return to Zero mode, DAC2.  
1± - Selects Return to Zero mode, DAC2.  
11 – Selects Mix mode, DAC2.  
±± – Selects Normal Mode, DAC1.  
±1 – Selects Return to Zero mode, DAC1.  
1± - Selects Return to Zero mode, DAC1.  
11 – Selects Mix mode, DAC1.  
DAC1 FSC  
±x±B  
±x±C  
DAC1 Full-Scale 1± bit adjustment word.  
±x3FF, Sets DAC Full-Scale Output Current to the maximum value of 31.68mA .  
±x2±±, Sets DAC Full-Scale Output Current to the nominal value of 2±.±mA.  
±x±±±, Sets DAC Full-Scale Output Current to the minimum value of 8.64mA.  
Rev. PrG | Page 21 of 32  
AD9780/AD9781/AD9783  
Preliminary Technical Data  
Register  
Address Bit Name  
Function  
AUXDAC1  
±x±D  
±x±E  
7:± AUXDAC1<9:±>  
1:± AUXDAC1<9:8>  
AUXDAC1 output current adjustment word.  
±x3FF, Sets AUXDAC1 Output Current to 2.± mA.  
±x2±±, Sets AUXDAC1 Output Current to 1.± mA.  
±x±±±, Sets AUXDAC1 Output Current to ±.± mA.  
±, AUX1_P output pin is active.  
7
6
AUX1SGN  
1, AUX1_N output pin is active.  
AUX1DIR  
±, Configures AUX1 DAC output to source current.  
1, Configures AUX1 DAC output to sink current.  
DAC2 Full-Scale 1± bit adjustment word.  
±x3FF, Sets DAC Full-Scale Output Current to the maximum value of 31.68mA .  
±x2±±, Sets DAC Full-Scale Output Current to the nominal value of 2±.±mA.  
±x±±±, Sets DAC Full-Scale Output Current to the minimum value of 8.64mA.  
AUX DAC2 output current adjustment word.  
±, AUX2_P output pin is active.  
DAC2 FSC  
AUXDAC2  
±x±F  
±x1±  
DAC2FSC<9:±>  
±x11  
±x12  
7:± AUXDAC2<9:±>  
7
AUX2SGN  
1, AUX2_N output pin is active.  
6
AUX2DIR  
±, Configures AUX2 DAC output to source current.  
1, Configures AUX1 DAC output to sink current.  
±x3FF, Sets AUXDAC2 Output Current to 2.± mA.  
±x2±±, Sets AUXDAC2 Output Current to 1.± mA.  
±x±±±, Sets AUXDAC2 Output Current to ±.± mA.  
1, Enables and starts Built In Self Test.  
1, Transfers BIST result registers to SPI for readback.  
1, Reset BIST logic and clear BIST result registers.  
Sixteen bit result generated by BIST 1.  
1:±  
BIST Control ±x1A  
7
6
BISTEN  
BISTRD  
BISTCLR  
BIST Result1 ±x1B  
±x1C  
7:± BISTRES1<1ꢀ:±>  
7:±  
BIST Result2 ±x1D  
±x1E  
7:± BISTRES2<1ꢀ:±>  
7:±  
Sixteen bit result generated by BIST 2.  
Hardware  
Version  
±x1F  
7:4 VERSION<3:±>  
3:± DEVICE<3:±>  
Read only register. Indicates the version of the chip.  
Read only register. Indicates the device type.  
Rev. PrG | Page 22 of 32  
Preliminary Technical Data  
AD9780/AD9781/AD9783  
other words, it should be implemented as a seventeenth DATA  
line with an alternating (010101…) bit sequence.  
SPI PORT, RESET, AND PIN MODE  
In general, when the AD9780/AD9781/AD9783 are powered  
up, an active high pulse applied to the RESET pin should follow.  
This insures the default state of all control register bits. In  
addition, once the RESET pin goes low, the SPI port can be  
activated, so, CSB should be held high.  
DATA[15:0]  
I DAC  
FF  
RETIMING  
AND  
DEMUX  
FF  
Q DAC  
For applications without a controller, the AD9780/AD9781/  
AD9783 also supports pin mode operation, which allows some  
functional options to be pin, selected without the use of the SPI  
port. Pin mode is enabled anytime the RESET pin is held high.  
In pin mode, the four SPI port pins take on secondary functions  
as shown in Table 13.  
DCLK_IN  
DDCI  
SET_DLY  
HLD_DLY  
SEEK  
FF  
DDSS  
CLK  
DSS  
CLOCK  
DISTRIBUTION  
SMP_DLY  
DCLK_OUT  
Figure 56. AD9873 Digital Data Port  
Table 13. SPI Pin Functions (Pin Mode)  
Pin  
Name  
OPTIMIZING THE PARALLEL PORT TIMING  
Pin Mode Function  
Before outlining the procedure for determining the delay for  
SMP (that is, the positioning of DSS with respect to the DATA  
signals), it is worthwhile describing the simplified block  
diagram of the digital data port. As can be seen in Figure 56, the  
DATA signals are latched-in on the rising and falling edges of  
DSS. From there, the data is demultiplexed and retimed before  
