AD9949 [ADI]

12-Bit CCD Signal Processor with Precision Timing Core; 12位CCD信号处理器, Precision Timing内核
AD9949
型号: AD9949
厂家: ADI    ADI
描述:

12-Bit CCD Signal Processor with Precision Timing Core
12位CCD信号处理器, Precision Timing内核

CD
文件: 总36页 (文件大小:775K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit CCD Signal Processor with  
Precision Timing Core  
AD9949  
FEATURES  
GENERAL DESCRIPTION  
New AD9949A supports CCD line length > 4096 pixels  
Correlated double sampler (CDS)  
The AD9949 is a highly integrated CCD signal processor for  
digital still camera applications. Specified at pixel rates of up to  
36 MHz, the AD9949 consists of a complete analog front end  
with A/D conversion, combined with a programmable timing  
driver. The Precision Timing core allows adjustment of high  
speed clocks with < 600 ps resolution.  
0 dB to 18 dB pixel gain amplifier (PxGA®)  
6 dB to 42 dB 10-bit variable gain amplifier (VGA)  
12-bit, 36 MSPS analog-to-digital converter (ADC)  
Black level clamp with variable level control  
Complete on-chip timing driver  
The analog front end includes black level clamping, CDS,  
PxGA, VGA, and a 36 MSPS, 12-bit ADC. The timing driver  
provides the high speed CCD clock drivers for RG and H1 to  
H4. Operation is programmed using a 3-wire serial interface.  
Precision Timing™ core with < 600 ps resolution  
On-chip 3 V horizontal and RG drivers  
40-lead LFCSP package  
APPLICATIONS  
Digital still cameras  
High speed digital imaging applications  
Packaged in a space-saving, 40-lead LFCSP package, the  
AD9949 is specified over an operating temperature range of  
−20°C to +85°C.  
FUNCTIONAL BLOCK DIAGRAM  
REFT REFB  
V
REF  
0dB TO 18dB  
6dB TO 42dB  
VGA  
12  
12-BIT  
ADC  
DOUT  
CDS  
PxGA  
CCDIN  
CLAMP  
INTERNAL  
CLOCKS  
HBLK  
CLP/PBLK  
CLI  
RG  
PRECISION  
TIMING  
CORE  
HORIZONTAL  
DRIVERS  
4
H1 TO H4  
SYNC  
INTERNAL  
GENERATOR  
REGISTERS  
AD9949  
HD  
VD  
SL  
SCK SDATA  
Figure 1.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD9949  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Individual HBLK Sequences..................................................... 21  
Generating Special HBLK Patterns.............................................. 23  
Horizontal Sequence Control................................................... 23  
External HBLK Signal................................................................ 23  
H-Counter Synchronization ..................................................... 24  
Power-Up Procedure...................................................................... 25  
Recommended Power-Up Sequence ....................................... 25  
Analog Front End Description and Operation .......................... 26  
DC Restore .................................................................................. 26  
Correlated Double Sampler ...................................................... 26  
PxGA............................................................................................ 26  
Variable Gain Amplifier ............................................................ 29  
ADC ............................................................................................. 29  
Optical Black Clamp.................................................................. 29  
Digital Data Outputs.................................................................. 29  
Applications Information.............................................................. 30  
Circuit Configuration................................................................ 30  
Grounding and Decoupling Recommendations.................... 30  
Driving the CLI Input................................................................ 31  
Horizontal Timing Sequence Example.................................... 31  
Outline Dimensions....................................................................... 34  
Ordering Guide .......................................................................... 34  
General Specifications ................................................................. 3  
Digital Specifications ................................................................... 3  
Analog Specifications................................................................... 4  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Characteristics .............................................................. 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Terminology ...................................................................................... 8  
Equivalent Input/Output Circuits .................................................. 9  
Typical Performance Characteristics ........................................... 10  
System Overview ............................................................................ 11  
H-Counter Behavior .................................................................. 11  
Serial Interface Timing .................................................................. 12  
Complete Register Listing ............................................................. 13  
Precision Timing High Speed Timing Generation...................... 18  
Timing Resolution...................................................................... 18  
High Speed Clock Programmability........................................ 18  
H-Driver and RG Outputs ........................................................ 19  
Digital Data Outputs.................................................................. 19  
Horizontal Clamping and Blanking............................................. 21  
Individual CLPOB and PBLK Sequences................................ 21  
REVISION HISTORY  
11/04—Data Sheet Changed from Rev. A to Rev. B  
Changes to Ordering Guide .......................................................... 35  
9/04—Data Sheet Changed from Rev. 0 to Rev. A  
Changes to Table 12 ....................................................................... 17  
Changes to Table 15 ....................................................................... 17  
Changes to H-Counter Sync Section ........................................... 24  
Changes to Recommended Power-Up Sequence Section......... 25  
Changes to Ordering Guide.......................................................... 35  
Changes to Features.......................................................................... 1  
Changes to Analog Specifications .................................................. 4  
Changes to Terminology Section.................................................... 9  
Added H-Counter Behavior Section............................................ 12  
Changes to Table 7.......................................................................... 14  
5/03—Revision 0: Initial Version  
Rev. B | Page 2 of 36  
AD9949  
SPECIFICATIONS  
GENERAL SPECIFICATIONS  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
TEMPERATURE RANGE  
Operating  
Storage  
−20  
−65  
36  
+85  
+150  
°C  
°C  
MAXIMUM CLOCK RATE  
POWER SUPPLY VOLTAGE  
AVDD, TCVDD (AFE, Timing Core)  
HVDD (H1 to H4 Drivers)  
RGVDD (RG Driver)  
DRVDD (D0 to D11 Drivers)  
DVDD (All Other Digital)  
POWER DISSIPATION  
MHz  
2.7  
2.7  
2.7  
2.7  
2.7  
3.0  
3.0  
3.0  
3.0  
3.0  
3.6  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
V
36 MHz, HVDD = RGVDD = 3 V, 100 pF H1 to H4 Loading1  
Total Shutdown Mode  
320  
1
mW  
mW  
1 The total power dissipated by the HVDD supply may be approximated using the equation  
Total HVDD Power = (CLOAD x HVDD x Pixel Frequency) x HVDD x (Number of H – Outputs Used)  
Reducing the H-loading, using only two of the outputs, and/or using a lower HVDD supply, reduces the power dissipation.  
DIGITAL SPECIFICATIONS  
TMIN to TMAX, AVDD = DVDD = DRVDD = HVDD = RGVDD = 2.7 V, CL = 20 pF, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
VIH  
VIL  
IIH  
IIL  
CIN  
2.1  
V
V
µA  
µA  
pF  
0.6  
10  
10  
10  
LOGIC OUTPUTS  
High Level Output Voltage, IOH = 2 mA  
Low Level Output Voltage, IOL = 2 mA  
CLI INPUT  
VOH  
VOL  
2.2  
V
V
0.5  
High Level Input Voltage  
(TCVDD/2 + 0.5 V)  
VIH–CLI  
VIL–CLI  
1.85  
V
V
Low Level Input Voltage  
RG AND H-DRIVER OUTPUTS  
High Level Output Voltage  
(RGVDD – 0.5 V and HVDD – 0.5 V)  
Low Level Output Voltage  
Maximum Output Current (Programmable)  
Maximum Load Capacitance  
0.85  
0.5  
VOH  
VOL  
2.2  
V
V
mA  
pF  
30  
100  
Rev. B | Page 3 of 36  
 
AD9949  
ANALOG SPECIFICATIONS  
TMIN to TMAX, AVDD = DVDD = 3.0 V, fCLI = 36 MHz, typical timing specifications, unless otherwise noted.  
Table 3.  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
CDS  
Gain  
0
dB  
Allowable CCD Reset Transient1  
Maximum Input Range before Saturation1  
Maximum CCD Black Pixel Amplitude1  
PIXEL GAIN AMPLIFIER (P×GA)  
Gain Control Resolution  
Gain Monotonicity  
500  
mV  
V p-p  
mV  
1.0  
50  
256  
Steps  
Minimum Gain  
Maximum Gain  
0
18  
dB  
dB  
VARIABLE GAIN AMPLIFIER (VGA)  
Maximum Input Range  
Maximum Output Range  
Gain Control Resolution  
Gain Monotonicity  
1.0  
2.0  
V p-p  
V p-p  
Steps  
1024  
Guaranteed  
Gain Range  
Minimum Gain (VGA Code 0)  
Maximum Gain (VGA Code 1023)  
BLACK LEVEL CLAMP  
6
42  
dB  
dB  
Clamp Level Resolution  
Clamp Level  
256  
Steps  
Measured at ADC output  
Minimum Clamp Level (0)  
Maximum Clamp Level (255)  
A/D CONVERTER  
0
255  
LSB  
LSB  
Resolution  
Differential Nonlinearity (DNL)  
No Missing Codes  
Integral Nonlinearity (INL)  
Full-Scale Input Voltage  
VOLTAGE REFERENCE  
Reference Top Voltage (REFT)  
Reference Bottom Voltage (REFB)  
SYSTEM PERFORMANCE  
VGA Gain Accuracy  
12  
−1.0  
Bits  
LSB  
0.5  
+1.0  
8
Guaranteed  
LSB  
V
2.0  
2.0  
1.0  
V
V
Specifications include entire signal chain  
Minimum Gain (Code 0)  
Maximum Gain (Code 1023)  
Peak Nonlinearity, 500 mV Input Signal  
Total Output Noise  
5.0  
40.5  
5.5  
6.0  
42.5  
0.6  
dB  
dB  
%
LSB rms  
dB  
41.5  
0.15  
0.8  
12 dB gain applied  
AC grounded input, 6 dB gain applied  
Measured with step change on supply  
Power Supply Rejection (PSR)  
50  
1 Input signal characteristics defined as follows:  
500mV TYP  
RESET TRANSIENT  
50mV MAX  
1V MAX  
OPTICAL BLACK PIXEL  
INPUT SIGNAL RANGE  
Rev. B | Page 4 of 36  
 
