AD9847AKSTRL [ADI]

IC SPECIALTY CONSUMER CIRCUIT, PQFP48, 1.40 MM HEIGHT, PLASTIC, MS-026BBC, LQFP-48, Consumer IC:Other;
AD9847AKSTRL
型号: AD9847AKSTRL
厂家: ADI    ADI
描述:

IC SPECIALTY CONSUMER CIRCUIT, PQFP48, 1.40 MM HEIGHT, PLASTIC, MS-026BBC, LQFP-48, Consumer IC:Other

驱动器 CD
文件: 总28页 (文件大小:417K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit 40 MSPS CCD Signal Processor  
with Integrated Timing Driver  
a
AD9847  
FEATURES  
GENERAL DESCRIPTION  
Correlated Double Sampler (CDS)  
–2 dB to +10 dB Pixel Gain Amplifier (PxGA®)  
2 dB to 36 dB 10-Bit Variable Gain Amplifier (VGA)  
10-Bit 40 MHz A/D Converter  
Black Level Clamp with Variable Level Control  
Complete On-Chip Timing Driver  
Precision Timing™ Core with 500 ps  
Resolution at 40 MSPS  
The AD9847 is a highly integrated CCD signal processor for  
digital still camera applications. The AD9847 includes a com-  
plete analog front end with A/D conversion, combined with  
a programmable timing driver. The Precision Timing core allows  
adjustment of high speed clocks with approximately 500 ps  
resolution at clock speeds of 40 MHz.  
The AD9847 is specified at pixel rates of 40 MHz. The analog  
front end includes black level clamping, CDS, PxGA, VGA, and a  
10-bit A/D converter. The timing driver provides the high speed  
CCD clock drivers for RG and H1–H4. Operation is programmed  
using a 3-wire serial interface.  
On-Chip 5 V Horizontal and RG Drivers  
48-Lead LQFP Package  
APPLICATIONS  
Digital Still Cameras  
Packaged in a space-saving 48-lead LQFP, the AD9847 is speci-  
fied over an operating temperature range of –20°C to +85°C.  
FUNCTIONAL BLOCK DIAGRAM  
VRT VRB  
VREF  
4 6dB  
2dB TO 36dB  
VGA  
10  
DOUT  
CDS  
ADC  
PxGA  
CCDIN  
CLAMP  
CLAMP  
INTERNAL  
CLOCKS  
CLPOB  
CLPDM  
PBLK  
CLI  
RG  
PRECISION  
TIMING  
CORE  
HORIZONTAL  
DRIVERS  
4
H1–H4  
SYNC  
GENERATOR  
INTERNAL  
REGISTERS  
AD9847  
HD  
VD  
SL  
SCK SDATA  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc.  
–SPECIFICATIONS  
AD9847  
GENERAL SPECIFICATIONS  
Parameter  
Min  
Typ  
Max  
Unit  
TEMPERATURE RANGE  
Operating  
Storage  
–20  
–65  
+85  
+150  
°C  
°C  
MAXIMUM CLOCK RATE  
40  
MHz  
POWER SUPPLY VOLTAGE  
Analog (AVDD1, 2, 3)  
Digital1 (DVDD1) H1–H4  
Digital2 (DVDD2) RG  
Digital3 (DVDD3) D0–D11  
Digital4 (DVDD4) All Other Digital  
2.7  
3.0  
3.0  
3.6  
5.5  
5.5  
V
V
V
V
V
3.0  
3.0  
POWER DISSIPATION  
DVDD1 (@ 5 V, 100 pF H Loading, 40 MSPS)  
DVDD2 (@ 5 V, 20 pF RG Loading, 40 MSPS)  
DVDD1 (@ 3 V, 100 pF H Loading, 40 MSPS)  
DVDD2 (@ 3 V, 20 pF H Loading, 40 MSPS)  
AVDD1, 2, 3, DVDD3, 4 (@ 3 V, 40 MSPS)  
Total Shutdown Mode  
450  
45  
180  
15  
200  
1
mW  
mW  
mW  
mW  
mW  
mW  
Specifications subject to change without notice.  
(TMIN to TMAX, AVDD1 = DVDD3, DVDD4 = 2.7 V, DVDD1, DVDD2 = 5.25 V, CL = 20 pF, unless  
DIGITAL SPECIFICATIONS otherwise noted.)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
VIH  
VIL  
IIH  
IIL  
CIN  
2.1  
V
V
µA  
µA  
pF  
0.6  
10  
10  
10  
LOGIC OUTPUTS  
High Level Output Voltage, IOH = 2 mA  
Low Level Output Voltage, IOL = 2 mA  
VOH  
VOL  
2.2  
V
V
0.5  
CLI INPUT  
High Level Input Voltage  
(AVDD1, 2 + 0.5 V)  
Low Level Input Voltage  
VIH–CLI  
VIL–CLI  
1.85  
V
V
0.85  
RG AND H-DRIVER OUTPUTS  
High Level Output Voltage  
(DVDD1, 2 – 0.5 V)  
Low Level Output Voltage  
VOH  
VOL  
4.75  
V
V
0.5  
Maximum Output Current (Programmable)  
Maximum Load Capacitance  
24  
100  
mA  
pF  
Specifications subject to change without notice.  
–2–  
REV. A  
AD9847  
(TMIN to TMAX, AVDD = DVDD = 3.0 V, fCLI = 40 MHz, unless otherwise noted.)  
ANALOG SPECIFICATIONS  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
CDS  
Gain  
0
500  
dB  
Allowable CCD Reset Transient*  
Max Input Range before Saturation*  
Max CCD Black Pixel Amplitude*  
mV  
V p-p  
mV  
1.0  
150  
PIXEL GAIN AMPLIFIER (PxGA)  
Max Input Range  
Max Output Range  
Gain Control Resolution  
Gain Monotonicity  
Gain Range  
1.0  
1.6  
V p-p  
V p-p  
Steps  
64  
Guaranteed  
Min Gain (32)  
Med Gain (0)  
Max Gain (31)  
–2  
4
10  
dB  
dB  
dB  
Med Gain (4 dB) Is Default Setting  
VARIABLE GAIN AMPLIFIER (VGA)  
Max Input Range  
Max Output Range  
Gain Control Resolution  
Gain Monotonicity  
Gain Range  
1.6  
2.0  
V p-p  
V p-p  
Steps  
1024  
Guaranteed  
Low Gain (91)  
Max Gain (1023)  
2
36  
dB  
dB  
BLACK LEVEL CLAMP  
Clamp Level Resolution  
Clamp Level  
256  
Steps  
Measured at ADC Output  
Min Clamp Level (0)  
Max Clamp Level (255)  
0
LSB  
LSB  
63.75  
A/D CONVERTER  
Resolution  
Differential Nonlinearity (DNL)  
No Missing Codes  
10  
Bits  
LSB  
0.4  
Guaranteed  
2.0  
1.0  
Full-Scale Input Voltage  
V
VOLTAGE REFERENCE  
Reference Top Voltage (VRT)  
Reference Bottom Voltage (VRB)  
2.0  
1.0  
V
V
SYSTEM PERFORMANCE  
Specifications Include Entire  
Signal Chain  
Gain Accuracy  
Gain Includes 4 dB Default PxGA  
Low Gain (91)  
Max Gain (1023)  
Peak Nonlinearity, 500 mV Input Signal  
Total Output Noise  
Power Supply Rejection (PSR)  
5
6
7
dB  
dB  
%
LSB rms  
dB  
38  
0.2  
0.25  
40  
12 dB Gain Applied  
AC Grounded Input, 6 dB Gain Applied  
Measured with Step Change on Supply  
*Input signal characteristics defined as follows:  
500mV TYP  
RESET  
TRANSIENT  
1V MAX  
150mV MAX  
INPUT  
OPTICAL  
SIGNAL RANGE  
BLACK PIXEL  
Specifications subject to change without notice.  
–3–  
REV. A  
AD9847  
(C to 29 pF, fCLI = 40 MHz, Serial Timing in Figures 3a and 3b, unless otherwise noted.)  
TIMING SPECIFICATIONS  
Parameter  
L
Symbol  
Min  
Typ  
Max  
Unit  
MASTER CLOCK (CLI)  
CLI Clock Period  
CLI High/Low Pulsewidth  
Delay from CLI to Internal Pixel  
Period Position  
tCLI  
tADC  
25  
12.5  
ns  
ns  
tCLIDLY  
6
ns  
EXTERNAL MODE CLAMPING  
CLPDM Pulsewidth  
CLPOB Pulsewidth*  
tCDM  
tCOB  
4
2
10  
20  
Pixels  
Pixels  
SAMPLE CLOCKS  
SHP Rising Edge to SHD Rising Edge  
tS1  
10  
ns  
DATA OUTPUTS  
Output Delay from Programmed Edge  
Pipeline Delay  
tOD  
6
9
ns  
Cycles  
SERIAL INTERFACE  
Maximum SCK Frequency  
SL to SCK Setup Time  
SCK to SL Hold Time  
SDATA Valid to SCK Rising Edge Setup  
SCK Falling Edge to SDATA Valid Hold  
SCK Falling Edge to SDATA Valid Read  
fSCLK  
tLS  
tLH  
tDS  
tDH  
tDV  
10  
10  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
*Maximum CLPOB pulsewidth is for functional operation only. Wider typical pulses are recommended to achieve low noise clamp reference.  
Specifications subject to change without notice.  
–4–  
REV. A  
AD9847  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Thermal Resistance  
48-Lead LQFP Package . . . . . . . . . . . . . . . . . . . JA = 92°C/W  
AVDD1, 2, 3 to AVSS . . . . . . . . . . . . . . . . . . . –0.3 to +3.9 V  
DVDD1, 2 to DVSS . . . . . . . . . . . . . . . . . . . . –0.3 to +5.5 V  
DVDD3, 4 to DVSS . . . . . . . . . . . . . . . . . . . . –0.3 to +3.9 V  
Digital Outputs to DVSS3 . . . . . . . . –0.3 to DVDD3 + 0.3 V  
CLPOB, CLPDM, BLK to DVSS4 . –0.3 to DVDD4 + 0.3 V  
CLI to AVSS . . . . . . . . . . . . . . . . . . . –0.3 to AVDD + 0.3 V  
SCK, SL, SDATA to DVSS4 . . . . . –0.3 to DVDD4 + 0.3 V  
VRT, VRB to AVSS . . . . . . . . . . . . . –0.3 to AVDD + 0.3 V  
BYP1–3, CCDIN to AVSS . . . . . . . . –0.3 to AVDD + 0.3 V  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
Lead Temperature (10 sec) . . . . . . . . . . . . . . . . . . . . . . 300°C  
ORDERING GUIDE  
Package  
Temperature  
Range  
Package  
Option  
Model  
Description  
AD9847AKST  
–20°C to +85°C  
Thin Plastic Quad Flatpack (LQFP)  
ST-48  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD9847 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
REV. A  
–5–  
AD9847  
PIN CONFIGURATION  
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
3
4
5
6
7
8
9
(LSB) D0  
D1  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
SL  
PIN 1  
IDENTIFIER  
REFT  
D2  
D3  
REFB  
CMLEVEL  
AVSS3  
AVDD3  
D4  
AD9847  
DVSS3  
DVDD3  
D5  
TOP VIEW  
BYP3  
CCDIN  
(Not to Scale)  
D6  
BYP2  
D7 10  
BYP1  
11  
D8  
AVDD2  
AVSS2  
12  
(MSB) D9  
13 14 15 16 17 18 19 20 21 22 23 24  
NC = NO CONNECT  
PIN FUNCTION DESCRIPTIONS  
Description  
Pin No.  
Mnemonic  
Type*  
1–5  
6
7
8–12  
13, 14  
15  
16  
17, 18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
D0–D4  
DVSS3  
DVDD3  
D5–D9  