being sent to the DACs.  
SDIO  
DATA (Register ±x±2, Bit 7), bit value (1/±) equals pin  
state (high/low)  
Enable Mix Mode, if CSB is high, Register ±x±A is set to  
±x±ꢀ putting both DAC1 and DAC2 into mix mode  
Enable full power-down, if SDO is high, Register ±x±3  
is set to ±xFF  
CSB  
SDO  
The DCLK_IN signal provides timing information about the  
parallel data as well as indicating the destination (that is, I DAC  
or Q DAC) of the data. A delayed version of DCI is generated  
by a delay element, SET and is referred to as DDCI. DDCI is  
sampled by a delayed version of the DSS signal, labeled as DDSS  
in Figure 56. DDSS is simply DSS delayed by a period of time,  
HLD. The pair of delays, SET and HLD allow accurate timing  
information to be extracted from DCLK_IN. Increasing the  
delay of the HLD block, results in DCLK_IN being sampled  
later in it’s cycle. Increasing the delay of the SET block, results in  
DCLK_IN being sampled earlier in it’s cycle. The result of this  
sampling is stored and can be queried by reading the SEEK bit.  
Since DSS and DCLK_IN are the same frequency, the SEEK bit  
should be a constant value. By varying the SET and HLD delay  
blocks and seeing the effect on the SEEK bit, the setup and hold  
timing of DSS with respect to DCLK_IN (and hence, DATA)  
can be measured.  
PARALLEL DATA PORT INTERFACE  
The parallel port data interface consists of 18 differential LVDS  
signals, DCO, DCI, and the sixteen DATA lines (DATA[15:0]),  
as shown in Figure 56. DCO is the output clock generated by  
theAD9780/AD9781/AD9783 that is used to clock out the data  
from the digital data engine. The DATA lines transmit the  
multiplexed I and Q data words for the I and Q DACs  
respectively. The DCI provides timing information about the  
parallel data as well as signals the I/Q status of the data.  
As shown in Figure 56, the incoming LVDS data is latched by an  
internally generated clock referred to as the data sampling  
signal (DSS). DSS is a delayed version of the main DAC clock  
signal CLKP/CLKN. Optimal positioning of the rising and  
falling edges of DSS with respect to the incoming DATA signals  
results in the most robust transmission of the DAC data.  
Positioning the edges of DSS with respect to the DATA signals  
is achieved by selecting the value of a programmable delay  
element, SMP. A procedure for determining optimal value of  
SMP is given in the Optimizing the Parallel Port Timing  
section.  
0ps  
2500ps  
5000ps  
7500ps  
10000ps  
t1  
t2  
t3  
I0  
Q0  
I1  
Q1  
I2  
Q2  
DATA  
In addition to properly positioning the DSS edges, maximizing  
the opening of the eye in the DCLK_IN and DATA signals  
improves the reliability of the data port interface. The two  
sources of degradation that reduce the eye in the DCLK_IN and  
DATA signals are the jitter on these signals and the skew  
between them. Therefore, it is recommended that the  
DCLK_IN  
tHLD0  
tHLD0  
DSS  
SAMPLE 1  
SAMPLE 2  
SAMPLE 3  
SAMPLE 4  
SAMPLE 5  
SAMPLE 6  
DCLK_IN be generated in the same manner as the DATA  
signals with the same output driver and data line routing. In  
Figure 57. Digital Data Timing  
The incremental units of SET, HLD, and SMP are in units of  
real time, not fractions of a clock cycle. The nominal step size  
Rev. PrG | Page 23 of 32  
AD9780/AD9781/AD9783  
Preliminary Technical Data  
for SET and HLD is 80 psec. The nominal step size for SMP is  
160 ps. Note that the value of SMP refers to Register 5, Bits[4:0],  
SET refers to Register 4, Bits[7:4], and HLD refers to Register 4,  
Bits[3:0].  
the position marked Orig, to the position marked New in  
the figure.  
9. After programming the calculated value of SMP,  
verification that the sampling edge occurs in the middle of  
the valid data window can be done as follows. Set both SET  
and HLD to zero. Increment SET until the SEEK bit goes  
low and record that value. Reset SET to zero. Increment  
