AD9942BBCZRL [ADI]

Dual-Channel, 14-Bit CCD Signal Processor with Precision Timing⑩ Core; 双通道, 14位CCD信号处理器具有精密Timing⑩核心
AD9942BBCZRL
型号: AD9942BBCZRL
厂家: ADI    ADI
描述:

Dual-Channel, 14-Bit CCD Signal Processor with Precision Timing⑩ Core
双通道, 14位CCD信号处理器具有精密Timing⑩核心

消费电路 商用集成电路 CD
文件: 总36页 (文件大小:649K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual-Channel, 14-Bit CCD Signal Processor  
with Precision Timing™ Core  
AD9942  
FEATURES  
GENERAL DESCRIPTION  
40 MHz correlated double sampler (CDS)  
The AD9942 is a highly integrated dual-channel CCD signal  
0 dB to 18 dB, 9-bit variable gain amplifier (VGA)  
40 MSPS analog-to-digital converter (ADC)  
Optical black clamp (CLPOB) with variable level control  
Complete on-chip timing driver  
Precision Timing core with <550 ps resolution  
On-chip 3 V horizontal and RG drivers  
4-phase H-clock mode  
processor for digital still camera applications. Each channel is  
specified at pixel rates of up to 40 MHz. The AD9942 consists of  
a complete analog front end with analog-to-digital conversion,  
combined with a programmable timing driver. The Precision  
Timing core allows high speed clocks to be adjusted with  
550 ps resolution.  
The analog front end uses black level clamping and includes a  
VGA, a 40 MSPS ADC, and a CDS. The timing driver provides  
the high speed CCD clock drivers for RG_A and RG_B, as well  
as the H1A to H4A and H1B to H4B outputs. The 6-wire serial  
interface is used to program the AD9942.  
100-lead, 9 mm × 9 mm, CSP_BGA package  
APPLICATIONS  
Signal processor for dual-channel CCD outputs  
Digital still cameras  
Digital video cameras  
High speed digital imaging applications  
Available in a space-saving, 9 mm × 9 mm, CSP_BGA package,  
the AD9942 is specified over an operating temperature range of  
−25°C to +85°C.  
FUNCTIONAL BLOCK DIAGRAM  
REFT_A REFB_A  
REFT_B REFB_B  
AD9942  
VREF_A  
VREF_B  
14  
14  
DOUT_A  
DOUT_B  
ADC  
CDS  
VGA  
VGA  
CCDIN_A  
CCDIN_B  
0dB  
0dB  
~
18dB  
18dB  
CLAMP  
CLAMP  
~
ADC  
CDS  
INTERNAL CLOCKS  
RG_A  
RG_B  
PRECISION  
TIMING  
CORE  
CLI_A  
CLI_B  
HORIZONTAL  
DRIVERS  
4
4
H1A TO H4A  
H1B TO H4B  
SCK_A  
SCK_B  
SYNC  
GENERATOR  
INTERNAL  
REGISTERS  
HD_A VD_A HD_B VD_B  
SL_A  
SL_B  
SDATA_A SDATA_B  
Figure 1.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD9942  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
High Speed Clock Programmability........................................ 19  
H Driver and RG Outputs......................................................... 21  
Digital Data Outputs.................................................................. 21  
Channel A and Channel B Horizontal Clamping and Blanking ....22  
Individual CLPOB and PBLK Sequences................................ 22  
Individual HBLK Sequences..................................................... 22  
Channel A and Channel B Special HBLK Patterns.................... 24  
Horizontal Sequence Control................................................... 24  
H-Counter Synchronization ..................................................... 25  
Channel A and Channel B Power-Up Procedure....................... 26  
Channel A and Channel B Analog Front End Operation......... 27  
DC Restore .................................................................................. 27  
Correlated Double Sampler ...................................................... 27  
Channel A and Channel B Variable Gain Amplifier ............. 28  
Channel A and Channel B ADC .............................................. 28  
Channel A and Channel B CLPOB.......................................... 28  
Channel A and Channel B Digital Data Outputs................... 28  
Applications Information.............................................................. 29  
Circuit Configuration................................................................ 29  
Grounding/Decoupling Recommendations........................... 29  
Driving the CLI Input................................................................ 31  
Horizontal Timing Sequence Example.................................... 31  
Outline Dimensions....................................................................... 33  
Ordering Guide .......................................................................... 33  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
General Specifications ................................................................. 3  
Digital Specifications ................................................................... 4  
Analog Specifications................................................................... 5  
Channel-to-Channel Specifications........................................... 6  
Timing Specifications .................................................................. 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Terminology .................................................................................... 11  
Equivalent Input/Output Circuits ................................................ 12  
Typical Performance Characteristics ........................................... 13  
System Overview ............................................................................ 14  
Serial Interface Timing .................................................................. 15  
Complete Register Listing ......................................................... 16  
Channel A and Channel B Precision Timing............................... 19  
High Speed Timing Generation ............................................... 19  
Timing Resolution...................................................................... 19  
REVISION HISTORY  
8/06—Rev. 0 to Rev. A  
Changes to Table 3............................................................................ 5  
Changes to Table 13........................................................................ 17  
Change to Channel A and Channel B  
Variable Gain Amplifier Section............................................... 28  
Updated Outline Dimensions....................................................... 33  
1/05—Revision 0: Initial Version  
Rev. A | Page 2 of 36  
 
AD9942  
SPECIFICATIONS  
GENERAL SPECIFICATIONS  
X = A, B.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
TEMPERATURE RANGE  
Operating  
Storage  
−25  
−65  
40  
+85  
+150  
°C  
°C  
MAXIMUM CLOCK RATE  
POWER SUPPLY VOLTAGE  
AVDD_X, TCVDD_X (AFE, Timing Core)  
HVDD_X (H1X to H4X Drivers)  
RGVDD_X (RG_X Driver)  
DRVDD_X (D0 to D13 Drivers)  
DVDD_X (Digital)  
MHz  
2.7  
2.7  
2.7  
2.7  
2.7  
3.0  
3.0  
3.0  
3.0  
3.0  
3.6  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
V
POWER DISSIPATION FOR EACH CHANNEL  
(40 MHz, 3 V Supplies, 100 pF H1X to H4X Loading, 10 pF RG_X Loading)  
Power from AVDD_X  
Power from TCVDD_X  
Power from HVDD_X1  
Power from RGVDD_X  
Power from DRVDD_X  
Power from DVDD_X  
Total Shutdown Mode  
110  
33  
160  
13  
15  
40  
2
mW  
mW  
mW  
mW  
mW  
mW  
mW  
1 Total HVDD_X Power = [(CLOAD) × (HVDD_X) × (Pixel Frequency)] × (HVDD_X) × (Number of Horizontal Outputs Used).  
Rev. A | Page 3 of 36  
 
AD9942  
DIGITAL SPECIFICATIONS  
TMIN to TMAX, AVDD_X = DVDD_X = DRVDD_X = HVDD_X = RGVDD_X = 2.7 V, CL = 20 pF, unless otherwise noted.  
X = A, B.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
VIH  
VIL  
IIH  
IIL  
CIN  
2.1  
V
V
μA  
μA  
pF  
0.6  
10  
10  
10  
Input Capacitance  
LOGIC OUTPUTS  
High Level Output Voltage, IOH = 2 mA  
Low Level Output Voltage, IOL = 2 mA  
CLI INPUT  
VOH  
VOL  
2.2  
V
V
0.5  
High Level Input Voltage (TCVDD_X/2 + 0.5 V)  
Low Level Input Voltage  
VIH − CLI  
VIL − CLI  
1.85  
2.2  
V
V
0.85  
0.5  
RG_X AND H1X TO H4X DRIVER OUTPUTS  
High Level Output Voltage (RGVDD_X – 0.5 V and HVDD_X – 0.5 V)  
Low Level Output Voltage  
VOH  
VOL  
V
V
Maximum Output Current (Programmable)  
Maximum Load Capacitance  
30  
mA  
pF  
100  
Rev. A | Page 4 of 36  
 
AD9942  
ANALOG SPECIFICATIONS  
TMIN to TMAX, AVDD_X = DVDD_X = 3.0 V, fCLI = 40 MHz, typical timing specifications, unless otherwise noted. X = A, B.  
Table 3.  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
CDS  
Gain  
0
dB  
Allowable CCD Reset Transient1  
Max Input Range Before Saturation  
Max CCD Black Pixel Amplitude  
500  
mV  
V p-p  
mV  
1.0  
100  
Measured at 12 dB VGA gain  
(Typ = 70 mV at 15 dB and 50 mV at 18 dB)  
VARIABLE GAIN AMPLIFIER (VGA_X)  
Max Input Range  
Max Output Range  
Gain Control Resolution  
Gain Monotonicity  
1.0  
2.0  
V p-p  
V p-p  
Steps  
512  
Guaranteed  
Gain Range  
Min Gain (Code 0)  
Max Gain (Code 511)  
CLPOB  
0
18  
dB  
dB  
Clamp Level Resolution  
Clamp Level  
256  
Steps  
4 LSB/step  
Measured at ADC output  
Min Clamp Level  
Max Clamp Level  
0
1023  
LSB  
LSB  
CHN_A AND CHN_B ADC  
Differential Nonlinearity (DNL)  
No Missing Codes  
Full-Scale Input Voltage  
VOLTAGE REFERENCE  
Reference Top Voltage (REFT_X)  
Reference Bottom Voltage (REFB_X)  
SYSTEM PERFORMANCE  
VGA Gain Accuracy  
−1.0  
0.5  
Guaranteed  
2.0  
+1.0  
LSB  
V
2.0  
1.0  
V
V
Specifications include entire signal chain  
Min Gain (Code 0)  
−0.5  
17.5  
0
+0.5  
18.5  
dB  
dB  
%
LSB rms  
dB  
Max Gain (Code 511)  
Peak Nonlinearity, 500 mV Input Signal  
Total Output Noise  
18  
0.15  
3
12 dB gain applied  
AC grounded input, 6 dB gain applied  
Measured with step change on supply  
Power Supply Rejection (PSR)  
50  
1 Input signal characteristics defined as follows:  
500mV TYP  
RESET TRANSIENT  
100mV MAX  
OPTICAL BLACK PIXEL  
1V MAX  
INPUT SIGNAL RANGE  
Rev. A | Page 5 of 36  
 
