AD9945 [ADI]

Complete 12-Bit 40 MHz CCD Signal Processor; 完整的12位40 MHz的CCD信号处理器
AD9945
型号: AD9945
厂家: ADI    ADI
描述:

Complete 12-Bit 40 MHz CCD Signal Processor
完整的12位40 MHz的CCD信号处理器

CD
文件: 总16页 (文件大小:191K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Complete 12-Bit 40 MHz  
CCD Signal Processor  
AD9945  
FEATURES  
GENERAL DESCRIPTION  
40 MSPS Correlated Double Sampler (CDS)  
6 dB to 40 dB 10-Bit Variable Gain Amplifier (VGA)  
Low Noise Optical Black Clamp Circuit  
Preblanking Function  
12-Bit 40 MSPS A/D Converter  
No Missing Codes Guaranteed  
3-Wire Serial Digital Interface  
3 V Single-Supply Operation  
The AD9945 is a complete analog signal processor for CCD  
applications. It features a 40 MHz single-channel architecture  
designed to sample and condition the outputs of interlaced and  
progressive scan area CCD arrays. The AD9945’s signal chain  
consists of a correlated double sampler (CDS), a digitally con-  
trolled variable gain amplifier (VGA), a black level clamp, and a  
12-bit A/D converter.  
The internal registers are programmed through a 3-wire serial digital  
interface. Programmable features include gain adjustment, black  
level adjustment, input clock polarity, and power-down modes.  
Low Power: 140 mW @ 3 V Supply  
Space-Saving 32-Lead 5 mm  
5 mm LFCSP  
APPLICATIONS  
The AD9945 operates from a single 3 V power supply, typi-  
cally dissipates 140 mW, and is packaged in a space-saving  
32-lead LFCSP.  
Digital Still Cameras  
Digital Video Camcorders  
PC Cameras  
Portable CCD Imaging Devices  
CCTV Cameras  
FUNCTIONAL BLOCK DIAGRAM  
REFT REFB  
PBLK  
AD9945  
DRVDD  
DRVSS  
BAND GAP  
REFERENCE  
6dB TO 40dB  
VGA  
12  
12-BIT  
ADC  
DOUT  
CDS  
CCDIN  
CLP  
10  
AVDD  
AVSS  
CLPOB  
CONTROL  
REGISTERS  
DVDD  
DVSS  
DIGITAL  
INTERFACE  
INTERNAL  
TIMING  
SHP  
SHD DATACLK  
SL  
SCK  
SDATA  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD9945–SPECIFICATIONS  
(TMIN to TMAX, AVDD = DVDD = DRVDD= 3.0 V, fSAMP = 40 MHz, unless otherwise noted.)  
GENERAL SPECIFICATIONS  
Parameter  
Min  
Typ  
Max  
Unit  
TEMPERATURE RANGE  
Operating  
Storage  
–20  
–65  
+85  
+150  
°C  
°C  
POWER SUPPLY VOLTAGE  
Analog, Digital, Digital Driver  
2.7  
3.6  
V
POWER CONSUMPTION  
Normal Operation (DRVDD Power not Included)  
DRVDD Power Only (CLOAD = 20 pF)  
Power-Down Mode  
140  
10  
1.5  
mW  
mW  
mW  
MAXIMUM CLOCK RATE  
40  
MHz  
Specifications subject to change without notice.  
DIGITAL SPECIFICATIONS(DRVDD = DVDD = 2.7 V, CL = 20 pF, unless otherwise noted.)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
VIH  
VIL  
IIH  
IIL  
CIN  
2.1  
V
V
µA  
µA  
pF  
0.6  
10  
10  
10  
LOGIC OUTPUTS  
High Level Output Voltage, IOH = 2 mA  
Low Level Output Voltage, IOL = 2 mA  
VOH  
VOL  
2.2  
V
V
0.5  
Specifications subject to change without notice.  
–2–  
REV. A  
AD9945  
SYSTEM SPECIFICATIONS (TMIN to TMAX, AVDD = DVDD = DRVDD = 3.0 V, fSAMP = 40 MHz, unless otherwise noted.)  
Parameter  
Min  
Typ Max  
Unit  
Notes  
CDS  
Maximum Input Range before Saturation*  
Allowable CCD Reset Transient*  
Maximum CCD Black Pixel Amplitude*  
1.0  
500  
100  
Vp-p  
mV  
mV  
See Input Waveform in Footnote  
VARIABLE GAIN AMPLIFIER (VGA)  
Gain Control Resolution  
Gain Monotonicity  
1024  
Guaranteed  
Steps  
Gain Range  
Minimum Gain  
Maximum Gain  
5.3  
41.5  
dB  
dB  
See Figure 7 for VGA Gain Curve  
See Variable Gain Amplifier Section for  
VGA Gain Equation  
40.0  
BLACK LEVEL CLAMP  
Clamp Level Resolution  
Clamp Level  
256  
Steps  
Measured at ADC Output  
Minimum Clamp Level  
Maximum Clamp Level  
0
255  
LSB  
LSB  