HLD until SEEK goes low and record that value. The  
recorded values of SET and HLD should be within two unit  
delays of each other if SMP was set correctly.  
Use the following steps to ensure the AD9780/AD9781/AD9783  
is configured for a valid sampling time of the DATA signals.  
Generally speaking, the procedure begins by finding the point  
in its cycle that DCI is sampled by the rising edge of DSS. Based  
on this information, a value of SMP is programmed to establish  
a new and improved sampling point. This new sampling point is  
then double checked to make sure it is optimally set.  
It should be noted that the values of SET and HLD should both  
be a minimum of 4. If either value is lower than this, then you  
should check for excessive jitter on your DCLK_IN line, and  
that the frequency of DCLK_IN does not exceed the datasheet  
maximum.  
1. Set the values of SMP, SET, and HLD to zero. Read and  
record the value of the SEEK bit.  
2. With SMP and SET set to 0, increment the HLD until the  
SEEK bit toggles and record the HLD value. This measures  
the hold time as shown in figure 2.  
3. With SMP and HLD set to 0, increment the SET until the  
SEEK bit toggles and record the SET value. This measures  
the set-up time as shown in Figure 57.  
4. Using the values of SMP, HLD, and SET, the value of SMP  
can now be determined.  
Another consideration in the timing of the digital data port is  
the propagation delay variation from DATACLK_OUT to  
DATACLK_IN. If this varies significantly (more than 25% of  
SET or HLD) over time due to temperature changes or other  
effects, then repeat this timing calibration procedure  
accordingly.  
5. If SEEK = 1, and HLD and SET are within 2 counts of each  
other, then the sampling edge is well positioned and it is  
unnecesary to increase the SMP delay. Also, if SEEK = 1  
and HLD and SET are both greater than 12, then there is a  
sufficient timing margin and it is unneccesary to increase  
the SMP delay.  
0ns  
5ns  
10ns  
15ns  
t1  
t4  
t5  
I4  
t2  
t3  
DATA  
I0  
Q0  
I1  
Q1  
I2  
Q2  
I3  
Q3  
DCLK_IN  
tHLD0  
tSET0  
6. If SEEK = 1, and SET is more than two counts higher than  
HLD, then your timing resembles that shown in Figure 58.  
Program the value of SMP to be  
ORIGINAL  
DSS_ORIG  
DSS_NEW  
tHLD  
tSET  
tSMP_DLY  
PER 40 × (SET HLD)  
SMP =  
NEW  
160  
Figure 58. Digital Data Timing Calibration  
Where PER is the period of the DAC Clock (CLK) period  
in picoseconds. This moves the sampling edge of DSS from  
the position marked Orig, to the position marked New in  
the figure.  
0ns  
5ns  
10ns  
15ns  
t1  
t2  
t3  
t4  
t5  
I4  
DATA  
I0  
Q0  
I1  
Q1  
I2  
Q2  
I3  
Q3  
7. If SEEK = 1, and HLD is more than two counts higher than  
SET, then your timing resembles that shown in Figure 59.  
Program the value of SMP to be  
DCLK_IN  
tHLD0  
ORIGINAL  
tSET0  
DSS_ORIG  
DSS_NEW  
tHLD  
(HLD SET)  
tSMP_DLY  
tSET  
SMP =  
4
NEW  
This moves the sampling edge of DSS from the position  
marked Orig to the position marked New in the figure.  
Figure 59. Digital Data Timing Calibration  
8. If SEEK = 0, then your timing resembles that shown in  
Figure 60. Program the value of SMP to be  
PER + 80 × (HLD SET)  
SMP =  
320  
Where PER is the period of the DAC Clock (CLK) period  
in picoseconds. This moves the sampling edge of DSS from  
Rev. PrG | Page 24 of 32  
Preliminary Technical Data  
AD9780/AD9781/AD9783  
V
= 400mV  
0ns  
5ns  
10ns  
15ns  
CM  
t1  
t2  
t3  
t4  
t5  
I4  
CVDD18  
1k  
I0  
Q0  
I1  
Q1  
I2  
Q2  
I3  
Q3  
DATA  
1nF  
CGND  
0.1µF  
1nF  
287Ω  
DCLK_IN  
tHLD0  
tSET0  
Figure 63. DACCLK VCM Generator Circuit  
ORIGINAL  
DSS_ORIG  
DSS_NEW  
tHLD  
FULL-SCALE CURRENT GENERATION  
Internal Reference  
tSET  
tSMP_DLY  
Full-scale current on the I DAC and Q DAC can be set from  
8.66 mA to 31.66 mA. Initially, the 1.2 V band gap reference is  
used to set up a current in an external resistor connected to  