AD9942  
CHANNEL-TO-CHANNEL SPECIFICATIONS  
TMIN to TMAX, AVDD_X = DVDD_X = 3.0 V, fCLI = 40 MHz, typical timing specifications, unless otherwise noted. X = A, B.  
Table 4.  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
CHANNEL A/CHANNEL B OUTPUT  
CODE MATCHING ERROR1  
<1.0%  
VGA = 6 dB, 12 dB, and 18 dB conditions.  
CROSSTALK ERROR  
VGA = 6 dB, 12 dB, and 18 dB conditions.  
Channel A to Channel B  
−84  
−84  
dB  
dB  
Full-scale step applied to Channel A while  
measuring response on Channel B.  
Full-scale step applied to Channel B while  
measuring response on Channel A.  
Channel B to Channel A  
1 Matching error calculated using a ramp input applied to Channel A and Channel B simultaneously. Typical Channel A/Channel B error is <1.0% at each output code.  
Rev. A | Page 6 of 36  
 
AD9942  
TIMING SPECIFICATIONS  
CL = 20 pF, fCLI = 40 MHz, serial timing in Figure 14 and Figure 15, unless otherwise noted. X = A, B.  
Table 5.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MASTER CLOCK (CLI_X) (See Figure 16)  
CLI_X Clock Period  
CLI_X High/Low Pulse Width  
Delay from CLI_X to Internal Pixel Period Position (See Figure 16)  
CLPOB_X PULSE WIDTH (Programmable)1  
SAMPLE CLOCKS (See Figure 17)  
SHP_X Rising Edge to SHD_X Rising Edge  
DATA OUTPUTS (See Figure 19 and Figure 20)  
Output Delay from Programmed Edge  
Pipeline Delay  
25.0  
10.0  
ns  
ns  
ns  
tADC  
tCLIDLY  
tCOB  
12.5  
6
15.0  
2
20  
Pixels  
tS1  
11.2  
12.5  
ns  
tOD  
6
11  
ns  
Cycles  
SERIAL INTERFACE  
Maximum SCK_X Frequency  
SL_X to SCK_X Setup Time  
SCK to SL_X Hold Time  
SDATA_X Valid to SCK_X Rising Edge Setup  
SCK_X Falling Edge to SDATA_X Valid Hold  
SCK_X Falling Edge to SDATA_X Valid Read  
fSCLK  
tLS  
tLH  
tDS  
tDH  
tDV  
10  
10  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
1 Minimum CLPOB pulse width is for functional operation only. Wider typical pulses are recommended to achieve low noise clamp reference.  
Rev. A | Page 7 of 36  
 
AD9942  
ABSOLUTE MAXIMUM RATINGS  
Table 6. Ratings (X = A, B)  
Parameter  
AVDD_X and TCVDD_X to AVSS_X  
HVDD_X and RGVDD_X to  
HVSS_X and RGVSS_X  
DVDD_X and DRVDD_X to  
DVSS_X and DRVSS_X  
Any VSS_X to Any VSS_X  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
−0.3 V to +0.3 V  
Digital Outputs to DRVSS_X  
SCK_X, SL_X, and SDATA_X to  
DVSS_X  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DVDD + 0.3 V  
THERMAL RESISTANCE  
100-lead, 9 mm × 9 mm, CSP_BGA package: θJA = 38.3°C/W1  
RG_X to RGVSS_X  
H1X to H4X to HVSS_X  
REFT_X, REFB_X, and CCDIN_X to  
AVSS_X  
−0.3 V to RGVDD + 0.3 V  
−0.3 V to HVDD + 0.3 V  
−0.3 V to AVDD + 0.3 V  
1 θJA is measured using a 4-layer PCB with the exposed paddle soldered to the  
board.  
Junction Temperature  
Lead Temperature (10 sec)  
150°C  
300°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 8 of 36  
 
AD9942  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
A1 CORNER  
INDEX AREA  
1
2
3
4
5
6
7
8
9 10  
A
B
C
D
E
F
G
H
J
K
AD9942  
TOP VIEW  
(Not to Scale)  
Figure 2. Pin Configuration  
Table 7. Pin Function Descriptions  
Ball Location  
Mnemonic  
Type1  
DI  
DI  
DI  
AO  
AO  
AI  
DO  
DO  
DO  
DO  
DO  
P
P
P
P
P
P
P
P
P
Description  
B2  
SL_A  
6-Wire Serial Load for Channel A  
6-Wire Serial Data for Channel A  
6-Wire Serial Clock for Channel A  
Reference Top Decoupling for Channel A (decouple with 1.0 μF to AVSS_A)  
Reference Bottom Decoupling for Channel A (decouple with 1.0 μF to AVSS_A)  
Analog Input for Channel A CCD Signal (connect through series 0.1 μF capacitor)  
CCD Horizontal Clock 1 for Channel A  
CCD Horizontal Clock 2 for Channel A  
CCD Horizontal Clock 3 for Channel A  
CCD Horizontal Clock 4 for Channel A  
CCD Reset Gate Clock for Channel A  
Digital Driver Ground for Channel A  
Digital Driver Supply for Channel A  
H1A to H4A Driver Ground for Channel A  
H1A to H4A Driver Supply for Channel A  
RG_A Driver Ground for Channel A  
C2  
D2  
C1  
D1  
A1  
F4  
SDATA_A  
SCK_A  
REFT_A  
REFB_A  
CCDIN_A  
H1A  
F3  
H2A  
D4  
D3  
B4  
H3A  
H4A  
RG_A  
J2  
K3  
E3  
E4  
C3  
C4  
B3  
A4  
B1  
A2  
F2  
F1  
E2  
DRVSS_A  
DRVDD_A  
HVSS_A  
HVDD_A  
RGVSS_A  
RGVDD_A  
TCVSS_A  
TCVDD_A  
AVSS_A  
AVDD_A  
DVSS_A  
DVDD_A  
VD_A  
RG_A Driver Supply for Channel A  
Analog Ground for Channel A Timing Core  
Analog Supply for Channel A Timing Core  
Analog Ground for Channel A  
Analog Ground for Channel A  
Digital Ground for Channel A  
Digital Supply for Channel A  
Vertical Sync Pulse for Channel A  
Horizontal Sync Pulse for Channel A  
6-Wire Serial Load for Channel B  
6-Wire Serial Data for Channel B  
6-Wire Serial Clock for Channel B  
Reference Top Decoupling for Channel B (decouple with 1.0 μF to AVSS_B)  
Reference Bottom Decoupling for Channel B (decouple with 1.0 μF to AVSS_B)  
Analog Input for Channel B CCD Signal (connect through series 0.1 μF capacitor)  
CCD Horizontal Clock 1 for Channel B  
P
P
P
DI  
DI  
DI  
DI  
DI  
AO  
AO  
AI  
E1  
HD_A  
B8  
SL_B  
C8  
D8  
C7  
D7  
A7  
F10  
F9  
SDATA_B  
SCK_B  
REFT_B  
REFB_B  
CCDIN_B  
H1B  
DO  
DO  
DO  
H2B  
CCD Horizontal Clock 2 for Channel B  
CCD Horizontal Clock 3 for Channel B  
D10  
H3B  
Rev. A | Page 9 of 36  
 