H1, H2  
DVSS1  
DVDD1  
H3, H4  
DVSS2  
RG  
DVDD2  
AVSS1  
CLI  
AVDD1  
AVSS2  
AVDD2  
BYP1  
BYP2  
CCDIN  
BYP3  
AVDD3  
AVSS3  
CMLEVEL  
REFB  
REFT  
SL  
DO  
P
P
DO  
DO  
P
P
DO  
P
DO  
P
P
Data Outputs  
Digital Ground 3—Data Outputs  
Digital Supply 3—Data Outputs  
Data Outputs (D9 I MSB)  
S
Horizontal Clocks (to CCD)  
Digital Ground 1—H Drivers  
Digital Supply 1—H Drivers  
Horizontal Clocks (to CCD)  
Digital Ground 1—RG Driver  
Reset Gate Clock (to CCD)  
Digital Supply 2—RG Driver  
Analog Ground 1  
Master Clock Input  
Analog Supply 1  
Analog Ground 2  
Analog Supply 2  
Bypass Pin (0.1 µF to AVSS)  
Bypass Pin (0.1 µF to AVSS)  
Analog Input for CCD Signal  
Bypass Pin (0.1 µF to AVSS)  
Analog Supply 3  
DI  
P
P
P
AO  
AO  
AI  
AO  
P
P
Analog Ground 3  
AO  
AO  
AO  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
P
Internal Bias Level Decoupling (0.1 µF to AVSS)  
Reference Bottom Decoupling (1.0 µF to AVSS)  
Reference Top Decoupling (1.0 µF to AVSS)  
3-Wire Serial Load (from µP)  
3-Wire Serial Data Input (from µP)  
3-Wire Serial Clock (from µP)  
Optical Black Clamp Pulse  
Dummy Black Clamp Pulse  
HCLK Blanking Pulse  
Preblanking Pulse  
Vertical Sync Pulse  
SDI  
SCK  
CLPOB  
CLPDM  
HBLK  
PBLK  
VD  
HD  
Horizontal Sync Pulse  
DVSS4  
DVDD4  
NC  
Digital Ground 4—VD, HD, CLPOB, CLPDM, HBLK, PBLK, SCK, SL, SDATA  
Digital Supply 4—VD, HD, CLPOB, CLPDM, HBLK, PBLK, CK, SL  
Internally Not Connected  
46  
47, 48  
P
NC  
*Type: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, P = Power  
–6–  
REV. A  
AD9847  
Equivalent Input/Output Circuits  
AVDD2  
DVDD4  
R
330ꢁ  
AVSS2  
AVSS2  
DVSS4  
Circuit 1. CCDIN (Pin 29)  
Circuit 4. Digital Inputs (Pins 36–44)  
AVDD1  
DVDD1  
DATA  
330ꢁ  
25kꢁ  
CLI  
1.4V  
OUTPUT  
ENABLE  
AVSS1  
Circuit 2. CLI (Pin 23)  
DVSS1  
DVDD4  
DVDD3  
Circuit 5. H1–H4 and RG (Pins 13, 14, 17, 18, 20)  
DATA  
THREE-  
STATE  
DOUT  
DVSS4  
DVSS3  
Circuit 3. Data Outputs D0–D9 (Pins 1–5, 8–12)  
Typical Performance Characteristics  
0.50  
4
3
2
1
0
0.25  
0
–0.25  
–0.50  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
VGA GAIN CODE – LSB  
TPC 1. Typical DNL  
TPC 2. Output Noise vs. VGA Gain Setting  
REV. A  
–7–  
AD9847  
SYSTEM OVERVIEW  
V-DRIVER  
Figures 1a and 1b show the typical system application diagrams  
for the AD9847. The CCD output is processed by the AD9847’s  
AFE circuitry, which consists of a CDS, PxGA, VGA, black  
level clamp, and A/D converter. The digitized pixel information is  
sent to the digital image processor chip, where all post-processing  
and compression occurs. To operate the CCD, CCD timing param-  
eters are programmed into the AD9847 from the image processor  
through the 3-wire serial interface. From the system master clock,  
CLI, provided by the image processor, the AD9847 generates  
the high speed CCD clocks and all internal AFE clocks. All  
AD9847 clocks are synchronized with VD and HD.  
V1–V4, VSG1–VSG8, SUBCK  
H1–H4, RG  
DOUT  
CLPOB  
CLPDM  
CCDIN  
DIGITAL IMAGE  
PROCESSING  
ASIC  
CCD  
AD9847  
INTEGRATED  
AFE + TD  
PBLK  
HBLK  
HD, VD  
CLI  
SERIAL  
INTERFACE  
V-DRIVER  
Figure 1b. Typical Application (External Mode)  
V1–V4, VSG1–VSG8, SUBCK  
Figure 2 shows the horizontal and vertical counter dimensions for  
the AD9847. All internal horizontal clocking is programmed using  
these dimensions to specify line and pixel locations.  
H1–H4, RG  
DOUT  
CCDIN  
CCD  
AD9847  
INTEGRATED  
AFE + TD  
MAXIMUM FIELD DIMENSIONS  
DIGITAL IMAGE  
PROCESSING  
ASIC  
HD, VD  
CLI  
12-BIT HORIZONTAL = 4096 PIXELS MAX  
12-BIT VERTICAL = 4096 LINES MAX  
SERIAL  
INTERFACE  
Figure 1a. Typical Application (Internal Mode)  
Figure 1a shows the AD9847 used in internal mode, in which all  
the horizontal pulses (CLPOB, CLPDM, PBLK, and HBLK)  
are programmed and generated internally. Figure 1b shows the  
AD9847 operating in external mode, in which the horizontal  
pulses are supplied externally by the image processor.  
The H-drivers for H1–H4 and RG are included in the AD9847,  
allowing these clocks to be directly connected to the CCD. The  
AD9847 supports H-drive voltage of 5 V.  
Figure 2. Vertical and Horizontal Counters  
–8–  
REV. A  
AD9847  
SERIAL INTERFACE TIMING  
SDATA  
A0  
A1  
tDS  
A2  
A4  
A5  
A6  
A7  
D0  
D1  
D2  
D3  
D4  
D5  
XX  
XX  
A3  
tDH  
SCK  
tLS  
tLH  
SL  
VD  
SL UPDATED  
VD/HD UPDATED  
HD  
NOTES  
1. SDATA BITS ARE LATCHED ON SCK RISING EDGES.  
2. 14 SCK EDGES ARE NEEDED TO WRITE ADDRESS AND DATA BITS.  
3. FOR 16-BIT SYSTEMS, TWO EXTRA DUMMY BITS MAY BE WRITTEN. DUMMY BITS ARE IGNORED.  
4. NEW DATA IS UPDATED EITHER AT THE SL RISING EDGE OR AT THE HD FALLING EDGE AFTER THE NEXT VD FALLING EDGE.  
5. VD/HD UPDATE POSITION MAY BE DELAYED TO ANY HD FALLING EDGE IN THE FIELD USING THE UPDATE REGISTER.  
Figure 3a. Serial Write Operation  
DATA FOR STARTING  
REGISTER ADDRESS  
DATA FOR NEXT  
REGISTER ADDRESS  
...  
...  
SDATA  
A0  
A1  
A2  
A4  
A5  
A6  
A7  
D0  
D1  
D2  
D3  
D4  
D5  
D0  
D1  
D2  
D3  
D4  
D5  
D0  
A3  
D1  
D2  
SCK  
SL  
...  
NOTES  
1. MULTIPLE SEQUENTIAL REGISTERS MAY BE LOADED CONTINUOUSLY.  
2. THE FIRST (LOWEST ADDRESS) REGISTER ADDRESS IS WRITTEN, FOLLOWED BY MULTIPLE 6-BIT DATA-WORDS.  
3. THE ADDRESS WILL AUTOMATICALLY INCREMENT WITH EACH 6-BIT DATA-WORD (ALL SIX BITS MUST BE WRITTEN).  
4. SL IS HELD LOW UNTIL THE LAST DESIRED REGISTER HAS BEEN LOADED.  
5. NEW DATA IS UPDATED EITHER AT THE SL RISING EDGE OR AT THE HD FALLING EDGE AFTER THE NEXT VD FALLING EDGE.  
Figure 3b. Continuous Serial Write Operation  
COMPLETE REGISTER LISTING  
Table I. SL Updated Registers  
Register  
Register  
Description  
Description  
oprmode  
ctlmode  
AFE Operation Modes  
AFE Control Modes  
h1drv  
h2drv  
H1 Drive Current  
H2 Drive Current  
preventpdate  
readback  
vdhdpol  
Prevents Loading of VD-Updated Registers  
Enables Serial Register Readback Mode  
VD/HD Active Polarity  
h3drv  
h4drv  
rgpol  
H3 Drive Current  
H4 Drive Current  
RG Polarity  
fieldval  
Internal Field Pulse Value  
rgposloc  
rgnegloc  
rgdrv  
shpposloc  
shdposloc  
RG Positive Edge Location  
RG Negative Edge Location  
RG Drive Current  
SHP Sample Location  
SHD Sample Location  
hblkretime  
tgcore_rstb  
h12pol  
h1posloc  
h1negloc  
Retimes the H1 hblk to Internal Clock  
Reset Bar Signal for Internal TG Core  
H1/H2 Polarity Control  
H1 Positive Edge Location  
H1 Negative Edge Location  
NOTES  
All addresses and default values are expressed in hexadecimal.  
All registers are VD/HD updated as shown in Figure 3a, except for those that are SL updated.  
REV. A  
–9–  
AD9847  
Accessing a Double-Wide Register  
clpdmscp3 register, the contents of Address 0x81 must be  
written first, followed by the contents of Address 0x82. The  
register will be updated after the completion of the write to  
Register 0x82, either at the next SL rising edge or the next  
VD/HD falling edge.  
There are many double-wide registers in the AD9847, e.g.,  
oprmode, clpdmtog1_0, and clpdmscp3, and so on. These regis-  
ters are configured into two consecutive 6-bit registers with the  
least significant six bits located in the lower of the two addresses  
and the remaining most significant bits located in the higher of  
the two addresses. For example, the six LSBs of the clpdmscp3  
register, clpdmscp3[5:0], are located at address 0x81. The most  
significant six bits of the clpdmscp3 register, clpdmscp3[11:6],  
are located at Address 0x82. The following rules must be fol-  
lowed when accessing double-wide registers:  
3. A single write to the lower of the two consecutive addresses  
of a double-wide register that is not followed by a write to the  
higher address of the registers is not permitted. This will not  
update the register.  
4. A single write to the higher of the two consecutive addresses of a  
double-wide register that is not preceded by a write to the lower  
of the two addresses is not permitted. Although the write to the  
higher address will update the full double-wide register, the  
lower six bits of the register will be written with an indetermi-  
nate value if the lower address was not written to first.  
1. When accessing a double-wide register, BOTH addresses  
must be written to.  
2. The lower of the two consecutive addresses for the double-  