FSADJ (Pin54). A simplified block diagram of the reference  
circuitry is shown in Figure 64. The recommended value for the  
external resistor is 10 kΩ, which sets up an IREFERENCE in the  
resistor of 120 μA, which in turn provides a DAC output full-  
scale current of 20 mA. Because the gain error is a linear  
function of this resistor, a high precision resistor improves gain  
matching to the internal matching specification of the devices.  
Internal current mirrors provide a current-gain scaling, where I  
DAC or Q DAC gain is a 10-bit word in the SPI port register.  
The default value for the DAC gain registers gives a full-scale  
current output (IFS) of approximately 20 mA, where IFS is equal  
to:  
NEW  
Figure 60. Digital Data Timing Calibration  
DRIVING THE CLK INPUT  
The CLK input requires a low jitter differential drive signal. It is  
a PMOS input differential pair powered from the 1.8 V supply,  
therefore, it is important to maintain the specified 400 mV  
input common-mode voltage. Each input pin can safely swing  
from 200 mV p-p to 1 V p-p about the 400 mV common-mode  
voltage. While these input levels are not directly LVDS-  
compatible, CLK can be driven by an offset ac-coupled LVDS  
signal, as shown in Figure 61.  
0.1µF  
LVDS_P_IN  
CLKP  
50  
50Ω  
V
= 400mV  
CM  
IFS = (86.6 + (0.220 × DAC gain))×1000 / R  
LVDS_N_IN  
CLKN  
0.1µF  
Figure 61. LVDS DACCLK Drive Circuit  
AD9783  
If a clean sine clock is available, it can be transformer-coupled  
to CLK, as shown in Figure 61. Use of a CMOS or TTL clock is  
also acceptable for lower sample rates. It can be routed through  
a CMOS to LVDS translator, then ac-coupled, as described in  
this section. Alternatively, it can be transformer-coupled and  
clamped, as shown in Figure 62.  
I DAC GAIN  
1.2V BAND GAP  
I DAC  
REFIO  
CURRENT  
SCALING  
DAC FULL SCALE  
REFERENCE CURRENT  
0.1µF  
FS ADJ  
Q DAC  
10k  
Q DAC GAIN  
Figure 64. Reference Circuitry  
0.1µF  
50  
TTL OR CMOS  
CLK INPUT  
CLKP  
35  
30  
25  
20  
15  
10  
5
CLKN  
50Ω  
BAV99ZXCT  
HIGH SPEED  
DUAL DIODE  
V
= 400mV  
CM  
Figure 62. TTL or CMOS DACCLK Drive Circuit  
A simple bias network for generating VCM is shown in  
Figure 63. It is important to use CVDD18 and CGND for the  
clock bias circuit. Any noise or other signal that is coupled onto  
the clock is multiplied by the DAC digital input signal and can  
degrade the DACs performance.  
0
256  
512  
768  
1024  
DAC GAIN CODE  
Figure 65. IFS vs. DAC Gain Code  
Rev. PrG | Page 2ꢀ of 32  
AD9780/AD9781/AD9783  
Preliminary Technical Data  
from dc to fDAC. Additionally, there is a second subtle effect on  
the output spectrum. The shifted spectrum is also shaped by a  
second Sinc function with a first null at 2 × fDAC. The reason for  
this shaping is that the data is not continuously varying at twice  
the clock rate, but is simply repeated.  
DAC TRANSFER FUNCTION  
Each DAC output of the AD9780/AD9781/AD9783 drives two  
complementary current outputs, IOUTP and IOUTN. IOUTP provides  
a near IFS when all bits are high. For example,  
DAC CODE = 2N − 1,  
In the return-to-zero mode, the output is set to mid-scale every  
other half clock cycle. The output is similar to the DAC output  
in normal mode except that the output pulses are half the width  
and half the area. Because the output pulses have half the width,  
the sinc function is scaled in frequency by two and has a first  
null at 2 × fDAC. Because the area of the pulses is half that of the  
pulses in normal mode, the output power is half the normal  
mode output power.  
where:  
N = 12-/14-/16-bits for AD9780/AD9781/AD9783 respectively),  
while IOUTN provides no current.  
The current output appearing at IOUTP and IOUTN is a function of  
both the input code and IFS and can be expressed as  
IOUTP = (DAC DATA/2N) × IFS  
IOUTN = ((2N − 1) − DAC DATA)/2N × IFS  
where DAC DATA = 0 to 2N − 1 (decimal representation).  
(1)  
(2)  
D
D
D
D
D