AD9942  
Ball Location  
D9  
B10  
J8  
K9  
E9  
E10  
C9  
C10  
B9  
A10  
B7  
A8  
Mnemonic  
H4B  
RG_B  
Type1  
DO  
DO  
P
P
P
P
P
P
P
P
P
P
P
P
DI  
DI  
DI  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
P
Description  
CCD Horizontal Clock 4 for Channel B  
CCD Reset Gate Clock for Channel B  
Digital Driver Ground for Channel B  
Digital Driver Supply for Channel B  
H1B to H4B Driver Ground for Channel B  
H1B to H4B Driver Supply for Channel B  
RG_B Driver Ground for Channel B  
RG_B Driver Supply for Channel B  
Analog Ground for Channel B Timing Core  
Analog Supply for Channel B Timing Core  
Analog Ground for Channel B  
Analog Ground for Channel B  
Digital Ground for Channel B  
Digital Supply for Channel B  
Vertical Sync Pulse for Channel B  
Horizontal Sync Pulse for Channel B  
Master Clock Input for Channel A  
Data Output Channel A  
Data Output Channel A  
Data Output Channel A  
Data Output Channel A  
Data Output Channel A  
Data Output Channel A  
Data Output Channel A  
Data Output Channel A  
Data Output Channel A  
DRVSS_B  
DRVDD_B  
HVSS_B  
HVDD_B  
RGVSS_B  
RGVDD_B  
TCVSS_B  
TCVDD_B  
AVSS_B  
AVDD_B  
DVSS_B  
DVDD_B  
VD_B  
HD_B  
CLI_A  
D0_A  
D1_A  
D2_A  
D3_A  
D4_A  
D5_A  
D6_A  
D7_A  
D8_A  
D9_A  
D10_A  
D11_A  
D12_A  
D13_A  
GND  
F8  
F7  
E8  
E7  
A3  
G1  
H1  
J1  
K1  
G2  
H2  
K2  
G3  
H3  
J3  
K4  
J4  
H4  
G4  
Data Output Channel A  
Data Output Channel A  
Data Output Channel A  
Data Output Channel A  
Data Output Channel A  
Ground Connection  
A5, B5, C5, D5, E5,  
F5, G5, H5, J5, K5,  
A6, B6, C6, D6, E6,  
F6, G6, H6, J6, K6  
A9  
G7  
H7  
J7  
CLI_B  
D0_B  
D1_B  
D2_B  
D3_B  
D4_B  
D5_B  
D6_B  
D7_B  
D8_B  
D9_B  
D10_B  
D11_B  
D12_B  
D13_B  
DI  
Master Clock Input for Channel B  
Data Output Channel B  
Data Output Channel B  
Data Output Channel B  
Data Output Channel B  
Data Output Channel B  
Data Output Channel B  
Data Output Channel B  
Data Output Channel B  
Data Output Channel B  
Data Output Channel B  
Data Output Channel B  
Data Output Channel B  
Data Output Channel B  
Data Output Channel B  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
K7  
G8  
H8  
K8  
G9  
H9  
J9  
K10  
J10  
H10  
G10  
1 AI = analog input, AO = analog output, DI = digital input, DO = digital output, P = power.  
Rev. A | Page 10 of 36  
AD9942  
TERMINOLOGY  
Differential Nonlinearity (DNL)  
Power Supply Rejection (PSR)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Therefore,  
every code must have a finite width. No missing codes  
guaranteed to 12-bit resolution indicates that all 4096 codes  
must be present over all operating conditions.  
The PSR is measured with a step change applied to the supply  
pins. The PSR specification is calculated from the change in the  
data outputs for a given step change in the supply voltage.  
Matching Error  
The matching error refers to the Channel A to Channel B  
mismatch after post-ADC correction calibration has been  
applied to remove gain error between Channel A and  
Channel B.  
Peak Nonlinearity  
Peak nonlinearity, a full signal chain specification, refers to the  
peak deviation of the output of the AD9942 from a true straight  
line. The point used as zero scale occurs 0.5 LSB before the first  
code transition. Positive full scale is defined as a level 1 LSB  
and 0.5 LSB beyond the last code transition. The deviation is  
measured from the middle of each particular output code to the  
true straight line. The error is then expressed as a percentage  
of the 2 V ADC full-scale signal. The input signal is always  
appropriately gained up to fill the ADCs full-scale range.  
Crosstalk  
The crosstalk is measured while applying a full-scale step to  
one channel and measuring the interference on the opposite  
channel.  
Interference (LSB)  
Crosstalk (dB) = 20 × log  
16,384  
Total Output Noise  
The rms output noise is measured using histogram techniques.  
The standard deviation of the ADC output codes is calculated  
in LSB and represents the rms noise level of the total signal  
chain at the specified gain setting. The output noise can be  
converted to an equivalent voltage, using the relationship  
1 LSB = (ADC full scale/2n codes)  
where n is the bit resolution of the ADC. For the AD9942,  
1 LSB is approximately 122.0 μV.  
Rev. A | Page 11 of 36  
 
AD9942  
EQUIVALENT INPUT/OUTPUT CIRCUITS  
X = A, B.  
DVDD  
AVDD  
330  
R
AVSS  
AVSS  
DVSS  
Figure 3. CCDIN_X  
Figure 6. Digital Inputs  
HVDD OR RGVDD  
DATA  
AVDD  
ENABLE  
DOUT  
330  
25kΩ  
CLI  
+
1.4V  
HVSS OR RGVSS  
AVSS  
Figure 7. H1X to H4X and RG_X  
Figure 4. CLI_X  
DVSS  
DRVDD  
DATA  
THREE-STATE  
DOUT  
DVSS  
DRVSS  
Figure 5. Data Outputs D0_X to D13_X  
Rev. A | Page 12 of 36  
 
AD9942  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
1.015  
1.010  
1.005  
1.000  
0.995  
–25°C +25°C  
0.5  
0
+85°C  
–0.5  
–1.0  
0
4000  
8000  
12000  
16000  
2000  
4000  
6000  
8000 10000 12000 14000 16000  
ADC OUTPUT CODE  
ADC OUTPUT CODE  
Figure 8. DNL for Channel A and Channel B  
Figure 10. Noncalibrated Channel A/Channel B Ratio  
10  
5
0
–5  
–10  
–15  
–20  
2000  
4000  
6000  
8000 10000 12000 14000 16000  
DAC OUTPUT CODE  
Figure 9. INL Performance for Channel A and Channel B  
Rev. A | Page 13 of 36  
 
 
 
AD9942  
SYSTEM OVERVIEW  
MAXIMUM FIELD DIMENSIONS  
V DRIVER  
V1 > Vx, VSG1 > VSGx, SUBCK  
H1A TO H4A, RG_A  
H1B TO H4B, RG_B  
12-BIT HORIZONTAL = 4096 PIXELS MAX  
DOUT  
CCDIN_A  
AD9942  
CCD  
DIGITAL IMAGE  
PROCESSING  
ASIC  
CCDIN_B  
INTEGRATED  
AFE + TD  
12-BIT VERTICAL = 4096 LINES MAX  
HD_A, VD_A,  
HD_B, VD_B  
CLI_A, CLI_B  
SERIAL  
INTERFACE  
Figure 11. Typical Application  
Figure 12. Vertical and Horizontal Counters  
Figure 11 shows the typical system application diagram for the  
AD9942. The CCD output is processed by the AD9942 AFE  
circuitry, which consists of a CDS, a VGA, a CLPOB, and an  
ADC. The digitized pixel information is sent to the digital  
image processor chip, where all postprocessing and  
compression occurs. To operate the CCD, CCD timing param-  
eters are programmed from the image processor to the AD9942  
through the 6-wire serial interface. From the system master  
clock, CLI, which is provided by the image processor, the device  
generates the high speed CCD clocks and internal AFE clocks.  
All AD9942 clocks are synchronized with VD_X and HD_X.  
The CLPOB is programmed and generated internally.  
The H drivers for H1A to H4A, H1B to H4B, RG_A, and RG_B  
are included in the AD9942, allowing these clocks to be directly  
connected to the CCD. An H driver voltage of 3 V is supported  
in the AD9942.  
Figure 12 shows the horizontal and vertical counter dimensions  
for the device. All internal horizontal clocking is programmed  
using these dimensions to specify line and pixel locations.  
MAX VD LENGTH IS 4095 LINES  
VD_X  
MAX HD LENGTH IS 4095 PIXELS  
HD_X  
CLI_X  
Figure 13. Maximum VD_X/HD_X Dimensions  
Rev. A | Page 14 of 36  
 