wide register must be written to first. In the example of the  
Bit  
Content  
Default  
Value  
Address  
Width  
Register Name  
Register Description  
AFE Registers # Bits 56  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
[5:0]  
[1:0]  
[5:0]  
[3:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
6
2
6
4
6
2
6
6
6
6
6
00  
00  
16  
02  
00  
02  
00  
00  
00  
00  
00  
oprmode[5:0]  
oprmode[7:6]  
ccdgain[5:0]  
ccdgain[9:6]  
refblack[5:0]  
refblack[7:6]  
ctlmode  
pxga gain0  
pxga gain1  
pxga gain2  
pxga gain3  
AFE Operation Mode (See AFE Register Breakdown)  
VGA Gain  
Black Clamp Level  
Control Mode (See AFE Register Breakdown)  
PxGA Color 0 Gain  
PxGA Color 1 Gain  
PxGA Color 2 Gain  
PxGA Color 3 Gain  
Miscellaneous/Extra # Bits 26  
0F  
[5:0]  
6
00  
INITIAL2  
See Recommended Power Up Sequence Section. Should be  
set to “4” decimal (000100).  
16  
17  
18  
19  
1B  
1C  
[0]  
1
6
6
1
6
1
00  
00  
00  
00  
00  
00  
out_cont  
Output Control (0 = Make All Outputs DC Inactive)  
Serial Data Update Control (Sets the line within the field  
for serial data update to occur)  
Prevent the Update of the VD/HD Updated Registers  
DOUT Phase Control  
Disable CCDIN DC Restore Circuit During PBLK  
(1 = Disable)  
[5:0]  
[5:0]  
[0]  
[5:0]  
[0]  
update[5:0]  
update[11:6]  
preventupdate  
doutphase  
disablerestore  
1D  
1E  
[0]  
[0]  
1
1
00  
01  
vdhdpol  
fieldval  
VD/HD Active Polarity (0 = Low Active, 1 = High Active)  
Internal Field Pulse Value (0 = Next Field Odd,  
1 = Next Field Even)  
1F  
20  
[0]  
[5:0]  
1
6
00  
00  
hblkretime  
INITIAL1  
Re-Sync hblk to h1 Clock  
See Recommended Power Up Sequence. Should be set to  
“53” decimal (110101).  
26  
[0]  
1
00  
tgcore_rstb  
TG Core Reset_Bar (0 = Hold TG Core in Reset,  
1 = Resume Normal Operation)  
–10–  
REV. A  
AD9847  
Bit  
Default  
Address Content Width Value  
Register Name  
Register Description  
CLPDM # Bits 146  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
[0]  
[0]  
[0]  
1
1
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
0
2
6
6
2
6
6
2
6
6
2
01  
00  
01  
2C  
00  
35  
00  
01  
3E  
02  
16  
03  
00  
3F  
3F  
3F  
3F  
01  
3F  
3F  
3F  
3F  
00  
00  
3F  
3F  
00  
3F  
3F  
00  
3F  
3F  
00  
clpdmdir  
clpdmpol  
clpdmspol0  
CLPDM Internal/External (0 = Internal, 1 = External)  
CLPDM External Active Polarity (0 = Low Active, 1 = High Active)  
Sequence #0: Start Polarity for CLPDM  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
clpdmtog1_0[5:0]  
clpdmtog1_0[11:6]  
clpdmtog2_0[5:0]  
clpdmtog2_0[11:6]  
clpdmspol1  
clpdmtog1_1[5:0]  
clpdmtog1_1[11:6]  
clpdmtog2_1[5:0]  
clpdmtog2_1[11:6]  
clpdmspol2  
clpdmtog1_2[5:0]  
clpdmtog1_2[11:6]  
clpdmtog2_2[5:0]  
clpdmtog2_2[11:6]  
clpdmspol3  
clpdmtog1_3[5:0]  
clpdmtog1_3[11:6]  
clpdmtog2_3[5:0]  
clpdmtog2_3[11:6]  
clpdmscp0  
Sequence #0: Toggle Position 1 for CLPDM  
Sequence #0: Toggle Position 2 for CLPDM  
Sequence #1: Start Polarity for CLPDM  
Sequence #1: Toggle Position 1 for CLPDM  
Sequence #1: Toggle Position 2 for CLPDM  
Sequence #2: Start Polarity for CLPDM  
Sequence #2: Toggle Position 1 for CLPDM  
Sequence #2: Toggle Position 2 for CLPDM  
Sequence #3: Start Polarity for CLPDM  
Sequence #3: Toggle Position 1 for CLPDM  
Sequence #3: Toggle Position 2 for CLPDM  
CLPDM Sequence-Change-Position #0 (Hardcoded to 0)  
CLPDM Sequence Pointer for SCP #0  
CLPDM Sequence-Change-Position #1  
7A  
7B  
7C  
7D  
7E  
7F  
80  
81  
82  
83  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
clpdmsptr0  
clpdmscp1[5:0]  
clpdmscp1[11:6]  
clpdmsptr1  
clpdmscp2[5:0]  
clpdmscp2[11:6]  
clpdmsptr2  
clpdmscp3[5:0]  
clpdmscp3[11:6]  
clpdmsptr3  
CLPDM Sequence Pointer for SCP #1  
CLPDM Sequence-Change-Position #2  
CLPDM Sequence Pointer for SCP #2  
CLPDM Sequence-Change-Position #3  
CLPDM Sequence Pointer for SCP #3  
REV. A  
–11–  
AD9847  
Bit  
Default  
Value  
Address  
Content Width  
Register Name  
Register Description  
CLPOB # Bits 146  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
[0]  
[0]  
[0]  
1
1
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
0
2
6
6
2
6
6
2
6
6
2
01  
00  
01  
0E  
00  
2B  
00  
01  
2B  
06  
3F  
3F  
00  
3F  
3F  
3F  
3F  
01  
3F  
3F  
3F  
3F  
00  
03  
01  
00  
01  
02  
00  
00  
37  
03  
03  
clpobdir  
clpobpol  
clpobpol0  
CLPOB Internal/External (0 = Internal, 1 = External)  
CLPOB External Active Polarity (0 = Low Active, 1 = High Active)  
Sequence #0: Start Polarity for CLPOB  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
clpobtog1_0[5:0]  
clpobtog1_0[11:6]  
clpobtog2_0[5:0]  
clpobtog2_0[11:6]  
clpobpol1  
clpobtog1_1[5:0]  
clpobtog1_1[11:6]  
clpobtog2_1[5:0]  
clpobtog2_1[11:6]  
clpobspol2  
clpobtog1_2[5:0]  
clpobtog1_2[11:6]  
clpobtog2_2[5:0]  
clpobtog2_2[11:6]  
clpobspol3  
clpobtog1_3[5:0]  
clpobtog1_3[11:6]  
clpobtog2_3[5:0]  
clpobtog2_3[11:6]  
clpobscp0  
Sequence #0: Toggle Position 1 for CLPOB  
Sequence #0: Toggle Position 2 for CLPOB  
Sequence #1: Start Polarity for CLPOB  
Sequence #1: Toggle Position 1 for CLPOB  
Sequence #1: Toggle Position 2 for CLPOB  
Sequence #2: Start Polarity for CLPOB  
Sequence #2: Toggle Position 1 for CLPOB  
Sequence #2: Toggle Position 2 for CLPOB  
Sequence #3: Start Polarity for CLPOB  
Sequence #3: Toggle Position 1 for CLPOB  
Sequence #3: Toggle Position 2 for CLPOB  
CLPOB Sequence-Change-Position #0 (Hardcoded to 0)  
CLPOB Sequence Pointer for SCP #0  
CLPOB Sequence-Change-Position #1  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
clpobsptr0  
clpobscp1[5:0]  
clpobscp1[11:6]  
clpobsptr1  
clpobscp2[5:0]  
clpobscp2[11:6]  
clpobsptr2  
clpobscp3[5:0]  
clpobscp3[11:6]  
clpobsptr3  
CLPOB Sequence Pointer for SCP #1  
CLPOB Sequence-Change-Position #2  
CLPOB Sequence Pointer for SCP #2  
CLPOB Sequence-Change-Position #3  
CLPOB Sequence Pointer for SCP #3  
–12–  
REV. A  
AD9847  
Bit  
Default  
Address Content Width Value  
HBLK # Bits 147  
Register Name  
Register Description  
A4  
A5  
A6  
[0]  
[0]  
[0]  
1
1
1
01  
00  
01  
hblkdir  
hblkpol  
hblkextmask  
HBLK Internal/External (0 = Internal, 1 = External)  
HBLK External Active Polarity (0 = Low Active, 1 = High Active)  
HBLK External Masking Polarity (0 = Mask H1 and H3 Low,  
1 = Mask H1 and H3 High)  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
[0]  
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
0
2
6
6
2
6
6
2
6
6
2
01  
3E  
00  
0D  
06  
01  
38  
00  
3C  
02  
00  
3F  
3F  
3F  
3F  
01  
3F  
3F  
3F  
3F  
00  
00  
3F  
3F  
00  
3F  
3F  
00  
3F  
3F  
00  
hblkmask0  
Sequence #0: Masking Polarity for HBLK  
Sequence #0: Toggle Low Position for HBLK  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
hblktog1_0[5:0]  
hblktog1_0[11:6]  
hblkbtog2_0[5:0]  
hblkbtog2_0[11:6]  
hblkmask1  
hblktog1_1[5:0]  
hblktog1_1[11:6]  
hblktog2_1[5:0]  
hblktog2_1[11:6]  
hblkmask2  
hblktog1_2[5:0]  
hblktog1_2[11:6]  
hblktog2_2[5:0]  
hblktog2_2[11:6]  
hblkmask3  
hblktog1_3[5:0]  
hblktog1_3[11:6]  
hblktog2_3[5:0]  
hblktog2_3[11:6]  
hblkscp0  
Sequence #0: Toggle High Position for HBLK  
Sequence #1: Masking Polarity for HBLK  
Sequence #1: Toggle Low Position for HBLK  
Sequence #1: Toggle High Position for HBLK  
Sequence #2: Masking Polarity for HBLK  
Sequence #2: Toggle Low Position for HBLK  
Sequence #2: Toggle High Position for HBLK  
Sequence #3: Masking Polarity for HBLK  
Sequence #3: Toggle Low Position for HBLK  
Sequence #3: Toggle High Position for HBLK  
HBLK Sequence-Change-Position #0 (Hardcoded to 0)  
HBLK Sequence Pointer for SCP #0  
HBLK Sequence-Change-Position #1  
BB  
BC  
BD  
BE  
BF  
C0  
C1  
C2  
C3  
C4  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
hblksptr0  
hblkscp1[5:0]  
hblkscp1[11:6]  
hblksptr1  
hblkscp2[5:0]  
hblkscp2[11:6]  
hblksptr2  
hblkscp3[5:0]  
hblkscp3[11:6]  
hblksptr3  
HBLK Sequence Pointer for SCP #1  
HBLK Sequence-Change-Position #2  
HBLK Sequence Pointer for SCP #2  
HBLK Sequence-Change-Position #3  
HBLK Sequence Pointer for SCP #3  
REV. A  
–13–  
AD9847  
Bit  
Default  
Value  
Address Content Width  
Register Name  
Register Description  
PBLK # Bits 146  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
[0]  
[0]  
[0]  
1
1
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