A/D CONVERTER  
Resolution  
12  
Bits  
Differential Nonlinearity (DNL)  
No Missing Codes  
0.5  
Guaranteed  
LSB  
Data Output Coding  
Full-Scale Input Voltage  
Straight Binary  
2.0  
V
VOLTAGE REFERENCE  
Reference Top Voltage (REFT)  
Reference Bottom Voltage (REFB)  
2.0  
1.0  
V
V
SYSTEM PERFORMANCE  
Gain Range  
Low Gain (VGA Code = 0)  
Maximum Gain (VGA Code = 1023)  
Gain Accuracy  
Specifications Include Entire Signal Chain  
12 dB Gain Applied  
5.3  
dB  
dB  
dB  
%
40.0  
41.5  
1.0  
0.1  
Peak Nonlinearity, 500 mV Input Signal  
Total Output Noise  
1.2  
LSB rms AC Grounded Input, 6 dB Gain Applied  
Power Supply Rejection (PSR)  
40  
dB  
*Input Signal Characteristics defined as follows:  
500mV TYP  
RESET TRANSIENT  
100mV TYP  
1V TYP  
OPTICAL BLACK PIXEL  
INPUT SIGNAL RANGE  
Specifications subject to change without notice.  
REV. A  
–3–  
AD9945  
TIMING SPECIFICATIONS  
(CL = 20 pF, fSAMP = 40 MHz, CCD Mode Timing in Figures 8 and 9, Serial Timing in Figures 4 and 5.)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SAMPLE CLOCKS  
DATACLK, SHP, SHD Clock Period  
DATACLK High/Low Pulse Width  
SHP Pulse Width  
SHD Pulse Width  
CLPOB Pulse Width*  
SHP Rising Edge to SHD Falling Edge  
SHP Rising Edge to SHD Rising Edge  
Internal Clock Delay  
tCONV  
tADC  
tSHP  
tSHD  
tCOB  
tS1  
25  
10  
ns  
ns  
ns  
ns  
Pixels  
ns  
ns  
12.5  
6.25  
6.25  
20  
6.25  
12.5  
3
2
tS2  
tID  
11.25  
ns  
DATA OUTPUTS  
Output Delay  
Pipeline Delay  
tOD  
9.5  
10  
ns  
Cycles  
SERIAL INTERFACE  
Maximum SCK Frequency  
SL to SCK Setup Time  
SCK to SL Hold Time  
SDATA Valid to SCK Rising Edge Setup  
SCK Falling Edge to SDATA Valid Hold  
fSCLK  
tLS  
tLH  
tDS  
tDH  
10  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
*Minimum CLPOB pulse width is for functional operation only. Wider typical pulses are recommended to achieve low noise clamp performance.  
Specifications subject to change without notice.  
ORDERING GUIDE  
ABSOLUTE MAXIMUM RATINGS*  
With  
Respect  
To  
Temperature  
Range  
Package  
Package  
Model  
Description1 Option  
Parameter  
Min Max  
Unit  
AD9945KCP  
–20°C to +85°C LFCSP  
–20°C to +85°C LFCSP  
–20°C to +85°C LFCSP  
–20°C to +85°C LFCSP  
CP-32  
CP-32  
CP-32  
CP-32  
CP-32  
AVDD  
DVDD  
DRVDD  
AVSS  
DVSS  
DRVSS –0.3 +3.9  
–0.3 +3.9  
–0.3 +3.9  
V
V
V
V
V
V
V
V
AD9945KCPRL  
AD9945KCPRL7  
AD9945KCPZ2  
AD9945KCPZRL72 –20°C to +85°C LFCSP  
Digital Outputs  
SHP, SHD, DATACLK  
CLPOB, PBLK  
SCK, SL, SDATA  
REFT, REFB, CCDIN  
Junction Temperature  
Lead Temperature  
(10 sec)  
DRVSS –0.3 DRVDD + 0.3  
DVSS  
DVSS  
DVSS  
AVSS  
–0.3 DVDD + 0.3  
–0.3 DVDD + 0.3  
–0.3 DVDD + 0.3  
–0.3 AVDD + 0.3  
150  
1LFCSP = Lead Frame Chip Scale Package  
2Z = Pb-free part.  
THERMAL CHARACTERISTICS  
Thermal Resistance  
32-Lead LFCSP Package  
°C  
°C  
300  
θ
JA = 27.7 °C/W  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions outside of those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum ratings  
for extended periods may affect device reliability.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD9945 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
–4–  
REV. A  
AD9945  
PIN CONFIGURATION  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
1
2
3
4
5
6
7
8
24 REFB  
PIN 1  
INDICATOR  
23 REFT  
22 CCDIN  
21 AVSS  
20 AVDD  
19 SHD  
AD9945  
TOP VIEW  
18 SHP  
17 CLPOB  
PIN FUNCTION DESCRIPTIONS  
Pin Number  
Mnemonic  
Type  
Description  
1 to 10, 31, 32  
11  
12  
13  
14  
15  
D2 to D11, D0, D1  
DRVDD  
DRVSS  
DVDD  
DATACLK  
DVSS  
DO  
P
P
P
DI  
P
Digital Data Outputs  