 
AD9942  
SERIAL INTERFACE TIMING  
All of the AD9942 internal registers are accessed through a  
6-wire serial interface. Each register consists of an 8-bit address  
and a 24-bit data-word. Both the 8-bit address and the 24-bit  
data-word are written starting with the LSB. To write to each  
register, a 32-bit operation is required, as shown in Figure 14.  
Although many registers are less than 24 bits wide, all 24 bits  
must be written for each register. If the register is only 16 bits  
wide, then the upper 8 bits can be filled with 0s during the serial  
write operation. If fewer than 24 bits are written, the register is  
not updated with new data.  
Figure 15 shows a more efficient way to write to the registers by  
using the AD9942 address auto-increment capability. In this  
method, the lowest desired address is written first, followed by  
multiple 24-bit data-words. Each new 24-bit data-word is  
written automatically to the next highest register address. By  
eliminating the need to write each 8-bit address, faster register  
loading is achieved. The address auto-increment function can  
be used, starting with any register location, to write to as few as  
two registers or to as many as the entire register space.  
8-BIT ADDRESS  
24-BIT DATA  
...  
SDATA_X  
SCK_X  
SL_X  
A0  
A1  
A2  
A4  
A5  
A6  
tDH  
A7  
D1  
D2  
D3  
D21 D22 D23  
A3  
D0  
tDS  
...  
1
2
3
4
5
6
7
8
9
10  
11  
12  
30  
31  
32  
tLS  
tLH  
...  
...  
SL UPDATED  
VD/HD UPDATED  
VD_X  
HD_X  
...  
NOTES  
1. X = A, B.  
2. INDIVIDUAL SDATA_X BITS ARE LATCHED UPON SCK_X RISING EDGES.  
3. ALL 32 BITS MUST BE WRITTEN: 8 BITS FORADDRESS AND 24 BITS FOR DATA.  
4. IF THE REGISTER LENGTH IS <24 BITS, THEN DON’T CARE BITS MUST BE USEDTO COMPLETE THE 24-BIT DATA LENGTH.  
5. NEW DATA IS UPDATED AT EITHER THE SL_X RISING EDGE ORAT THE HD_X FALLING EDGE AFTER THE NEXT VD_X FALLING EDGE.  
6. VD_X/HD_X UPDATE POSITION CAN BE DELAYED TO ANY HD_X FALLING EDGE IN THE FIELD USING THE UPDATE REGISTER.  
Figure 14. Serial Write Operation  
DATA FOR STARTING  
REGISTER ADDRESS  
DATA FOR NEXT  
REGISTER ADDRESS  
...  
...  
...  
...  
SDATA_X  
SCK_X  
SL_X  
A0  
A1  
A2  
A4  
A5  
A6  
A7  
D0  
D1  
D22 D23  
D0  
D1  
D22 D23 D0  
A3  
D1  
D2  
...  
...  
...  
58  
59  
33  
34  
55  
56  
57  
1
2
3
4
5
6
7
8
9
10  
31  
32  
...  
...  
NOTES  
1. X = A, B.  
2. MULTIPLE SEQUENTIAL REGISTERS CAN BE LOADED CONTINUOUSLY.  
3. THE FIRST (LOWEST ADDRESS) REGISTER ADDRESS IS WRITTEN, FOLLOWED BY MULTIPLE 24-BIT DATA-WORDS.  
4. THE ADDRESS AUTOMATICALLY INCREMENTS WITH EACH 24-BIT DATA-WORD (ALL 24 BITS MUST BE WRITTEN).  
5. SL_X IS HELD LOW UNTIL THE LAST DESIRED REGISTER HAS BEEN LOADED.  
6. NEW DATA IS UPDATED AT EITHER THE SL RISING EDGE OR AT THE HD FALLING EDGE AFTER THE NEXT VD FALLING EDGE.  
Figure 15. Continuous Serial Write Operation  
Rev. A | Page 15 of 36  
 
 
 
AD9942  
COMPLETE REGISTER LISTING  
In Table 8 through Table 16, note the following:  
All addresses and default values are expressed in hexadecimal format.  
All registers are VD_X/HD_X updated as shown in Figure 14, except for the registers indicated in Table 8, which are SL_X updated.  
Each channel is programmed independently using the 5-wire serial interface. Both channels can be programmed with the same  
register values by tying the SL_A and SL_B signals together and the SDATA_A and SDATA_B signals together.  
Table 8. Updated Registers upon Rising Edge of SL_X  
Register  
Description  
OPRMODE  
CTLMODE  
AFE operation modes  
AFE control modes  
SW_RESET  
Software reset bit  
TGCORE _RSTB  
PREVENTUPDATE  
VDHDEDGE  
FIELDVAL  
HBLKRETIME  
H1CONTROL  
RGCONTROL  
DRVCONTROL  
SAMPCONTROL  
DOUTPHASE  
Reset bar signal for internal TG core  
Prevents update of registers  
VD/HD active edge  
Resets internal field pulse  
Retimes the HBLK to internal clock  
H1 polarity control  
RG signal control polarity  
Drive-strength control  
SHP/SHD sample control  
DOUT phase control  
Table 9. CHN_A and CHN_B AFE Register Map  
Address Data Bit Content Default (Hex)  
Name  
Description  
00  
01  
02  
03  
04  
05  
[11:0]  
[9:0]  
[7:0]  
[11:0]  
[17:0]  
[17:0]  
4
0
80  
4
0
OPRMODE  
TESTMODE  
CLAMP LEVEL  
CTLMODE  
TESTMODE  
TESTMODE  
AFE operation modes (see Table 15).  
Internal test mode. Should always be set = 0.  
CLPOB level.  
AFE control modes (see Table 16).  
Test operation only. Set = 0.  
Test operation only. Set = 0.  
0
Table 10. CHN_A and CHN_B Miscellaneous Register Map  
Address Data Bit Content Default (Hex)  
Name  
Description  
10  
11  
12  
13  
14  
[0]  
[0]  
[0]  
[11:0]  
[0]  
0
0
0
0
0
SW_RST  
Software reset.1 = reset all registers to default, then self-clear back to 0.  
OUT_CONTROL Output control. 0 = make all dc outputs inactive.  
TGCORE_RSTB Timing core reset bar. 0 = reset TG core; 1 = resume operation.  
UPDATE  
PREVENTUPDA Prevents the update of the VD-updated registers. 1 = prevent update.  
TE  
Serial update. Sets the line (HD) within the field to update serial data.  
15  
16  
17  
[0]  
0
0
0
VDHDEDGE  
VD/HD active edge.  
0 = falling edge triggered; 1 = rising edge triggered.  
Field value sync.  
0 = next field 0; 1 = next field 1; 2/3 = next field 2.  
[1:0]  
[0]  
FIELDVAL  
HBLKRETIME  
Retime HBLK to internal H1 clock. Preferred setting is 1. Setting to 1 adds  
one cycle delay to HBLK toggle positions.  
18  
19  
1A  
E8  
[1:0]  
[0]  
[0]  
[2:0]  
[11:3]  
0
0
0
TEST MODE  
TEST MODE  
TEST MODE  
TEST MODE  
VGAGAIN  
Internal test mode. Should always be set = 0.  
Internal test mode. Should always be set = 0.  
Internal test mode. Should always be set = 0.  
Internal test mode. Should always be set = 0.  
VGA gain control.  
0
Rev. A | Page 16 of 36  
 
 
AD9942  
Table 11. CHN_A and CHN_B CLPOB Register Map  
Address Data Bit Content Default (Hex) Name  
Description (the CLPOBSCP0 Always Starts at Line 0)  
20  
21  
22  
23  
24  
25  
26  
27  
28  
[3:0]  
F
CLPOBPOL  
Start polarities for CLPOB Sequences 0, 1, 2, and 3.  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[7:0]  
[11:0]  
[11:0]  
[11:0]  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
00  
FFF  
FFF  
FFF  
CLPOBTOG_0  
CLPOBTOG_1  
CLPOBTOG_2  
CLPOBTOG_3  
CLPOBSPTR  
CLPOBSCP1  
CLPOBSCP2  
CLPOBSCP3  
Sequence 0. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
Sequence 1. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
Sequence 2. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
Sequence 3. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
CLPOB sequence pointers for Region 0 [1:0], 1 [3:2], 2 [5:4], and 3 [7:6].  
CLPOB sequence—Change Position 1.  
CLPOB sequence—Change Position 2.  
CLPOB sequence—Change Position 3.  
Table 12. PBLK Register Map  
Address Data Bit Content  
Default (Hex)  
F
Name  
Description (the PBLKSCP0 Always Starts at Line 0)  
Start polarities for PBLK Sequences 0, 1, 2, and 3.  
30  
31  
32  
33  
34  
35  
36  
37  
38  
[3:0]  
PBLKPOL  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[7:0]  
[11:0]  
[11:0]  
[11:0]  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
00  
FFF  
FFF  
FFF  
PBLKTOG_0  
PBLKTOG_1  
PBLKTOG_2  
PBLKTOG_3  
PBLKSPTR  
PBLKSCP1  
PBLKSCP2  
PBLKSCP3  
Sequence 0. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
Sequence 1. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
Sequence 2. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
Sequence 3. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
PBLK Sequence Pointers for Region 0 [1:0], 1 [3:2], 2 [5:4], and 3 [7:6].  
PBLK sequence—Change Position 1.  
PBLK sequence—Change Position 2.  
PBLK sequence—Change Position 3.  
Table 13. HBLK Register Map  
Address Data Bit Content  
Default (Hex)  
0
0
1
F
Name  
Description (the HBLKSCP0 Always Starts at Line 0)  
Test mode. Always set = 0 if accessed.  
Test mode. Always set = 0 if accessed.  
Test mode. Always set = 1 if accessed.  
HBLK internal masking polarity. 0 = mask H1 low; 1 = mask H1 high.  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
[0]  
[0]  
[0]  
[3:0]  
TESTMODE  
TESTMODE  
TESTMODE  
HBLKMASK  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[7:0]  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
00  
HBLKTOG12_0 Sequence 0. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
HBLKTOG34_0 Sequence 0. Toggle Position 3 [11:0] and Toggle Position 4 [23:12].  
HBLKTOG56_0 Sequence 0. Toggle Position 5 [11:0] and Toggle Position 6 [23:12].  
HBLKTOG12_1 Sequence 1. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
HBLKTOG34_1 Sequence 1. Toggle Position 3 [11:0] and Toggle Position 4 [23:12].  
HBLKTOG56_1 Sequence 1. Toggle Position 5 [11:0] and Toggle Position 6 [23:12].  
HBLKTOG12_2 Sequence 2. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
HBLKTOG34_2 Sequence 2. Toggle Position 3 [11:0] and Toggle Position 4 [23:12].  
HBLKTOG56_2 Sequence 2. Toggle Position 5 [11:0] and Toggle Position 6 [23:12].  
HBLKTOG12_3 Sequence 3. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
HBLKTOG34_3 Sequence 3. Toggle Position 3 [11:0] and Toggle Position 4 [23:12].  
HBLKTOG56_3 Sequence 3. Toggle Position 5 [11:0] and Toggle Position 6 [23:12].  
HBLKSPTR  
HBLKSCP1  
HBLKSCP2  
HBLKSCP3  
HBLK sequence pointers for Region 0 [1:0], 1 [3:2], 2 [5:4], and 3 [7:6].  
HBLK sequence—Change Position 1.  
HBLK sequence—Change Position 2.  
[11:0]  
[11:0]  
[11:0]  
FFF  
FFF  
FFF  
HBLK sequence—Change Position 3.  
Rev. A | Page 17 of 36  
AD9942  
Table 14. CHN_A and CHN_B H1 to H4, RG, SHP, SHD Register Map  
Address Data Bit Content  
Default (Hex)  
Name  
Description  
60  
61  
62  
[12:0]  
[12:0]  
[14:0]  
01001  
H1CONTROL  
H1 signal control. Polarity [0] (0 = inversion; 1 = no inversion).  
H1 positive edge location [6:1].  
H1 negative edge location [12:7].  
RG signal control. Polarity [0] (0 = inversion; 1 = no inversion).  
RG positive-edge location [6:1].  
RG negative-edge location [12:7].  
00801  
0
RGCONTROL  
DRVCONTROL  
Drive-strength control for H1X [2:0], H2X [5:3], H3X [8:6], H4X [11:9],  
and RG_X [14:12].  
Drive-current values: 0 = off, 1 = 4.3 mA, 2 = 8.6 mA, 3 = 12.9 mA,  
4 = 17.2 mA, 5 = 21.5 mA, 6 = 25.8 mA, 7 = 30.1 mA.  
63  
64  
[11:0]  
[5:0]  
00024  
0
SAMPCONTROL SHP/SHD sample control. SHP sampling location [5:0]. SHD sampling  
location [11:6].  
DOUTPHASE  
DOUT phase control.  
Table 15. CHN_A and CHN_B AFE Operation Register Detail  
Address Data Bit Content  
Default (Hex)  
Name  
Description  
00  
[1:0]  
[2]  
[3]  
[4]  
[5]  
[7:6]  
[8]  
[9]  
0
1
0
0
0
0
0
0
0
PWRDOWN  
CLPENABLE  
CLPSPEED  
FASTUPDATE  
PBLK_LVL  
TEST MODE  
DCBYP  
0 = normal operation; 1 = reference standby; 2/3 = total power-down.  
0 = disable CLPOB; 1 = enable CLPOB.  
0 = select normal CLPOB settling; 1 = select fast CLPOB settling.  
0 = ignore VGA update; 1 = very fast clamping when VGA is updated.  
DOUT value during PBLK; 0 = blank to zero; 1 = blank to clamp level.  
Internal test mode. Should always be set = 3.  
0 = enable dc restore circuit; 1 = bypass dc restore circuit during PBLK.  
Test operation only. Set = 0.  
TESTMODE  
TESTMODE  
[11:10]  
Test operation only. Set = 0.  
Table 16. CHN_A and CHN_B AFE Control Register Detail  
Address Data Bit Content  
Default (Hex)  
Name  
Description  
03  
[1:0]  
[2]  
[3]  
[4]  
[5]  
0
1
0
0
0
TESTMODE  
TESTMODE  
Test operation only. Set = 0.  
Test operation only. Set = 0.  
DOUTDISABLE 0 = data outputs are driven; 1 = data outputs are three-stated.  
DOUTLATCH  
GRAYENCODE  
0 = latch data outputs with DOUT phase; 1 = output latch transparent.  
0 = binary encode data outputs; 1 = gray encode data outputs.  
Rev. A | Page 18 of 36  
 