0
2
6
6
2
6
6
2
6
6
2
01  
00  
01  
3D  
00  
2A  
06  
00  
2A  
06  
3F  
3F  
00  
3F  
3F  
3F  
3F  
01  
3F  
3F  
3F  
3F  
00  
02  
01  
00  
01  
02  
00  
00  
37  
03  
02  
pblkdir  
pblkpol  
pblkspol0  
PBLK Internal/External (0 = Internal, 1 = External)  
PBLK External Active Polarity (0 = Low Active, 1 = High Active)  
Sequence #0: Start Polarity for PBLK  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
pblktog1_0[5:0]  
pblktog1_0[11:6]  
pblkbtog2_0[5:0]  
pblkbtog2_0[11:6]  
pblkspol1  
pblktog1_1[5:0]  
pblktog1_1[11:6]  
pblktog2_1[5:0]  
pblktog2_1[11:6]  
pblkspol2  
pblktog1_2[5:0]  
pblktog1_2[11:6]  
pblktog2_2[5:0]  
pblktog2_2[11:6]  
pblkspol3  
pblktog1_3[5:0]  
pblktog1_3[11:6]  
pblktog2_3[5:0]  
pblktog2_3[11:6]  
pblkscp0  
Sequence #0: Toggle Position 1 for PBLK  
Sequence #0: Toggle Position 2 for PBLK  
Sequence #1: Start Polarity for PBLK  
Sequence #1: Toggle Position 1 for PBLK  
Sequence #1: Toggle Position 2 for PBLK  
Sequence #2: Start Polarity for PBLK  
Sequence #2: Toggle Position 1 for PBLK  
Sequence #2: Toggle Position 2 for PBLK  
Sequence #3: Start Polarity for PBLK  
Sequence #3: Toggle Position 1 for PBLK  
Sequence #3: Toggle Position 2 for PBLK  
PBLK Sequence-Change-Position #0 (Hardcoded to 0)  
PBLK Sequence Pointer for SCP #0  
PBLK Sequence-Change-Position #1  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
pblksptr0  
pblkscp1[5:0]  
pblkscp1[11:6]  
pblksptr1  
pblkscp2[5:0]  
pblkscp2[11:6]  
pblksptr2  
pblkscp3[5:0]  
pblkscp3[11:6]  
pblksptr3  
PBLK Sequence Pointer for SCP #1  
PBLK Sequence-Change-Position #2  
PBLK Sequence Pointer for SCP #2  
PBLK Sequence-Change-Position #3  
PBLK Sequence Pointer for SCP #3  
H1–H4, RG, SHP, SHD # Bits 53  
E5  
E6  
E7  
E8  
[0]  
1
6
6
3
00  
00  
20  
03  
h1pol  
H1/H2 Polarity Control (0 = No Inversion, 1 = Inversion)  
H1 Positive Edge Location  
H1 Negative Edge Location  
H1 Drive Strength (0 = OFF, 1 = 3.5 mA, 2 = 7 mA,  
3 = 10.5 mA, 4 = 14 mA, 5 = 17.5 mA, 6 = 21 mA, 7 = 24.5 mA)  
H2 Drive Strength  
H3 Drive Strength  
H4 Drive Strength  
RG Polarity Control (0 = No Inversion, 1 = Inversion)  
RG Positive Edge Location  
RG Negative Edge Location  
[5:0]  
[5:0]  
[2:0]  
h1posloc  
h1negloc  
h1drv  
E9  
[2:0]  
[2:0]  
[2:0]  
[0]  
[5:0]  
[5:0]  
[2:0]  
3
3
3
1
6
6
3
03  
03  
03  
00  
00  
10  
02  
h2drv  
h3drv  
h4drv  
rgpol  
rgposloc  
rgnegloc  
rgdrv  
EA  
EB  
EC  
ED  
EE  
EF  
RG Drive Strength (0 = OFF, 1 = 3.5 mA, 2 = 7 mA,  
3 = 10.5 mA, 4 = 14 mA, 5 = 17.5 mA, 6 = 21 mA, 7 = 24.5 mA)  
SHP (Positive) Edge Sampling Location  
SHD (Positive) Edge Sampling Location  
F0  
F1  
[5:0]  
[5:0]  
6
6
24  
00  
shpposloc  
shdposloc  
–14–  
REV. A  
AD9847  
Bit  
Content  
Default  
Value  
Address  
Width  
Register Name  
Register Description  
Serial Address:  
AFE Register Breakdown  
oprmode  
[7:0]  
8'h0  
8'h00 {oprmode[5:0]}, 8'h01 {oprmode[7:6]}  
[1:0]  
2'h0  
2'h1  
2'h2  
2'h3  
powerdown[1:0]  
Full Power  
Fast Recovery  
Reference Standby  
Total Shutdown  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
disblack  
Disable Black Loop Clamping (High Active)  
Test Mode—Should Be Set Low  
Test Mode—Should Be Set High  
Test Mode—Should Be Set Low  
Test Mode—Should Be Set Low  
Test Mode—Should Be Set Low  
test mode  
test mode  
test mode  
test mode  
test mode  
ctlmode  
[5:0]  
6'h0  
Serial Address: 8'h06 {cltmode[5:0]}  
[2:0]  
3'h0  
3'h1  
3'h2  
3'h3  
3'h4  
3'h5  
3'h6  
3'h7  
ctlmode[2:0]  
Off  
Mosaic Separate  
VD Selected/Mosaic Interlaced  
Mosaic Repeat  
Three-Color  
Three-Color II  
Four-Color  
Four-Color II  
[3]  
[4]  
enablepxga  
outputlat  
Enable PxGA (High Active)  
Latch Output Data on Selected DOUT Edge  
Leave Output Latch Transparent  
ADC Outputs Are Driven  
ADC Outputs Are Three-Stated  
1'h0  
1'h1  
1'h0  
1'h1  
[5]  
tristateout  
PRECISION TIMING HIGH SPEED TIMING  
Timing Resolution  
GENERATION  
The Precision Timing core uses a 1ϫ master clock input (CLI) as  
a reference. This clock should be the same as the CCD pixel clock  
frequency. Figure 4 illustrates how the internal timing core  
divides the master clock period into 48 steps or edge positions.  
Therefore, the edge resolution of the Precision Timing core is  
(tCLI /48). For more information on using the CLI input, see the  
Applications Information section.  
The AD9847 generates flexible high speed timing signals using  
the Precision Timing core. This core is the foundation for generating  
the timing used for both the CCD and the AFE, the reset gate RG,  
horizontal drivers H1–H4, and the SHP/SHD sample clocks.  
A unique architecture makes it routine for the system designer to  
optimize image quality by providing precise control over the hori-  
zontal CCD readout and the AFE correlated double sampling.  
P[12]  
P[24]  
P[36]  
POSITION  
CLI  
P[0]  
P[48]=P[0]  
...  
tCLIDLY  
...  
1 PIXEL  
PERIOD  
NOTES  
1. PIXEL CLOCK PERIOD IS DIVIDED INTO 48 POSITIONS, PROVIDING FINE EDGE RESOLUTION FOR HIGH SPEED CLOCKS.  
2. THERE IS A FIXED DELAY FROM THE CLI INPUT TO THE INTERNAL PIXEL PERIOD POSITIONS (tCLIDLY = 6 ns TYP).  
Figure 4. High Speed Clock Resolution from CLI Master Clock Input  
REV. A  
–15–  
AD9847  
High Speed Clock Programmability  
The edge location registers are 6 bits wide, but there are only 48  
valid edge locations available. Therefore, the register values are  
mapped into four quadrants, with each quadrant containing 12 edge  
locations. Table III shows the correct register values for the  
corresponding edge locations. Figure 6 shows the range and  
default locations of the high speed clock signals.  
Figure 5 shows how the high speed clocks RG, H1–H4, SHP,  
and SHD are generated. The RG pulse has programmable rising  
and falling edges and may be inverted using the polarity control.  
The horizontal clocks H1 and H3 have programmable rising and  
falling edges and polarity control. The H2 and H4 clocks are  
always inverses of H1 and H3, respectively. Table II summarizes  
the high speed timing registers and their parameters.  
(3)  
(4)  
CCD SIGNAL  
(1)  
(5)  
(2)  
RG  
(6)  
H1/H3  
H2/H4  
NOTES  
PROGRAMMABLE CLOCK POSITIONS:  
(1) RG RISING EDGE AND (2) FALLING EDGE  
(3) SHP AND (4) SHD SAMPLE LOCATION  
(5) H1/H3 RISING EDGE POSITION AND (6) FALLING EDGE POSITION (H2/H4 ARE INVERSE OF H1/H3)  
Figure 5. High Speed Clock Programmable Locations  
Table II. H1–H4, RG, SHP, SHD Timing Parameters  
Register Name  
Length  
Range  
Description  
POL  
POSLOC  
1b  
6b  
High/Low  
0–47 Edge Location  
Polarity Control for H1, H3, and RG (0 = No Inversion, 1 = Inversion)  
Positive Edge Location for H1, H3, and RG  
Sample Location for SHP, SHD  
NEGLOC  
DRV  
6b  
3b  
0–47 Edge Location  
0–7 Current Steps  
Negative Edge Location for H1, H3, and RG  
Drive Current for H1–H4 and RG Outputs (3.5 mA per Step)  
Table III. Precision Timing Edge Locations  
Quadrant  
Edge Location (Decimal)  
Register Value (Decimal)  
Register Value (Binary)  
I
II  
III  
IV  
0 to 11  
0 to 11  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
12 to 23  
24 to 35  
36 to 47  
16 to 27  
32 to 43  
48 to 59  
–16–  
REV. A  
AD9847  
P[48] = P[0]  
P[0]  
P[24]  
P[36]  
P[12]  
POSITION  
PIXEL  
PERIOD  
RGf[12]  
RGr[0]  
RG  
Hf[24]  
Hr[0]  
H1/H3  
SHP[28]  
SHD[48]  
tS1  
CCD SIGNAL  
NOTES  
1. ALL SIGNAL EDGES ARE FULLY PROGRAMMABLE TO ANY OF THE 48 POSITIONS WITHIN ONE PIXEL PERIOD.  
2. DEFAULT POSITIONS FOR EACH SIGNAL ARE SHOWN ABOVE.  
Figure 6. High Speed Clock Default and Programmable Locations  
H-Driver and RG Outputs  
tRISE  
In addition to the programmable timing positions, the AD9847  
features on-chip output drivers for the RG and H1–H4 outputs.  
These drivers are powerful enough to directly drive the CCD  
inputs. The H-driver current can be adjusted for optimum rise/fall  
time into a particular load by using the DRV registers. The RG  
drive current is adjustable using the RGDRV register. Each 3-bit  
DRV register is adjustable in 3.5 mA increments, with the mini-  
mum setting of 0 equal to OFF or three-state and the maximum  
setting of 7 equal to 24.5 mA.  
H1/H3  
H2/H4  
tPD << tRISE  
tPD  
H1/H3  
FIXED CROSSOVER VOLTAGE  
H2/H4  
Figure 7. H-Clock Inverse Phase Relationship  
As shown in Figure 7, the H2/H4 outputs are inverses of H1/H3.  