D
D
D
D
D
9 10  
INPUT DATA  
1
2
3
4
5
6
7
8
DAC CLK  
The two current outputs typically drive a resistive load directly  
or via a transformer. If dc coupling is required, IOUTP and IOUTN  
should be connected to matching resistive loads (RLOAD) that are  
tied to analog common (AVSS). The single-ended voltage  
output appearing at the IOUTP and IOUTN pins is  
4-SWITCH  
DAC OUTPUT  
t
t
(
fS MIX MODE)  
VOUTP = IOUTP × RLOAD  
VOUTN = IOUTN × RLOAD  
(3)  
(4)  
4-SWITCH  
DAC OUTPUT  
(RETURN-TO-  
ZERO MODE)  
Note that to achieve the maximum output compliance of 1 V at  
the nominal 20 mA output current, RLOAD must be set to 50 Ω.  
Also note that the full-scale value of VOUTP and VOUTN should  
not exceed the specified output compliance range to maintain  
specified distortion and linearity performance.  
Figure 66. Mix Mode and RZ DAC Waveforms  
The functions that shape the output spectrums for the three  
modes of operation; normal mode, mix mode and return-to-  
zero mode, are shown in Figure 67. Switching between the  
analog modes reshapes the sinc roll off inherent at the DAC  
output. This ability to change modes in the AD9780/  
AD9781/AD9783 make the parts suitable for direct IF  
applications. The user can place a carrier anywhere in the first  
three nyquist zones depending on the operating mode selected.  
The performance and maximum amplitude in all three nyquist  
zones is impacted by this sinc roll off depending on where the  
carrier is placed, as shown in Figure 67.  
There are two distinct advantages to operating the AD9780/  
AD9781/AD9783 differentially. First, differential operation  
helps cancel common-mode error sources associated with IOUTP  
and IOUTN, such as noise, distortion, and dc offsets. Second, the  
differential code dependent current and subsequent output  
voltage (VDIFF) is twice the value of the single-ended voltage  
output (VOUTP or VOUTN), providing 2× signal power to the load.  
VDIFF = (IOUTP IOUTN) × RLOAD  
(5)  
ANALOG MODES OF OPERATION  
0
TheAD9780/AD9781/AD9783 utilizes a proprietery quad-  
switch architecture that lowers the distortion of the DAC by  
eliminating a code dependent glitch that occurs with  
conventional dual-switch architectures. This architecture  
eliminates the code dependent glitches, but creates a constant  
glitch at a rate of 2 × fDAC. For communications systems and  
other applications requiring good frequency domain  
performance from the DAC, this is seldom problematic.  
MIX  
RZ  
–10  
NORMAL  
–20  
The quad-switch architecture also supports two additional  
modes of operation; mix mode and return-to-zero mode. The  
waveforms of these two modes are shown in Figure 66. In the  
mix mode, the output is inverted every other half clock cycle.  
This effectively chops the DAC output at the sample rate. This  
chopping has the effect of frequency shifting the sinc roll-off  
–30  
–40  
0
0.5  
1.0  
fS  
1.5  
2.0  
(
)
Figure 67. Transfer Function for Each Analog Operating Mode  
Rev. PrG | Page 26 of 32  
Preliminary Technical Data  
AD9780/AD9781/AD9783  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
Auxiliary DACS  
Two auxiliary DACs are provided on the AD9780/AD9781/  
AD9783. A functional diagram is shown in Figure 68. The  
auxiliary DACs are current output devices with two output pins,  
AUXP and AUXN. The active pin can be programmed to either  
source or sink current. When either sinking or sourcing, the full-  
scale current magnitude is 2 mA. The available compliance range at  
the auxiliary DAC outputs depends on whether the output is  
configured to a sink or source current. When sourcing current,  
the compliance voltage is 0 V to 1.6 V but when sinking current  
the output compliance voltage is reduced to 0.8 V to 1.6 V.  
Either output can be used, but only one output of the AUX DAC  
(P or N) is active at any time. The inactive pin is always in a high  
impedance state (>100 kΩ).  
0
100  
200  
300  
400  