 
AD9942  
CHANNEL A AND CHANNEL B PRECISION TIMING  
HIGH SPEED TIMING GENERATION  
HIGH SPEED CLOCK PROGRAMMABILITY  
The AD9942 generates flexible, high speed timing signals using  
the Precision Timing core for both channels. This core is the  
foundation for generating the timing used for both the CCD  
and the AFE, the reset gate RG_X, the horizontal drivers H1X  
to H4X, and the SHP/SHD sample clocks. A unique architecture  
makes it routine for the system designer to optimize image  
quality by providing precise control over the horizontal CCD  
readout and the AFE correlated double sampling.  
Figure 17 shows how the high speed clocks, RG_X, H1X to  
H4X, SHP, and SHD, are generated. The RG_X pulse has  
programmable rising and falling edges and can be inverted  
using the polarity control. The horizontal clock, H1, has  
programmable rising and falling edges and polarity control.  
The H2 clock is always the inverse of the H1 clock. Table 17 sum-  
marizes the high speed timing registers and their parameters.  
Each edge location setting is six bits wide, but only 48 valid edge  
locations are available. Therefore, the register values are  
mapped into four quadrants, with each quadrant containing  
12 edge locations. Table 18 shows the correct register values for  
the corresponding edge locations.  
TIMING RESOLUTION  
The Precision Timing core uses a 1× master clock input (CLI) as  
a reference. This clock should be the same as the CCD pixel  
clock frequency. Figure 16 illustrates how the internal timing  
core divides the master clock period into 48 steps or edge  
positions. Therefore, the edge resolution of the Precision Timing  
core is (tCLI/48). For more information on using the CLI input,  
see the Applications Information section.  
POSITION  
CLI_X  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
...  
tCLIDLY  
...  
1 PIXEL  
PERIOD  
NOTES  
1. PIXEL CLOCK PERIOD IS DIVIDED INTO 48 POSITIONS, PROVIDING FINE EDGE RESOLUTION FOR HIGH SPEED CLOCKS.  
2. THERE IS A FIXED DELAY FROM THE CLI_X INPUT TO THE INTERNAL PIXEL PERIOD POSITIONS (tCLIDLY = 6ns TYP).  
Figure 16. High Speed Clock Resolution from CLI  
3
CCD SIGNAL  
4
1
5
2
RG_X  
6
H1X/H3X  
H2X/H4X  
PROGRAMMABLE CLOCK POSITIONS:  
1
RG_X RISING EDGE.  
RG_X FALLING EDGE.  
SHP SAMPLE LOCATION.  
SHD SAMPLE LOCATION.  
H1X/H3X RISING EDGE POSITION.  
H1X/H3X FALLING EDGE POSITION (H2X/H4X ARE INVERSE OF H1X/H3X).  
2
3
4
5
6
Figure 17. High Speed Clock Programmable Locations  
Rev. A | Page 19 of 36  
 
 
 
AD9942  
Table 17. Channel A and Channel B H1X to H4X CONTROL, RG_X CONTROL, DRVCONTROL,  
and SAMPCONTROL Register Parameters  
Length  
(Bit)  
Parameter  
Range  
Description  
Polarity  
1
6
6
6
3
6
High/low  
Polarity control for H1X and RG_X (0 = no inversion; 1 = inversion).  
Positive-edge location for H1X, H3X, and RG_X.  
Negative-edge location for H1X and RG_X.  
Sampling location for SHP and SHD.  
Drive current for H1X to H4X and RG_X outputs, 0 to 7 steps of 4.1 mA each.  
Phase location of data outputs with respect to pixel period.  
Positive Edge  
Negative Edge  
Sample Location  
Drive Control  
DOUT Phase  
0 to 47 edge locations  
0 to 47 edge locations  
0 to 47 sample locations  
0 to7 current steps  
0 to 47 edge locations  
Table 18. Channel A and Channel B Precision Timing Edge Locations  
Quadrant  
Edge Location (Decimal)  
Register Value (Decimal)  
Register Value (Binary)  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
I
II  
III  
IV  
0 to 11  
12 to 23  
24 to 35  
36 to 47  
0 to 11  
16 to 27  
32 to 43  
48 to 59  
Rev. A | Page 20 of 36  
 
 
AD9942  
As shown in Figure 18, the H2X/H4X outputs are inverses of  
H DRIVER AND RG OUTPUTS  
H1X. The internal propagation delay resulting from the signal  
inversion is less than l ns, which is significantly less than the  
typical rise time driving the CCD load. This results in a  
H1X/H2X crossover voltage at approximately 50% of the output  
swing. The crossover voltage is not programmable.  
In addition to the programmable timing positions, the AD9942  
features on-chip output drivers for the RG_X and H1X to H4X  
outputs. These drivers are powerful enough to drive the CCD  
inputs directly. The H-driver and RG-driver currents can be  
adjusted for optimum rise and fall time into a particular load by  
using the DRVCONTROL register (Address 0x62). The  
DRVCONTROL register is divided into five 3-bit values, each  
adjustable in 4.1 mA increments. The minimum setting of 0 is  
equal to off, or three-state, and the maximum setting of 7 is  
equal to 30.1 mA.  
DIGITAL DATA OUTPUTS  
The AD9942 data output phase is programmable using the  
DOUTPHASE register (Address 0x64). Any edge from 0 to 47  
can be programmed, as shown in Figure 19. The pipeline delay  
for the digital data output is shown in Figure 20.  
H1X/H3X  
tRISE  
H2X/H4X  
tPD << tRISE  
tPD  
H1X/H3X  
H2X/H4X  
FIXED CROSSOVER VOLTAGE  
Figure 18. H-Clock Inverse Phase Relationship  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
CLI_X  
1 PIXEL PERIOD  
tOD  
DOUT  
NOTES  
1. DIGITAL OUTPUT DATA (DOUT) PHASE IS ADJUSTABLE WITH RESPECT TO THE PIXEL PERIOD.  
2. WITHIN ONE CLOCK PERIOD, THE DATA TRANSITION CAN BE PROGRAMMED TO ANY OF THE 48 LOCATIONS.  
Figure 19. Digital Output Phase Adjustment  
VD_X  
HD_X  
CLI_X  
H-COUNTER  
RESET  
H COUNTER  
(PIXEL COUNTER)  
X
X
X
X
X
X
X
X
X
X
0
1
2
3
4
5
6
7
8
9
10 11 12 14 15  
0
1
2
3
NOTES  
1. INTERNAL H COUNTER IS RESET SEVEN CLI_X CYCLES AFTER THE HD_X FALLING EDGE (WHEN USING VDHDEDGE = 0).  
2. TYPICAL TIMING RELATIONSHIP: CLI_X RISING EDGE IS COINCIDENT WITH HD_X FALLING EDGE.  
Figure 20. Pipeline Delay for Channel A and Channel B Digital Data Output  
Rev. A | Page 21 of 36  
 