The internal propagation delay resulting from the signal inversion  
is less than 1 ns, which is significantly less than the typical rise  
time driving the CCD load. This results in a H1/H2 crossover  
voltage at approximately 50% of the output swing. The crossover  
voltage is not programmable.  
Digital Data Outputs  
The AD9847 data output phase is programmable using the  
DOUTPHASE register. Any edge from 0 to 47 may be programmed,  
as shown in Figure 8.  
P[12]  
P[0]  
P[24]  
P[48] = P[0]  
P[36]  
CLI  
1 PIXEL PERIOD  
tOD  
DOUT  
NOTES  
1. DIGITAL OUTPUT DATA (DOUT) PHASE IS ADJUSTABLE WITH RESPECT TO THE PIXEL PERIOD.  
2. WITHIN 1 CLOCK PERIOD, THE DATA TRANSITION CAN BE PROGRAMMED TO ANY OF THE 48 LOCATIONS.  
Figure 8. Digital Output Phase Adjustment  
REV. A  
–17–  
AD9847  
HORIZONTAL CLAMPING AND BLANKING  
and second toggle positions of the pulse. All three signals are  
active low and should be programmed accordingly. Up to four  
individual sequences can be created for each signal.  
The AD9847’s horizontal clamping and blanking pulses are fully  
programmable to suit a variety of applications. As with the vertical  
timing generation, individual sequences are defined for each  
signal and are then organized into multiple regions during image  
readout. This allows the dark pixel clamping and blanking patterns  
to be changed at each stage of the readout, in order to accom-  
modate different image transfer timing and high speed line shifts.  
Individual HBLK Sequences  
The HBLK programmable timing shown in Figure 10 is similar to  
CLPOB, CLPDM, and PBLK. However, there is no start polarity  
control. Only the toggle positions are used to designate the start  
and the stop positions of the blanking period. Additionally, there  
is a polarity control, HBLKMASK, that designates the polarity of  
the horizontal clock signals H1–H4 during the blanking period.  
Setting HBLKMASK high will set H1 = H3 = low and H2 =  
H4 = high during the blanking, as shown in Figure 11. Up to  
four individual sequences are available for HBLK.  
Individual CLPOB, CLPDM, and PBLK Sequences  
The AFE horizontal timing consists of CLPOB, CLPDM, and  
PBLK, as shown in Figure 9. These three signals are indepen-  
dently programmed using the registers in Table IV. SPOL is the  
start polarity for the signal, and TOG1 and TOG2 are the first  
. . .  
HD  
(2)  
(3)  
. . .  
CLPOB  
CLPDM  
PBLK  
(1)  
CLAMP  
CLAMP  
NOTES  
PROGRAMMABLE SETTINGS:  
(1) START POLARITY (CLAMP AND BLANK REGION ARE ACTIVE LOW)  
(2) FIRST TOGGLE POSITION  
(3) SECOND TOGGLE POSITION  
Figure 9. Clamp and Preblank Pulse Placement  
. . .  
. . .  
HD  
(2)  
(1)  
BLANK  
BLANK  
HBLK  
NOTES  
PROGRAMMABLE SETTINGS:  
(1) FIRST TOGGLE POSITION = START OF BLANKING  
(2) SECOND TOGGLE POSITION = END OF BLANKING  
Figure 10. Horizontal Blanking (HBLK) Pulse Placement  
Table IV. CLPOB, CLPDM, PBLK Individual Sequence Parameters  
Register Name  
Length  
Range  
Description  
SPOL  
TOG1  
TOG2  
1b  
12b  
12b  
High/Low  
0–4095 Pixel Location  
0–4095 Pixel Location  
Starting Polarity of Clamp and Blanking Pulses for Sequences 0–3  
First Toggle Position within the Line for Sequences 0–3  
Second Toggle Position within the Line for Sequences 0–3  
Table V. HBLK Individual Sequence Parameters  
Register Name  
Length  
Range  
Description  
HBLKMASK  
HBLKTOG1  
HBLKTOG2  
1b  
12b  
12b  
High/Low  
0–4095 Pixel Location  
0–4095 Pixel Location  
Masking Polarity for H1 for Sequences 0–3 (0 = H1 Low, 1 = H1 High)  
First Toggle Position within the Line for Sequences 0–3  
Second Toggle Position within the Line for Sequences 0–3  
–18–  
REV. A  
AD9847  
. . .  
HD  
. . .  
HBLK  
H1/H3  
THE POLARITY OF H1 DURING BLANKING IS PROGRAMMABLE (H2 IS OPPOSITE POLARITY OF H1)  
. . .  
H1/H3  
H2/H4  
. . .  
Figure 11. HBLK Masking Control  
Horizontal Sequence Control  
PBLK, and HBLK each have a separate set of SCP. For example,  
CLPOBSCP1 will define Region 0 for CLPOB, and in that region  
any of the four individual CLPOB sequences may be selected  
with the CLPOBSPTR registers. The next SCP defines a new  
region, and in that region each signal can be assigned to a different  
individual sequence. The sequence control registers are summarized  
in Table VI.  
The AD9847 uses sequence change positions (SCP) and sequence  
pointers (SPTR) to organize the individual horizontal sequences.  
Up to four SCPs are available to divide the readout into four  
separate regions, as shown in Figure 12. The SCP 0 is always  
hard-coded to line 0, and SCP1–3 are register programmable.  
During each region bounded by the SCP, the SPTR registers  
designate which sequence is used by each signal. CLPOB, CLPDM,  
SINGLE FIELD (1 VD INTERVAL)  
SEQUENCE CHANGE OF POSITION #0  
(V-COUNTER = 0)  
CLAMP AND PBLK SEQUENCE REGION 0  
CLAMP AND PBLK SEQUENCE REGION 1  
SEQUENCE CHANGE OF POSITION #1  
SEQUENCE CHANGE OF POSITION #2  
CLAMP AND PBLK SEQUENCE REGION 2  
CLAMP AND PBLK SEQUENCE REGION 3  
SEQUENCE CHANGE OF POSITION #3  
UP TO FOUR INDIVIDUAL HORIZONTAL CLAMP AND BLANKING REGIONS MAY BE  
PROGRAMMED WITHIN A SINGLE FIELD, USING THE SEQUENCE CHANGE POSITIONS.  
Figure 12. Clamp and Blanking Sequence Flexibility  
Table VI. Horizontal Sequence Control Parameters for CLPOB, CLPDM, PBLK, and HBLK  
Register Name  
Length  
Range  
Description  
SCP1–SCP3  
SPTR0–SPTR3  
12b  
2b  
0–4095 Line Number  
0–3 Sequence Number  
CLAMP/BLANK SCP to Define Horizontal Regions 0–3  
Sequence Pointer for Horizontal Regions 0–3  
REV. A  
–19–  
AD9847  
H-Counter Synchronization  
circuitry by first writing “110101” or “53” decimal to the  
INITIAL1 Register (Address x020). Finally, write “000100”  
or “4” decimal to the INITIAL2 Register (Address x00F).  
The H-Counter reset occurs on the sixth CLI rising edge following  
the HD falling edge. The PxGA steering is synchronized with the  
reset of the internal H-Counter (see Figure 13).  
4. Write a “1” to the PREVENTUPDATE Register (Address x019).  
This will prevent the updating of the serial register data.  
POWER-UP PROCEDURE  
Recommended Power-Up Sequence  
When the AD9847 is powered up, the following sequence is  
recommended (refer to Figure 14 for each step).  
5. Write to the desired registers to configure high speed timing  
and horizontal timing.  
6. Write a “1” to the OUT_CONT Register (Address x016).  
This will allow the outputs to become active after the next  
VD/HD rising edge.  
1. Turn on power supplies for AD9847.  
2. Apply the master clock input CLI, VD, and HD.  
7. Write a “0” to the PREVENTUPDATE Register (Address x019).  
This will allow the serial information to be updated at the  
next VD/HD falling edge.  
3. The Precision Timing core must be reset by writing a “0” to the  
TGCORE_RSTB Register (Address x026) followed by writ-  
ing a “l” to the TGCORE_RSTB Register. This will start the  
internal timing core operation. Next, initialize the internal  
8. The next VD/HD falling edge allows register updates to occur,  
including OUT_CONT, which enables all clock outputs.  
VD  
3ns MIN  
HD  
H-COUNTER  
RESET  
3ns MIN  
CLI  
H-COUNTER  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
1
1
2
0
3
1
4
0
5
1
6
0
7
1
8
0
9
1
10 11 12 14 15  
0
2
1
3
2
2
3
3
5
3
4
2
(PIXEL COUNTER)  
PxGA GAIN  
REGISTER  
X
0
1
0
1
0
NOTES  
1. INTERNAL H-COUNTER IS RESET ON THE SIXTH CLI RISING EDGE FOLLOWING THE HD FALLING EDGE.  
2. PxGA STEERING IS SYNCHRONIZED WITH THE RESET OF THE INTERNAL H-COUNTER (MOSAIC SEPARATE MODE IS SHOWN).  
3. VD FALLING EDGE SHOULD OCCUR ONE CLOCK CYCLE BEFORE HD FALLING EDGE FOR PROPER PxGA LINE SYNCHRONIZATION.  
Figure 13. H-Counter Synchronization  
VDD  
(INPUT)  
CLI  
(INPUT)  
tPWR  
SERIAL  
WRITES  
1V  
***  
***  
***  
***  
VD  
ODD FIELD  
1 H  
EVEN FIELD  
(OUTPUT)  
HD  
(OUTPUT)  
H2/H4  
DIGITAL  
OUTPUTS  
H1/H3, RG  
CLOCKS ACTIVE WHEN OUT_CONT REGISTER IS  
UPDATED AT VD/HD EDGE  
Figure 14. Recommended Power-Up Sequences  
–20–  
REV. A  
AD9847  
ANALOG FRONT END DESCRIPTION AND OPERATION  
The AD9847 signal processing chain is shown in Figure 15.  
Each processing step is essential in achieving a high quality  
image from the raw CCD pixel data.  
Another advantage of removing this offset at the input stage is to  
maximize system headroom. Some area CCDs have large black  