Digital Output Driver Supply  
Digital Output Driver Ground  
Digital Supply  
Digital Data Output Latch Clock  
Digital Supply Ground  
16  
17  
18  
19  
20  
21  
PBLK  
CLPOB  
SHP  
SHD  
AVDD  
AVSS  
DI  
DI  
DI  
DI  
P
Preblanking Clock Input  
Black Level Clamp Clock Input  
CDS Sampling Clock for CCD’s Reference Level  
CDS Sampling Clock for CCD’s Data Level  
Analog Supply  
P
Analog Ground  
22  
23  
24  
25  
26  
27  
28 to 30  
CCDIN  
REFT  
REFB  
SL  
SDATA  
SCK  
AI  
AO  
AO  
DI  
DI  
DI  
NC  
Analog Input for CCD Signal  
A/D Converter Top Reference Voltage Decoupling  
A/D Converter Bottom Reference Voltage Decoupling  
Serial Digital Interface Load Pulse  
Serial Digital Interface Data Input  
Serial Digital Interface Clock Input  
Internally Pulled Down. Float or connect to GND.  
NC  
TYPE: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, P = Power.  
REV. A  
–5–  
AD9945  
DEFINITIONS OF SPECIFICATIONS  
Differential Nonlinearity (DNL)  
at the specified gain setting. The output noise can be converted  
to an equivalent voltage, using the relationship  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Thus, every  
code must have a finite width. No missing codes guaranteed to  
12-bit resolution indicates that all 4096 codes must be present  
over all operating conditions.  
1 LSB = (ADC Full Scale/2N codes)  
where N is the bit resolution of the ADC. For the AD9945,  
1 LSB is 0.5 mV.  
Power Supply Rejection (PSR)  
The PSR is measured with a step change applied to the supply  
pins. This represents a very high frequency disturbance on the  
AD9945’s power supply. The PSR specification is calculated  
from the change in the data outputs for a given step change in  
the supply voltage.  
Peak Nonlinearity  
Peak nonlinearity, a full signal chain specification, refers to the  
peak deviation of the output of the AD9945 from a true straight  
line. The point used as zero scale occurs 1/2 LSB before the first  
code transition. Positive full scale is defined as a level 1 1/2 LSB  
beyond the last code transition. The deviation is measured from  
the middle of each particular output code to the true straight line.  
The error is then expressed as a percentage of the 2 V ADC full-  
scale signal. The input signal is always appropriately gained up to  
fill the ADC’s full-scale range.  
Internal Delay for SHP/SHD  
The internal delay (also called aperture delay) is the delay that  
occurs from the time when a sampling edge is applied to the  
AD9945 until the actual sample of the input signal is held. Both  
SHP and SHD sample the input signal during the transition from  
low to high, so the internal delay is measured from each clock’s  
rising edge to the instant the actual internal sample is taken.  
Total Output Noise  
The rms output noise is measured using histogram techniques.  
The standard deviation of the ADC output codes is calculated in  
LSB and represents the rms noise level of the total signal chain  
EQUIVALENT INPUT CIRCUITS  
DVDD  
AVDD  
330ꢂ  
60ꢂ  
AVSS  
AVSS  
DVSS  
Figure 3. CCDIN (Pin 22)  
Figure 1. Digital Inputs—SHP, SHD,  
DATACLK, CLPOB, PBLK, SCK, SL, SDATA  
DRVDD  
DVDD  
DATA  
THREE-  
STATE  
DOUT  
DVSS  
DRVSS  
Figure 2. Data Outputs—D0 to D11  
–6–  
REV. A  
Typical Performance Characteristics–AD9945  
1.0  
180  
165  
150  
135  
0.5  
0
V
V
V
= 3.3 V  
= 3.0 V  
= 2.7 V  
DD  
DD  
DD  
120  
–0.5  
105  
90  
–1.0  
25  
32  
40  
0
800  
1600  
2400  
3200  
4000  
SAMPLE RATE (MHz)  
CODE  
TPC 1. Power vs. Sampling Rate  
TPC 2. Typical DNL Performance  
REV. A  
–7–  
AD9945  
INTERNAL REGISTER DESCRIPTION  