500  
600  
CLOCK SPEED (MSPS)  
Figure 70. Power Dissipation, I Data Only, Single DAC Mode  
0mA  
TO  
0.200  
2mA  
AUXP  
V
BIAS  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
AUXN  
0mA  
SINK  
OR  
SOURCE  
POSITIVE  
OR  
TO  
2mA  
NEGATIVE  
Figure 68. Auxiliary DAC Functional Diagram  
In a single sideband transmitter application, the combination of  
the input referred dc offset voltage of the quadrature modulator  
and the DAC output offset voltage can result in local oscillator  
(LO) feedthrough at the modulator output, which degrades  
system performance. The auxiliary DACs can be used to  
remove the dc offset and the resulting LO feedthrough. The  
circuit configuration for using the auxiliary DACs for  
performing dc offset correction depends on the details of the  
DAC and modulator interface. An example of a dc-coupled  
configuration with low-pass filtering is outlined in the  
Figure 69.  
DVDD18  
CVDD  
300  
0
100  
200  
400  
500  
600  
CLOCK SPEED (MSPS)  
Figure 71. Power Dissipation, Digital 1.8 V Supply, Clock 1.8 V Supply I Data  
Only  
0.200  
0.175  
0.150  
QUADRATURE  
MODULATOR V+  
0.125  
AVDD33  
0.100  
0.075  
AD9783  
AUX  
DAC1 OR  
DAC2  
QUAD MOD  
I OR Q INPUTS  
0.050  
DVDD3  
0.025  
0
OPTIONAL  
PASSIVE  
FILTERING  
AD9783  
DAC1 OR  
DAC2  
0
100  
200  
300  
400  
500  
600  
CLOCK SPEED (MSPS)  
Figure 72. Power Dissipation, Digital 3.3 V Supply, Analog 3.3 V Supply,  
I Data Only  
25TO 50Ω  
25TO 50Ω  
Figure 69. DAC DC Coupled to Quadrature Modulator with Passive DC Shift  
POWER DISSIPATION  
Figure 70 through Figure 75 show the power dissipation of the  
part in single DAC and dual DAC modes.  
Rev. PrG | Page 27 of 32  
AD9780/AD9781/AD9783  
Preliminary Technical Data  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.200  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
AVDD33  
DVDD3  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
CLOCK SPEED (MSPS)  
CLOCK SPEED (MSPS)  
Figure 73. . Power Dissipation, I and Q Data Only, Dual DAC Mode  
Figure 75. Power Dissipation, Digital 3.3 V Supply, Analog 3.3 V Supply I and  
Q Data Dual DAC Mode  
0.200  
0.175  
0.150  
0.125  
0.100  
0.075  
DVDD18  
0.050  
CVDD  
0.025  
0
0
100  
200  
300  
400  
500  
600  
CLOCK SPEED (MSPS)  
Figure 74. Power Dissipation, Digital 1.8 V Supply, Clock 1.8 V Supply I and Q  
Data Dual DAC Mode  
Rev. PrG | Page 28 of 32  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
AD9780/AD9781/AD9783  
0.30  
0.60 MAX  
55  
10.00  
BSC SQ  
0.23  
0.18  
0.60 MAX  
PIN 1  
INDICATOR  
72  
1
54  
PIN 1  
INDICATOR  
0.50  
BSC  
9.75  
BSC SQ  
4.70  
BSC SQ  
TOP VIEW  
EXPOSED  
PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
18  
19  
37  
36  
0.80 MAX  
0.65 TYP  
9.00 REF  
1.00  
0.85  
0.80  
12° MAX  
EXPOSED PAD MUST BE  
SOLDERED TO PCB AND  
CONNECTED TO AVSS.  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VNND-3  
Figure 76. 72-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
10 mm × 10 mm, Very Thin Quad  
(CP-72-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−4±°C to +8ꢀ°C  
Package Description  
72-Lead LFCSP  
72-Lead LFCSP  
72-Lead LFCSP  
72-Lead LFCSP  
72-Lead LFCSP  
72-Lead LFCSP  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Package Option  
AD978±BCPZ1  
AD978±BCPZRL71  
AD9781BCPZ1  
AD9781BCPZRL71  
AD9783BCPZ1  
AD9783BCPZRL71  
AD978±-EB1  
CP-72-1  
CP-72-1  
CP-72-1  
CP-72-1  
CP-72-1  
CP-72-1  
−4±°C to +8ꢀ°C  
−4±°C to +8ꢀ°C  
−4±°C to +8ꢀ°C  
−4±°C to +8ꢀ°C  
−4±°C to +8ꢀ°C  
AD9781-EB1  
AD9783-EB1  
1 Z = RoHS Compliant Part.  
Rev. PrG | Page 29 of 32  
AD9780/AD9781/AD9783  
NOTES  
Preliminary Technical Data  
Rev. PrG | Page 3± of 32  
Preliminary Technical Data  
NOTES  
AD9780/AD9781/AD9783  
Rev. PrG | Page 31 of 32  
AD9780/AD9781/AD9783  
NOTES  
Preliminary Technical Data  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR06936-0-9/07(PrG)  
Rev. PrG | Page 32 of 32  