level offset voltages, which, if not corrected at the input stage, can  
significantly reduce the available headroom in the internal circuitry  
when higher VGA gain settings are used.  
DC Restore  
To reduce the large dc offset of the CCD output signal, a  
dc-restore circuit is used with an external 0.1 µF series coupling  
capacitor. This restores the dc level of the CCD signal to approxi-  
mately 1.5 V, to be compatible with the 3 V analog supply of the  
AD9847.  
Horizontal timing examples are shown on the last page of the  
Applications Information section. It is recommended that the  
CLPDM pulse be used during valid CCD dark pixels. CLPDM  
may be used during the optical black pixels, either together with  
CLPOB or separately. The CLPDM pulse should be a minimum  
of four pixels wide.  
Correlated Double Sampler  
The CDS circuit samples each CCD pixel twice to extract the video  
information and reject low frequency noise. The timing shown  
in Figure 6 illustrates how the two internally generated CDS  
clocks, SHP and SHD, are used to sample the reference level and  
data level of the CCD signal, respectively. The placement of the  
SHP and SHD sampling edges is determined by the setting of  
the SHPPOSLOC and SHDPOSLOC registers located at  
Addresses 0xF0 and 0xF1, respectively. Placement of these two  
clock signals is critical in achieving the best performance from  
the CCD.  
PxGA  
The PxGA provides separate gain adjustment for the individual  
color pixels. A programmable gain amplifier with four separate  
values, the PxGA has the capability to “multiplex” its gain value  
on a pixel-to-pixel basis (see Figure 17). This allows lower out-  
put color pixels to be gained up to match higher output color  
pixels. Also, the PxGA may be used to adjust the colors for white  
balance, reducing the amount of digital processing that is needed.  
The four different gain values are switched according to the  
Color Steering circuitry. Seven different color steering modes  
for different types of CCD color filter arrays are programmed  
in the AD9847 AFE Register, ctlmode, at Address 0x06  
(see Figures 16a to 16g for timing examples). For example,  
Mosaic Separate steering mode accommodates the popular  
“Bayer” arrangement of red, green, and blue filters (see Figure 18).  
Input Clamp  
A line-rate input clamping circuit is used to remove the CCD’s  
optical black offset. This offset exists in the CCD’s shielded black  
reference pixels. The AD9847 removes this offset in the input  
stage to minimize the effect of a gain change on the system black  
level, usually called the “gain step.”  
0.1F  
1.0F 1.0F  
CML  
REFB REFT  
1.0V  
2.0V  
AVDD  
2
DC RESTORE  
1.5V  
INTERNAL  
BIASING  
AD9847  
INTERNAL  
V
REF  
DOUT  
PHASE  
SHP  
SHD  
2V FULL SCALE  
–2dB TO +10dB  
0dB TO 36dB  
0.1F  
OUTPUT  
DATA  
LATCH  
10  
CCDIN  
10-BIT  
ADC  
VGA  
DOUT  
CDS  
PxGA  
10  
CLPDM  
OPTICAL BLACK  
CLAMP  
8-BIT  
DAC  
VGA GAIN  
REGISTER  
INPUT OFFSET  
CLAMP  
PBLK  
CLPOB  
8
0.1F  
DIGITAL  
BYP1  
BYP 2  
BYP 3  
FILTER  
0.1F  
0.1F  
CLAMP LEVEL  
REGISTER  
DOUT  
PHASE  
CLPDM  
SHD  
CLPOB PBLK  
SHP  
PRECISION  
TIMING  
GENERATION  
V-H  
TIMING  
GENERATION  
Figure 15. Analog Front End Block Diagram  
REV. A  
–21–  
AD9847  
ODD FIELD  
EVEN FIELD  
FLD  
VD  
HD  
PxGA GAIN  
REGISTER  
0
0
X
X
1
0
1
1
0
1
2
3
2
3
0
1
0
1
2
3
2
3
0
1
0
1
0
NOTES  
1. VD FALLING EDGE WILL RESET THE PxGA GAIN REGISTER STEERING TO “0101” LINE.  
2. HD FALLING EDGES WILL ALTERNATE THE PxGA GAIN REGISTER STEERING BETWEEN “0101” AND “2323” LINES.  
3. FLD STATUS IS IGNORED.  
Figure 16a. Mosaic Separate Mode  
ODD FIELD  
EVEN FIELD  
FLD  
VD  
HD  
PxGA GAIN  
REGISTER  
0
2
X
X
1
0
1
3
2
3
0
1
0
1
0
1
0
1
2
3
2
3
2
3
2
3
0
NOTES  
1. FLD FALLING EDGE (START OF ODD FIELD) WILL RESET THE PxGA GAIN REGISTER STEERING TO “0101” LINE.  
2. FLD RISING EDGE (START OF EVEN FIELD) WILL RESET THE PxGA GAIN REGISTER STEERING TO “2323“ LINE.  
3. HD FALLING EDGES WILL RESET THE PxGA GAIN REGISTER STEERING TO EITHER “0” (FLD = ODD) OR “2” (FLD = EVEN).  
Figure 16b. Mosaic Interlaced Mode  
ODD FIELD  
EVEN FIELD  
FLD  
VD  
HD  
PxGA GAIN  
REGISTER  
X
X
1
0
1
1
0
1
0
0
1
2
1
2
0
1
0
1
1
2
1
2
0
1
0
1
0
NOTES  
1. VD FALLING EDGE WILL RESET THE PxGA GAIN REGISTER STEERING TO “0101” LINE.  
2. HD FALLING EDGES WILL ALTERNATE THE PxGA GAIN REGISTER STEERING BETWEEN “0101” AND “1212” LINES.  
3. ALL FIELDS WILL HAVE THE SAME PxGA GAIN STEERING PATTERN (FLD STATUS IS IGNORED).  
Figure 16c. Mosaic Repeat Mode  
ODD FIELD  
EVEN FIELD  
FLD  
VD  
HD  
PxGA GAIN  
REGISTER  
0
0
X
X
1
2
0
1
2
0
0
1
2
0
0
1
2
0
0
1
2
0
0
1
2
0
0
NOTES  
1. EACH LINE FOLLOWS “012012” STEERING PATTERN.  
2. VD AND HD FALLING EDGES WILL RESET THE PxGA GAIN REGISTER STEERING TO “0.”  
3. FLD STATUS IS IGNORED.  
Figure 16d. Three-Color Mode  
–22–  
REV. A  
AD9847  
ODD FIELD  
EVEN FIELD  
FLD  
VD  
HD  
PxGA GAIN  
REGISTER  
0
0
X
X
1
2
0
1
2
0
2
1
0
2
0
1
2
0
2
1
0
2
0
1
2
0
0
NOTES  
1. VD FALLING EDGE WILL RESET THE PxGA GAIN REGISTER STEERING TO “012012” LINE.  
2. HD FALLING EDGES WILL ALTERNATE THE PxGA GAIN REGISTER, STEERING BETWEEN “012012” AND “210210” LINES.  
3. FLD STATUS IS IGNORED.  
Figure 16e. Three-Color Mode II  
ODD FIELD  
EVEN FIELD  
FLD  
VD  
HD  
PxGA GAIN  
REGISTER  
0
0
X
X
1
2
3
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
NOTES  
1. EACH LINE FOLLOWS “01230123” STEERING PATTERN.  
2. VD AND HD FALLING EDGES WILL RESET THE PxGA GAIN REGISTER STEERING TO GAIN REGISTER “0.”  
3. FLD STATUS IS IGNORED.  
Figure 16f. Four-Color Mode  
ODD FIELD  
FLD  
EVEN FIELD  
VD  
HD  
PxGA GAIN  
REGISTER  
0
0
X
X
1
2
3
1
2
3
2
3
0
1
0
1
2
3
2
3
0
1
0
1
2
3
0
NOTES  
1. VD FALLING EDGE WILL RESET THE PxGA GAIN REGISTER STEERING TO “01230123” LINE.  
2. HD FALLING EDGES WILL ALTERNATE THE PxGA GAIN REGISTER STEERING BETWEEN “01230123” AND “23012301” LINES.  
3. FLD STATUS IS IGNORED.  
Figure 16g. Four-Color Mode II  
REV. A  
–23–  
AD9847  
10  
8
VD  
CONTROL  
REGISTER  
BITS D0–D2  
PxGA STEERING  
MODE  
SELECTION  
COLOR  
STEERING  
CONTROL  
3
HD  
SHP/SHD  
2
GAIN0  
6
GAIN1  
GAIN2  
GAIN3  
PxGA GAIN  
REGISTERS  
4:1  
MUX  
4
6
2
PxGA  
VGA  
CDS  
0
Figure 17. PxGA Block Diagram  
–2  
32  
40  
48  
58  
0
8
16  
24  
31  
(100000)  
(011111)  
CCD: PROGRESSIVE BAYER  
MOSAIC SEPARATE COLOR  
STEERING MODE  
PxGA GAIN REGISTER CODE  
Figure 19. PxGA Gain Curve  
Variable Gain Amplifier  
R
Gb  
R
Gr  
B
R
Gb  
R
Gr  
B
LINE0  
LINE1  
LINE2  
GAIN0, GAIN1, GAIN0, GAIN1...  
GAIN2, GAIN3, GAIN2, GAIN3...  
GAIN0, GAIN1, GAIN0, GAIN1...  
The VGA stage provides a gain range of 2 dB to 36 dB, program-  
mable with 10-bit resolution through the serial digital interface.  
Combined with 4 dB from the PxGA stage, the total gain range  
for the AD9847 is 6 dB to 40 dB. The minimum gain of 6 dB is  
needed to match a 1 V input signal with the ADC full-scale  
range of 2 V. When compared to 1 V full-scale systems (such as  
ADI’s AD9803), the equivalent gain range is 0 dB to 34 dB.  
Gr  
B
Gr  
B
Gb  
Gb  
Figure 18a. CCD Color Filter Example: Progressive Scan  
The VGA gain curve is divided into two separate regions. When  
the VGA gain register code is between 0 and 511, the curve follows  
a (1 + x)/(1 – x) shape, which is similar to a linear-in-dB character-  
istic. From code 512 to code 1023, the curve follows a linear-in-dB  
shape. The exact VGA gain can be calculated for any gain register  
value by using the following two equations:  
CCD: INTERLACED BAYER  
EVEN FIELD  
VD SELECTED COLOR  
STEERING MODE  
R
R
R
R
Gr  
Gr  
Gr  
Gr  
R
R
R
R
Gr  
Gr  
Gr  
Gr  
LINE0  
LINE1  
LINE2  
GAIN0, GAIN1, GAIN0, GAIN1...  
GAIN0, GAIN1, GAIN0, GAIN1...  
GAIN0, GAIN1, GAIN0, GAIN1...  
Code Range Gain Equation (dB)  
0–511  
512–1023  
Gain = 20 log10 ([658 ϩ code] / [658 – code]) – 0.4  
Gain = (0.0354)(code) – 0.04  
ODD FIELD  
36  
30  
24  
18  
12  
6
Gb  
Gb  
Gb  
Gb  
B
B
B
B
Gb  
Gb  
Gb  
Gb  
B
B
B
B
LINE0  
LINE1  
LINE2  
GAIN2, GAIN3, GAIN2, GAIN3...  
GAIN2, GAIN3, GAIN2, GAIN3...  
GAIN2, GAIN3, GAIN2, GAIN3...  
Figure 18b. CCD Color Filter Example: Interlaced  
The same Bayer pattern can also be interlaced, and the VD selected  
mode should be used with this type of CCD (see Figure 18b).  