 
AD9949  
TIMING SPECIFICATIONS  
CL = 20 pF, fCLI = 36 MHz, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MASTER CLOCK (CLI) (See Figure 16)  
CLI Clock Period  
CLI High/Low Pulse Width  
Delay from CLI to Internal Pixel Period Position  
CLPOB PULSE WIDTH (PROGRAMMABLE)1  
SAMPLE CLOCKS (See Figure 18)  
SHP Rising Edge to SHD Rising Edge  
DATA OUTPUTS (See Figure 19 and Figure 20)  
Output Delay From Programmed Edge  
Pipeline Delay  
tCLI  
27.8  
11.2  
ns  
ns  
ns  
tADC  
tCLIDLY  
tCOB  
13.9  
6
16.6  
2
20  
Pixels  
tS1  
12.5  
13.9  
ns  
tOD  
6
11  
ns  
Cycles  
SERIAL INTERFACE (SERIAL TIMING SHOWN IN Figure 14 and Figure 15)  
Maximum SCK Frequency  
SL to SCK Setup Time  
fSCLK  
tLS  
tLH  
tDS  
tDH  
tDV  
10  
10  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
SCK to SL Hold Time  
SDATA Valid to SCK Rising Edge Setup  
SCK Falling Edge to SDATA Valid Hold  
SCK Falling Edge to SDATA Valid Read  
ns  
1 Minimum CLPOB pulse width is for functional operation only. Wider typical pulses are recommended to achieve low noise clamp reference.  
Rev. B | Page 5 of 36  
 
AD9949  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may affect device  
reliability.  
With  
Respect to  
Parameter  
Rating  
AVDD and TCVDD  
HVDD and RGVDD  
AVSS  
HVSS,  
RGVSS  
DVSS,  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
DVDD and DRVDD  
−0.3 V to +3.9 V  
DRVSS  
Any VSS  
Digital Outputs  
CLPOB/PBLK and HBLK DVSS  
SCK, SL, and SDATA  
RG  
Any VSS  
DRVSS  
−0.3 V to +0.3 V  
THERMAL CHARACTERISTICS  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DVDD + 0.3 V  
−0.3 V to DVDD + 0.3 V  
−0.3 V to RGVDD + 0.3 V  
−0.3 V to HVDD + 0.3 V  
−0.3 V to AVDD + 0.3 V  
150°C  
Thermal Resistance  
40-Lead LFCSP Package: θJA = 27°C/W1.  
DVSS  
RGVSS  
HVSS  
AVSS  
H1 to H4  
REFT, REFB, and CCDIN  
Junction Temperature  
Lead Temperature (10 s)  
1 θJA is measured using a 4-layer PCB with the exposed paddle soldered to the  
board.  
300°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate  
on the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy elec-  
trostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation  
or loss of functionality.  
Rev. B | Page 6 of 36  
 
AD9949  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
D1  
D2  
D3  
1
30 REFB  
PIN 1  
REFT  
AVSS  
2
3
4
5
6
7
8
9
29  
28  
INDICATOR  
D4  
27 CCDIN  
26  
DRVSS  
DRVDD  
D5  
AVDD  
AD9949  
25 CLI  
TOP VIEW  
24 TCVDD  
23  
D6  
D7  
D8 10  
TCVSS  
22 RGVDD  
21 RG  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
1 to 4  
5
Mnemonic  
D1 to D4  
DRVSS  
DRVDD  
D5 to D11  
H1  
Type1  
DO  
P
Description  
Data Outputs  
Digital Driver Ground  
Digital Driver Supply  
6
P
7 to 13  
14  
DO  
DO  
DO  
P
Data Outputs (D11 is MSB)  
CCD Horizontal Clock 1  
CCD Horizontal Clock 2  
H1 to H4 Driver Ground  
H1 to H4 Driver Supply  
CCD Horizontal Clock 3  
CCD Horizontal Clock 4  
RG Driver Ground  
CCD Reset Gate Clock  
RG Driver Supply  
Analog Ground for Timing Core  
Analog Supply for Timing Core  
Master Clock Input  
15  
H2  
16  
17  
18  
HVSS  
HVDD  
H3  
P
DO  
DO  
P
DO  
P
P
P
DI  
P
AI  
19  
H4  
20  
21  
RGVSS  
RG  
22  
23  
24  
25  
RGVDD  
TCVSS  
TCVDD  
CLI  
26  
27  
28  
29  
AVDD  
CCDIN  
AVSS  
REFT  
Analog Supply for AFE  
Analog Input for CCD Signal (Connect through Series 0.1 µF Capacitor)  
Analog Ground for AFE  
Reference Top Decoupling (Decouple with 1.0 µF to AVSS)  
Reference Bottom Decoupling (Decouple with 1.0 µF to AVSS)  
3-Wire Serial Load  
3-Wire Serial Data Input  
3-Wire Serial Clock  
Vertical Sync Pulse  
Horizontal Sync Pulse  
Digital Ground  
Digital Supply  
Optional HBLK Input  
P
AO  
AO  
DI  
DI  
DI  
DI  
DI  
P
30  
31  
REFB  
SL  
32  
SDI  
33  
SCK  
34  
VD  
35  
HD  
36  
37  
38  
39  
DVSS  
DVDD  
HBLK  
CLP/PBLK  
D0  
P
DI  
DO  
DO  
CLPOB or PBLK Output  
Data Output LSB  
40  
1 Type: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, P = Power.  
Rev. B | Page 7 of 36  
 
 
AD9949  
TERMINOLOGY  
Differential Nonlinearity (DNL)  
Total Output Noise  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Thus, every  
code must have a finite width. No missing codes guaranteed to  
12-bit resolution indicates that all 4096 codes, respectively, must  
be present over all operating conditions.  
The rms output noise is measured using histogram techniques.  
The standard deviation of the ADC output codes is calculated  
in LSB and represents the rms noise level of the total signal  
chain at the specified gain setting. The output noise can be con-  
verted to an equivalent voltage, using the relationship  
Integral Nonlinearity (INL)  
1 LSB = (ADC full scale/2n codes)  
INL is the deviation of each individual code measured from a  
true straight line from zero to full scale. The point used as zero  
scale occurs 0.5 LSB before the first code transition. Positive full  
scale is defined as a level 1 LSB and 0.5 LSB beyond the last  
code transition. The deviation is measured from the middle of  
each particular output code to the true straight line.  
where n is the bit resolution of the ADC. For the AD9949,  
1 LSB is approximately 0.488 mV.  
Power Supply Rejection (PSR)  
The PSR is measured with a step change applied to the supply  
pins. The PSR specification is calculated from the change in the  
data outputs for a given step change in the supply voltage.  
Peak Nonlinearity  
Peak nonlinearity, a full signal chain specification, refers to the  
peak deviation of the output of the AD9949 from a straight line.  
The point used as zero scale occurs 0.5 LSB before the first code  
transition. Positive full scale is defined as a level 1 LSB and  
0.5 LSB beyond the last code transition. The deviation is  
measured from the middle of each particular output code to the  
straight line reference. The error is then expressed as a  
percentage of the 2 V ADC full-scale signal. The input signal is  
appropriately gained up to fill the ADCs full-scale range.  
Rev. B | Page 8 of 36  
 
AD9949  
EQUIVALENT INPUT/OUTPUT CIRCUITS  
AVDD  
DVDD  
R
330  
AVSS  
AVSS  
DVSS  
Figure 3. CCDIN (Pin 27)  
Figure 6. Digital Inputs (Pins 31 to 35, 38)  
AVDD  
HVDD OR RGVDD  
330  
25kΩ  
CLI  
DATA  
+
1.4V  
ENABLE  
DOUT  
AVSS  
Figure 4. CLI (Pin 25)  
DVSS  
DRVDD  
HVSS OR RGVSS  
DATA  
Figure 7. H1 to H4 and RG (Pins 14 to 15, 18 to 19, 21)  
THREE-STATE  
DOUT  
DVSS  
DRVSS  
Figure 5. Data Outputs D0 to D11 (Pins 1 to 4, 7 to 13, 40)  
Rev. B | Page 9 of 36  
 
AD9949  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
400  
350  
300  
250  
200  
150  
0.5  
0
V
= 3.3V  
DD  
V
= 3.0V  
DD  
V
= 2.7V  
DD  
–0.5  
–1.0  
0
500  
1000 1500 2000 2500 3000 3500 4000  
ADC OUTPUT CODE  
18  
24  
30  
36  
SAMPLE RATE (MHz)  
Figure 10. Power Curves  
Figure 8. Typical DNL  
48  
40  
32  
24  
16  
8
0
0
200  
400  
600  
800  
1000  
VGA GAIN CODE (LSB)  
Figure 9. Output Noise vs. VGA Gain  
Rev. B | Page 10 of 36  
 
 
 
AD9949  
SYSTEM OVERVIEW  
H-COUNTER BEHAVIOR  
V-DRIVER  
V1 TO Vx, VSG1 TO VSGx, SUBCK  
When the maximum horizontal count of 4096 pixels is  
exceeded, the H-counter in the AD9949 rolls over to zero and  
continues counting. It is, therefore, recommended that the  
maximum counter value not be exceeded.  
H1 TO H4, RG  
CCDIN  
DOUT  
DIGITAL IMAGE  
PROCESSING  
ASIC  
CCD  
AD9949  
INTEGRATED  
AFE + TD  
However, the newer AD9949A version behaves differently. In  
the AD9949A, the internal H-counter holds at its maximum  
count of 4095 instead of rolling over. This feature allows the  
AD9949A to be used in applications containing a line length  
greater than 4096 pixels. Although no programmable values for  
the horizontal blanking or clamping are available beyond pixel  
4095, the H, RG, and AFE clocking continues to operate,  
sampling the remaining pixels on the line.  
HD, VD  
CLI  
SERIAL  
INTERFACE  
Figure 11. Typical Application  
Figure 11 shows the typical system application diagram for the  
AD9949. The CCD output is processed by the AD9949s AFE  
circuitry, which consists of a CDS, a PxGA, a VGA, a black level  
clamp, and an ADC. The digitized pixel information is sent to  
the digital image processor chip where all postprocessing and  
compression occurs. To operate the CCD, CCD timing  
parameters are programmed into the AD9949 from the image  
processor through the 3-wire serial interface. From the system  
master clock, CLI, provided by the image processor, the  
AD9949 generates the high speed CCD clocks and all internal  
AFE clocks. All AD9949 clocks are synchronized with VD and  
HD. The AD9949s horizontal pulses (CLPOB, PBLK, and  
HBLK) are programmed and generated internally.  
MAXIMUM FIELD DIMENSIONS  
12-BIT HORIZONTAL = 4096 PIXELS MAX  
12-BIT VERTICAL = 4096 LINES MAX  
The H-drivers for H1 to H4 and RG are included in the  
AD9949, allowing these clocks to be directly connected to the  
CCD. The H-drive voltage of 3 V is supported in the AD9949.  
Figure 12. Vertical and Horizontal Counters  
Figure 12 shows the horizontal and vertical counter dimensions  
for the AD9949. All internal horizontal clocking is programmed  
using these dimensions to specify line and pixel locations.  
MAX VD LENGTH IS 4095 LINES  
VD  
MAX HD LENGTH IS 4095 PIXELS  
HD  
CLI  
Figure 13. Maximum VD/HD Dimensions  
Rev. B | Page 11 of 36  
 
 
 
 
AD9949  
SERIAL INTERFACE TIMING  
The AD9949s internal registers are accessed through a 3-wire  
serial interface. Each register consists of an 8-bit address and a  
24-bit data-word. Both the 8-bit address and 24-bit data-word  
are written starting with the LSB. To write to each register, a  
32-bit operation is required, as shown in Figure 14. Although  
many registers are less than 24 bits wide, all 24 bits must be  
written for each register. If the register is only 16 bits wide, then  
the upper eight bits may be filled with zeros during the serial  
write operation. If fewer than 24 bits are written, the register  
will not be updated with new data.  
Figure 15 shows a more efficient way to write to the registers by  
using the AD9949s address auto-increment capability. Using  
this method, the lowest desired address is written first, followed  
by multiple 24-bit data-words. Each new 24-bit data-word is  
written automatically to the next highest register address. By  
eliminating the need to write each 8-bit address, faster register  
loading is achieved. Address auto-increment may be used start-  
ing with any register location and may be used to write to as few  
as two registers or as many as the entire register space.  
8-BIT ADDRESS  
24-BIT DATA  
...  
SDATA  
SCK  
SL  
A0  
A1  
A2  
A4  
A5  
A6  
tDH  
A7  
D1  
D2  
D3  
D21 D22 D23  
A3  
D0  
tDS  
...  
1
2
3
4
5
6
7
8
9
10  
11  
12  
30  
31  
32  
tLS  
tLH  
...  
...  
SL UPDATED  
VD/HD UPDATED  
VD  
HD  
...  
NOTES  
1. INDIVIDUAL SDATA BITS ARE LATCHED ON SCK RISING EDGES.  
2. ALL 32 BITS MUST BE WRITTEN: 8 BITS FOR ADDRESS AND 24 BITS FOR DATA.  
3. IF THE REGISTER LENGTH IS <24 BITS, THEN DON’T CARE BITS MUST BE USED TO COMPLETE THE 24-BIT DATA LENGTH.  
4. NEW DATA IS UPDATED AT EITHER THE SL RISING EDGE OR AT THE HD FALLING EDGE AFTER THE NEXT VD FALLING EDGE.  
5. VD/HD UPDATE POSITION MAY BE DELAYED TO ANY HD FALLING EDGE IN THE FIELD USING THE UPDATE REGISTER.  
Figure 14. Serial Write Operation  
DATA FOR STARTING  
REGISTER ADDRESS  
DATA FOR NEXT  
REGISTER ADDRESS  
...  
...  
...  
SDATA  
A0  
A1  
A2  
A4  
A5  
A6  
A7  
D0  
D1  
D22 D23  
D0  
D1  
D22 D23 D0  
A3  
D1  
D2  
SCK  
SL  
...  
...  
...  
59 ...  
...  
58  
33  
34  
55  
56  
57  
1
2
3
4
5
6
7
8
9
10  
31  
32  
...  
NOTES  
1. MULTIPLE SEQUENTIAL REGISTERS MAY BE LOADED CONTINUOUSLY.  
2. THE FIRST (LOWEST ADDRESS) REGISTER ADDRESS IS WRITTEN, FOLLOWED BY MULTIPLE 24-BIT DATA-WORDS.  
3. THE ADDRESS WILL AUTOMATICALLY INCREMENT WITH EACH 24-BIT DATA-WORD (ALL 24 BITS MUST BE WRITTEN).  
4. SL IS HELD LOW UNTIL THE LAST DESIRED REGISTER HAS BEEN LOADED.  
5. NEW DATA IS UPDATED AT EITHER THE SL RISING EDGE OR AT THE HD FALLING EDGE AFTER THE NEXT VD FALLING EDGE.  
Figure 15. Continuous Serial Write Operation  
Rev. B | Page 12 of 36  
 
 
 
AD9949  
COMPLETE REGISTER LISTING  
Table 7. SL Updated Registers  
1. All addresses and default values are expressed in  
hexadecimal.  
Register  
Description  
OPRMODE  
CTLMODE  
SW_RESET  
TGCORE _RSTB  
AFE Operation Modes  
AFE Control Modes  
Software Reset Bit  
2. All registers are VD/HD updated as shown in Figure 14,  
except for the registers indicated in Table 7, which are SL  
updated.  
Reset Bar Signal for Internal TG Core  
PREVENTUPDATE Prevents Update of Registers  
VDHDEDGE  
FIELDVAL  
HBLKRETIME  
CLPBLKOUT  
CLPBLKEN  
H1CONTROL  
RGCONTROL  
DRVCONTROL  
SAMPCONTROL  
DOUTPHASE  
VD/HD Active Edge  
Resets Internal Field Pulse  
Retimes the HBLK to Internal Clock  
CLP/BLK Output Pin Select  
Enables CLP/BLK Output Pin  
H1/H2 Polarity/Edge Control  
RG Polarity/Edge Control  
RG and H1 to H4 Drive Current  
SHP/SHD Sampling Edge Control  
Data Output Phase Adjustment  
Rev. B | Page 13 of 36  
 
 
AD9949  
Table 8. AFE Register Map  
Data Bit  
Address  
Content  
[11:0]  
[9:0]  
Default Value  
Name  
Description  
00  
01  
02  
03  
04  
05  
4
0
80  
4
0
OPRMODE  
VGAGAIN  
CLAMP LEVEL  
CTLMODE  
PxGA GAIN01  
PxGA GAIN23  
AFE Operation Modes. (See Table 14.)  
VGA Gain.  
Optical Black Clamp Level.  
AFE Control Modes. (See Table 15.)  
PxGA Gain Registers for Color 0 [8:0] and Color 1 [17:9].  
PxGA Gain Registers for Color 2 [8:0] and Color 3 [17:9].  
[7:0]  
[11:0]  
[17:0]  
[17:0]  
0
Table 9. Miscellaneous Register Map  
Data Bit  
Content  
Address  
Default Value  
Name  
Description  
10  
[0]  
0
SW_RST  
Software Reset.  
1 = Reset all registers to default, then self-clear back to 0.  
11  
12  
[0]  
[0]  
0
0
OUT_CONTROL  
TGCORE_RSTB  
Output Control.  
0 = Make all dc outputs inactive.  
Timing Core Reset Bar.  
0 = Reset TG core.  
1 = Resume operation.  
13  
14  
15  
[11:0]  
[0]  
0
0
0
UPDATE  
Serial Update.  
Sets the line (HD) within the field to update serial data.  
Prevents the update of the VD updated registers.  
1 = Prevent Update.  
VD/HD Active Edge.  
PREVENTUPDATE  
VDHDEDGE  
[0]  
0 = Falling Edge Triggered.  
1 = Rising Edge Triggered.  
16  
[1:0]  
0
FIELDVAL  
Field Value Sync.  
0 = Next Field 0.  
1 = Next Field 1.  
2/3 = Next Field 2.  
17  
18  
[0]  
0
0
HBLKRETIME  
CLPBLKOUT  
Retime HBLK to Internal H1 Clock.  
Preferred setting is 1. Setting to 1 adds one cycle delay to HBLK  
toggle positions.  
CLP/BLK Pin Output Select.  
0 = CLPOB.  
[1:0]  
1 = PBLK.  
2 = HBLK.  
3 = Low.  
19  
1A  
[0]  
[0]  
1
0
CLPBLKEN  
Enable CLP/BLK Output.  
1 = Enable.  
Internal Test Mode.  
TEST MODE  
Should always be set high.  
Rev. B | Page 14 of 36  
AD9949  
Table 10. CLPOB Register Map  
Data Bit  
Content  
Default Value  
(Hex)  
Address  
Name  
Description  
20  
21  
22  
23  
24  
[3:0]  
F
CLPOBPOL  
CLPOBTOG_0  
CLPOBTOG_1  
CLPOBTOG_2  
CLPOBTOG_3  
CLPOBSCP0  
Start Polarities for CLPOB Sequences 0, 1, 2, and 3.  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
0
Sequence 0. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
Sequence 1. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
Sequence 2. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
Sequence 3. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
CLPOB Sequence-Change Position 0 (Hard-Coded to 0).  
25  
26  
27  
28  
[7:0]  
0
CLPOBSPTR  
CLPOBSCP1  
CLPOBSCP2  
CLPOBSCP3  
CLPOB Sequence Pointers for Region 0 [1:0], 1 [3:2], 2[5:4], 3[7:6].  
CLPOB Sequence-Change Position 1.  
CLPOB Sequence-Change Position 2.  
[11:0]  
[11:0]  
[11:0]  
FFF  
FFF  
FFF  
CLPOB Sequence-Change Position 3.  
Table 11. PBLK Register Map  
Data Bit Con-  
tent  
Default Value  
(Hex)  
Address  
Name  
Description  
30  
31  
32  
33  
34  
[3:0]  
F
PBLKPOL  
Start Polarities for PBLK Sequences 0, 1, 2, and 3.  
Sequence 0. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
Sequence 1. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
Sequence 2. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
Sequence 3. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
PBLK Sequence-Change Position 0 (Hard-Coded to 0).  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
0
PBLKTOG_0  
PBLKTOG_1  
PBLKTOG_2  
PBLKTOG_3  
PBLKSCP0  
35  
36  
37  
38  
[7:0]  
0
PBLKSPTR  
PBLKSCP1  
PBLKSCP2  
PBLKSCP3  
PBLK Sequence Pointers for Region 0 [1:0], 1 [3:2], 2 [5:4], 3 [7:6].  
PBLK Sequence-Change Position 1.  
PBLK Sequence-Change Position 2.  
[11:0]  
[11:0]  
[11:0]  
FFF  
FFF  
FFF  
PBLK Sequence-Change Position 3.  
Rev. B | Page 15 of 36  
AD9949  
Table 12. HBLK Register Map  
Data Bit  
Address Content  
Default Value  
(Hex)  
Name  
Description  
40  
41  
42  
43  
[0]  
0
HBLKDIR  
HBLK Internal/External.  
0 = Internal.  
1 = External.  
HBLK External Active Polarity.  
0 = Active Low.  
1 = Active High.  
HBLK External Masking Polarity.  
0 = Mask H1 Low.  
1 = Mask H1High.  
HBLK Internal Masking Polarity for Each Sequence 0 to 3.  
0 = Mask H1 Low.  
[0]  
0
1
F
HBLKPOL  
[0]  
HBLKEXTMASK  
HBLKMASK  
[3:0]  
1 = Mask H1 High.  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
FFFFFF  
HBLKTOG12_0  
HBLKTOG34_0  
HBLKTOG56_0  
HBLKTOG12_1  
HBLKTOG34_1  
HBLKTOG56_1  
HBLKTOG12_2  
HBLKTOG34_2  
HBLKTOG56_2  
HBLKTOG12_3  
HBLKTOG34_3  
Sequence 0. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
Sequence 0. Toggle Position 3 [11:0] and Toggle Position 4 [23:12].  
Sequence 0. Toggle Position 5 [11:0] and Toggle Position 6 [23:12].  
Sequence 1. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
Sequence 1. Toggle Position 3 [11:0] and Toggle Position 4 [23:12].  
Sequence 1. Toggle Position 5 [11:0] and Toggle Position 6 [23:12].  
Sequence 2. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
Sequence 2. Toggle Position 3 [11:0] and Toggle Position 4 [23:12].  
Sequence 2. Toggle Position 5 [11:0] and Toggle Position 6 [23:12].  
Sequence 3. Toggle Position 1 [11:0] and Toggle Position 2 [23:12].  
Sequence 3. Toggle Position 3 [11:0] and Toggle Position 4 [23:12].  
FFFFFF  
0
HBLKTOG56_3  
HBLKSCP0  
Sequence 3. Toggle Position 5 [11:0] and Toggle Position 6[23:12].  
HBLK Sequence-Change Position 0 (Hard-coded to 0).  
50  
51  
52  
53  
[7:0]  
0
HBLKSPTR  
HBLKSCP1  
HBLKSCP2  
HBLKSCP3  
HBLK Sequence Pointers for Region 0 [1:0], 1 [3:2], 2 [5:4], 3 [7:6].  
HBLK Sequence-Change Position 1.  
HBLK Sequence-Change Position 2.  
[11:0]  
[11:0]  
[11:0]  
FFF  
FFF  
FFF  
HBLK Sequence-Change Position 3.  
Table 13. H1 to H2, RG, SHP, SHD Register Map  
Data Bit  
Address Content  
Default Value  
Name  
Description  
60  
61  
62  
[12:0]  
[12:0]  
[14:0]  
01001  
H1CONTROL  
H1 Signal Control. Polarity [0](0 = Inversion, 1 = No Inversion).  
H1 Positive Edge Location [6:1].  
H1 Negative Edge Location [12:7].  
RG Signal Control. Polarity [0](0 = Inversion, 1 = No Inversion).  
RG Positive Edge Location [6:1].  
RG Negative Edge Location [12:7].  
00801  
0
RGCONTROL  
DRVCONTROL  
Drive Strength Control for H1 [2:0], H2 [5:3], H3 [8:6], H4 [11:9], and RG  
[14:12].  
Drive Current Values: 0 = Off, 1 = 4.3 mA, 2 = 8.6 mA,  
3 = 12.9 mA, 4 = 17.2 mA, 5 = 21.5 mA, 6 = 25.8 mA, 7 = 30.1 mA.  
63  
64  
[11:0]  
[5:0]  
00024  
0
SAMPCONTROL SHP/SHD Sample Control. SHP Sampling Location [5:0]. SHD Sampling  
Location [11:6].  
DOUTPHASE  
DOUT Phase Control.  
Rev. B | Page 16 of 36  
AD9949  
Table 14. AFE Operation Register Detail  
Data Bit  
Content  
Default  
Value  
Address  
Name  
Description  
00  
[1:0]  
0
PWRDOWN  
0 = Normal Operation.  
1 = Reference Standby.  
2/3 = Total Power-Down  
[2]  
[3]  
[4]  
[5]  
1
0
0
0
CLPENABLE  
CLPSPEED  
FASTUPDATE  
PBLK_LVL  
0 = Disable OB Clamp.  
1 = Enable OB Clamp.  
0 = Select Normal OB Clamp Settling.  
1 = Select Fast OB Clamp Settling.  
0 = Ignore VGA Update.  
1 = Very Fast Clamping when VGA Is Updated.  
DOUT Value during PBLK.  
0 = Blank to Zero.  
1 = Blank to Clamp Level.  
[7:6]  
[8]  
0
0
TEST MODE  
DCBYP  
Test Operation Only. Set to zero.  
0 = Enable DC restore circuit.  
1 = Bypass DC Restore Circuit during PBLK.  
[9]  
[11:10]  
0
0
TESTMODE  
CDSGAIN  
Test Operation Only. Set to zero.  
Adjustment of CDS Gain.  
0 = 0 dB.  
01 = −2 dB.  
10 = −4 dB.  
11 = 0 dB.  
Table 15. AFE Control Register Detail  
Data Bit  
Content  
Default  
Value  
Address  
Name  
Description  
03  
[1:0]  
0
COLORSTEER  
0 = Off.  
1 = Progressive.  
2 = Interlaced.  
3 = Three Field.  
[2]  
[3]  
[4]  
[5]  
1
0
0
0
PxGAENABLE  
DOUTDISABLE  
DOUTLATCH  
GRAYENCODE  
0 = Disable PxGA.  
1 = Enable PxGA.  
0 = Data Outputs Are Driven.  
1 = Data Outputs Are Three-Stated.  
0 = Latch Data Outputs with DOUT Phase.  
1 = Output Latch Transparent.  
0 = Binary Encode Data Outputs.  
1 = Gray Encode Data Outputs.  
Rev. B | Page 17 of 36  
 
AD9949  
PRECISION TIMING HIGH SPEED TIMING GENERATION  
The AD9949 generates flexible high speed timing signals using  
the Precision Timing core. This core is the foundation for gener-  
ating the timing used for both the CCD and the AFE: the reset  
gate (RG), horizontal drivers (H1 to H4), and the SHP/SHD  
sample clocks. A unique architecture makes it routine for the  
system designer to optimize image quality by providing precise  
control over the horizontal CCD readout and the AFE corre-  
lated double sampling.  
HIGH SPEED CLOCK PROGRAMMABILITY  
Figure 17 shows how the high speed clocks, RG, H1 to H4,  
SHP, and SHD, are generated. The RG pulse has programma-  
ble rising and falling edges and may be inverted using the  
polarity control. The horizontal clocks H1 and H3 have  
programmable rising and falling edges and polarity control.  
The H2 and H4 clocks are always inverses of H1 and H3, re-  
spectively. Table 16 summarizes the high speed timing registers  
and their parameters.  
TIMING RESOLUTION  
The Precision Timing core uses a 1× master clock input (CLI) as  
a reference. This clock should be the same as the CCD pixel  
clock frequency. Figure 16 illustrates how the internal timing  
core divides the master clock period into 48 steps or edge  
positions. Therefore, the edge resolution of the Precision Timing  
core is (tCLI/48). For more information on using the CLI input,  
refer to the Applications Information section.  
Each edge location setting is 6 bits wide, but only 48 valid edge  
locations are available. Therefore, the register values are  
mapped into four quadrants, with each quadrant containing  
12 edge locations. Table 17 shows the correct register values for  
the corresponding edge locations.  
POSITION  
CLI  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
...  
tCLIDLY  
...  
1 PIXEL  
PERIOD  
NOTES  
1. PIXEL CLOCK PERIOD IS DIVIDED INTO 48 POSITIONS, PROVIDING FINE EDGE RESOLUTION FOR HIGH SPEED CLOCKS.  
2. THERE IS A FIXED DELAY FROM THE CLI INPUT TO THE INTERNAL PIXEL PERIOD POSITIONS (tCLIDLY = 6 ns TYP).  
Figure 16. High Speed Clock Resolution from CLI Master Clock Input  
3
CCD SIGNAL  
4
1
5
2
RG  
6
H1/H3  
H2/H4  
PROGRAMMABLE CLOCK POSITIONS:  
1. RG RISING EDGE.  
2. RG FALLING EDGE.  
3. SHP SAMPLE LOCATION.  
4. SHD SAMPLE LOCATION.  
5. H1/H3 RISING EDGE POSITION6. H1/H3 FALLING EDGE POSITION (H2/H4 ARE INVERSE OF H1/H3).  
Figure 17. High Speed Clock Programmable Locations  
Rev. B | Page 18 of 36  
 
 
 
AD9949  
Table 16. H1CONTROL, RGCONTROL, DRVCONTROL, and SAMPCONTROL Register Parameters  
Parameter  
Length  
Range  
Description  
Polarity  
1b  
6b  
6b  
6b  
3b  
6b  
High/Low  
Polarity Control for H1/H3 and RG (0 = No Inversion, 1 = Inversion).  
Positive Edge Location for H1/H3 and RG.  
Negative Edge Location for H1/H3 and RG.  
Sampling Location for SHP and SHD.  
Drive Current for H1 to H4 and RG Outputs, 0 to 7 Steps of 4.1 mA Each.  
Phase Location of Data Outputs with Respect to Pixel Period.  
Positive Edge  
Negative Edge  
Sample Location  
Drive Control  
DOUT Phase  
0 to 47 Edge Location  
0 to 47 Edge Location  
0 to 47 Sample Location  
0 to 7 Current Steps  
0 to 47 Edge Location  
Table 17. Precision Timing Edge Locations  
Quadrant  
Edge Location (Decimal)  
Register Value (Decimal)  
0 to 11  
16 to 27  
32 to 43  
48 to 59  
Register Value (Binary)  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
I
II  
III  
IV  
0 to 11  
12 to 23  
24 to 35  
36 to 47  
H-DRIVER AND RG OUTPUTS  
In addition to the programmable timing positions, the AD9949 features on-chip output drivers for the RG and H1 to H4 outputs. These  
drivers are powerful enough to directly drive the CCD inputs. The H-driver and RG driver current can be adjusted for optimum rise/fall  
time into a particular load by using the DRVCONTROL register (Address 0×62). The DRVCONTROL register is divided into five differ-  
ent 3-bit values, each one being adjustable in 4.1 mA increments. The minimum setting of 0 is equal to OFF or three-state, and the maxi-  
mum setting of 7 is equal to 30.1 mA.  
As shown in Figure 18, the H2/H4 outputs are inverses of H1/H3. The internal propagation delay resulting from the signal inversion is  
less than l ns, which is significantly less than the typical rise time driving the CCD load. This results in a H1/H2 crossover voltage at ap-  
proximately 50% of the output swing. The crossover voltage is not programmable.  
DIGITAL DATA OUTPUTS  
The AD9949 data output phase is programmable using the DOUTPHASE register (Address 0×64). Any edge from 0 to 47 may be pro-  
grammed, as shown in Figure 19. The pipeline delay for the digital data output is shown in Figure 20.  
H1/H3  
tRISE  
H2/H4  
tPD << tRISE  
tPD  
H1/H3  
H2/H4  
FIXED CROSSOVER VOLTAGE  
Figure 18. H-Clock Inverse Phase Relationship  
Rev. B | Page 19 of 36  
 
 
AD9949  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
CLI  
1 PIXEL PERIOD  
tOD  
DOUT  
NOTES  
1. DIGITAL OUTPUT DATA (DOUT) PHASE IS ADJUSTABLE WITH RESPECT TO THE PIXEL PERIOD.  
2. WITHIN ONE CLOCK PERIOD, THE DATA TRANSITION CAN BE PROGRAMMED TO ANY OF THE 48 LOCATIONS.  
Figure 19. Digital Output Phase Adjustment  
CLI  
tCLIDLY  
N – 1  
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 8  
N + 9  
N + 10 N + 11 N + 12 N + 13  
CCDIN  
SAMPLE PIXEL N  
SHD  
(INTERNAL)  
PIPELINE LATENCY = 11 CYCLES  
N – 8 N – 7 N – 6 N – 5 N – 4  
N + 1  
DOUT  
N – 11 N – 10  
N – 9  
N – 3  
N – 2  
N – 1  
N
N – 13 N – 12  
NOTES  
1. DEFAULT TIMING VALUES ARE SHOWN: SHDLOC = 0, DOUT PHASE = 0.  
2. HIGHER VALUES OF SHD AND/OR DOUTPHASE WILL SHIFT DOUT TRANSITION TO THE RIGHT, WITH RESPECT TO CLI LOCATION.  
Figure 20. Pipeline Delay for Digital Data Output  
Rev. B | Page 20 of 36  
 
 
AD9949  
HORIZONTAL CLAMPING AND BLANKING  
The AD9949s horizontal clamping and blanking pulses are fully  
programmable to suit a variety of applications. Individual  
sequences are defined for each signal, which are then organized  
into multiple regions during image readout. This allows the  
dark pixel clamping and blanking patterns to be changed at  
each stage of the readout to accommodate different image  
transfer timing and high speed line shifts.  
signals are active low and should be programmed accordingly.  
Up to four individual sequences can be created for each signal.  
INDIVIDUAL HBLK SEQUENCES  
The HBLK programmable timing shown in Figure 22 is similar  
to CLPOB and PBLK. However, there is no start polarity  
control. Only the toggle positions are used to designate the  
start and the stop positions of the blanking period. Additionally,  
there is a polarity control, HBLKMASK, which designates the  
polarity of the horizontal clock signals H1 to H4 during the  
blanking period. Setting HBLKMASK high sets H1 = H3 = low  
and H2 = H4 = high during the blanking, as shown in Figure 23.  
Up to four individual sequences are available for HBLK.  
INDIVIDUAL CLPOB AND PBLK SEQUENCES  
The AFE horizontal timing consists of CLPOB and PBLK, as  
shown in Figure 21. These two signals are independently  
programmed using the parameters shown in Table 18. The start  
polarity, first toggle position, and second toggle position are  
fully programmable for each signal. The CLPOB and PBLK  
...  
HD  
2
3
...  
CLPOB  
PBLK  
1
ACTIVE  
ACTIVE  
PROGRAMMABLE SETTINGS:  
1. START POLARITY (CLAMP AND BLANK REGION ARE ACTIVE LOW).  
2. FIRST TOGGLE POSITION.  
3. SECOND TOGGLE POSITION.  
Figure 21. Clamp and Preblank Pulse Placement  
...  
...  
HD  
1
2
BLANK  
BLANK  
HBLK  
PROGRAMMABLE SETTINGS:  
1. FIRST TOGGLE POSITION = START OF BLANKING.  
2. SECOND TOGGLE POSITION = END OF BLANKING.  
Figure 22. Horizontal Blanking (HBLK) Pulse Placement  
Table 18. CLPOB and PBLK Individual Sequence Parameters  
Parameter  
Length  
Range  
Description  
Polarity  
Toggle Position 1  
Toggle Position 2  
1b  
12b  
12b  
High/Low  
0 to 4095 Pixel Location  
0 to 4095 Pixel Location  
Starting Polarity of Clamp and PBLK Pulses for Sequences 0 to 3.  
First Toggle Position within the Line for Sequences 0 to 3.  
Second Toggle Position within the Line for Sequences 0 to 3.  
Table 19. HBLK Individual Sequence Parameters  
Parameter  
Length  
Range  
Description  
HBLKMASK  
1b  
High/Low  
Masking Polarity for H1 for Sequences 0 to 3 (0 = H1 Low, 1 = H1 High).  
First Toggle Position within the Line for Sequences 0 to 3.  
Second Toggle Position within the Line for Sequences 0 to 3.  
Third Toggle Position within the Line for Sequences 0 to 3.  
Fourth Toggle Position within the Line for Sequences 0 to 3.  
Fifth Toggle Position within the Line for Sequences 0 to 3.  
Sixth Toggle Position within the Line for Sequences 0 to 3.  
Toggle Position 1  
Toggle Position 2  
Toggle Position 3  
Toggle Position 4  
Toggle Position 5  
Toggle Position 6  
12b  
12b  
12b  
12b  
12b  
12b  
0 to 4095 Pixel Location  
0 to 4095 Pixel Location  
0 to 4095 Pixel Location  
0 to 4095 Pixel Location  
0 to 4095 Pixel Location  
0 to 4095 Pixel Location  
Rev. B | Page 21 of 36  
 
 
 
 
 
AD9949  
...  
...  
HD  
HBLK  
H1/H3  
THE POLARITY OF H1 DURING BLANKING IS PROGRAMMABLE (H2 IS OPPOSITE POLARITY OF H1).  
...  
H1/H3  
H2/H4  
...  
Figure 23. HBLK Masking Control  
TOG1  
TOG2  
TOG3  
TOG4  
TOG5  
TOG6  
HBLK  
H1/H3  
H2/H4  
SPECIAL H-BLANK PATTERN IS CREATED USING MULTIPLE HBLK TOGGLE POSITIONS.  
Figure 24. Generating Special HBLK Patterns  
Table 20. Horizontal Sequence Control Parameters for CLPOB, PBLK, and HBLK  
Register  
Length  
Range  
Description  
SCP  
SPTR  
12b  
2b  
0 to 4095 Line Number  
0 to 3 Sequence Number  
CLOB/PBLK/HBLK SCP to Define Horizontal Regions 0 to 3.  
Sequence Pointer for Horizontal Regions 0 to 3.  
Rev. B | Page 22 of 36  
 
 
AD9949  
GENERATING SPECIAL HBLK PATTERNS  
Six toggle positions are available for HBLK. Normally, only two  
of the toggle positions are used to generate the standard HBLK  
interval. However, the additional toggle positions may be used  
to generate special HBLK patterns, as shown in Figure 24. The  
pattern in this example uses all six toggle positions to generate  
two extra groups of pulses during the HBLK interval. By  
changing the toggle positions, different patterns can be created.  
CLPOB, PBLK, and HBLK each have a separate set of SCPs. For  
example, CLPOBSCP1 defines Region 0 for CLPOB, and in that  
region any of the four individual CLPOB sequences may be  
selected with the CLPOBSPTR register. The next SCP defines a  
new region and in that region, each signal can be assigned to a  
different individual sequence. The sequence control registers  
are summarized in Table 20.  
HORIZONTAL SEQUENCE CONTROL  
EXTERNAL HBLK SIGNAL  
The AD9949 uses sequence change positions (SCP) and  
sequence pointers (SPTR) to organize the individual horizontal  
sequences. Up to four SCPs are available to divide the readout  
into four separate regions, as shown in Figure 25. The SCP0 is  
always hard-coded to Line 0, and SCP1 to SCP3 are register  
programmable. During each region bounded by the SCP, the  
SPTR registers designate which sequence is used by each signal.  
The AD9949 can also be used with an external HBLK signal.  
Setting the HBLKDIR register (Address 0×40) to high disables  
the internal HBLK signal generation. The polarity of the exter-  
nal signal is specified using the HBLKPOL register, and the  
masking polarity of H1 is specified using the HBLKMASK  
register. Table 21 summarizes the register values when using an  
external HBLK signal.  
SINGLE FIELD (1 VD INTERVAL)  
SEQUENCE CHANGE OF POSITION 0  
(V-COUNTER = 0)  
CLAMP AND PBLK SEQUENCE REGION 0  
CLAMP AND PBLK SEQUENCE REGION 1  
SEQUENCE CHANGE OF POSITION 1  
SEQUENCE CHANGE OF POSITION 2  
CLAMP AND PBLK SEQUENCE REGION 2  
CLAMP AND PBLK SEQUENCE REGION 3  
SEQUENCE CHANGE OF POSITION 3  
UP TO FOUR INDIVIDUAL HORIZONTAL CLAMP AND BLANKING REGIONS MAY BE  
PROGRAMMED WITHIN A SINGLE FIELD, USING THE SEQUENCE CHANGE POSITIONS.  
Figure 25. Clamp and Blanking Sequence Flexibility  
Table 21. External HBLK Register Parameters  
Register  
Length  
Range  
Description  
HBLKDIR  
1b  
High/Low  
Specifies HBLK Internally Generated or Externally Supplied.  
1 = External.  
HBLKPOL  
1b  
1b  
High/Low  
High/Low  
External HBLK Active Polarity.  
0 = Active Low.  
1 = Active High.  
External HBLK Masking Polarity.  
0 = Mask H1 Low.  
HBLKEXTMASK  
1 = Mask H1 High.  
Rev. B | Page 23 of 36  
 
 
 
AD9949  
H-COUNTER SYNCHRONIZATION  
The H-Counter reset occurs seven CLI cycles following the HD falling edge. The PxGA steering is synchronized with the reset of the  
internal H-Counter (see Figure 26).  
As mentioned in the H-Counter Behavior section, the AD9949 H-counter rolls over to zero and continues counting when the maximum  
counter length is exceeded. The newer AD9949A product does not roll over but holds at its maximum value until the next HD rising edge  
occurs.  
VD  
HD  
H-COUNTER  
RESET  
CLI  
H-COUNTER  
(PIXEL COUNTER)  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
1
1
2
0
3
1
4
0
5
1
6
0
7
1
8
0
9
1
10 11 12 14 15  
0
2
1
3
2
2
3
3
PxGA GAIN  
REGISTER  
0
1
0
1
0
NOTES  
1. INTERNAL H-COUNTER IS RESET 7 CLI CYCLES AFTER THE HD FALLING EDGE (WHEN USING VDHDEDGE = 0).  
2. TYPICAL TIMING RELATIONSHIP: CLI RISING EDGE IS COINCIDENT WITH HD FALLING EDGE.  
3. PxGA STEERING IS SYNCRONIZED WITH THE RESET OF THE INTERNAL H-COUNTER (MOSAIC SEPARATE MODE IS SHOWN).  
Figure 26. H-Counter Synchronization  
Rev. B | Page 24 of 36  
 
 
AD9949  
POWER-UP PROCEDURE  
RECOMMENDED POWER-UP SEQUENCE  
When the AD9949 is powered up, the following sequence is  
recommended (refer to Figure 27 for each step):  
5. Write a 1 to the PREVENTUPDATE register (Address  
0×14). This prevents the updating of the serial register  
data.  
6. Write to the desired registers to configure high speed  
timing and horizontal timing.  
7. Write a 1 to the OUT_CONTROL register (Address 0×11).  
This allows the outputs to become active after the next  
VD/HD rising edge.  
8. Write a 0 to the PREVENTUPDATE register (Address  
0×14). This allows the serial information to be updated at  
next VD/HD falling edge.  
1. Turn on the power supplies for the AD9949.  
2. Apply the master clock input, CLI, VD, and HD.  
3. Although the AD9949 contains an on-chip, power-on reset,  
a software reset of the internal registers is recommended.  
Write a 1 to the SW_RST register (Address 0×10), which  
resets the internal registers to their default values. This bit  
is self-clearing and automatically resets back to 0.  
4. The Precision Timing core must be reset by writing a 0 to  
the TGCORE_RSTB register (Address 0×12) followed by  
writing a l to the TGCORE_RSTB register. This starts the  
internal timing core operation.  
9. The next VD/HD falling edge allows register updates to  
occur, including OUT_CONTROL, which enables all clock  
outputs.  
VDD  
1
(INPUT)  
CLI  
(INPUT)  
2
tPWR  
3
4
5
6
7
8
SERIAL  
WRITES  
9
1V  
...  
...  
...  
VD  
(OUTPUT)  
ODD FIELD  
EVEN FIELD  
1H  
2
...  
HD  
(OUTPUT)  
H2/H4  
DIGITAL  
OUTPUTS  
H1/H3, RG  
CLOCKS ACTIVE WHEN OUT_CONTROL REGISTER IS  
UPDATED AT VD/HD EDGE  
Figure 27. Recommended Power-Up Sequence  
Rev. B | Page 25 of 36  
 
 
AD9949  
ANALOG FRONT END DESCRIPTION AND OPERATION  
Table 22. Adjustable CDS Gain  
Operation Register Bits  
The AD9949 signal processing chain is shown in Figure 28.  
Each processing step is essential in achieving a high quality  
image from the raw CCD pixel data.  
D11  
D10  
CDS Gain  
0 dB  
−2 dB  
−4 dB  
0 dB  
Max CDS Input  
1.0 V p-p  
1.2 V p-p  
1.6 V p-p  
1.0 V p-p  
0
0
1
1
0
1
0
1
DC RESTORE  
To reduce the large dc offset of the CCD output signal, a dc  
restore circuit is used with an external 0.1 µF series coupling  
capacitor. This restores the dc level of the CCD signal to  
approximately 1.5 V to be compatible with the 3 V supply  
voltage of the AD9949.  
PxGA  
The PxGA provides separate gain adjustment for the individual  
color pixels. A programmable gain amplifier with four separate  
values, the PxGA has the capability to multiplex its gain value  
on a pixel-to-pixel basis (see Figure 29). This allows lower  
output color pixels to be gained up to match higher output color  
pixels. Also, the PxGA may be used to adjust the colors for  
white balance, reducing the amount of digital processing that  
is needed. The four different gain values are switched according  
to the color steering circuitry. Three different color steering  
modes for different types of CCD color filter arrays are  
CORRELATED DOUBLE SAMPLER  
The CDS circuit samples each CCD pixel twice to extract the  
video information and reject low frequency noise. The timing  
shown in Figure 17 illustrates how the two internally generated  
CDS clocks, SHP and SHD, are used to sample the reference  
level and the CCD signal level, respectively. The placement of  
the SHP and SHD sampling edges is determined by the setting  
of the SAMPCONTROL register located at Address 0×63.  
Placement of these two clock signals is critical in achieving the  
best performance from the CCD.  
programmable in the AFE CTLMODE register at Address 0×03  
(see Figure 33 to Figure 35 for timing examples). For example,  
progressive steering mode accommodates the popular Bayer  
arrangement of red, green, and blue filters (see Figure 30).  
The gain in the CDS is fixed at 0 dB by default. Using Bits D10  
and D11 in the AFE operation register, the gain may be reduced  
to −2 dB or −4 dB. This allows the AD9949 to accept an input  
signal of greater than 1 V p-p. See Table 14 for register details.  
1.0µF 1.0µF  
REFB REFT  
1.0V 2.0V  
DC RESTORE  
1.5V  
AD9949  
INTERNAL  
VREF  
DOUT  
PHASE  
SHP  
SHD  
2V FULL SCALE  
0dB ~ 18dB  
PxGA  
6dB ~ 42dB  
1.0µF  
OUTPUT  
DATA  
LATCH  
12  
CCDIN  
12-BIT  
ADC  
VGA  
DOUT  
CDS  
0dB, –2dB, –4dB  
OPTICAL BLACK  
CLAMP  
DAC  
PxGA GAIN  
REGISTERS  
VGA GAIN  
REGISTER  
CLPOB PBLK  
DIGITAL  
FILTER  
8
DOUT  
SHP SHD PHASE  
CLAMP LEVEL  
REGISTER  
CLPOB PBLK  
PRECISION  
TIMING  
V-H  
TIMING  
GENERATION  
GENERATION  
Figure 28. Analog Front End Functional Block Diagram  
Rev. B | Page 26 of 36  
 
 
AD9949  
VD  
HD  
CONTROL  
REGISTER  
BITS D0 TO D1  
A third type of readout uses the Bayer pattern divided into three  
different readout fields. The 3-field mode should be used with  
this type of CCD (see Figure 32). The color steering performs  
the proper multiplexing of the R, G, and B gain values (loaded  
into the PxGA gain registers) and is synchronized by the user  
with vertical (VD) and horizontal (HD) sync pulses. For timing  
information, see Figure 35.  
PxGA STEERING  
MODE  
SELECTION  
COLOR  
STEERING  
CONTROL  
3
SHP/SHD  
2
GAIN0  
GAIN1  
GAIN2  
GAIN3  
4:1  
PxGA GAIN  
REGISTERS  
MUX  
8
CCD: 3-FIELD READOUT  
FIRST FIELD  
COLOR STEERING MODE:  
THREE FIELD  
CDS  
PxGA  
VGA  
R
Gb  
R
Gr  
B
R
Gb  
R
Gr  
B
LINE0  
LINE1  
LINE2  
GAIN0, GAIN1, GAIN0, GAIN1, ...  
GAIN2, GAIN3, GAIN2, GAIN3, ...  
GAIN0, GAIN1, GAIN0, GAIN1, ...  
Figure 29. PxGA Block Diagram  
Gr  
B
Gr  
B
CCD: PROGRESSIVE BAYER  
COLOR STEERING MODE:  
PROGRESSIVE  
Gb  
Gb  
R
Gb  
R
Gr  
B
R
Gb  
R
Gr  
B
LINE0  
LINE1  
LINE2  
GAIN0, GAIN1, GAIN0, GAIN1, ...  
GAIN2, GAIN3, GAIN2, GAIN3, ...  
GAIN0, GAIN1, GAIN0, GAIN1, ...  
SECOND FIELD  
Gb  
R
B
Gr  
B
Gb  
R
B
Gr  
B
LINE0  
LINE1  
LINE2  
GAIN2, GAIN3, GAIN2, GAIN3, ...  
GAIN0, GAIN1, GAIN0, GAIN1, ...  
GAIN2, GAIN3, GAIN2, GAIN3, ...  
Gr  
B
Gr  
B
Gb  
Gb  
Gb  
R
Gb  
R
Figure 30. CCD Color Filter Example—Progressive Scan  
Gr  
Gr  
The same Bayer pattern can also be interlaced, and the  
interlaced mode should be used with this type of CCD (see  
Figure 31). The color steering performs the proper multiplexing  
of the R, G, and B gain values (loaded into the PxGA gain  
registers) and is synchronized by the user with vertical (VD)  
and horizontal (HD) sync pulses. For timing information,  
see Figure 34.  
THIRD FIELD  
R
Gb  
R
Gr  
B
R
Gb  
R
Gr  
B
LINE0  
LINE1  
LINE2  
GAIN0, GAIN1, GAIN0, GAIN1, ...  
GAIN2, GAIN3, GAIN2, GAIN3, ...  
GAIN0, GAIN1, GAIN0, GAIN1, ...  
Gr  
B
Gr  
B
Gb  
Gb  
CCD: INTERLACED BAYER  
EVEN FIELD  
COLOR STEERING MODE:  
INTERLACED  
Figure 32. CCD Color Filter Example—Three-Field Readout  
R
R
R
R
Gr  
Gr  
Gr  
Gr  
R
R
R
R
Gr  
Gr  
Gr  
Gr  
LINE0  
LINE1  
LINE2  
GAIN0, GAIN1, GAIN0, GAIN1, ...  
GAIN0, GAIN1, GAIN0, GAIN1, ...  
GAIN0, GAIN1, GAIN0, GAIN1, ...  
ODD FIELD  
Gb  
Gb  
Gb  
Gb  
B
B
B
B
Gb  
Gb  
Gb  
Gb  
B
B
B
B
LINE0  
LINE1  
LINE2  
GAIN2, GAIN3, GAIN2, GAIN3, ...  
GAIN2, GAIN3, GAIN2, GAIN3, ...  
GAIN2, GAIN3, GAIN2, GAIN3, ...  
Figure 31. CCD Color Filter Example—Interlaced Readout  
Rev. B | Page 27 of 36  
 
 
AD9949  
FIELDVAL  
FIELDVAL = 0  
FIELDVAL = 0  
VD  
HD  
PxGA GAIN  
REGISTER  
X
X
0
1
0
1
2
3
2
3
0
1
0
1
0
1
0
1
2
3
2
3
0
1
0
1
0
NOTES  
1. VD FALLING EDGE WILL RESET THE PxGA GAIN REGISTER STEERING TO 0101 LINE.  
2. HD FALLING EDGES WILL ALTERNATE THE PxGA GAIN REGISTER STEERING BETWEEN 0101 AND 2323 LINES.  
3. FIELDVAL IS ALWAYS RESET TO 0 ON VD FALLING EDGES.  
Figure 33. PxGA Color Steering—Progressive Mode  
FIELDVAL  
VD  
FIELDVAL = 0  
FIELDVAL = 1  
FIELDVAL = 0  
HD  
PxGA GAIN  
REGISTER  
X
X
0
1
0
1
0
1
0
1
2
3
2
3
2
3
2
3
0
1
0
1
0
1
0
1
NOTES  
1. FIELDVAL = 0 (START OF FIRST FIELD) WILL RESET THE PxGA GAIN REGISTER STEERING TO 0101 LINE.  
2. FIELDVAL = 1 (START OF SECOND FIELD) WILL RESET THE PxGA GAIN REGISTER STEERING TO 2323 LINE.  
3. HD FALLING EDGES WILL RESET THE PxGA GAIN REGISTER STEERING TO EITHER 0 (FIELDVAL = 0) OR 2 (FIELDVAL = 1).  
4. FIELDVAL WILL TOGGLE BETWEEN 0 AND 1 ON EACH VD FALLING EDGE.  
Figure 34. PxGA Color Steering—Interlaced Mode  
FIELDVAL  
VD  
FIELDVAL = 0  
FIELDVAL = 1  
FIELDVAL = 2  
HD  
PxGA GAIN  
REGISTER  
X
X
0
1
0
1
2
3
2
3
2
3
2
3
1
0
1
0
0
1
0
1
2
3
2
3
NOTES  
1. FIELDVAL = 0 (START OF FIRST FIELD) WILL RESET THE PxGA GAIN REGISTER STEERING TO 0101 LINE.  
2. FIELDVAL = 1 (START OF SECOND FIELD) WILL RESET THE PxGA GAIN REGISTER STEERING TO 2323 LINE.  
3. FIELDVAL = 2 (START OF THIRD FIELD) WILL RESET THE PxGA GAIN REGISTER STEERING TO 0101 LINE.  
4. HD FALLING EDGES WILL ALTERNATE THE PxGA GAIN REGISTER STEERING BETWEEN 0101 AND 2323 LINES.  
5. FIELDVAL WILL INCREMENT AT EACH VD FALLING EDGE, REPEATING THE 0...1...2...0...1...2 PATTERN.  
Figure 35. PxGA Color Steering—Three-Field Mode  
Rev. B | Page 28 of 36  
AD9949  
42  
36  
30  
24  
18  
12  
0
The PxGA gain for each of the four channels is variable from  
0 dB to 18 dB in 512 steps, specified using the PxGA GAIN01  
and PxGA GAIN23 registers. The PxGA gain curve is shown in  
Figure 36. The PxGA GAIN01 register contains nine bits each  
for PxGA Gain0 and Gain1, and the PxGA GAIN23 register  
contains nine bits each for PxGA Gain2 and Gain3.  
18  
15  
12  
9
0
127  
255  
383  
511  
639  
767  
895  
1023  
VGA GAIN REGISTER CODE  
6
Figure 37. VGA Gain Curve (PxGA Not Included)  
3
OPTICAL BLACK CLAMP  
The optical black clamp loop is used to remove residual offsets  
in the signal chain and to track low frequency variations in the  
CCD’s black level. During the optical black (shielded) pixel in-  
terval on each line, the ADC output is compared with a fixed  
black level reference, selected by the user in the clamp level regis-  
ter. The value can be programmed between 0 LSB and 255 LSB  
in 256 steps. The resulting error signal is filtered to reduce noise,  
and the correction value is applied to the ADC input through a  
DAC. Normally, the optical black clamp loop is turned on once  
per horizontal line, but this loop can be updated more slowly to  
suit a particular application. If external digital clamping is used  
during the postprocessing, the AD9949 optical black clamping  
may be disabled using Bit D2 in the OPRMODE register. When  
the loop is disabled, the clamp level register may still be used to  
0
0
64  
128  
192  
256  
320  
384  
448  
511  
PxGA GAIN REGISTER CODE  
Figure 36. PxGA Gain Curve  
VARIABLE GAIN AMPLIFIER  
The VGA stage provides a gain range of 6 dB to 42 dB, pro-  
grammable with 10-bit resolution through the serial digital  
interface. The minimum gain of 6 dB is needed to match a 1 V  
input signal with the ADC full-scale range of 2 V. When com-  
pared to 1 V full-scale systems, the equivalent gain range is 0  
dB to 36 dB.  
The VGA gain curve follows a linear-in-dB characteristic. The  
exact VGA gain can be calculated for any gain register value by  
using the equation  
provide programmable offset adjustment  
.
The CLPOB pulse should be placed during the CCDs optical  
black pixels. It is recommended that the CLPOB pulse duration  
be at least 20 pixels wide to minimize clamp noise. Shorter pulse  
widths may be used, but clamp noise may increase and the  
ability to track low frequency variations in the black level will  
be reduced. See the Horizontal Clamping and Blanking and  
Applications Information sections for timing examples.  
Gain (db) = (0.0351 × Code) + 6 dB  
where the code range is 0 to 1023.  
There is a restriction on the maximum amount of gain that can  
be applied to the signal. The PxGA can add as much as 18 dB,  
and the VGA is capable of providing up to 42 dB. However, the  
maximum total gain from the PxGA and VGA is restricted to  
42 dB. If the registers are programmed to specify a total gain  
higher than 42 dB, the total gain is clipped at 42 dB.  
DIGITAL DATA OUTPUTS  
The AD9949 digital output data is latched using the DOUT  
phase register value, as shown in Figure 28. Output data timing  
is shown in Figure 19 and Figure 20. It is also possible to leave  
the output latches transparent, so that the data outputs are valid  
immediately from the ADC. Programming the AFE control  
register Bit D4 to a 1 sets the output latches transparent. The  
data outputs can also be disabled (three-stated) by setting the  
AFE control register Bit D3 to a 1.  
ADC  
The AD9949 uses a high performance ADC architecture,  
optimized for high speed and low power. DNL performance is  
typically better than 0.5 LSB. The ADC uses a 2 V input range.  
See Figure 9 and Figure 10 for typical linearity and noise  
performance plots for the AD9949.  
The data output coding is normally straight binary, but the  
coding may be changed to gray coding by setting the AFE  
control register Bit D5 to a 1.  
Rev. B | Page 29 of 36  
 
 
AD9949  
APPLICATIONS INFORMATION  
CIRCUIT CONFIGURATION  
GROUNDING AND DECOUPLING  
RECOMMENDATIONS  
The AD9949 recommended circuit configuration is shown in  
Figure 38. Achieving good image quality from the AD9949  
requires careful attention to PCB layout. All signals should be  
routed to maintain low noise performance. The CCD output  
signal should be directly routed to Pin 27 through a 0.1 µF  
capacitor. The master clock CLI should be carefully routed to  
Pin 25 to minimize interference with the CCDIN, REFT, and  
REFB signals.  
As shown in Figure 38, a single ground plane is recommended  
for the AD9949. This ground plane should be as continuous as  
possible, particularly around Pins 23 to 30. This ensures that all  
analog decoupling capacitors provide the lowest possible  
impedance path between the power and bypass pins and their  
respective ground pins. All high frequency decoupling  
capacitors should be located as close as possible to the package  
pins. It is recommended that the exposed paddle on the bottom  
of the package be soldered to a large pad, with multiple vias  
connecting the pad to the ground plane.  
The digital outputs and clock inputs are located on Pins 1 to 13  
and Pins 31 to 40 and should be connected to the digital ASIC  
away from the analog and CCD clock signals. Placing series  
resistors close to the digital output pins may help to reduce  
digital code transition noise. If the digital outputs must drive a  
load larger than 20 pF, buffering is recommended to minimize  
additional noise. If the digital ASIC can accept gray code, the  
AD9949s outputs can be selected to output data in gray code  
format using the control register Bit D5. Gray coding helps reduce  
potential digital transition noise compared with binary coding.  
All the supply pins must be decoupled to ground with good  
quality, high frequency chip capacitors. There should also be a  
4.7 µF or larger bypass capacitor for each main supply—AVDD,  
RGVDD, HVDD, and DRVDD—although this is not necessary  
for each individual pin. In most applications, it is easier to share  
the supply for RGVDD and HVDD, which may be done as long  
as the individual supply pins are separately bypassed. A separate  
3 V supply may be used for DRVDD, but this supply pin should  
still be decoupled to the same ground plane as the rest of the  
chip. A separate ground for DRVSS is not recommended.  
The H1–H4 and RG traces should have low inductance to avoid  
excessive distortion of the signals. Heavier traces are recom-  
mended because of the large transient current demand on  
H1–H4 from the capacitive load of the CCD. If possible,  
physically locating the AD9949 closer to the CCD will reduce  
the inductance on these lines. As always, the routing path  
should be as direct as possible from the AD9949 to the CCD.  
The reference bypass pins (REFT, REFB) should be decoupled  
to ground as close as possible to their respective pins. The  
analog input (CCDIN) capacitor should also be located close to  
the pin.  
3V ANALOG SUPPLY  
0.1µF  
4
VD/HD/HBLK INPUTS  
CLP/BLK OUTPUT  
SERIAL  
INTERFACE  
3
1µF  
1µF  
D1  
1
2
3
4
5
6
7
8
9
30 REFB  
29 REFT  
28 AVSS  
27 CCDIN  
26 AVDD  
25 CLI  
PIN 1  
IDENTIFIER  
D2  
D3  
0.1µF  
D4  
CCD SIGNAL  
MASTER  
CLOCK INPUT  
DRVSS  
DRVDD  
D5  
AD9949  
TOP VIEW  
3V  
DRIVER  
SUPPLY  
0.1µF  
+
24 TCVDD  
23 TCVSS  
22 RGVDD  
21 RG  
3V ANALOG  
SUPPLY  
4.7µF 0.1µF  
+
D6  
0.1µF  
4.7µF  
D7  
D8 10  
RG OUTPUT  
RG DRIVER  
SUPPLY  
+
0.1µF  
4.7µF  
12  
DATA  
OUTPUTS  
H DRIVER  
SUPPLY  
+
0.1µF  
4.7µF  
4
H1 TO H4  
Figure 38. Recommended Circuit Configuration  
Rev. B | Page 30 of 36  
 
 
AD9949  
DRIVING THE CLI INPUT  
The AD9949s master clock input (CLI) may be used in two  
different configurations, depending on the application.  
Figure 41 shows a typical dc-coupled input from the master  
clock source. When the dc-coupled technique is used, the  
master clock signal should be at standard 3 V CMOS logic  
levels. As shown in Figure 42, a 1000 pF ac-coupling capacitor  
may be used between the clock source and the CLI input. In this  
configuration, the CLI input is self-biased to the proper dc volt-  
age level of approximately 1.4 V. When the ac-coupled tech-  
nique is used, the master clock signal can be as low as 500 mV  
in amplitude.  
AD9949  
25  
CLI  
ASIC  
MASTER CLOCK  
Figure 41. CLI Connection, DC-Coupled  
CCDIN  
AD9949  
27  
AD9949  
25  
CLI  
18  
19  
14  
H1  
15  
H2  
21  
RG  
LPF  
H3  
H4  
ASIC  
1nF  
MASTER CLOCK  
SIGNAL  
OUT  
Figure 42. CLI Connection, AC-Coupled  
H1  
H2  
RG  
HORIZONTAL TIMING SEQUENCE EXAMPLE  
CCD IMAGER  
Figure 43 shows an example CCD layout. The horizontal  
register contains 28 dummy pixels, which occur on each line  
clocked from the CCD. In the vertical direction, there are  
10 optical black (OB) lines at the front of the readout and two at  
the back of the readout. The horizontal direction has four OB  
pixels in the front and 48 in the back.  
Figure 39. CCD Connections (2 H-Clock)  
CCDIN  
27  
AD9949  
To configure the AD9949 horizontal signals for this CCD, three  
sequences can be used. Figure 44 shows the first sequence that  
should be used during vertical blanking. During this time, there  
are no valid OB pixels from the sensor, so the CLPOB signal is  
not used. PBLK may be enabled during this time, because no  
valid data is available.  
14  
15  
18  
H3  
19  
H4  
21  
RG  
H1  
H2  
SIGNAL  
OUT  
Figure 45 shows the recommended sequence for the vertical OB  
interval. The clamp signals are used across the whole lines in  
order to stabilize the clamp loop of the AD9949.  
H3  
H4  
RG  
CCD IMAGER  
H2  
H1  
Figure 46 shows the recommended sequence for the effective  
pixel readout. The 48 OB pixels at the end of each line are used  
for the CLPOB signal.  
Figure 40. CCD Connections (4 H-Clock)  
Rev. B | Page 31 of 36  
 
 
 
AD9949  
SEQUENCE 2 (OPTIONAL)  
2 VERTICAL OB LINES  
USE SEQUENCE 3  
EFFECTIVE IMAGE AREA  
V
10 VERTICAL OB LINES  
USE SEQUENCE 2  
H
48 OB PIXELS  
4 OB PIXELS  
HORIZONTAL CCD REGISTER  
28 DUMMY PIXELS  
Figure 43. Example CCD Configuration  
SEQUENCE 1: VERTICAL BLANKING  
CCDIN INVALID PIX  
VERTICAL SHIFT  
DUMMY  
INVALID PIXELS  
VERT SHIFT  
SHP  
SHD  
H1/H3  
H2/H4  
HBLK  
PBLK  
CLPOB  
Figure 44. Horizontal Sequence During Vertical Blanking  
SEQUENCE 2: VERTICAL OPTICAL BLACK LINES  
OPTICAL  
BLACK  
VERTICAL SHIFT  
DUMMY  
OPTICAL BLACK  
CCDIN  
VERT SHIFT  
SHP  
SHD  
H1/H3  
H2/H4  
HBLK  
PBLK  
CLPOB  
Figure 45. Horizontal Sequences During Vertical Optical Black Pixels  
Rev. B | Page 32 of 36  
AD9949  
SEQUENCE 3: EFFECTIVE PIXEL LINES  
OPTICAL  
BLACK  
OB  
OPTICAL BLACK  
VERTICAL SHIFT  
DUMMY  
EFFECTIVE PIXELS  
VERT SHIFT  
CCDIN  
SHP  
SHD  
H1/H3  
H2/H4  
HBLK  
PBLK  
CLPOB  
Figure 46. Horizontal Sequences During Effective Pixels  
Rev. B | Page 33 of 36  
AD9949  
OUTLINE DIMENSIONS  
6.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
31  
40  
1
30  
PIN 1  
INDICATOR  
0.50  
BSC  
4.25  
4.10 SQ  
3.95  
TOP  
VIEW  
5.75  
BCS SQ  
EXPOSED  
PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
21  
10  
11  
20  
0.25 MIN  
4.50  
REF  
12° MAX  
0.80 MAX  
0.65 TYP  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2  
Figure 47. 40-Lead Lead Frame Chip Scale Package [LFCSP]  
6 mm × 6 mm Body  
(CP-40)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD9949KCP  
AD9949KCPRL  
AD9949KCPZ1  
AD9949KCPZRL1  
AD9949AKCPZ1, 2  
AD9949AKCPZRL1, 2  
Temperature Range  
−20°C to +85°C  
−20°C to +85°C  
−20°C to +85°C  
−20°C to +85°C  
−20°C to +85°C  
−20°C to +85°C  
Package Description  
Package Option  
CP-40  
CP-40  
CP-40  
CP-40  
40-Lead Lead Frame Chip Scale Package (LFCSP)  
40-Lead Lead Frame Chip Scale Package (LFCSP)  
40-Lead Lead Frame Chip Scale Package (LFCSP)  
40-Lead Lead Frame Chip Scale Package (LFCSP)  
40-Lead Lead Frame Chip Scale Package (LFCSP)  
40-Lead Lead Frame Chip Scale Package (LFCSP)  
CP-40  
CP-40  
1 Z = PB-free part.  
2 The AD9949A is recommended for new designs and supports CCD line lengths > 4096 pixels.  
Rev. B | Page 34 of 36  
 
 
 
AD9949  
NOTES  
Rev. B | Page 35 of 36  
AD9949  
NOTES  
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and regis-  
tered trademarks are the property of their respective owners.  
D03751–0–11/04(B)  
Rev. B | Page 36 of 36  

相关型号:

AD9949AKCPRLZ

IC,DATA ACQ SIGNAL CONDITIONER,1-CHANNEL,12-BIT,LLCC,40PIN,PLASTIC
ADI

AD9949AKCPZ

12-Bit CCD Signal Processor with Precision Timing Core
ADI

AD9949AKCPZRL

12-Bit CCD Signal Processor with Precision Timing Core
ADI

AD9949KCP

12-Bit CCD Signal Processor with Precision Timing Core
ADI

AD9949KCPRL

12-Bit CCD Signal Processor with Precision Timing Core
ADI

AD9949KCPRLZ

IC SPECIALTY CONSUMER CIRCUIT, QCC40, 6 X 6 MM, MO-220-VJJD-2, LFCSP-40, Consumer IC:Other
ADI

AD9949KCPZ

12-Bit CCD Signal Processor with Precision Timing Core
ADI

AD9949KCPZRL

12-Bit CCD Signal Processor with Precision Timing Core
ADI

AD9950KJ

Parallel-Input Frequency Synthesizer
ETC

AD9950TJ

Parallel-Input Frequency Synthesizer
ETC

AD9951

400 MSPS 14-Bit, 1.8 V CMOS Direct Digital Synthesizer
ADI

AD9951ASV

IC DSP-NUM CONTROLLED OSCILLATOR, PQFP48, TQFP-48, DSP Peripheral
ADI