相关型号:

AD9781_15

Dual 12-/14-/16-Bit, LVDS Interface, 500 MSPS DACs
ADI

AD9782

12-Bit, 200 MSPS/500 MSPS TxDAC+ with 2 x /4 x /8 x Interpolation and Signal Processing
ADI

AD9783

Dual 12-/14-/16-Bit, LVDS Interface, 500 MSPS DACs
ADI

AD9783-DPG2-EBZ

LVDS Interface, 500 MSPS DACs
ADI

AD9783-EBZ

Dual 12-/14-/16-Bit, LVDS Interface, 500 MSPS DACs
ADI

AD9783BCPZ

Dual 12-/14-/16-Bit, LVDS Interface, 500 MSPS DACs
ADI

AD9783BCPZRL

Dual 12-/14-/16-Bit, LVDS Interface, 500 MSPS DACs
ADI

AD9783BCPZRL7

IC PARALLEL, WORD INPUT LOADING, 16-BIT DAC, QCC72, 10 X 10 MM, ROHS COMPLIANT, MO-220VNND-3, LFCSP-72, Digital to Analog Converter
ADI

AD9783_15

Dual 12-/14-/16-Bit, LVDS Interface, 500 MSPS DACs
ADI

AD9784

14-Bit, 200 MSPS/500 MSPS TxDAC+ with 2×/4×/8× Interpolation and Signal Processing
ADI

AD9785

Dual 12-/14-/16-Bit 800 MSPS DAC with Low Power 32-Bit Complex NCO
ADI

AD9785-EBZ

Dual 12-/14-/16-Bit 800 MSPS DAC with Low Power 32-Bit Complex NCO
ADI