The color steering performs the proper multiplexing of the R, G,  
and B gain values (loaded into the PxGA gain registers) and is  
synchronized by the user with vertical (VD) and horizontal (HD)  
sync pulses. For more detailed information, see the PxGA Timing  
section. The PxGA gain for each of the four channels varies from  
–2 dB to +10 dB, controlled in 64 steps through the serial inter-  
face. The PxGA gain curve is shown in Figure 19.  
0
0
127  
255  
383  
511  
639  
767  
895  
1023  
VGA GAIN REGISTER CODE  
Figure 20. VGA Gain Curve (Gain from PxGA Not Included)  
–24–  
REV. A  
AD9847  
Optical Black Clamp  
APPLICATIONS INFORMATION  
External Circuit Configuration  
The optical black clamp loop is used to remove residual offsets in  
the signal chain and to track low frequency variations in the CCD’s  
black level. During the optical black (shielded) pixel interval on  
each line, the ADC output is compared with a fixed black level  
reference, selected by the user in the clamp level register. The  
value can be programmed between 0 LSB and 63.75 LSB with  
8-bit resolution. The resulting error signal is filtered to reduce noise,  
and the correction value is applied to the ADC input through a  
D/A converter. Normally, the optical black clamp loop is turned  
on once per horizontal line, but this loop can be updated more  
slowly to suit a particular application. If external digital clamping  
is used during the post processing, the AD9847 optical black  
clamping may be disabled using Bit D2 in the OPRMODE  
register. When the loop is disabled, the clamp level register may  
still be used to provide programmable offset adjustment.  
The AD9847 recommended circuit configuration for external  
mode is shown in Figure 21. All signals should be carefully  
routed on the PCB to maintain low noise performance. The CCD  
output signal should be connected to Pin 29 through a 0.1 µF  
capacitor. The CCD timing signals H1–H4 and RG should be  
routed directly to the CCD with minimum trace lengths, as shown  
in Figures 22a and 22b. The digital outputs and clock inputs are  
located on Pins 1–12 and Pins 36–44 and should be connected  
to the digital ASIC, away from the analog and CCD clock signals.  
The CLI signal from the ASIC may be routed under the package  
to Pin 23. This will help separate the CLI signal from the H1–H4  
and RG signal routing.  
Grounding and Decoupling Recommendations  
As shown in Figure 21, a single ground plane is recommended  
for the AD9847. This ground plane should be as continuous as  
possible, particularly around Pins 25 – 35. This will ensure that  
all analog decoupling capacitors provide the lowest possible  
impedance path between the power and bypass pins and their  
respective ground pins. All decoupling capacitors should be located  
as close as possible to the package pins. Placing series resistors  
close to the digital output pins (Pins 1–12) may help reduce  
digital code transition noise. If the digital outputs must drive a  
load larger than 20 pF, buffering is recommended to minimize  
additional noise.  
The CLPOB pulse should be placed during the CCD’s optical  
black pixels. It is recommended that the CLPOB pulse duration  
be at least 20 pixels wide to minimize clamp noise. Shorter pulse-  
widths may be used, but clamp noise may increase, and the  
ability to track low frequency variations in the black level will be  
reduced. See the section on Horizontal Clamping and Blanking  
and also the Applications Information section for timing examples.  
A/D Converter  
The AD9847 uses a high performance 10-bit ADC architecture,  
optimized for high speed and low power. Differential nonlinearity  
(DNL) performance is typically better than 0.4 LSB. The ADC  
uses a 2 V input range. Better noise performance results from  
using a larger ADC full-scale range. See TPC 1 and TPC 2 for  
typical linearity and noise performance plots for the AD9847.  
Power supply decoupling is very important in achieving low noise  
performance. Figure 21 shows the local high frequency decoupling  
capacitors, but additional capacitance is recommended for lower  
frequencies. Additional capacitors and ferrite beads can further  
reduce noise.  
0.1F  
CLOCK  
6
3V  
DIGITAL  
SUPPLY  
INPUTS  
SERIAL  
3
INTERFACE  
1F  
48 47 46 45 44 43 42 41 40 39 38 37  
SL  
(LSB) D0  
1
1F  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
D1  
PIN 1  
IDENTIFIER  
REFT  
2
3
D2  
REFB  
CMLEVEL  
AVSS3  
AVDD3  
BYP3  
0.1F  
D3  
4
0.1F  
D4  
DVSS3  
3V  
0.1F  
5
3V  
DRIVER  
SUPPLY  
ANALOG  
SUPPLY  
AD9847  
TOP VIEW  
(Not to Scale)  
6
DVDD3  
D5  
7
CCDIN  
BYP2  
CCD  
8
D6  
SIGNAL  
9
0.1F  
D7  
BYP1  
10  
11  
12  
3V  
ANALOG  
SUPPLY  
D8  
AVDD2  
AVSS2  
(MSB) D9  
0.1F  
10  
DATA  
OUTPUTS  
13 14 15 16 17 18 19 20 21 22 23 24  
0.1F 0.1F  
0.1F  
H DRIVER  
SUPPLY  
CLOCK  
INPUT  
3V  
ANALOG  
RG DRIVER  
SUPPLY  
SUPPLY  
0.1F  
0.1F  
0.1F  
5
HIGH-SPEED  
CLOCKS  
Figure 21. Recommended Circuit Configuration for External Mode  
–25–  
REV. A  
AD9847  
CCDIN  
29  
AD9847  
AD9847  
ASIC  
LPF  
17  
18  
H4  
13  
H1  
14  
H2  
20  
23  
H3  
RG  
CLI  
1nF  
MASTER  
CLOCK  
SIGNAL  
OUT  
Figure 23b. CLI Connection, AC-Coupled  
Internal Mode Circuit Configuration  
H2  
H1  
RG  
CCD IMAGER  
The AD9847 may be used in internal mode using the circuit  
configuration of Figure 24. Internal mode uses the same circuit as  
Figure 21, except that the horizontal pulses (CLPOB, CLPDM,  
PBLK, and HBLK) are internally generated in the AD9847.  
These pins may be grounded when internal mode is used. Only  
the HD and VD signals are required from the ASIC.  
Figure 22a. CCD Connections (2 H-Clock)  
CCDIN  
29  
AD9847  
2
HD/VD  
INPUTS  
13  
H1  
14  
H2  
17  
H3  
18  
H4  
20  
RG  
SIGNAL  
OUT  
42  
40  
44 43  
41  
39  
H1  
H2  
RG  
CCD IMAGER  
AD9847  
H2  
H1  
Figure 24. Internal Mode Circuit Configuration  
Figure 22b. CCD Connections (4 H-Clock)  
Driving the CLI Input  
The AD9847’s master clock input (CLI) may be used in two  
different configurations, depending on the application. Figure 23a  
shows a typical dc-coupled input from the master clock source.  
When the dc-coupled technique is used, the master clock signal  
should be at standard 3 V CMOS logic levels. As shown in  
Figure 23b, a 1000 pF ac-coupling capacitor may be used between  
the clock source and the CLI input. In this configuration, the CLI  
input will self-bias to the proper dc voltage level of approximately  
1.4 V. When the ac-coupled technique is used, the master clock  
signal can be as low as 500 mV in amplitude.  
TIMING EXAMPLES FOR DIFFERENT SEQUENCES  
2
SEQUENCE 2  
V
SEQUENCE 3  
10  
SEQUENCE 2  
AD9847  
H
48  
4
ASIC  
23  
CLI  
28  
MASTER  
CLOCK  
Figure 25. Typical CCD  
Figure 23a. CLI Connection, DC-Coupled  
–26–  
REV. A  
AD9847  
Timing Examples (continued)  
DUMMY  
CCDIN  
INVALID PIXELS  
VERT SHIFT  
INVALID PIXELS  
VERT SHIFT  
SHP  
SHD  
H1/H3  
H2/H4  
HBLK  
PBLK  
CLPOB  
CLPDM  
Figure 26. Sequence 1: Vertical Blanking  
EFF. PIXELS  
OPTICAL BLACK  
OPTICAL BLACK  
VERT SHIFT DUMMY  
CCDIN  
SHP  
VERT SHIFT  
SHD  
H1/H3  
H2/H4  
HBLK  
PBLK  
CLPOB  
CLPDM  
Figure 27. Sequence 2: Vertical Optical Black  
EFF. PIXELS  
OPTICAL BLACK  
DUMMY OB  
OPTICAL BLACK  
VERT SHIFT  
EFFECTIVE PIXELS  
CCDIN  
VERT SHIFT  
SHP  
SHD  
H1/H3  
H2/H4  
HBLK  
PBLK  
CLPOB  
CLPDM  
Figure 28. Sequence 3: Effective Pixels  
REV. A  
–27–  
AD9847  
OUTLINE DIMENSIONS  
48-Lead Plastic Quad Flatpack [LQFP]  
1.4 mm Thick  
(ST-48)  
Dimensions shown in millimeters  
1.60 MAX  
PIN 1  
INDICATOR  
0.75  
0.60  
0.45  
9.00 BSC  
37  
48  
36  
1
SEATING  
PLANE  
1.45  
1.40  
1.35  
0.20  
0.09  
7.00  
BSC  
TOP VIEW  
(PINS DOWN)  
VIEW A  
7ꢃ  
3.5ꢃ  
0ꢃ  
0.15  
0.05  
25  
12  
SEATING  
PLANE  
24  
0.08 MAX  
13  
COPLANARITY  
0.27  
0.22  
0.17  
0.50  
BSC  
VIEW A  
ROTATED 90CCW  
COMPLIANT TO JEDEC STANDARDS MS-026BBC  
Revision History  
Location  
Page  
1/03—Data Sheet changed from REV. 0 to REV. A.  
Change to PIN FUNCTION DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Change to Register Description Table – HBLK # Bits 147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Changes to Recommended Power Sequence section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
–28–  
REV. A  