Table I. Internal Register Map  
Function  
Register  
Name  
Address Bits  
A2 A1 A0  
Data Bits  
Operation  
0
0
0
D0  
D2, D1  
D3  
D5, D4  
D6  
D8, D7  
D11 to D9  
Software Reset (0 = Normal Operation, 1 = Reset all registers to default)  
Power-Down Modes (00 = Normal Power, 01 = Standby, 10 = Total Shutdown)  
OB Clamp Disable (0 = Clamp ON, 1 = Clamp OFF)  
Test Mode. Should always be set to 00.  
PBLK Blanking Level (0 = Blank Output to Zero, 1 = Blank to OB Clamp Level)  
Test Mode 1. Should always be set to 00.  
Test Mode 2. Should always be set to 000.  
Control  
0
0
1
D0  
D1  
D2  
D3  
SHP/SHD Input Polarity (0 = Active Low, 1 = Active High)  
DATACLK Input Polarity (0 = Active Low, 1 = Active High)  
CLPOB Input Polarity (0 = Active Low, 1 = Active High)  
PBLK Input Polarity (0 = Active Low, 1 = Active High)  
D4  
D5  
D6  
D11 to D7  
Three-State Data Outputs (0 = Outputs Active, 1 = Outputs Three-Stated)  
Data Output Latching (0 = Latched by DATACLK, 1 = Latch is Transparent)  
Data Output Coding (0 = Binary Output, 1 = Gray Code Output)  
Test Mode. Should always be set to 00000.  
Clamp Level  
VGA Gain  
0
0
1
1
0
1
D7 to D0  
D9 to D0  
OB Clamp Level (0 = 0 LSB, 255 = 255 LSB)  
VGA Gain (0 = 6 dB, 1023 = 40 dB)  
NOTE: All register values default to 0x000 at power-up except clamp level, which defaults to 128 decimal (128 LSB clamp level).  
–8–  
REV. A  
AD9945  
SERIAL INTERFACE  
TEST BIT  
0
SDATA  
tDS  
A0  
A1  
A2  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
tDH  
SCK  
tLS  
tLH  
SL  
NOTES  
1. SDATA BITS ARE INTERNALLY LATCHED ON THE RISING EDGES OF SCK.  
2. SYSTEM UPDATE OF LOADED REGISTERS OCCURS ON SL RISING EDGE.  
3. ALL 12 DATA BITS D0 TO D11 MUST BE WRITTEN. IF THE REGISTER CONTAINS FEWER THAN 12 BITS, ZEROS SHOULD BE  
USED FOR THE UNDEFINED BITS.  
4. TEST BIT IS FOR INTERNAL USE ONLY. MUST BE SET LOW.  
Figure 4. Serial Write Operation  
DATA FOR STARTING  
REGISTER ADDRESS  
DATA FOR NEXT  
REGISTER ADDRESS  
TEST  
BIT  
...  
SDATA  
A0  
A1  
A2  
D0  
D1  
D2  
D3  
D4  
D5  
D10 D11 D0  
D1  
0
D2  
31 ...  
...  
SCK  
SL  
30  
17  
18  
27  
28  
29  
15  
16  
1
2
3
4
5
6
7
8
9
10  
NOTES  
1. MULTIPLE SEQUENTIAL REGISTERS MAY BE LOADED CONTINUOUSLY.  
2. THE FIRST (LOWEST ADDRESS) REGISTER ADDRESS IS WRITTEN, FOLLOWED BY MULTIPLE 12-BIT DATA-WORDS.  
3. THE ADDRESS WILL AUTOMATICALLY INCREMENT WITH EACH 12-BIT DATA-WORD (ALL 12 BITS MUST BE WRITTEN).  
4. SL IS HELD LOW UNTIL THE LAST DESIRED REGISTER HAS BEEN LOADED.  
5. NEW DATA IS UPDATED AT THE NEXT SL RISING EDGE.  
Figure 5. Continuous Serial Write Operation to All Registers  
REV. A  
–9–  
AD9945  
DC RESTORE  
CDS  
INTERNAL  
V
REF  
6dB TO 40dB  
VGA  
2V FULL SCALE  
0.1F  
CCDIN  
12  
12-BIT  
ADC  
DOUT  
CLPOB  
OPTICAL BLACK  
CLAMP  
8-BIT  
DAC  
10  
DIGITAL  
FILTERING  
VGA GAIN  
REGISTER  
8
CLAMP LEVEL  
REGISTER  
Figure 6. CCD Mode Block Diagram  
CIRCUIT DESCRIPTION AND OPERATION  
The AD9945 signal processing chain is shown in Figure 6. Each  
processing step is essential in achieving a high quality image from  
the raw CCD pixel data.  
When the loop is disabled, the clamp level register may still be  
used to provide programmable offset adjustment.  
Horizontal timing is shown in Figure 9. The CLPOB pulse should  
be placed during the CCD’s optical black pixels. It is recom-  
mended that the CLPOB pulse be used during valid CCD dark  
pixels. The CLPOB pulse should be a minimum of 20 pixels wide  
to minimize clamp noise. Shorter pulse widths may be used, but  
clamp noise may increase and the loop’s ability to track low fre-  
quency variations in the black level will be reduced.  