 
 
 
AD9942  
CHANNEL A AND CHANNEL B HORIZONTAL CLAMPING AND BLANKING  
The AD9942 horizontal clamping and blanking pulses are fully  
programmable to suit a variety of applications. Individual  
sequences are defined for each signal, which are then organized  
into multiple regions during image readout. This allows the  
dark pixel clamping and blanking patterns to be changed at  
each stage of the readout to accommodate different image  
transfer timing and high speed line shifts.  
INDIVIDUAL HBLK SEQUENCES  
The HBLK programmable timing, shown in Figure 22, is similar  
to CLPOB and PBLK. However, there is no start polarity  
control. Only the toggle positions are used to designate the start  
and stop positions of the blanking period. Additionally, there is  
a polarity control, HBLKMASK, which designates the polarity  
of the horizontal clock signal H1 during the blanking period.  
Setting HBLKMASK high sets H1 low and H2 high during the  
blanking, as shown in Figure 23. Up to four individual  
sequences are available for HBLK.  
INDIVIDUAL CLPOB AND PBLK SEQUENCES  
The AFE horizontal timing consists of CLPOB and PBLK, as  
shown in Figure 21. These two signals are independently  
programmed using the parameters shown in Table 19. The start  
polarity, first toggle position, and second toggle position are  
fully programmable for each signal. The CLPOB and PBLK  
signals are active low and should be programmed accordingly.  
Up to four individual sequences can be created for each signal.  
Table 19. Channel A and Channel B CLPOB and PBLK Individual Sequence Parameters  
Length  
(Bit)  
Parameter  
Range  
Description  
Polarity  
Toggle Position 1  
Toggle Position 2  
1
12  
12  
High/low  
0 to 4095 pixel locations  
0 to 4095 pixel locations  
Starting polarity of CLPOB and PBLK pulses for Sequences 0 to 3.  
First toggle position within the line for Sequences 0 to 3.  
Second toggle position within the line for Sequences 0 to 3.  
Rev. A | Page 22 of 36  
 
 
 
AD9942  
...  
...  
HD  
2
3
CLPOB  
PBLK  
1
ACTIVE  
ACTIVE  
PROGRAMMABLE SETTINGS:  
1
START POLARITY (CLAMP AND BLANK REGION ARE ACTIVE LOW).  
FIRST TOGGLE POSITION.  
SECOND TOGGLE POSITION.  
2
3
Figure 21. CLPOB and PBLK Pulse Placement  
...  
...  
HD_X  
HBLK  
1
2
BLANK  
BLANK  
PROGRAMMABLE SETTINGS:  
1
FIRST TOGGLE POSITION = START OF BLANKING.  
SECOND TOGGLE POSITION = END OF BLANKING.  
2
Figure 22. HBLK Pulse Placement  
...  
...  
HD_X  
HBLK  
H1X/H3X  
THE POLARITY OF H1 DURING BLANKING IS PROGRAMMABLE (H2 IS OPPOSITE POLARITY OF H1).  
...  
H1X/H3X  
H2X/H3X  
...  
Figure 23. HBLK Masking Control  
Rev. A | Page 23 of 36  
 
 
 
AD9942  
CHANNEL A AND CHANNEL B SPECIAL HBLK PATTERNS  
Six toggle positions are available for HBLK. Typically, only two  
of the toggle positions are used to generate the standard HBLK  
interval. However, the additional toggle positions can be used to  
generate special HBLK patterns, as shown in Figure 24. The  
pattern in this example uses all six toggle positions to generate  
two extra groups of pulses during the HBLK interval. By  
changing the toggle positions, different patterns can be created.  
into four separate regions, as shown in Figure 25. The SCP0 is  
always hard-coded to Line 0, and SCP1 to SCP3 are register  
programmable. During each region bounded by the SCP, the  
SPTR registers designate which sequence is used by each signal.  
CLPOB, PBLK, and HBLK each have a separate set of SCPs. For  
example, CLPOBSCP1 defines Region 0 for CLPOB, and in that  
region any of the four CLPOB sequences can be selected with  
the CLPOBSPTR register. The next SCP defines a new region,  
in which each signal can be assigned to a different individual se-  
quence. The sequence control registers are detailed in Table 21.  
HORIZONTAL SEQUENCE CONTROL  
The AD9942 uses sequence change positions (SCPs) and  
sequence pointers (SPTRs) to organize the individual horizontal  
sequences. Up to four SCPs are available to divide the readout  
TOG1  
TOG2  
TOG3  
TOG4  
TOG5  
TOG6  
HBLK  
H1X/H3X  
H2X/H4X  
SPECIAL H-BLANK PATTERN IS CREATED USING MULTIPLE HBLK TOGGLE POSITIONS.  
Figure 24. Generating Special HBLK Patterns  
SINGLE FIELD (1 VD INTERVAL)  
SEQUENCE CHANGE OF POSITION 0  
(V COUNTER = 0)  
CLAMP AND PBLK SEQUENCE REGION 0  
CLAMP AND PBLK SEQUENCE REGION 1  
SEQUENCE CHANGE OF POSITION 1  
SEQUENCE CHANGE OF POSITION 2  
CLAMP AND PBLK SEQUENCE REGION 2  
CLAMP AND PBLK SEQUENCE REGION 3  
SEQUENCE CHANGE OF POSITION 3  
UP TO FOUR INDIVIDUAL HORIZONTAL CLAMP AND BLANKING REGIONS MAY BE  
PROGRAMMED WITHIN A SINGLE FIELD, USING THE SEQUENCE CHANGE POSITIONS.  
Figure 25. CLPOB and PBLK Sequence Flexibility  
Rev. A | Page 24 of 36  
 
 
 
AD9942  
Table 20. Channel A and Channel B HBLK Individual Sequence Parameters  
Length  
(Bit)  
Parameter  
Range  
Description  
HBLKMASK  
1
High/low  
Masking polarity for H1 for Sequences 0 to 3 (0 = low; 1 = high).  
First toggle position within the line for Sequences 0 to 3.  
Second toggle position within the line for Sequences 0 to 3.  
Third toggle position within the line for Sequences 0 to 3.  
Fourth toggle position within the line for Sequences 0 to 3.  
Fifth toggle position within the line for Sequences 0 to 3.  
Sixth toggle position within the line for Sequences 0 to 3.  
Toggle Position 1  
Toggle Position 2  
Toggle Position 3  
Toggle Position 4  
Toggle Position 5  
Toggle Position 6  
12  
12  
12  
12  
12  
12  
0 to 4095 pixel locations  
0 to 4095 pixel locations  
0 to 4095 pixel locations  
0 to 4095 pixel locations  
0 to 4095 pixel locations  
0 to 4095 pixel locations  
Table 21. Channel A and Channel B Horizontal Sequence Control Registers for CLPOB, PBLK, and HBLK  
Length  
(Bit)  
Register  
SCP  
SPTR  
Range  
Description  
12  
2
0 to 4095 line numbers  
0 to 3 sequence numbers  
CLPOB/PBLK/HBLK SCP to define Horizontal Regions 0 to 3.  
Sequence pointer for Horizontal Regions 0 to 3.  
Table 22. Channel A and Channel B External HBLK Register Parameters  
Register  
Length (Bit)  
Range  
Description  
HBLKDIR  
HBLKPOL  
HBLKEXTMASK  
1
1
1
High/low  
High/low  
High/low  
Specifies HBLK internally generated or externally supplied. 0 = internal; 1 = external.  
External HBLK active polarity. 0 = active low; 1 = active high.  
External HBLK masking polarity. 0 = mask H1 low; 1 = mask H1 high.  
H-COUNTER SYNCHRONIZATION  
The H-counter reset occurs seven CLI cycles after the HD falling edge.  
VD_X  
HD_X  
CLI_X  
H-COUNTER  
RESET  
H COUNTER  
(PIXEL COUNTER)  
X
X
X
X
X
X
X
X
X
X
0
1
2
3
4
5
6
7
8
9
10 11 12 14 15  
0
1
2
3
NOTES  
1. INTERNAL H COUNTER IS RESET SEVEN CLI_X CYCLES AFTER THE HD_X FALLING EDGE (WHEN USING VDHDEDGE = 0).  
2. TYPICAL TIMING RELATIONSHIP: CLI_X RISING EDGE IS COINCIDENT WITH HD_X FALLING EDGE.  
Figure 26. H-Counter Synchronization  
Rev. A | Page 25 of 36  
 