相关型号:

AD9847AKSTZ

10-Bit 40 MSPS CCD Signal Processor with Integrated Timing Driver
ADI

AD9848

CCD Signal Processors with Integrated Timing Driver
ADI

AD9848AKST

CCD Signal Processors with Integrated Timing Driver
ADI

AD9848AKST

SPECIALTY CONSUMER CIRCUIT, PQFP48, 1.40 MM HEIGHT, PLASTIC, MS-026BBC, LQFP-48
ROCHESTER

AD9848AKSTRL

IC SPECIALTY CONSUMER CIRCUIT, PQFP48, 1.40 MM HEIGHT, PLASTIC, MS-026BBC, LQFP-48, Consumer IC:Other
ADI

AD9848AKSTZ

SPECIALTY CONSUMER CIRCUIT, PQFP48, 1.40 MM HEIGHT, PLASTIC, MS-026BBC, LQFP-48
ROCHESTER

AD9848AKSTZ

IC SPECIALTY CONSUMER CIRCUIT, PQFP48, 1.40 MM HEIGHT, PLASTIC, MS-026BBC, LQFP-48, Consumer IC:Other
ADI

AD9848AKSTZRL

IC SPECIALTY CONSUMER CIRCUIT, PQFP48, 1.40 MM HEIGHT, PLASTIC, MS-026BBC, LQFP-48, Consumer IC:Other
ADI

AD9848KST

CCD Signal Processors with Integrated Timing Driver
ADI

AD9848_15

CCD Signal Processors with Integrated Timing Driver
ADI

AD9849

CCD Signal Processors with Integrated Timing Driver
ADI

AD9849AKST

CCD Signal Processors with Integrated Timing Driver
ADI