DC Restore  
To reduce the large dc offset of the CCD output signal, a dc  
restore circuit is used with an external 0.1 µF series coupling  
capacitor. This restores the dc level of the CCD signal to  
approximately 1.5 V to be compatible with the 3 V single supply  
of the AD9945.  
A/D Converter  
Correlated Double Sampler  
The ADC uses a 2 V input range. Better noise performance results  
from using a larger ADC full-scale range. The ADC uses a  
pipelined architecture with a 2 V full-scale input for low noise  
performance.  
The CDS circuit samples each CCD pixel twice to extract the  
video information and reject low frequency noise. The timing  
shown in Figure 8 illustrates how the two CDS clocks, SHP and  
SHD, are used to sample the reference level and data level of  
the CCD signal, respectively. The CCD signal is sampled on the  
rising edges of SHP and SHD. Placement of these two clock  
signals is critical in achieving the best performance from the CCD.  
An internal SHP/SHD delay (tID) of 3 ns is caused by internal  
propagation delays.  
Variable Gain Amplifier  
The VGA stage provides a gain range of 6 dB to 40 dB, program-  
mable with 10-bit resolution through the serial digital interface.  
The minimum gain of 6 dB is needed to match a 1 V input signal  
with the ADC full-scale range of 2 V. A plot of the VGA gain curve  
is shown in Figure 7.  
Optical Black Clamp  
VGAGain dB = VGACode × 0.035 dB + 5.3 dB  
(
)
(
)
The optical black clamp loop is used to remove residual offsets  
in the signal chain and to track low frequency variations in the  
CCD’s black level. During the optical black (shielded) pixel  
interval on each line, the ADC output is compared with the  
fixed black level reference, selected by the user in the clamp  
level register. The resulting error signal is filtered to reduce  
noise, and the correction value is applied to the ADC input  
through a D/A converter. Normally, the optical black clamp  
loop is turned on once per horizontal line, but this loop can be  
updated more slowly to suit a particular application. If external  
digital clamping is used during the postprocessing, the AD9945  
optical black clamping may be disabled using Bit D3 in the  
operation register (see the Serial Interface Timing and Internal  
Register Description sections).  
42  
36  
30  
24  
18  
12  
6
0
127  
255  
383  
511  
639  
767  
895  
1023  
VGA GAIN REGISTER CODE  
Figure 7. VGA Gain Curve  
–10–  
REV. A  
AD9945  
CCD MODE TIMING  
CCD  
SIGNAL  
tID  
N
N+1  
N+2  
N+9  
N+10  
tID  
SHP  
tS1  
tS2  
tCP  
SHD  
DATACLK  
tOD  
OUTPUT  
DATA  
N–10  
N9  
N8  
N1  
N
NOTES  
1. RECOMMENDED PLACEMENT FOR DATACLK RISING EDGE IS BETWEEN THE SHD RISING EDGE AND NEXT SHP FALLING EDGE.  
2. CCD SIGNAL IS SAMPLED AT SHP AND SHD RISING EDGES.  
Figure 8. CCD Mode Timing  
HORIZONTAL  
BLANKING  
EFFECTIVE PIXELS  
OPTICAL BLACK PIXELS  
DUMMY PIXELS  
EFFECTIVE PIXELS  
CCD  
SIGNAL  
CLPOB  
PBLK  
OUTPUT  
DATA  
EFFECTIVE PIXEL DATA  
OB PIXEL DATA  
DUMMY BLACK  
EFFECTIVE DATA  
NOTES  
1. CLPOB WILL OVERWRITE PBLK. PBLK WILL NOT AFFECT CLAMP OPERATION IF OVERLAPPING WITH CLPOB.  
2. PBLK SIGNAL IS OPTIONAL.  
3. DIGITAL OUTPUT DATA WILL BE ALL ZEROS DURING PBLK. OUTPUT DATA LATENCY IS NINE DATACLK CYCLES.  
Figure 9. Typical CCD Mode Line Clamp Timing  
REV. A  
–11–  
AD9945  
APPLICATIONS INFORMATION  
level correction, and analog-to-digital conversion. The AD9945’s  
digital output data is then processed by the image processing  
ASIC. The internal registers of the AD9945—used to control  
gain, offset level, and other functions—are programmed by the  