 
AD9942  
CHANNEL A AND CHANNEL B POWER-UP PROCEDURE  
When the AD9942 is powered up, the following sequence is  
recommended for Channel A and Channel B (see Figure 27 for  
each step).  
5. Write a 1 to the PREVENTUPDATE register (Address 0x14).  
This prevents an update of the serial register data.  
6. Write to the desired registers to configure high speed  
timing and horizontal timing.  
1. Turn on the power supplies for the AD9942.  
2. Apply the master clock input, CLI_X, VD_X, and HD_X.  
7. Write a 3 to the [7:6] TESTMODE register (Address 0x00).  
See Table 15.  
3. Although the AD9942 contains an on-chip power-on reset,  
a software reset of the internal registers is recommended.  
Write a 1 to the SW_RST register (Address 0x10), which  
resets all the internal registers to their default values. This  
bit is self-clearing and is automatically reset to 0.  
8. Write a 1 to the OUT_CONTROL register (Address 0x11).  
This allows the outputs to become active after the next  
VD_X/HD_X rising edge.  
9. Write a 0 to the PREVENTUPDATE register (Address 0x14).  
This allows the serial information to be updated at the  
next VD_X/HD_X falling edge. The next VD_X/HD_X  
falling edge allows register updates, including updates of  
OUT_CONTROL, to occur which enables all clock outputs.  
4. Reset the Precision Timing core by writing a 0 to the  
TGCORE_RSTB register (Address 0x12), then write a l to  
the TGCORE_RSTB register. This starts the internal  
timing core operation.  
VDD  
1
(INPUT)  
CLI_X  
(INPUT)  
2
tPWR  
3
4
5
6
7
8
SERIAL  
WRITES  
9
1V  
...  
...  
...  
VD_X  
(OUTPUT)  
ODD FIELD  
EVEN FIELD  
1H  
2
...  
HD_X  
(OUTPUT)  
H2X/H4X  
DIGITAL  
OUTPUTS  
H1X/H3X, RG_X  
CLOCKS ACTIVE WHEN OUT_CONTROL REGISTER IS  
UPDATED AT VD/HD EDGE  
Figure 27. Recommended Power-Up Sequence  
Rev. A | Page 26 of 36  
 
 
AD9942  
CHANNEL A AND CHANNEL B ANALOG FRONT END OPERATION  
The AD9942 signal processing chain is shown in Figure 28.  
Each processing step is essential for achieving a high quality  
image from the raw CCD pixel data.  
CORRELATED DOUBLE SAMPLER  
The CDS circuit samples each CCD pixel twice to extract the  
video information and reject low frequency noise. The timing  
shown in Figure 17 illustrates how the two internally generated  
CDS clocks, SHP and SHD, are used to sample the reference  
level and the CCD signal level, respectively. The placement of  
the SHP and SHD sampling edges is determined by the setting  
of the SAMPCONTROL register located at Address 0x63.  
Placement of these two clock signals is critical for achieving the  
best performance from the CCD.  
DC RESTORE  
To reduce the large dc offset of the CCD output signal, a dc  
restore circuit is used with an external 0.1 μF series coupling  
capacitor. This restores the dc level of the CCDIN_X signal to  
approximately 1.5 V to be compatible with the 3 V supply  
voltage of the AD9942.  
1.0µF 1.0µF  
REFB_X  
REFT_X  
1.0V 2.0V  
DC RESTORE  
1.5V  
AD9942  
INTERNAL  
V
REF  
DOUT  
PHASE  
SHP  
2V FULL SCALE  
SHD  
0dB ~ 18dB  
OUTPUT  
DATA  
LATCH  
14  
CCDIN_X  
ADC  
DOUT  
CDS  
VGA1  
1.0µF  
OPTICAL BLACK  
CLAMP  
DAC  
VGA GAIN  
REGISTERS  
CLPOB PBLK  
DIGITAL  
FILTER  
DOUT  
PHASE  
8
SHP SHD  
CLPOB PBLK  
CLAMP LEVEL  
REGISTER  
PRECISION  
V-H  
TIMING  
TIMING  
GENERATION  
GENERATION  
Figure 28. Channel A and Channel B Analog Front End Functional Block Diagram  
Rev. A | Page 27 of 36  
 
 
AD9942  
CHANNEL A AND CHANNEL B  
VARIABLE GAIN AMPLIFIER  
CHANNEL A AND CHANNEL B CLPOB  
The CLPOB loop is used to remove residual offsets in the signal  
chain and to track low frequency variations in the CCD black  
level. During the optical black (OB), or shielded, pixel interval  
on each line, the ADC output is compared with a fixed black  
level reference, selected by the user in the CLAMP LEVEL  
register. The value can be programmed between 0 LSB and 255  
LSB in 256 steps. The resulting error signal is filtered to reduce  
noise, and the correction value is applied to the ADC input  
through a digital-to-analog converter. Typically, the CLPOB  
loop is turned on once per horizontal line, but this loop can be  
updated more slowly to suit a particular application. If external  
digital clamping is used during postprocessing, the AD9942  
CLPOB can be disabled using Bit D2 in the OPRMODE register.  
The CLAMP LEVEL register can be used to provide program-  
mable offset adjustment even when the loop is disabled.  
The VGA stage provides a gain range of 0 dB to 18 dB, pro-  
grammable with 9-bit resolution through the serial digital  
interface. A minimum gain of 6 dB is needed to match a 1 V  
input signal with the ADC full-scale range of 2 V.  
The VGA gain curve follows a linear-in-dB characteristic. The  
exact VGA gain can be calculated for any gain register value by  
using the equation  
Gain (dB) = (0.035 × VGAGAIN Code)  
where the code range is 0 to 511.  
20  
18  
16  
14  
12  
10  
8
The CLPOB pulse should be placed during the CCDs OB pixel  
region. It is recommended that the CLPOB pulse duration be at  
least 20 pixels wide to minimize clamp noise. Shorter pulse widths  
can be used, but clamp noise might increase and the ability to  
track low frequency variations in the black level is reduced. See  
the Channel A and Channel B Horizontal Clamping and  
Blanking section and the Applications Information section for  
timing examples.  
6
4
2
0
CHANNEL A AND CHANNEL B  
DIGITAL DATA OUTPUTS  
0
50  
100 150 200 250 300 350 400 450 500  
GAIN CODE (Decimal)  
Figure 29. VGA Gain Curve  
The AD9942 digital output data is latched using the  
DOUTPHASE register value, as shown in Figure 28. (Output  
data timing is shown in Figure 19 and Figure 20.) It is also possible  
to leave the output latches transparent, so that the data outputs  
are valid immediately from the ADC. Programming the AFE  
Control Register Bit D4 to 1 sets the output latches transparent.  
The data outputs can also be disabled (three-stated) by setting  
the AFE Control Register Bit D3 to 1.  
CHANNEL A AND CHANNEL B ADC  
The AD9942 uses a high performance ADC architecture, opti-  
mized for high speed and low power. Differential nonlinearity  
(DNL) performance is typically better than 0.5 LSB. The ADC  
uses a 2 V input range. See Figure 8 and Figure 9 for typical  
linearity and noise performance plots for the AD9942.  
The data output coding is typically straight binary, but the  
coding can be changed to gray coding by setting the AFE  
Control Register Bit D5 to 1.  
Rev. A | Page 28 of 36  
 
AD9942  
APPLICATIONS INFORMATION  
CIRCUIT CONFIGURATION  
GROUNDING/DECOUPLING RECOMMENDATIONS  
The AD9942 recommended circuit configuration is shown in  
Figure 30. Achieving good image quality from the AD9942  
requires careful attention to the printed circuit board (PCB)  
layout. All signals should be routed to maintain low noise  
performance. The CCD_A and CCD_B output signals should  
be directly routed to Pins A1 and A7, respectively, through a  
0.1 μF capacitor. The master clock, CLI_X, should be carefully  
routed to Pins A3 and A9 to minimize interference with the  
CCDIN_X, REFT_X, and REFB_X signals.  
As Figure 30 shows, a single ground plane is recommended  
for the AD9942. This ground plane should be as continuous  
as possible, particularly around the P-, AI-, and A-type pins,  
to ensure that all analog decoupling capacitors provide the  
lowest possible impedance path between the power and bypass  
pins and their respective ground pins. All high frequency  
decoupling capacitors should be located as close as possible  
to the package pins.  
All the supply pins must be decoupled to ground with good  
quality, high frequency chip capacitors. There should also be  
a 4.7 μF or larger bypass capacitor for each main supply—that  
is, the AVDD_X, RGVDD_X, HVDD_X, and DRVDD_X—  
although this is not necessary for each individual pin. In most  
applications, it is easier to share the supply for RGVDD_X and  
HVDD_X, which can be done as long as the individual supply  
pins are separately bypassed. A separate 3 V supply can be used  
for DRVDD_X, but this supply pin should still be decoupled to  
the same ground plane as the rest of the chip. A separate ground  
for DRVSS_X is not recommended.  
The digital outputs and clock inputs should be connected to the  
digital ASIC away from the analog and CCD clock signals.  
Placing series resistors close to the digital output pins may help  
to reduce digital code transition noise. If the digital outputs  
must drive a load larger than 20 pF, buffering is recommended  
to minimize additional noise. If the digital ASIC can accept gray  
code, the AD9942 outputs can be selected to output data in gray  
code format using the Control Register Bit D5. Gray coding  
helps reduce potential digital transition noise compared with  
binary coding.  
The H1X to H4X and RG_X traces should have low inductance  
to avoid excessive distortion of the signals. Heavier traces are  
recommended because of the large transient current demand on  
H1X to H4X from the capacitive load of the CCD. If possible,  
physically locate the AD9942 closer to the CCD to reduce the  
inductance on these lines. As always, the routing path should be  
as direct as possible from the AD9942 to the CCD.  
The reference bypass pins (REFT_X, REFB_X) should be  
decoupled to ground as close as possible to their respective pins.  
The analog input capacitor (CCDIN_X) should also be located  
close to the pin.  
The GND connections should be tied to the lowest impedance  
ground plane on the PCB. Performance does not degrade if  
several of these GND connections are left unconnected for  
routing purposes.  
The CLI_X and CCDIN_X PCB traces should be carefully  
matched in length and impedance to achieve optimal channel-  
to-channel matching performance.  
Rev. A | Page 29 of 36  
 