ASIC or microprocessor through a 3-wire serial digital interface.  
A system timing generator provides the clock signals for both the  
CCD and the AFE.  
The AD9945 is a complete analog front end (AFE) product for  
digital still camera and camcorder applications. As shown in  
Figure 10, the CCD image (pixel) data is buffered and sent to the  
AD9945 analog input through a series input capacitor. The  
AD9945 performs the dc restoration, CDS, gain adjustment, black  
DIGITAL  
OUTPUTS  
AD9945  
CCD  
V
OUT  
ADC  
OUT  
0.1F  
DIGITAL IMAGE  
PROCESSING  
ASIC  
CCDIN  
SERIAL  
INTERFACE  
REGISTER-  
DATA  
BUFFER  
CDS/CLAMP  
TIMING  
V-DRIVE  
CCD  
TIMING  
TIMING  
GENERATOR  
Figure 10. System Applications Diagram  
–12–  
REV. A  
AD9945  
Internal Power-On Reset Circuitry  
and bypass pins and their respective ground pins. All decoupling  
capacitors should be located as close as possible to the package  
pins. A single clean power supply is recommended for the AD9945,  
but a separate digital driver supply may be used for DRVDD  
(Pin 11). DRVDD should always be decoupled to DRVSS (Pin 12),  
which should be connected to the analog ground plane. Advan-  
tages of using a separate digital driver supply include using a  
lower voltage (2.7 V) to match levels with a 2.7 V ASIC, reducing  
digital power dissipation, and reducing potential noise coupling.  
If the digital outputs (Pins 1 to 10, 31, and 32) must drive a  
load larger than 20 pF, buffering is recommended to reduce  
digital code transition noise. Alternatively, placing series resis-  
tors close to the digital output pins may also help reduce noise.  
After power-on, the AD9945 will automatically reset all internal  
registers and perform internal calibration procedures. This takes  
approximately 1 ms to complete. During this time, normal clock  
signals and serial write operations may occur. However, serial  
register writes will be ignored until the internal reset operation  
is completed.  
Grounding and Decoupling Recommendations  
As shown in Figure 11, a single ground plane is recommended for  
the AD9945. This ground plane should be as continuous as  
possible. This will ensure that all analog decoupling capacitors  
provide the lowest possible impedance path between the power  
3
SERIAL  
INTERFACE  
D0  
D1  
24 REFB  
23 REFT  
22 CCDIN  
1.0F  
1.0F  
D2  
D3  
D4  
1
2
3
PIN 1  
IDENTIFIER  
0.1F  
CCDIN  
21 AVSS  
20 AVDD  
D5  
D6  
D7  
D8  
4
5
6
7
AD9945  
3V  
ANALOG  
SUPPLY  
19 SHD  
0.1F  
TOP VIEW  
(Not to Scale)  
18 SHP  
D9  
8
17 CLPOB  
12  
5
CLOCK  
INPUTS  
DATA  
OUTPUTS  
3V  
DRIVER  
SUPPLY  
3V  
ANALOG  
SUPPLY  
0.1F  
0.1F  
NC = NO CONNECT  
NOTE  
THE EXPOSED PAD ON THE BOTTOM OF THE AD9945 SHOULD BE  
SOLDERED TO THE GND PLANE OF THE PRINTED CIRCUIT BOARD  
Figure 11. Recommended Circuit Configuration for CCD Mode  
REV. A  
–13–  
AD9945  
OUTLINE DIMENSIONS  
32-Lead Lead Frame Chip Scale Package (LFCSP)  
5 mm 5 mm Body  
(CP-32)  
Dimensions shown in millimeters  
5.00  
BSC SQ  
0.60 MAX  
PIN 1  
0.60 MAX  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
3.25  
3.10  
2.95  
4.75  
BSC SQ  
TOP  
VIEW  
BOTTOM  
VIEW  
SQ  
0.50  
0.40  
0.30  
17  
16  
8
9
3.50  
REF  
0.80 MAX  
0.65 NOM  
12MAX  
0.05 MAX  
0.02 NOM  
1.00  
0.90  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
–14–  
REV. A  
AD9945  
Revision History  
Location  
Page  
11/03—Data Sheet changed from REV. 0 to REV. A  
Changes to TIMING SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Changes to Figure 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
REV. A  
–15–  
–16–  

相关型号:

AD9945KCP

Complete 12-Bit 40 MHz CCD Signal Processor
ADI

AD9945KCPRL

Complete 12-Bit 40 MHz CCD Signal Processor
ADI

AD9945KCPRL7

Complete 12-Bit 40 MHz CCD Signal Processor
ADI

AD9945KCPZ

Complete 12-Bit 40 MHz CCD Signal Processor
ADI

AD9945KCPZ2

Complete 12-Bit 40 MHz CCD Signal Processor
ADI

AD9945KCPZRL

IC SPECIALTY CONSUMER CIRCUIT, QCC32, 5 X 5 MM, MO-220-VHHD-2, LFCSP-32, Consumer IC:Other
ADI

AD9945KCPZRL7

Complete 12-Bit 40 MHz CCD Signal Processor
ADI

AD9945KCPZRL72

Complete 12-Bit 40 MHz CCD Signal Processor
ADI

AD9948

10-Bit CCD Signal Processor with Precision Timing⑩ Core
ADI

AD9948KCP

10-Bit CCD Signal Processor with Precision Timing⑩ Core
ADI

AD9948KCPRL

10-Bit CCD Signal Processor with Precision Timing⑩ Core
ADI

AD9948KCPZ

10-Bit CCD Signal Processor with Precision Timing⑩ Core
ADI