 
AD9942  
3V ANALOG SUPPLY  
RG_A OUTPUT  
RG_A DRIVER SUPPLY  
+
+
3V ANALOG SUPPLY  
RG_B OUTPUT  
RG_B DRIVER  
SUPPLY  
4.7µF  
4.7µF  
COMMON MASTER CLOCK INPUT  
3V ANALOG SUPPLY  
+
4.7µF  
COMMON MASTER CLOCK INPUT  
3V ANALOG  
SUPPLY  
+
0.1µF  
4.7µF  
CCDIN_A  
REFB_A  
REFT_A  
SL_A  
AVSS_B  
CCDIN_B  
REFB_B  
REFT_B  
SL_B  
CHN_A CCD  
SIGNAL  
A1  
D1  
C1  
B2  
C2  
D2  
E1  
E2  
E4  
E3  
F4  
F3  
D4  
D3  
F1  
F2  
G1  
H1  
J1  
B7  
A7  
D7  
C7  
B8  
C8  
D8  
E7  
E8  
E10  
E9  
F10  
F9  
0.1µF  
1.0µF  
1.0µF  
CHN_B CCD  
SIGNAL  
0.1µF  
1.0µF  
1.0µF  
SERIAL  
INTERFACE  
FOR CHN_A  
SDATA_A  
SCK_A  
HD_A  
SDATA_B  
SCK_B  
HD_B  
SERIAL  
3
HD COMMON INPUT  
VD COMMON INPUT  
INTERFACE  
FOR CHN_B  
VD_A  
HD COMMON INPUT  
VD COMMON INPUT  
H1A TO H4A  
DRIVER  
HVDD_A  
HVSS_A  
H1A  
VD_B  
H1B TO H4B  
DRIVER  
SUPPLY  
4.7µF  
0.1µF  
4
HVDD_B  
HVSS_B  
H1B  
SUPPLY  
0.1µF  
4.7µF  
H1A TO H4A  
OUTPUTS  
H2A  
4
H1B TO H4B  
OUTPUTS  
H3A  
H2B  
AD9942  
H4A  
H3B  
D10  
D9  
F7  
DVDD_A  
DVSS_A  
D0_A (LSB)  
D1_A  
H4B  
3V ANALOG  
SUPPLY  
0.1µF  
DVDD_B  
DVSS_B  
3V ANALOG  
SUPPLY  
0.1µF  
F8  
D0_B (LSB)  
D1_B  
G7  
H7  
J7  
D2_A  
D3_A  
D2_B  
K1  
G2  
H2  
K2  
G3  
H3  
D4_A  
D3_B  
K7  
G8  
H8  
K8  
G9  
D5_A  
D4_B  
D6_A  
D5_B  
D7_A  
D6_B  
D8_A  
D7_B  
14  
14  
CHN_A DATA  
OUTPUTS  
CHN_B DATA  
OUTPUTS  
3V  
DRIVER  
3V  
DRIVER  
Figure 30. Recommended Circuit Configuration  
Rev. A | Page 30 of 36  
 
AD9942  
DRIVING THE CLI INPUT  
The AD9942 CLI can be used in two configurations, depending  
on the application. Figure 31 shows a typical dc-coupled input  
from the master clock source. When the dc-coupled technique  
is used, the master clock signal should be at standard 3 V CMOS  
logic levels. As shown in Figure 32, a 1000 pF ac coupling  
capacitor can be used between the clock source and the CLI input.  
In this configuration, the CLI input performs a self-bias to the  
proper dc voltage level of approximately 1.4 V. When the ac-  
coupled technique is used, the master clock signal can be as  
low as 500 mV in amplitude.  
10 OB lines at the front of the readout and 2 at the back of the  
readout. The horizontal direction has 4 OB pixels in the front  
and 48 in the back.  
To configure the AD9942 horizontal signals for this CCD, three  
sequences can be used. Figure 34 shows the first sequence to be  
used during vertical blanking. During this time, there are no  
valid OB pixels from the sensor, so the CLPOB signal is not  
used. PBLK can be enabled during this time because no valid  
data is available.  
Figure 35 shows the recommended sequence for the vertical OB  
interval. The clamp signals are used across the whole lines to  
stabilize the clamp loop of the AD9942.  
HORIZONTAL TIMING SEQUENCE EXAMPLE  
Figure 33 shows an example CCD configuration. The horizontal  
register contains 28 dummy pixels, which occur on each line  
clocked from the CCD. In the vertical direction, there are  
Figure 36 shows the recommended sequence for the effective  
pixel readout. The 48 OB pixels at the end of each line are used  
for the CLPOB signal.  
AD9942  
AD9942  
CLI_X  
LPF  
CLI_X  
ASIC  
ASIC  
1nF  
MASTER CLOCK  
MASTER CLOCK  
Figure 31. CLI Connection, DC-Coupled  
Figure 32. CLI Connection, AC-Coupled  
SEQUENCE 2 (OPTIONAL)  
2 VERTICAL OB LINES  
USE SEQUENCE 3  
EFFECTIVE IMAGE AREA  
V
10 VERTICAL OB LINES  
USE SEQUENCE 2  
H
48 OB PIXELS  
4 OB PIXELS  
HORIZONTAL CCD REGISTER  
28 DUMMY PIXELS  
Figure 33. Example CCD Configuration  
Rev. A | Page 31 of 36  
 
 
 
AD9942  
SEQUENCE 1: VERTICAL BLANKING LINES  
CCDIN INVALID PIX  
VERTICAL SHIFT  
DUMMY  
INVALID PIXELS  
VERT SHIFT  
SHP  
SHD  
H1X/H3X  
H2X/H4X  
HBLK  
CLPOB  
Figure 34. Horizontal Sequence During Vertical Blanking  
SEQUENCE 2: VERTICAL OPTICAL BLACK LINES  
OPTICAL  
BLACK  
VERTICAL SHIFT  
DUMMY  
OPTICAL BLACK  
CCDIN  
VERT SHIFT  
SHP  
SHD  
H1X/H3X  
H2X/H4X  
HBLK  
CLPOB  
Figure 35. Horizontal Sequences During Vertical OB Pixels  
SEQUENCE 3: EFFECTIVE PIXEL LINES  
OPTICAL  
BLACK  
OPTICAL  
BLACK  
OPTICAL BLACK  
VERTICAL SHIFT  
DUMMY  
EFFECTIVE PIXELS  
VERT SHIFT  
CCDIN  
SHP  
SHD  
H1X/H3X  
H2X/H4X  
HBLK  
CLPOB  
Figure 36. Horizontal Sequences During Effective Pixels  
Rev. A | Page 32 of 36  
 
 
 
AD9942  
OUTLINE DIMENSIONS  
A1 CORNER  
INDEX AREA  
9.10  
9.00 SQ  
8.90  
10  
9
8
7
6
5
4
3
2 1  
A
B
C
D
E
F
BALL A1  
PAD CORNER  
7.20  
BSC SQ  
TOP VIEW  
G
H
J
K
0.80 BSC  
DETAIL A  
1.40 MAX  
DETAIL A  
0.65 MIN  
0.25 MIN  
COPLANARITY  
0.12  
0.55  
0.50  
0.45  
SEATING  
PLANE  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MO-205-AB.  
Figure 37. 100-Lead Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-100-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
AD9942BBCZ1  
AD9942BBCZRL1  
−25°C to +85°C  
−25°C to +85°C  
100-Lead Chip Scale Package Ball Grid Array [CSP_BGA]  
100-Lead Chip Scale Package Ball Grid Array [CSP_BGA]  
BC-100-1  
BC-100-1  
1 Z = Pb-free part.  
Rev. A | Page 33 of 36  
 
AD9942  
NOTES  
Rev. A | Page 34 of 36  
AD9942  
NOTES  
Rev. A | Page 35 of 36  
AD9942  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05240-0-8/06(A)  
Rev. A | Page 36 of 36  

相关型号:

AD9943

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9943KCP

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9943KCPRL

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9943KCPZ

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9943KCPZ1

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9943KCPZRL

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9943KCPZRL1

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9943_15

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9944

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9944KCP

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9944KCPRL

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9944KCPZ

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI