AD9995KCPZRL [ADI]

IC SPECIALTY CONSUMER CIRCUIT, QCC56, 8 X 8 MM, MO-220-VLLD-2, LFCSP-56, Consumer IC:Other;
AD9995KCPZRL
型号: AD9995KCPZRL
厂家: ADI    ADI
描述:

IC SPECIALTY CONSUMER CIRCUIT, QCC56, 8 X 8 MM, MO-220-VLLD-2, LFCSP-56, Consumer IC:Other

商用集成电路
文件: 总60页 (文件大小:1737K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit CCD Signal Processor with  
Precision TimingGenerator  
AD9995  
FEATURES  
GENERAL DESCRIPTION  
6-PhaseVerticalTransfer Clock Support  
Correlated Double Sampler (CDS)  
6 dB to 42 dB 10-BitVariable Gain Amplifier (VGA)  
12-Bit 36 MHz A/D Converter  
Black Level Clamp withVariable Level Control  
Complete On-ChipTiming Generator  
PrecisionTiming Core with <600 ps Resolution  
On-Chip 3V Horizontal and RG Drivers  
2-Phase and 4-Phase H-Clock Modes  
Electronic and Mechanical Shutter Modes  
On-Chip Driver for External Crystal  
On-Chip Sync Generator with External Sync Input  
56-Lead LFCSP Package  
The AD9995 is a highly integrated CCD signal processor for  
digital still camera and camcorder applications. It includes a  
complete analog front end with A/D conversion, combined with a  
full-function programmable timing generator.The timing genera-  
tor is capable of supporting both 4- and 6-phase vertical clocking.  
A PrecisionTiming core allows austment of high speed clocks  
with less than 600 ps resolutioat 36 MHz operation.  
The AD9995 is specified axel raof up to 36 MHz.The  
analog front end includs blacel clampg, CDS,VGA,  
and a 12-bit A/D coerter.The ing nerator provides all  
the necessary CCcks: RG, H-s,V-clocks, sensor gate  
pulses, substrate clock, d substrate bias control. Operation is  
programmeusing a 3-wierial interface.  
APPLICATIONS  
Packagein a space-saving 56-lead LFCSP, the AD9995 is speci-  
fied oan opating temperature range of –20°C to +85°C.  
Digital Still Cameras  
DigitalVideo Camcorders  
Industrial Imaging  
FUNCTIONAL OCK DIAGRAM  
VRB  
AD9995  
VREF  
12  
12-BIT  
ADC  
CDS  
DOUT  
DCLK  
CCDIN  
CLAMP  
INTERNAL CLOCKS  
PRECISION  
TIMING  
GENERATOR  
ORIZONTAL  
DRIVERS  
MSHUT  
STROBE  
H1–H
V-H  
CONTROL  
SYNC  
GENERATOR  
INTERNAL  
REGISTERS  
5
VSUB SUBCK  
HD  
VD SYNC CLI CLO SL SCK DATA  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed byAnalog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
that may result from its use. No license is granted by implication or oth-  
erwise under any patent or patent rights of Analog Devices.Trademarks  
and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD9995  
TABLE OF CONTENTS  
SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Digital Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
AD9995 Analog Specifications . . . . . . . . . . . . . . . . . . . . . . 4  
Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . 5  
PACKAGETHERMAL CHARACTERISTICS. . . . . . . . . . . 5  
ORDERING GUIDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
PIN CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
PIN FUNCTION DESCRIPTIONS . . . . . . . . . . . . . . . . . . . 6  
TERMINOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
EQUIVALENT CIRCUITS. . . . . . . . . . . . . . . . . . . . . . . . . . 7  
TYPICAL PERFORMANCE CHARACTERISTICS . . . . . . 8  
SYSTEM OVERVIEW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
PRECISIONTIMING HIGH SPEEDTIMING  
GENERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Timing Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
High Speed Clock Programmability . . . . . . . . . . . . . . . . . 10  
H-Driver and RG Outputs . . . . . . . . . . . . . . . . . . . . . . . . 11  
Digital Data Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
HORIZONTAL CLAMPING AND BLANKING . . . . . . . . 13  
Individual CLPOB and PBLK Patterns. . . . . . . . . . . . . . . 13  
Individual HBLK Patterns . . . . . . . . . . . . . . . . . . . . . . . . 13  
Generating Special HBLK Patterns. . . . . . . . . . . . . . . . . . 14  
Generating HBLK Line Alternation . . . . . . . . . . . . . . . . . 14  
HORIZONTALTIMING SEQUENCE EXAMPLE . . . . . . 15  
VERTICALTIMING GENERATION . . . . . . . . . . . . . . . . 16  
Vertical Pattern Groups (VPAT) . . . . . . . . . . . . . . . . . . . . 
Vertical Sequences (VSEQ) . . . . . . . . . . . . . . . . . . . . . . .
Complete Field: CombiningV-Sequences . . . . . . . . . . .
Generating Line Alternation forV-Sequence and HBLK
SecondV-Pattern Group duringVSG Active Line . . . . . .
Sweep Mode Operation. . . . . . . . . . . . . . . . . . . . . . . . . 2
Multiplier Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Vertical Sensor Gate (Shift Gate) Patterns . . . . . . 22  
MODE Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
VERTICALTIMING EXAMPLE . . . . . . . . . . . . . . . . . . . . 24  
Important Note about Signal Polarities . . . . . . . . . . . . . . . 24  
SHUTTERTIMING CONTROL. . . . . . . . . . . . . . . . . . . . 26  
Normal Shutter Operation . . . . . . . . . . . . . . . . . . . . . . . . 26  
High Precision Shutter Operation . . . . . . . . . . . . . . . . . . . 26  
Low Speed Shutter Operation. . . . . . . . . . . . . . . . . . . . . . 26  
SUBCK Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Readout after Exposure. . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Using theTRIGGER Register. . . . . . . . . . . . . . . . . . . . . . 27  
VSUB Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
MSHUT and STROBE Control . . . . . . . . . . . . . . . . . . 28  
TRIGGER Register Limitations . . . . . . . . . . . . . . . . . . 29  
EXPOSURE AND READOUT XAMP. . . . . . . . . . . . 30  
AFE DESCRIPTION AND OPATN . . . . . . . . . . . . . 31  
DC Restore . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Correlated Double Saler . . . . . . . . . . . . . . . . . . 31  
Variable Gain Ampfier . . . . . . . . . . . . . . . . . . . . . . . 31  
A/D Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Optical BlacClamp. . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Digital DaOutputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
POWER-AND YNCHRONIZATION . . . . . . . . . . . . . 33  
RecommeePower-USequence for Master Mode. . . . 33  
Generating Sware NC without  
External SYNgnal . . . . . . . . . . . . . . . . . . . . . . . . . 33  
YNC during Master Mode Operation . . . . . . . . . . . . . . . 34  
Per-Up anSynchronization in Slave Mode . . . . . . . . . 34  
STANBY ODE OPERATION. . . . . . . . . . . . . . . . . . . . 34  
RCUILAYOUT INFORMATION . . . . . . . . . . . . . . . . 36  
IAL INTERFACETIMING . . . . . . . . . . . . . . . . . . . . . 37  
gister Address Banks 1 and 2. . . . . . . . . . . . . . . . . . . . . 38  
pdating of New RegisterValues. . . . . . . . . . . . . . . . . . . . 39  
COMPLETE LISTING OF REGISTER BANK 1 . . . . . . . 40  
COMPLETE LISTING OF REGISTER BANK 2 . . . . . . . 43  
OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 59  
–2–  
REV. 0  
AD9995–SPECIFICATIONS  
Parameter  
Min  
Typ  
Max  
Unit  
TEMPERATURE RANGE  
Operating  
Storage  
–20  
–65  
+85  
+150  
°C  
°C  
POWER SUPPLYVOLTAGE  
AVDD (AFE Analog Supply)  
TCVDD (Timing Core Analog Supply)  
RGVDD (RG Driver)  
HVDD (H1–H4 Drivers)  
DRVDD (Data Output Drivers)  
DVDD (Digital)  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
V
V
POWER DISSIPATION (SeeTPC 1 for Power Curves)  
36 MHz,Typ Supply Levels, 100 pF H1–H4 Loading  
Power from HVDD Only
*  
Standby 1 Mode  
Standby 2 Mode  
360  
130  
1
mW  
mW  
mW  
mW  
mW  
Standby 3 Mode  
0.5  
MAXIMUM CLOCK RATE (CLI)  
36  
MHz  
*
The total power dissipated by the HVDD supply may be approximated using the equation  
Total HVDDPower = C  
× HVDD × Pixel Frequency × HVDD × Number of H
uts use
[
]
Reducing the H-loading, using only two of the outputs, and/or using a lower HVDD supply will rede power diation.  
Specifications subject to change without notice.  
DIGITAL SPECIFICATIONS  
Parameter  
ymbo
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level InputVoltage  
Low Level InputVoltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
IL  
I
IH  
I
IL  
C
IN  
2.1  
V
V
µA  
µA  
pF  
0.6  
10  
10  
10  
LOGIC OUTPUTS (Except H a)  
High Level OutputVoltage
mA  
Low Level OutputVoltage
V
OH  
V
OL  
2.2  
V
V
0.5  
0.5  
RG and H-DRIVER OUTPUTS
High Level Outpu@ Maent  
Low Level OutMax Crrent  
Maximum Ouogrammable)  
Maximum LoaFor Each Output)  
V
OH  
V
OL  
VDD – 0.5  
V
V
mA  
pF  
30  
100  
Specifications subject to chut notice.  
REV. 0  
–3–  
 
AD9995  
(AVDD = 3.0 V, fCLI = 36 MHz, Typical Timing Specifications, TMIN
to T
MAX, unless otherwise noted.)  
ANALOG SPECIFICATIONS  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
CDS
*  
Allowable CCD Rese
t
T
ransient  
Max Input Range before Saturation  
Max CCD Black Pixel Amplitude  
500  
±50  
mV  
V p-p  
mV  
1.0  
VARIABLE GAIN AMPLIFIER (VGA)  
Gain Control Resolution  
Gain Monotonicity  
1024  
Guaranteed  
Steps  
Gain Range  
Min Gain (VGA Code 0)  
Max Gain (VGA Code 1023)  
6
42  
dB  
dB  
BLACK LEVEL CLAMP  
Clamp Level Resolution  
Clamp Level  
256  
Steps  
MeasureADutput.  
Min Clamp Level (Code 0)  
Max Clamp Level (Code 255)  
0
255  
LSB  
LSB  
A/D CONVERTER  
Resolution  
12  
Bits  
Differential Nonlinearity (DNL)  
No Missing Codes  
Full-Scale InputVoltage  
–1.0  
±0.5  
Guaranteed  
2.0  
+1.0  
LS
VOLTAGE REFERENCE  
ReferenceTopVoltage (REFT)  
Reference BottomVoltage (REFB)  
2.0  
1.0  
V
SYSTEM PERFORMANCE  
Gain Accuracy  
Includes entire signal chain.  
Low Gain (VGA Code 0)  
Max Gain (VGA Code 1023)  
Peak Nonlinearity, 500 mV Input Signal  
Total Output Noise  
5.0  
40.5  
0.2  
0.8  
6.0  
42.5  
dB  
dB  
%
LSB rms  
dB  
Gain = (0.0351
Code) + 6 dB  
12 dB gain applied.  
AC grounded input, 6 dB gain applied.  
Measured with step change on supply.  
Power Supply Rejection (PSR)  
*
Input signal characteristics defined as follows:  
500mV TYP  
RESET TRANSIENT  
50mV MAX  
OPTICAL BLACK PIXEL  
1V MAX  
INPUT L RANGE  
Specifications subject to chane.  
–4–  
REV. 0  
AD9995  
TIMING SPECIFICATION
S
(CL = 20 pF, AVDD = DVDD = DRVDD = 3.0 V, fCLI = 36 MHz, unless otherwise noted.)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MASTER CLOCK, CLI (Figure 4)  
CLI Clock Period  
CLI High/Low Pulsewidth  
t
CONV  
27.8  
11.2  
ns  
ns  
ns  
13.9  
6
16.6  
Delay from CLI Rising Edge to Internal Pixel Position 0  
t
CLIDLY  
AFE CLPOB Pulsewidth
1, 2 (Figures 9 and 14)  
2
20  
Pixels  
AFE SAMPLE LOCATION
1 (Figure 7)  
SHP Sample Edge to SHD Sample Edge  
t
S1  
12.5  
13.9  
ns  
DATA OUTPUTS (Figures 8a and 8b)  
Output Delay from DCLK Rising Edge1  
Pipeline Delay from SHP/SHD Sampling to DOUT  
t
OD  
11  
ns  
Cycles  
SERIAL INTERFACE (Figures 40a and 40b)  
Maximum SCK Frequency  
SL to SCK SetupTime  
f
SCLK  
t
LS  
t
LH  
t
DS  
t
DH  
t
DV  
10  
1
0  
10  
10  
0  
MHz  
ns  
ns  
ns  
ns  
SCK to SL Hol
d
T
ime  
SDATAValid to SCK Rising Edge Setup  
SCK Falling Edge to SDATAValid Hold  
SCK Falling Edge to SDATAValid Read  
ns  
NOTES  
1Parameter is programmable.  
2Minimum CLPOB pulsewidth is for functional operation only.Wider typical pulses are recommended chievod clamp performance.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS
*  
ACKAG
HERMAL CHARACTERISTICS  
T
rm
Resistance  
JA
=
5°C/W
*  
*
JA is measured using a 4-layer PCB with the exposed paddle soldered to the  
board.  
With  
Respect  
To  
Parameter  
Min Max  
AVDD  
TCVDD  
HVDD  
RGVDD  
DVDD  
DRVDD  
RG Output  
H1–H4 Output  
Digital Outputs  
Digital Inputs  
SCK, SL, SDATA  
REFT, REFB, CC
JunctionTemperat
LeadTemperature,
AVSS  
–0.3 +3.9  
–0.3 +39  
–0.+3.9  
–0.
–0.3 +3.9  
.3 +39  
V
V
V
V
TCVSS  
HVSS  
RGVSS  
DVSS  
DRVS
RG
H
DVS
ORDERING GUIDE  
Temperature  
Range  
Package  
Description Option  
Package  
Model  
AD9995KCP  
AD9995KCPRL –20°C
 
to +85°C
 
LFCSP  
–20°C to +85°C
 
LFCSP  
CP-56  
CP-56  
.RGVDD+0.3 V  
3  
–0.3  
HVDD + 0.3  
DVDD + 0.3  
DVDD + 0.3  
DVDD + 0.3  
A
V
DD + 0.3  
150  
V
V
V
V
V
°C  
°C  
VSS  
S  
350  
*
Stresses above those listed ubsolute Maximum Ratings may cause permanent  
damage to the device. This is a stress rating only. Functional operation of the device  
at these or any other conditions above those listed in the operational sections of  
this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability. Absolute maximum ratings apply  
individually only, not in combination. Unless otherwise specified, all other voltages  
are referenced to GND.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily accumulate on  
the human body and test equipment and can discharge without detection. Although the AD9995 features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
RE
V
. 0  
–5–  
AD9995  
PIN CONFIGURATION  
42 SDI  
D5  
D6  
1
2
3
4
5
6
7
8
9
PIN 1  
IDENTIFIER  
41 SL  
D7  
40 REFB  
39 REFT  
38 AVSS  
37 CCDIN  
36 AVDD  
35 CLI  
D8  
D9  
D10  
AD9995  
TOP VIEW  
(MSB) D11  
DRVDD  
DRVSS  
34 CLO  
VSUB 10  
SUBCK 11  
V1 12  
33 TCVDD  
32 TCVSS  
31 RGV
30 R
V2 13  
V3 14  
29 GV
PIN FUNCTION DESCRIPTIONS
Pin  
Mnemonic
Type2 Description  
n  
Mnemonic
Type2 Description  
1
2
3
4
5
6
7
8
D5  
D6  
D7  
D8  
D9  
D10  
D11  
DRVDD  
DRVSS  
VSUB  
SUBCK  
V1  
V2  
V3  
V4  
V5  
V6  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
P
Data Output  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output (M)  
Data Output Der Sup
Data Output Dround  
CCD Substrate Bias  
CCD e Clock utter)  
CC
sfer Clock 1  
CC
er Clock 2  
CC
D
fer Clock 3  
D
V
e
r
nsfer Clock 4  
V
e
rtic
Transfer Clock 5  
ertica
l
T
ransfer Clock 6  
ensor Gate Pulse 1  
Sensor Gate Pulse 2  
CCD Sensor Gate Pulse 3  
CCD Sensor Gate Pulse 4  
CCD Sensor Gate Pulse 5  
CCD Horizontal Clock 1  
CCD Horizontal Clock 2  
H1–H4 Driver Ground  
H1–H4 Driver Supply  
CCD Horizontal Clock 3  
CCD Horizontal Clock 4  
RG Driver Ground  
36  
37  
42  
43  
44  
45  
46  
47  
A
V
DD  
CD
N  
A
S  
REFT  
REFB  
SL  
SDI  
SCK  
MSHUT  
STROBE  
SYNC  
VD  
P
AI  
P
Analog Supply for AFE  
CCD Signal Input  
Analog Ground for AFE  
Voltage ReferenceTop Bypass  
Voltage Reference Bottom Bypass  
3-Wire Serial Load Pulse  
3-Wire Serial Data Input  
3-Wire Serial Clock  
Mechanical Shutter Pulse  
Strobe Pulse  
External System Sync Input  
Vertical Sync Pulse  
(Input for Slave Mode,  
Output for Master Mode)  
Digital Ground  
Power Supply forVSG,V1–V6,  
HD/VD, MSHUT, STROBE,  
SYNC, and Serial Interface  
Horizontal Sync Pulse  
(Input for Slave Mode, Output for  
Master Mode)  
AO  
AO  
DI  
DI  
DI  
DO  
DO  
DI  
DIO  
9
P
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
DO  
DO  
DO  
DO  
DO  
D
D
DO  
DO  
DO  
DO  
DO  
P
48  
49  
DVSS  
DVDD  
P
P
VSG1  
VSG2  
VSG3  
VSG4  
VSG5  
H1  
50  
HD  
DIO  
51  
52  
53  
54  
55  
56  
DCLK  
D0  
D1  
D2  
D3  
DO  
DO  
DO  
DO  
DO  
DO  
Data Clock Output  
Data Output (LSB)  
Data Output  
Data Output  
Data Output  
Data Output  
H2  
HVSS  
HVDD  
H3  
H4  
RGVSS  
RG  
RGVDD  
TCVSS  
TCVDD  
CLO  
CLI  
P
DO  
DO  
P
DO  
P
P
P
D4  
NOTES  
1See Figure 38 for circuit configuration.  
2AI = Analog Input, AO = Analog Output, DI = Digital Input,  
DO = Digital Output, DIO = Digital Input/Output, P = Power.  
CCD Reset Gate Clock  
RG Driver Supply  
Analog Ground forTiming Core  
Analog Supply forTiming Core  
Clock Output for Crystal  
Reference Clock Input  
DO  
DI  
–6–  
REV. 0  
TERMINOLOGY  
Differential Nonlinearity (DNL)  
age of the 2V ADC full-scale signal.The input signal is always  
appropriately gained up to fill the ADC’s full-scale range.  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value.Therefore,  
every code must have a finite width. No missing codes guaran-  
teed to 12-bit resolution indicates that all 4096 codes must be  
present over all operating conditions.  
Total Output Noise  
The rms output noise is measured using histogram techniques.  
The standard deviation of the ADC output codes is calculated in  
LSB and represents the rms noise level of the total signal chain at  
the specified gain setting.The output noise can be converted to  
an equivalent voltage using the relationship 1 LSB = (ADC Full  
Scale/2
n codes), where n is the bit resolution of the ADC. For the  
AD9995, 1 LSB is 0.488 mV.  
Peak Nonlinearity  
Peak nonlinearity, a full signal chain specification, refers to  
the peak deviation of the output of the AD9995 from a true  
straight line. The point used as zero scale occurs 0.5 LSB  
before the first code transition. Positive full scale is defined as  
a level 1.5 LSB beyond the last code transition. The deviation  
is measured from the middle of each particular output code to  
the true straight line. The error is then expressed as a percent-  
Power Supply Rejection (PSR)  
The PSR is measured with a step hange applied to the supply  
pins.The PSR specification is culated from the change in the  
data outputs for a given stehange ithe supply voltage.  
DVD
EQUIVALENT CIRCUITS  
AVDD  
R
AVSS  
AVSS  
DVSS  
Circuit 1. CCDIN  
Circuit 3. Digital Inputs  
HVDD OR  
RGVDD  
DVDD  
DRVDD  
RG, H1–H4  
DATA  
ENABLE  
OUTPUT  
THREE-  
STATE  
DOUT  
HVSS OR  
RGVSS  
DVSS  
DRVSS  
Circuit 4. H1–H4, RG Drivers  
Circuit 2. Digital Data Outputs  
REV. 0  
–7–  
AD9995–Typical Performance Characteristics  
48  
40  
450  
400  
V
= 3.3V  
DD  
32  
24  
V
= 3.0V  
350  
300  
DD  
V
= 2.7V  
DD  
16  
8
250  
200  
150  
0
18  
24  
30  
36  
0
400  
600  
800  
1000  
200  
SAMPLE RATE (MHz)  
VGA GODE B)  
TPC 3. Outut Noise . VGA ain  
TPC 1. Power Dissipation vs. Sample Rate  
1.0  
0.5  
0
–0.5  
–1.0  
0
500  
1000 1500  
2000 2500 3000 500 4000  
CODES  
TPC 2.Typical DNL Performance  
–8–  
REV. 0  
SYSTEM OVERVIEW  
The H-drivers for H1–H4 and RG are included in the AD9995,  
allowing these clocks to be directly connected to the CCD.  
H-drive voltage of up to 3.3V is supported. An externalV-driver  
is required for the vertical transfer clocks, the sensor gate pulses,  
and the substrate clock.  
Figure 1 shows the typical system block diagram for the AD9995  
used in Master mode. The CCD output is processed by the  
AD9995’s AFE circuitry, which consists of a CDS, VGA, black  
level clamp, and A/D converter. The digitized pixel information  
is sent to the digital image processor chip, which performs the  
postprocessing and compression. To operate the CCD, all CCD  
timing parameters are programmed into the AD9995 from the  
system microprocessor through the 3-wire serial interface. From  
the system master clock, CLI, provided by the image processor  
or external crystal, the AD9995 generates all of the CCD’s hori-  
zontal and vertical clocks and all internal AFE clocks. External  
synchronization is provided by a SYNC pulse from the micropro-  
cessor, which will reset internal counters and resync the VD and  
HD outputs.  
The AD9995 also includes programmable MSHUT and  
STROBE outputs, which may be used to trigger mechanical  
shutter and strobe (flash) circuitry.  
Figures 2 and 3 show the maximum horizontal and vertical  
counter dimensions for the AD9995. All internal horizontal and  
vertical clocking is controlled by these counters to specify line  
and pixel locations. Maximum Hlength is 4095 pixels per line,  
and maximumVD length is 40lines per field.  
MAXIMUM  
FIELD  
DIMENSIONS  
Alternatively, the AD9995 may be operated in Slave mode, in  
whichVD and HD are provided externally from the image pro-  
cessor. In this mode, all AD9995 timing will be synchronized  
wit
h
V
D and HD.  
V1–V6, VSG1–VSG5, SUBCK  
V-DRIVER  
12HORIZONTAL = 4096 PIXELS MAX  
H1–H4, RG, VSUB  
DOUT  
DCLK  
DIGITAL  
IMAGE  
PROCESSING  
ASIC  
CCDIN  
CCD  
AD9995  
AFETG  
HD, VD  
CLI  
MSHUT  
STROBE  
12-BITVERTICAL = 4096 LINES MAX  
SERIAL  
INTERFACE  
SYNC  
Figure 2. Vertical and Horizontal Counters  
MAX VD 4095 LINE
VD  
AX HD LENGTH IS 4095 PIXELS  
HD  
CLI  
Figure 3. Maximum VD/HD Dimensions  
REV. 0  
–9–  
AD9995  
PRECISIO
N
T
IMING HIGH SPEE
D
T
IMING GENERATION  
The AD9995 generates high speed timing signals using the  
flexible PrecisionTiming core.This core is the foundation for  
generating the timing used for both the CCD and the AFE: the  
reset gate RG, horizontal drivers H1–H4, and SHP/SHD sample  
clocks. A unique architecture makes it routine for the system  
designer to optimize image quality by providing precise control  
over the horizontal CCD readout and the AFE correlated double  
sampling.  
CLIDIVIDE register (Addr. 0x30).The AD9995 will then inter-  
nally divide the CLI frequency by 2.  
The AD9995 also includes a master clock output, CLO, which is  
the inverse of CLI.This output is intended to be used as a crystal  
driver. A crystal can be placed between the CLI and CLO pins to  
generate the master clock for the AD9995. For more information  
on using a crystal, see Figure 39.  
High Speed Clock Programmability  
Figure 5 shows how the high speed clocks RG, H1–H4, SHP,  
and SHD are generated.The RG pulse has programmable rising  
and falling edges, and may be inverted using the polarity control.  
The horizontal clocks H1 and H3 havprogrammable rising  
and falling edges and polarity contr.The H2 and H4 clocks  
are always inverses of H1 aH3, rpectively. Table I  
summarizes the high speed timinegirs and their parameters.  
Figure 6 shows the typical phase ock arrgement in  
which H3 and H4 are prammed foe sme edge location as  
H1 and H2.  
The high speed timing of the AD9995 operates the same in either  
Master or Slave mode configuration. For more information on  
synchronization and pipeline delays, see the Power-Up and Syn-  
chronization section.  
Timing Resolution  
The PrecisionTiming core uses a 1
master clock input (CLI)  
as a reference.This clock should be the same as the CCD pixel  
clock frequency. Figure 4 illustrates how the internal timing core  
divides the master clock period into 48 steps or edge positions.  
Using a 20 MHz CLI frequency, the edge resolution of the Preci-  
sionTiming core is 1 ns. If a 1
system clock is not available, it  
is also possible to use a 2
reference clock by programming the  
The edge locatioregisters arbits wide, but there are only 48  
valid edge locons available.Thfore, the register values are  
P[0]  
P[12]  
P[24]  
36]  
P[48] = P[0]  
POSITION  
CLI  
tCLIDLY  
1 PIXEL  
PERIOD  
NOTES  
PIXEL CLOCK PERIOD IS DIVIDED INTO 48 POSITS, PROVIDING FINE EE RESOLUTION FOR HIGH SPEED CLOCKS.  
THERE IS A FIXED DELAY FROM THE CLI INPUT THE INPIXEL PERIOD POSITIONS (tCLIDLY = 6ns TYP).  
Figure 4. High Speed Clocesolution from CLI Master Clock Input  
CCD  
SIGNAL  
4
6
H1  
H2  
7
8
H3  
H4  
PROGRAMMABLE CLOCK POSITIONS:  
1. RG RISING EDGE  
5. H1 RISING EDGE POSITION  
2. RG FALLING EDGE  
6. H1 FALLING EDGE POSITION (H2 IS INVERSE OF H1)  
7. H3 RISING EDGE POSITION  
3. SHP SAMPLE LOCATION  
4. SHD SAMPLE LOCATION  
8. H3 FALLING EDGE POSITION (H4 IS INVERSE OF H3)  
–10–  
REV. 0  
AD9995  
Digital Data Outputs  
mapped into four quadrants, with each quadrant containing 12  
edge locations.Table II shows the correct register values for the  
corresponding edge locations.  
The AD9995 data output and DCLK phases are programmable  
using the DOUTPHASE register (Addr. 0x37, Bits [5:0]). Any  
edge from 0 to 47 may be programmed, as shown in Figure 8a.  
Normally, the DOUT and DCLK signals will track in phase  
based on the DOUTPHASE register contents. The DCLK  
output phase can also be held fixed with respect to the data out-  
puts by changing the DCLKMODE register high (Addr. 0x37,  
Bit 6). In this mode, the DCLK output will remain at a fixed  
phase equal to CLO (the inverse of CLI) while the data output  
phase is still programmable.  
Figure 7 shows the default timing locations for all of the high  
speed clock signals.  
H-Driver and RG Outputs  
In addition to the programmable timing positions, the AD9995  
features on-chip output drivers for the RG and H1–H4 outputs.  
These drivers are powerful enough to directly drive the CCD  
inputs. The H-driver and RG current can be adjusted for optimum  
rise/fall time into a particular load by using the DRVCONTROL  
register (Addr. 0x35). The 3-bit drive setting for each output is  
adjustable in 4.1 mA increments, with the minimum setting of 0  
equal to OFF or three-state, and the maximum setting of 7 equal  
to 30.1 mA.  
There is a fixed output delay from the DCLK rising edge to the  
DOUT transition, called tOD.Tdelay can be programmed to  
four values between 0 ns and 2 ns by sing the DOUTDELAY  
register (Addr. 0x037, Bits 7]).Tdefault value is 8 ns.  
The pipeline delay thrgh the 9995 is own in Figure 8b.  
After the CCD inps sampled bHthere is an 11-cycle  
delay until the da is ailable.  
As shown in Figures 5, 6, and 7, the H2 and H4 outputs are  
inverses of H1 and H3, respectively. The H1/H2 crossover volt-  
age is approximately 50% of the output swing. The crossover  
voltage is not programmable.  
Table I.Timing Core Register Parameters r H1, HRG, SHP/SHD  
Parameter  
Length  
Range  
Description  
Polarity  
1b  
6b  
6b  
6b  
3b  
High/Low  
Polarity Control fH13, and RG (0 = No Inversion, 1 = Inversion)  
Psitive Edge Locatifor H1, H3, and RG  
Neive Edge Location for H1, H3, and RG  
Sampg Locan for Internal SHP and SHD Signals  
ive Cfor H1–H4 and RG Outputs (4.1 mA per Step)  
Positive Edge  
Negative Edge  
Sampling Location  
Drive Strength  
0–47 Edge Location  
0–47 Edge Location  
0–47 Edge Location  
0–47 Current St
CCD  
SIGNAL  
RG  
H1/H3  
TOGGLE POSITIONS FOR H1 AND H3 GENERATES STANDARD 2-PHASE H-CLOCKING.  
Figure 6. 2-Phase H-Clock Operation  
Table II. PrecisionTiming Edge Locations  
Quadrant  
Edge Location (Dec)  
RegisterValue (Dec)  
RegisterValue (Bin)  
I
II  
III  
IV  
0 to 11  
0 to 11  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
12 to 23  
24 to 35  
36 to 47  
16 to 27  
32 to 43  
48 to 59  
REV. 0  
11–  
AD9995  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
POSITION  
PIXEL  
PERIOD  
RGr[0]  
RGf[12]  
RG  
Hr[0]  
Hf[24]  
H1/H3  
H2/H4  
SHP[24]  
tS1  
CCD  
SIGNAL  
S
NOTES  
ALL SIGNAL EDGES ARE FULLY PROGRAMMABLE TO ANY OF THE 48 PTIONS WHIN ONE PIXEL PERIOD.  
DEFAULT POSITIONS FOR EACH SIGNAL ARE SHOWN.  
Figure 7. High SpeedTiming Default Lions  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
PIXEL  
PERIOD  
DCLK  
tOD  
DOUT  
NOTES  
DATA OUTPUT ASE ARE ADJUSTABLE WITH RESPECT TO THE PIXEL PERIOD.  
WITHIN ONE CA TRANSITION CAN BE PROGRAMMED TO 48 DIFFERENT LOCATIONS.  
OUTPUT DELAY (NG EDGE TO DOUT RISING EDGE IS PROGRAMMABLE.  
gure 8a. Digital Output Phase Adjustment  
CLI  
tCLIDLY  
N–1  
N
N+1  
N+4  
N+5  
N+6  
N+7  
N+8  
N+9  
N+10  
N+11  
N+12  
N+13  
N+2  
N+3  
CCDIN  
SAMPLE PIXEL N  
SHD  
(INTERNAL)  
DCLK  
DOUT  
PIPELINE LATENCY=11 CYCLES  
N–8 N–7 N–6 N–5  
N+2  
N+1  
N–11  
N–10  
N–9  
N–4  
N–3  
N–2  
N–1  
N
N–13  
N–12  
NOTES  
DEFAULT TIMING VALUES ARE SHOWN: SHDLOC = 0, DOUT PHASE = 0, DCLKMODE = 0.  
HIGHER VALUES OF SHD AND/OR DOUTPHASE WILL SHIFT DOUT TRANSITION TO THE RIGHT, WITH RESPECT TO CLI LOCATION.  
Figure 8b. Pipeline Delay  
–12–  
REV. 0  
AD9995  
HORIZONTAL CLAMPING AND BLANKING  
each containing a unique pulse pattern for CLPOB and PBLK.  
Figure 9 shows how the sequence change positions divide the  
readout field into different regions. A differentV-sequence can be  
assigned to each region, allowing the CLPOB and PBLK signals  
to be changed accordingly with each change in the vertical timing.  
The AD9995’s horizontal clamping and blanking pulses are fully  
programmable to suit a variety of applications. Individual control  
is provided for CLPOB, PBLK, and HBLK during the different  
regions of each field.This allows the dark pixel clamping and  
blanking patterns to be changed at each stage of the readout in  
order to accommodate different image transfer timing and high  
speed line shifts.  
Individual HBLK Patterns  
The HBLK programmable timing shown in Figure 10 is simi-  
lar to CLPOB and PBLK. However, there is no start polarity  
control. Only the toggle positions are used to designate the start  
and stop positions of the blanking period. Additionally, there is a  
polarity control HBLKMASK that designates the polarity of the  
horizontal clock signals H1–H4 during the blanking period. Set-  
ting HBLKMASK high will set 1 = H3 = low and H2 = H4 =  
high during the blanking, as own in igure 11. As with the  
CLPOB and PBLK signalsBLK gisters are available in each  
V-sequence, allowing derent king sigs to be used with  
different vertical timg sequenc
Individual CLPOB and PBLK Patterns  
The AFE horizontal timing consists of CLPOB and PBLK, as  
shown in Figure 9.These two signals are independently pro-  
grammed using the registers inTable III. SPOL is the start  
polarity for the signal, andTOG1 andTOG2 are the first and  
second toggle positions of the pulse. Both signals are active low  
and should be programmed accordingly.  
A separate pattern for CLPOB and PBLK may be programmed  
for every 10V-sequences. As described in theVerticalTiming  
Generation section, up to 10 separateV-sequences can be created,  
. . .  
HD  
(2)  
(3)  
. . .  
CLPOB  
PBLK  
(1)  
ACTIVE  
ACTIVE  
NOTES  
PROGRAMMABLE SETTINGS:  
1. START POLARITY (CLAMP AND BLANK REGIOW)  
2. FIRST TOGGLE POSITION  
3. SECOND TOGGLE POSITION  
Figure 9. ClaBlank Pulse Placement  
III. COB and PBLK Pattern Registers  
Register  
Length  
Range  
Description  
SPOL  
TOG1  
TOG2  
1b  
12b  
12b  
i/Low  
Pixel Location  
Pixel Location  
Starting Polarity of CLPOB/PBLK forV-Sequence 0–9  
FirstToggle Position within Line forV-Sequence 0–9  
SecondToggle Position within Line forV-Sequence 0–9  
Table IV. HBLK Pattern Registers  
Register  
Range  
Description  
HBLKMASK  
HBLKALT  
2b  
High/Low  
0–3 Alternation Mode  
Masking Polarity for H1/H3 (0 = H1/H3 Low, 1 = H1/H3 High)  
Enables Odd/Even Alternation of HBLKToggle Positions 0 =  
Disable Alternation. 1 =TOG1–TOG2 Odd,TOG3–TOG6 Even.  
2 = 3 =TOG1–TOG2 Even,TOG3–TOG6 Odd  
HBLKTOG1  
HBLKTOG2  
HBLKTOG3  
HBLKTOG4  
HBLKTOG5  
HBLKTOG6  
12b  
12b  
12b  
12b  
12b  
12b  
0–4095 Pixel Location  
0–4095 Pixel Location  
0–4095 Pixel Location  
0–4095 Pixel Location  
0–4095 Pixel Location  
0–4095 Pixel Location  
FirstToggle Position within Line for EachV-Sequence 0–9  
SecondToggle Position within Line for EachV-Sequence 0–9  
ThirdToggle Position within Line for EachV-Sequence 0–9  
FourthToggle Position within Line for EachV-Sequence 0–9  
FifthToggle Position within Line for EachV-Sequence 0–9  
SixthToggle Position within Line for EachV-Sequence 0–9  
REV. 0  
–13–  
AD9995  
Generating Special HBLK Patterns  
Generating HBLK Line Alternation  
There are six toggle positions available for HBLK. Normally,  
only two of the toggle positions are used to generate the standard  
HBLK interval. However, the additional toggle positions may be  
used to generate special HBLK patterns, as shown in Figure 12.  
The pattern in this example uses all six toggle positions to gen-  
erate two extra groups of pulses during the HBLK interval. By  
changing the toggle positions, different patterns can be created.  
One further feature of the AD9995 is the ability to alternate dif-  
ferent HBLK toggle positions on odd and even lines.This may be  
used in conjunction withV-pattern odd/even alternation or on its  
own.When a 1 is written to the HBLKALT register,TOG1 and  
TOG2 are used on odd lines only, whileT
OG3–TOG6 are used  
on even lines.Writing a 2 to the HBLKALT register gives the  
opposite result:TOG1 andTOG2 are used on even lines, while  
TOG3–TOG6 are used on odd lines. See theVerticalTiming  
Generation, Line Alternation section for more information.  
HD  
1
2
BLANK  
BLANK  
HBLK  
PROGRAMMABLE SETTINGS:  
1. FIRST TOGGLE POSITION = START OF BLANKING  
2. SECOND TOGGLE POSITION = END OF BLANKING  
Figure 10. Horizontal Blanking (HBLK) Pse Placment  
HD  
HBLK  
H1/H3  
H1/H3  
H2/H4  
THE POLARITY OF NG BLAGRAMMABLE (H2 IS OPPOSITE POLARITY OF H1).  
Figure 11. HBLK Masking Control  
TOG2 TOG3  
TOG1  
TOG4 TOG5  
TOG6  
HBLK  
H1/H3  
H2/H4  
SPECIAL H-BLANK PATTERN IS CREATED USING MULTIPLE HBLK TOGGLE POSITIONS.  
Figure 12. Generating Special HBLK Patterns  
–14–  
REV. 0  
HORIZONTALTIMING SEQUENCE EXAMPLE  
Figure 13 shows an example CCD layout.The horizontal register  
contains 28 dummy pixels, which will occur on each line clocked  
from the CCD. In the vertical direction, there are 10 optical  
black (OB) lines at the front of the readout and two at the back  
of the readout.The horizontal direction has four OB pixels in the  
front and 48 in the back.  
The HBLK, CLPOB, and PBLK parameters are programmed in  
theV-sequence registers.  
More elaborate clamping schemes may be used, such as adding  
in a separate sequence to clamp during the entire shield OB lines.  
This requires configuring a separateV-sequence for reading out  
the OB lines.  
Figure 14 shows the basic sequence layout to be used during the  
effective pixel readout.The 48 OB pixels at the end of each line  
are used for the CLPOB signals. PBLK is optional and is often  
used to blank the digital outputs during the noneffective CCD  
pixels. HBLK is used during the vertical shift interval.  
2 VERTIB LINES  
10 VTICAL OB LINES  
EFFECTIVE IMAGE AREA  
V
H
48 OB PIX
4 OB PIXELS  
HORIZOISTER  
28 DUMMY PIXELS  
Figure 13. Example CCD Configuration  
HD  
OB  
OPTICAL BLACK  
OPTICALBLACK  
VERT
DUMMY  
EFFECTIVE PIXELS  
VERT SHIFT  
CCDIN  
SHP  
SHD  
H1/H3  
H2/H  
HBLK  
PBLK  
CLPOB  
Figure 14. Horizontal Sequence Example  
REV. 0  
–15–  
AD9995  
VERTICA
L
T
IMING GENERATION  
are created by using the vertical pattern group registers. Second,  
theV-pattern groups are used to build the sequences, where  
additional information is added.Third, the readout for an entire  
field is constructed by dividing the field into different regions and  
then assigning a sequence to each region. Each field can contain  
up to seven different regions to accommodate different steps of  
the readout such as high speed line shifts and unique vertical line  
transfers. Up to six different fields may be created. Finally, the  
Mode register allows the different fields to be combined into any  
order for various readout configurations.  
The AD9995 provides a very flexible solution for generating  
vertical CCD timing, and can support multiple CCDs and dif-  
ferent system architectures.The 6-phase vertical transfer clocks  
V1–V6 are used to shift each line of pixels into the horizontal  
output register of the CCD.The AD9995 allows these outputs to  
be individually programmed into various readout configurations  
using a 4-step process.  
Figure 15 shows an overview of how the vertical timing is gener-  
ated in four steps. First, the individual pulse patterns forV1–V6  
CREATE THE VERTICAL PATTERN GROUPS  
(MAXIMUM OF 10 GROUPS).  
BUILD THE V-SEQUENCES BY ADDING LINE START  
POSITION, # OF REPEATS, AND HBLPOB PULSES  
(MAXIMUM OF 10 V-SEQUENCES)
V1  
V2  
V1  
V2  
V3  
VPAT 0  
V4  
V3  
V-SEQUENCE 0  
V4  
(VPAT0, 1 REP)  
V5  
V5  
V6  
6  
V1  
V1  
V2  
V3  
V
V-SEQUENCE 1  
V4  
AT9, 2 REP)  
VPAT 9  
V4  
V6  
V5  
V6  
V1  
V2  
V3  
V-SEQUENCE 2  
V4  
(VPAT9, N REP)  
V5  
V6  
BUILD EACH FIELD BY DIVIDING INTO DIFFERENT REGIONS,  
AND ASSIGNING A DIFFERENT V-SEQUENCE TO EACH  
(MAXIMUM OF 7 REGIONS IN EACH FIELD)  
(MAXIMUM OF 6 FIELDS).  
USE THE MTO COWHICH FIELDS  
ARE USEDER  
(MAXIMUE COMBINED IN ANY ORDER).  
FIELD 0  
FIELD 4  
FIELD 1  
FIELD 2  
FIELD 0  
FIELD 3  
FIELD 5  
REGION 0: USE V-SEQUENCE 2  
REGION 1: USE V-SEQUENCE 0  
REGION 2: USE V-SEQUENCE 3  
REGION 3: USE V-SEQUENCE 0  
FIELD 2  
FIELD 4  
REGION 4: USE V-SEQUENCE 2  
FIELD 1  
FIELD 2  
Figure 15. Summary of VerticalTiming Generation  
–16–  
REV. 0  
Vertical Pattern Groups (VPAT)  
length of theV-pattern group, which will determine the number  
of pixels between each of the pattern repetitions, when repetitions  
are used (see theVertical Sequences section).  
The vertical pattern groups define the individual pulse patterns  
for eachV1–V6 output signal.TableV summarizes the registers  
available for generating each of the 10V-pattern groups.The start  
polarity (VPOL) determines the starting polarity of the vertical  
sequence, and can be programmed high or low for eachV1–V6  
output.The first, second, and third toggle position (VTOG1,  
VTOG2, VTOG3) are the pixel locations within the line where  
the pulse transitions. A fourth toggle position (VTOG4) is also  
available for V-Pattern Groups 8 and 9. All toggle positions are  
12-bit values, allowing their placement anywhere in the hori-  
zontal line. A separate register,VPATSTART, specifies the start  
position of theV-pattern group within the line (see theVertical  
Sequences section).TheVPATLEN register designates the total  
The FREEZE and RESUME registers are used to temporarily  
stop the operation of the V1–V6 outputs. At the pixel location  
specified in the FREEZE register, the V1–V6 outputs will be  
held static at their current dc state, high or low. The V1–V6  
outputs are held until the pixel location specified by RESUME  
register. Two sets of FREEZE/RESUME registers are pro-  
vided, allowing the vertical outputs to be interrupted twice in  
the same line. The FREEZE and RESUME positions are pro-  
grammed in the V-pattern group registers, but are separately  
enabled using the VMASK regers, which are described in the  
Vertical Sequence section.  
TableV.Vertical Pattern Group Registers  
Register  
Length  
Range  
Description  
VPOL  
VTOG1  
VTOG2  
VTOG3  
1b  
High/Low  
Starting Polarty of EachVV6 Output  
12b  
12b  
12b  
12b  
12b  
12b  
12b  
12b  
12b  
0–4096 Pixel Location  
0–4096 Pixel Location  
0–4096 Pixel Location  
0–4096 Pixel Location  
0–4096 Pixels  
0–4096 Pixel Location  
0–4096 Pixel Location  
0–4096 Pixel Location  
0–4096 Pixel Locat
FirstToggle osition within Lfor EachV1–V6 Output  
Secondggle Potion within Line for EachV1–V6 Output  
ThirdTgle Ption within Line for EachV1–V6 Output  
FourthToPositionnly Available inV-Pattern Groups 8 and 9  
Total Length EacV-Pattern Group  
Holds theV1–Vutputs atTheir Current Levels (Static DC)  
esumes Operation of theV1–V6 Outputs to FinishTheir Pattern  
Hds theVV6 Outputs atTheir Current Levels (Static DC)  
Reseperation of theV1–V6 Outputs to FinishTheir Pattern  
VTOG4  
VPATLEN  
FREEZE1  
RESUME1  
FREEZE2  
RESUME2  
START POSITION OF VPROGRAMMABLE IN V-SEQUENCE REGISTERS  
HD  
4
V1  
V2  
1
2
3
V6  
2
3
PROGRAMMABLE SETTINGS FOR EACH V-PATTERN:  
1. START POLARITY  
2. FIRST TOGGLE POSITION  
3. SECOND TOGGLE POSITION (3RD TOGGLE POSITION ALSO AVAILABLE, 4TH TOGGLE POSITION AVAILABLE FOR V-PATTERN GROUPS 8 AND 9)  
4. TOTAL PATTERN LENGTH FOR ALL V1-V6 OUTPUTS  
Figure 16. Vertical Pattern Group Programmability  
REV. 0  
–17–  
AD9995  
Vertical Sequences (VSEQ)  
even lines, separate values may be used for each register (see  
theV-Sequence Line Alternation section).TheVPATSTART  
register specifies where in the line theV-pattern group will start.  
TheVMASK register is used in conjunction with the FREEZE/  
RESUME registers to enable optional masking of theV-outputs.  
Either or both of the FREEZE1/RESUME1 and FREEZE2/  
RESUME2 registers can be enabled.  
The vertical sequences are created by selecting one of the 10  
V-pattern groups and adding repeats, start position, and hori-  
zontal clamping and blanking information. Up to 10V-sequences  
can be programmed, each using the registers shown inTableVI.  
Figure 17 shows how the different registers are used to generate  
eachV-sequence.  
TheVPATSEL register selects whichV-pattern group will be  
used in a givenV-sequence.The basicV-pattern group can have  
repetitions added, for high speed line shifts or line binning, by  
using theVPATREPO andVPATREPE registers. Generally, the  
same number of repetitions are programmed into both registers,  
but if a different number of repetitions is required on odd and  
The line length (in pixels) is programmable using the HDLEN  
registers. EachV-sequence can have a different line length to  
accommodate various image readout techniques.The maximum  
number of pixels per line is 4096. Note that the last line of the  
field is separately programmable using the HDLAST register  
located in the Field register section.  
TableVI.V-Sequence Registers (seeTables III and IV for HBLK, CLPOB, BLK ters)  
Register  
Length  
Range  
Description  
VPATSEL  
VMASK  
4b  
2b  
0–9V-Pattern Group #  
0–3 Mask Mode  
SelectedV-Pattern Group foEachequence.  
Enables the Masking of V1–V6 Outpuat the Locations Specified by  
the FREEZE/RESUMRegisters. 0 = NMask, 1 = Enable  
FREEZE1/RESUM1, 2 = able FREEZE2/RESUME2, 3 = Enable  
both 1 and 2.  
VPATREPO  
VPATREPE  
12b  
12b  
0–4095 # of Repeats  
0–4095 # of Repeats  
Number of Repetitior theV-tern Group for Odd Lines.  
If no odd/even alternatios reired, set toVPATREPE.  
Numbeof Repetitions for V-Pattern Group for Even Lines.  
If no odden alternation is required, set toVPATREPO.  
Start Positioor the ectedV-Pattern Group.  
VPATSTART  
HDLEN  
12b  
12b  
0–4095 Pixel Location  
0–4095 # of Pixels  
LengoLines in EachV-Sequence.  
1
HD  
2
3
4
4
V1–V6  
VPAT REP 3  
VPAT REP 2  
UP  
CLPOB  
PBLK  
5
HBLK  
PRSETTINGS FOR EACH V-SEQUENCE:  
1. STON IN THE LINE OF SELECTED V-PATTERN GROUP  
2. HD LINE LENGTH  
3. V-PATTERN SELECT (VPATSEL) TO SELECT ANY V-PATTERN GROUP  
4. NUMBER OF REPETITIONS OF THE V-PATTERN GROUP (IF NEEDED)  
5. START POLARITY AND TOGGLE POSITIONS FOR CLPOB AND PBLK SIGNALS  
6. MASKING POLARITY AND TOGGLE POSITIONS FOR HBLK SIGNAL  
Figure 17. V-Sequence Programmability  
–18–  
REV. 0  
Complete Field: CombiningV-Sequences  
ing any region.The SCP registers create the line boundaries for  
each region.TheVDLEN register specifies the total number of  
lines in the field.The total number of pixels per line (HDLEN) is  
specified in theV-sequence registers, but the HDLAST register  
specifies the number of pixels in the last line of the field.The  
VPATSECOND register is used to add a secondV-pattern group  
to theV1–6 outputs during the sensor gate (VSG) line.  
After the V-sequences have been created, they are combined to  
create different readout fields. A field consists of up to seven  
different regions, and within each region a different V-sequence  
can be selected. Figure 18 shows how the sequence change posi-  
tions (SCP) designate the line boundary for each region, and  
the VSEQSEL registers then select which V-sequence is used  
during each region. Registers to control the VSG outputs are also  
included in the Field registers.  
The SGMASK register is used to enable or disable each indi-  
vidualVSG output.There is a single bit for eachVSG output;  
setting the bit high will mask the output, setting it low will enable  
the output.The SGPAT register assigns one of the four different  
SG patterns to eachVSG output.The individual SG patterns are  
created separately using the SG attern registers.The SGLINE1  
register specifies which line ihe field will contain theVSG out-  
puts.The optional SGLINregistallows the sameVSG pulses  
to be repeated on a diffent l
TableVII summarizes the registers used to create the different  
fields. Up to six different fields can be preprogrammed using all  
of the Field registers.  
TheVEQSEL registers, one for each region, select which of the  
10V-sequences will be active during each region.The SWEEP  
registers are used to enable SWEEP mode during any region.  
The MULTI registers are used to enable Multiplier mode dur-  
TableVII. Field Registers  
Register  
Length  
Range  
Description  
VSEQSEL  
SWEEP  
MULTI  
SCP  
VDLEN  
HDLAST  
VPATSECOND  
SGMASK  
4b  
1b  
1b  
12b  
12b  
12b  
4b  
0–9V-Sequence #  
High/Low  
High/Low  
SelectedV-quence r Each Region in the Field.  
Enables SwMe for Each Region,When Set High.  
Enables MultiMode r Each Region,When Set High.  
Sequence Changosin for Each Region.  
0–4095 Line #  
0–4095 # of Lines  
0–4095 # of Pixels  
0–9V-Pattern Group #  
High/Low, EachVS
tal Number of Li
s in Each Field.  
Leth in Pixels f the Last HD Line in Each Field.  
SelecV-Patn Group for Second Pattern Applied During VSG Line.  
t Higask Each IndividualVSG Output.VSG1 [0],VSG2 [1],  
3 [2],VSG4 [3],VSG5 [4].  
6b  
SGPATSEL  
12b  
0–3 Pattern #, Ets theVSG Pattern Number for EachVSG Output.VSG1 [1:0],  
2 [3:2],VSG3 [5:4],VSG4 [7:6],VSG5 [9:8].  
SGLINE1  
SGLINE2  
12b  
12b  
0–4095
#  
0–40
Line #  
lects the Line in the Field where th
e
V
SG Are Active.  
Selects a Second Line in the Field to Repeat theVSG Signals.  
SCP 2  
SCP 6  
SCP 3  
SCP 4  
SCP 5  
VD  
HD  
GION 0  
REGION 2  
REGION 4  
REGION 6  
REGION 3  
REGION 5  
V1–V6  
VSEQSEL1  
SGLINE1  
VSEQSEL5  
VSEQSEL6  
VSEQSEL2  
VSEQSEL3  
VSEQSEL4  
VSG  
FIELD SETTINGS:  
1. SEQUENCE CHANGE POSITIONS (SCP1–6) DEFINE EACH OF THE 7 REGIONS IN THE FIELD  
2. VSEQSEL0–6 SELECTS THE DESIRED V-SEQUENCE (0–9) FOR EACH REGION.  
3. SGLINE1 REGISTER SELECTS WHICH HD LINE IN THE FIELD WILL CONTAIN THE SENSOR GATE PULSE(S)  
Figure 18. Complete Field Is Divided into Regions  
REV. 0  
–19–  
AD9995  
Generating Line Alternation forV-Sequence and HBLK  
During low resolution readout, some CCDs require a different  
number of vertical clocks on alternate lines
.
T
he AD9995 can  
support this by using theVPATREPO andVPATREPE regis-  
ters.This allows a different number of VPAT repetitions to be  
programmed on odd and even lines. Note that only the number  
of repeats can be different in odd and even lines, but theVPAT  
group remains the same.  
SecondV-Pattern Group duringVSG Active Line  
Most CCDs require additional vertical timing during the sensor  
gate line.The AD9995 supports the option to output a second  
V-pattern group forV1–V6 during the line when the sensor gates  
VSG1–VSG5 are active. Figure 20 shows a typicalVSG line,
which  
includes two separate sets of V-pattern groups forV1–V6.The  
V-
pattern group at the start of theVSG line is selected in the same  
manner as the other regions, using the appropriateVSEQSEL  
register.The secondV-pattern group, unique to theVSG line, is  
selected using theVPATSECOND register, located with the Field  
registers.The start position of the secondVPAT group uses the  
VPATLEN register from the selectedVPAT registers. Because  
theVPATLEN register is used as the rt position and not as the  
VPAT length, it is not possible to pgram multiple repetitions  
for the secondVPAT group.  
Additionally, the HBLK signal can also be alternated for odd  
and even lines. When the HBLKALT register is set high, the  
HBLK TOG1 and TOG2 positions will be used on odd lines  
and the TOG3–TOG6 positions will be used on even lines.  
This allows the HBLK interval to be adjusted on odd and even  
lines if needed.  
Figure 19 shows an example ofVPAT repetition alternation and  
HBLK alternation used together. It is also possible to useVPAT  
and HBLK alternation separately.  
HD  
VPATREPO = 2  
VPATREPE = 5  
VPATREPO = 2  
V1  
V2  
V6  
TOG1  
TOG2  
TOG1  
TOG2  
TOG4  
HBLK  
NOTES  
1. THE NUMBER OF REPEATS FOR THE V-PATTEROUP MAY BE ALTERED ON ODD AND EVEN LINES.  
2. THE HBLK TOGGLE POSITIONS MAY BE ALTBETWEEN DD EVEN LINES IN ORDER TO GENERATE DIFFERENT HBLK PATTERNS FOR ODD/EVEN LINES.  
Figure 19. lternation of VPAT Repetitions and HBLKToggle Positions  
START POSITION FOR 2ND VPAT GROUP  
USES VPATLEN REGISTER  
HD  
VSG  
V1  
V2  
V6  
2ND VPAT GROUP  
Figure 20. Example of Second VPAT Group during Sensor Gate Line  
–20–  
REV. 0  
Sweep Mode Operation  
region occupies 23 HD lines. After the Sweep mode region is  
completed, in the next region, normal sequence operation will  
resume. When using Sweep mode, be sure to set the region  
boundaries (using the sequence change positions) to the appro-  
priate lines to prevent the Sweep operation from overlapping the  
next V-sequence.  
The AD9995 contains an additional mode of vertical timing  
operation called Sweep mode.This mode is used to generate a  
large number of repetitive pulses that span multiple HD lines.  
One example of where this mode is needed is at the start of the  
CCD readout operation. At the end of the image exposure but  
before the image is transferred by the sensor gate pulses, the  
vertical interline CCD registers should be free of all charge.This  
can be accomplished by quickly shifting out any charge using a  
long series of pulses from theV1–V6 outputs. Depending on the  
vertical resolution of the CCD, up to 2,000 or 3,000 clock cycles  
will be needed to shift the charge out of each vertical CCD line.  
This operation will span across multiple HD line lengths. Nor-  
mally, the AD9995’s vertical timing must be contained within  
one HD line length, but when Sweep mode is enabled, the HD  
boundaries will be ignored until the region is finished.To enable  
Sweep mode within any region, program the appropriate  
SWEEP register to high.  
Multiplier Mode  
To generate very wide vertical timing pulses, a vertical region  
may be configured into a multiplier region. This mode uses  
the V-pattern registers in a slightly different manner. Multiplier  
mode can be used to support unusual CCD timing requirements,  
such as vertical pulses that are wider than a single HD line length.  
The start polarity and toggle pitions are still used in the same  
manner as the standardVPAgroup ogramming, but the  
VPATLEN is used differentnstd of using the pixel counter  
(HD counter) to specthe topositioocations (VTOG1,  
2, 3) of theVPAT gp, theVPAEN s multiplied with the  
VTOG position allvery long pes to be generated.To cal-  
culate the exact toggle pion, counted in pixels after the start  
position, uthe equation  
Figure 21 shows an example of Sweep mode operation. The  
number of vertical pulses needed will depend on the vertical  
resolution of the CCD. The V1–V6 output signals are gener-  
ated using the V-pattern registers (shown in Table VII). A single  
pulse is created using the polarity and toggle position registers.  
The number of repetitions is then programmed to match the  
number of vertical shifts required by the CCD. Repetitions are  
programmed in the V-sequence registers using the VPATREP  
registers. This produces a pulse train of the appropriate length.  
Normally, the pulse train would be truncated at the end of th
HD line length, but with Sweep mode enabled for this r
the HD boundaries will be ignored. In Figure 21, the
ltiplier odeTogglePosition =VTOG ×VPATLEN  
Because e TOG rester is multiplied by VPATLEN,  
the resolutof thoggle position placement is reduced. If  
VPATLEN = e toggle position accuracy is now reduced  
to 4-pixel steps instead of single pixel steps. Table VIII sum-  
arizes hothe VPAT group registers are used in Multiplier  
me oration. In Multiplier mode, the VPATREPO and  
VPAEPE registers should always be programmed to the same  
value as the highest toggle position.  
VD  
CP 1  
SCP 2  
HD  
LINE 0  
LINE 1  
LINE 2  
LINE 24  
LINE 25  
V1–V6  
REG
REGION 1: SWEEP REGION  
REGION 2  
Figur1. Example of Sweep Region for High Speed Vertical Shift  
TableVIII. Multiplier Mode Register Parameters  
Register  
Length  
Range  
Description  
MULTI  
VPOL  
VTOG1  
VTOG2  
VTOG3  
VPATLEN  
VPATREP  
1b  
1b  
12b  
12b  
12b  
10b  
12b  
High/Low  
High/Low  
0–4095 Pixel Location  
0–4095 Pixel Location  
0–4095 Pixel Location  
0–1023 Pixels  
High enables Multiplier mode.  
Starting Polarity of V1–V6 Signal in Each VPAT Group.  
FirstToggle Position forV1–V6 Signal in EachVPAT Group.  
SecondToggle Position forV1–V6 Signal in EachVPAT Group.  
ThirdToggle Position forV1–V6 Signal in EachVPAT Group.  
Used as Multiplier Factor forToggle Position Counter.  
0–4096  
VPATREPE/VPATREPO should be set to the same value asTOG2 or 3.  
REV. 0  
–21–  
AD9995  
The example shown in Figure 22 illustrates this operation.The  
first toggle position is 2, and the second toggle position is 9. In  
non-Multiplier mode, this causes theV-sequence to toggle at  
pixel 2 and then pixel 9 within a single HD line. However, toggle  
positions are now multiplied by theVTPLEN = 4, so the first  
toggle occurs at pixel count 8 and the second toggle occurs at  
pixel count 36. Sweep mode has also been enabled to allow the  
toggle positions to cross the HD line boundaries.  
Table IX contains the summary of the VSG pattern registers. The  
AD9995 has five VSG outputs, VSG1–VSG5. Each of the out-  
puts can be assigned to one of four programmed patterns by using  
the SGPATSEL registers. Each pattern is generated in a similar  
manner as the V-pattern groups, with a programmable start polar-  
ity (SGPOL), first toggle position (SGTOG1), and second toggle  
position (SGTOG2). The active line where the VSG1–VSG5  
pulses occur is programmable using the SGLINE1 and SGLINE2  
registers. Additionally, any of the VSG1–VSG5 pulses may be  
individually disabled by using the SGMASK register. The individ-  
ual masking allows all of the SG patterns to be preprogrammed,  
and the appropriate pulses for the different fields can be separately  
enabled. For maximum flexibility, the GPATSEL, SGMASK,  
and SGLINE registers are separateprogrammable for each field.  
More detail is given in the Come Fielection.  
Vertical Sensor Gate (Shift Gate) Patterns  
In an interline CCD, the vertical sensor gates (VSG) are used  
to transfer the pixel charges from the light-sensitive image area  
into light-shielded vertical registers. From the light-shield verti-  
cal registers, the image is then read out line-by-line by using the  
vertical transfer pulses V1–V6 in conjunction with the high speed  
horizontal clocks.  
START POSITION OF VPAT GROUP IS STILL PROGRAMMED IN THE V-SEQUENCE REGS  
HD  
5
5
3
VPATLEN  
1
1
2
2
3
3
4
4
1
5
2
6
3
7
4
8
1
9
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
3
4
1
3
4
1
2
3
4
1
2
3
4
PIXEL  
NUMBER  
10 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 228 29 30 31 32 33 34 35 36 37 38 39 40  
4
4
V1–V6  
1
2
2
MULTIPLIER MODE V-PATTERN GROUP PROPERTIES
1. START POLARITY (ABOVE: STARTPOL
2. FIRST, SECOND, AND THIRD TOGGLSONS (ABO2, VTOG2 = 9)  
3. LENGTH OF VPAT COUNTER (ABOVPATLEN = 4). THIS IE MINIMUM RESOLUTION FOR TOGGLE POSITION CHANGES.  
4. TOGGLE POSITIONS OCCUR AT LATION EQO (VTOG VPATLEN)  
5. IF SWEEP REGION IS ENABLED, TV-PULSO CROSS THE HD BOUNDRIES, AS SHOWN ABOVE  
Figure 22ample of Multier Region for Wide Vertical PulseTiming  
Tablern Registers (also see Field Registers inTableVII)  
Register  
Range  
Description  
SGPOL  
SGTOG1  
SGTOG2  
High/Low  
0–4095 Pixel Location  
0–4095 Pixel Location  
Sensor Gate Starting Polarity for SG Pattern 0–3  
FirstToggle Position for SG Pattern 0–3  
SecondToggle Position for SG Pattern 0–3  
VD  
HD  
4
VSG PATTERNS  
1
2
3
PROGRAMMABLE SETTINGS FOR EACH PATTERN:  
1. START POLARITY OF PULSE  
2. FIRST TOGGLE POSITION  
3. SECOND TOGGLE POSITION  
4. ACTIVE LINE FOR VSG PULSES WITHIN THE FIELD (PROGRAMMABLE IN THE FIELD REGISTER, NOT FOR EACH PATTERN)  
Figure 23. Vertical Sensor Gate Pulse Placement  
–22–  
REV. 0  
MODE Register  
startup. Then, during camera operation, the MODE register  
would select which field timing would be active, depending on  
how the camera was being used.  
The MODE register is a single register that selects the field tim-  
ing of the AD9995.Typically, all of the field,V-sequence, and  
V-pattern group information is programmed into the AD9995  
at startup. During operation, the MODE register allows the user  
to select any combination of field timing to meet the current  
requirements of the system.The advantage of using the MODE  
register in conjunction with preprogrammed timing is that it  
greatly reduces the system programming requirements during  
camera operation. Only a few register writes are required when  
the camera operating mode is changed, rather than having to  
write in all of the vertical timing information with each camera  
mode change.  
Table X shows how the MODE register bits are used. The three  
MSBs, D23–D21, are used to specify how many total fields will  
be used. Any value from 1 to 7 can be selected using these three  
bits. The remaining register bits are divided into 3-bit sections to  
select which of the six fields are used and in which order. Up to  
seven fields may be used in a single MODE write. The AD9995  
will start with the Field timing specified by the first Field bits,  
and on the next VD will switch to the timing specified by the  
second Field bits, and so on.  
After completing the total nuer of fields specified in Bits  
D23 to D21, the AD9995 l repeay starting at the first  
Field again. This will contiuna new write to the MODE  
register occurs. Figur24 shoxample ODE register set-  
tings for different configurats.  
A basic still camera application might require five different  
fields of vertical timing: one for draft mode operation, one for  
autofocusing, and three for still image readout. All of the reg-  
ister timing information for the five fields would be loaded at  
Table X. MODE Register Data Bit Breakdn (D23 = MS
20 19 18 17 16 15 14 13 12 11
D23 22  
21  
9
7
6
5
4
3
2
1
D0  
T
o
tal Number of  
Fields to Use.  
1 = 1st Field Only 
5 = Field 5  
7th Field  
0 = Field 0  
6th Field  
0 = Field 0  
5 = Field 5  
5th Field  
0 = Field 0  
5 = Field 5  
4th Fi
0 = Field
5 = Field 5  
3rd F
eld  
0 =
ield 0  
= Field 5  
2nd Field  
0 = Field 0  
5 = Field 5  
1st Field  
0 = Field 0  
5 = Field 5  
7 = All 7 Fields  
0 = Invalid  
6, 7 = Invalid 6, 7 = Invalid 6, 7 = Inva6, 7 = Invalid 6, 7 = Invalid 6, 7 = Invalid 6, 7 = Invalid  
EXAMPLE 1:  
TOTAL FIELDS = 3, 1ST FIELD = FIELD 1, 3RD FIELD = FIELD 2  
MODE REGISTER CONTENTS =
FI1  
FIELD 0  
ST FIELD = FIELD 3, 2ND FIELD = FIELD 4  
TENTS = 0x400023  
ELD 4  
AMPLE 3:  
OTAL FIELDS = 4, 1ST FIELD = FIELD 5, 2ND FIELD = FIELD 1, 3RD FIELD = FIELD 4, 4TH FIELD = FIELD 2  
MODE REGISTER CONTENTS = 0x80050D  
FIELD 2  
FIELD 1  
FIELD 4  
FIELD 5  
Figure 24. Using the MODE Register to Select FieldTiming  
REV. 0  
–23–  
AD9995  
VERTICA
L
T
IMING EXAMPLE  
Region 1 consists of only two lines, and uses standard single line  
vertical shift timing.The timing of this region area will be the  
same as the timing in Region 3.  
To better understand how the AD9995’s vertical timing generation  
is used, consider the example CCD timing chart in Figure 25. This  
particular example illustrates a CCD using a general 3-field  
readout technique. As described in the Field section, each  
readout field should be divided into separate regions to per-  
form each step of the readout.The sequence change positions  
(SCP) determine the line boundaries for each region, and the  
VSEQSEL registers will then assign a particular V-sequence to  
each region.The V-sequences will contain the specific timing  
information required in each region:V1–V6 pulses (using VPAT  
groups), HBLK/CLPOB timing, and VSG patterns for the SG  
active lines.  
Region 2 is the sensor gate line, where the VSG pulses transfer the  
image into the vertical CCD registers. This region may require the  
use of the second V-pattern group for SG active line.  
Region 3 also uses the standard single line vertical shift timing,  
the same timing as Region 1.  
In summary, four regions are required in each of the three fields.  
The timing for Regions 1 and 3 is essentially the same, reducing  
the complexity of the register programming.  
Other registers will need to be used ring the actual readout  
operation, such as the MODE reter, shuer control registers  
(TRIGGER, SUBCK,VSUB, MHUTTROBE), and AFE  
gain register.These registerwill blained ither examples.  
This particular timing example requires four regions for each  
of the three fields, labeled Region 0, Region 1, Region 2, and  
Region 3. Because the AD9995 allows up to six individual fields  
to be programmed, the Field 0, Field 1, and Field 2 registers can  
be used to meet the requirements of this timing example. The  
four regions for each field are very similar in this example, but  
the individual registers for each field allow flexibility to accom-  
modate other timing charts.  
Important Note about nal Polariti
When programming e A995 to genate the V1–V6,  
VSG1–VSG5, and SUBCK als, it is important to note that  
the V-driver ciuit usually invethese signals. Carefully check  
the required iming sgnals needed at the input and output of  
the V-drivcircuieing used and adjust the polarities of the  
AD9995’s ouaccordly.  
Region 0 is a high speed vertical shift region. Sweep mode can be  
used to generate this timing operation, with the desired number  
of high speed vertical pulses needed to clear any charge from the  
CCD’s vertical registers.  
–24–  
REV. 0  
n
3
n –  
2 1  
1 8  
1 5  
1 2  
9
6
3
n –
n –  
4
2 0  
1 7  
1 4  
1  
5
2
2
5
n –  
n –  
1 6  
1 3  
1 0  
7
4
1
Figure 25. CCDTiming Example: Dividing Each Field into Regions  
REV. 0  
–25–  
AD9995  
SHUTTE
R
T
IMING CONTROL  
High Precision Shutter Operation  
The CCD image exposure time is controlled by the substrate  
clock signal (SUBCK), which pulses the CCD substrate to clear  
out accumulated charge.The AD9995 supports three types of  
electronic shuttering: normal shutter, high precision shutter,  
and low speed shutter. Along with the SUBCK pulse placement,  
the AD9995 can accommodate different readout configurations  
to further suppress the SUBCK pulses during multiple field  
readouts.The AD9995 also provides programmable outputs to  
control an external mechanical shutter (MSHUT), strobe/flash  
(STROBE), and the CCD bias select signal (VSUB).  
High precision shuttering is used in the same manner as nor-  
mal shuttering, but uses an additional register to control the  
very last SUBCK pulse. In this mode, the SUBCK still pulses  
once per line, but the last SUBCK in the field will have an  
additional SUBCK pulse whose location is determined by the  
SUBCK2TOG register, as shown in Figure 27. Finer resolution  
of the exposure time is possible using this mode. Leaving the  
SUBCK2TOG register set to max value (0xFFFFFF) will disable  
the last SUBCK pulse (default setting).  
Low Speed Shutter Operation  
Normal Shutter Operation  
Normal and high precision shutter operations are used when  
the exposure time is less than one fid long. For long exposure  
times greater than one field interl, low seed shutter opera-  
tion is used. The AD9995 uses eparexposure counter to  
achieve long exposure timeThe ber of fis for the low  
speed shutter operation specified ihe EOSURE register  
(Addr. 0x62). As shoFigure 28, thutter mode will  
suppress the SUBCK and VG outputs for up to 4095 fields  
(VD periods). Te VD and Hutputs may be suppressed  
during the exsure period by prramming the VDHDOFF  
register to
By default, the AD9995 is always operating in the normal shutter  
configuration in which the SUBCK signal is pulsing in every VD  
field (see Figure 26). The SUBCK pulse occurs once per line,  
and the total number of repetitions within the field will determine  
the length of the exposure time. The SUBCK pulse polarity  
and toggle positions within a line are programmable using the  
SUBCKPOL and SUBCK1TOG registers (see Table XI).  
The number of SUBCK pulses per field is programmed in the  
SUBCKNUM register (Addr. 0x63).  
As shown in Figure 26, the SUBCK pulses will always begin  
in the line following the SG active line, which is specified in  
the SGACTLINE registers for each field.The SUBCKPOL,  
SUBCK1TOG, SUBCK2TOG, SUBCKNUM, and SUBCK-  
SUPPRESS registers are updated at the start of the line after  
the sensor gate line, as described in the Updating New Register  
Values section.  
To generate speed shter operation, it is necessary to trig-  
ger the start of long posure by writing to theTRIGGER  
register bit D3.Whis bit is set high, the AD9995 will begin  
exposure operation at the nextVD edge. If a value greater than  
zerspecified the EXPOSURE register, the AD9995 will  
supprethe UBCK output on subsequent fields.  
VD  
HD  
VSG  
tEX
tEXP  
SUBCK  
SUBCK PROGRAMMABLE
1. PULSE PSING TL REGISTER.  
2. NUMBWITHIN LD USING THE SUBCKNUM REGISTER (SUBCKNUM = 3 IN THE ABOVE FIGURE).  
3. PIXELSE WITHE LINE AND PULSEWIDTH PROGRAMMED USING SUBCK1 TOGGLE POSITION REGISTER.  
Figure 26. Normal Shutter Mode  
VD  
HD  
VSG  
tEXP  
tEXP  
SUBCK  
NOTES  
1. SECOND SUBCK PULSE IS ADDED IN THE LAST SUBCK LINE.  
2. LOCATION OF 2ND PULSE IS FULLY PROGRAMMABLE USING THE SUBCK2 TOGGLE POSITION REGISTER.  
Figure 27. High Precision Shutter Mode  
–26–  
REV. 0  
If the exposure is generated using theTRIGGER register and the  
EXPOSURE register is set to zero, the behavior of the SUBCK  
will not be any different than the normal shutter or high precision  
shutter operations, in which theTRIGGER register is not used.  
CCD frame readout mode will generally require two additional  
fields of SUBCK suppression (READOUT = 2). A 3-field,  
6-phase CCD will require three additional fields of SUBCK sup-  
pression after the readout begins (READOUT = 3).  
SUBCK Suppression  
If the SUBCK output is required to start back up during the last  
field of readout, simply program the READOUT register to one  
less than the total number of CCD readout fields.  
Normally, the SUBCKs will begin to pulse on the line following  
the sensor gate line (VSG).With some CCDs, the SUBCK pulse  
needs to be suppressed for one or more lines following theVSG  
line.The SUBCKSUPPRESS register allows for suppression of  
the SUBCK pulses for additional lines following theVSG line.  
Like the exposure operation, the readout operation must be trig-  
gered by using theTRIGGER register.  
Using theTRIGGER Register  
Readout after Exposure  
As described previously, by default the AD9995 will output the  
SUBCK andVSG signals on evefield.This works well for  
continuous single field exposand readout operations, such  
as the CCD’s live preview de. Hoever, if the CCD requires  
a longer exposure time, or if lte readofields are needed,  
theTRIGGER registis needeinitiaspecific exposure and  
readout sequences
After the exposure, the readout of the CCD data occurs, beginning  
with the sensor gate (VSG) operation. By default, the AD9995 is  
generating the VSG pulses in every field. In the case where only a  
single exposure and single readout frame are needed, such as the  
CCD’s preview mode, the VSG and SUBCK pulses can be oper-  
ating in every field.  
However in many cases, during readout the SUBCK output  
needs to be further suppressed until the readout is completed.  
The READOUT register specifies the number of additional  
fields after the exposure to continue the suppression of  
SUBCK. READOUT can be programmed for zero to seven  
additional fields, and should be preprogrammed at startup,  
not at the same time as the exposure write. A typical interlaced  
Typically, the exposure readout bits in theTRIGGER  
register are sed together.s will initiate a complete exposure-  
plus-reaut operation. Once he exposure has been completed,  
the reout wilutomatically occur.The values in the EXPO-  
SURE d ADOUregisters will determine the length of  
each opern.  
TRIGGER  
EXPOSURE  
VD  
VSG  
tEXP  
SUBCK  
NOTES  
1. SUBCK MAY BE MULTIPLE FIELDS BY PROGRAMMING THE EXPOSURE REGISTER GREATER THAN ZERO.  
2. ABOVE EXAM1.  
3. TRIGGER REGISED TO START THE LOW SPEED EXPOSURE  
4. VD/HD OUTPUTS ESSED USING THE VDHDOFF REGISTER = 1.  
Fig. Low Speed Shutter Mode Using EXPOSURE Register  
Table XI. Shutter Mode Register Parameters  
Register  
gth  
Range  
Description  
TRIGGER  
5b  
On/Off for Five Signals  
Trigger forVSUB [0], MSHUT [1], STROBE [2], Exposure [3],  
and Readout Start [4]  
READOUT  
EXPOSURE  
3b  
12b  
0–7 # of Fields  
0–4095 # of Fields  
Number of Fields to Suppress SUBCK after Exposure  
Number of Fields to Suppress to SUBCK andVSG during  
ExposureTime (Low Speed Shutter)  
VDHDOFF  
1b  
1b  
24b  
24b  
On/Off  
High/Low  
0–4095 Pixel Locations  
0–4095 Pixel Locations  
DisableVD/HD Output during Exposure (1 = On, 0 = Off)  
SUBCK Start Polarity for SUBCK1 and SUBCK2  
Toggle Positions for First SUBCK Pulse (Normal Shutter)  
Toggle Positions for Second SUBCK Pulse in Last Line  
(High Precision)  
SUBCKPOL
*  
SUBCK1TOG
*  
SUBCK2TOG
*  
SUBCKNUM
*  
SUBCKSUPPRESS
*
12b  
12b  
1–4095 # of Pulses  
0–4095 # of Pulses  
Total Number of SUBCKs per Field at One Pulse per Line  
Number of Lines to Further Suppress SUBCK after theVSG Line  
*
Register is notVD updated, but is updated at the start of line after sensor gate line.  
REV. 0  
–27–  
AD9995  
It is possible to independently trigger the readout operation  
without triggering the exposure operation.This will cause the  
readout to occur at the nextVD, and the SUBCK output will be  
suppressed according to the value of the READOUT register.  
the field.VSUB will remain active until the end of the image  
readout. In Mode 1, the VSUB is not activated until the start of  
the readout.  
An additional function calle
d
V
SUB KEEP-ON is also available.  
When this bit is set high, theVSUB output will remain on (active)  
even after the readout has finished
.
T
o
d
isable th
e
V
SUB at a later  
time, set this bit back to low.  
TheTRIGGER register is also used to control the STROBE,  
MSHUT, andVSUB signal transitions. Each of these signals are  
individually controlled, although they will be dependent on the  
triggering of the exposure and readout operation.  
MSHUT and STROBE Control  
See Figure 32 for a complete example of triggering the exposure  
and readout operations.  
MSHUT and STROBE operation is shown in Figures 30, 31,  
and 32.Table XII shows the register parameters for controlling  
the MSHUT and STROBE outputs.The MSHUT output is  
switched on with the MSHUTON regters, and will remain on  
until the location specified in the MHUTOFF registers.The  
location of MSHUTOFF is fully rogramable to anywhere  
within the exposure period, usine F(field), LN (line), and  
PX (pixel) registers.The SROBE e is defid by the on and  
VSUB Control  
The CCD readout bias (VSUB) can be programmed to accom-  
modate different CCDs. Figure 29 shows two different modes  
that are available. In Mode 0,VSUB goes active during the field  
of the last SUBCK when the exposure begins.The On position  
(rising edge in Figure 29) is programmable to any line within  
TRIGGER  
VSUB  
VD  
VSG1  
tEXP  
REUT  
SUBCK  
2
MODE 0  
4
VSUB  
1
3
VSUB OPERATION:  
1. ACTIVE POLARITY IS POLARITY (ABOVE AMLE IS VSUB GH).  
2. ON POSITION IS PROGRAMMABLE. MO0 TURNS ON AT THE SART OF EXPOSURE, MODE 1 TURNS ON AT THE START OF READOUT.  
3. OFF POSITION OCCURS AT END OF RDOUT.  
4. OPTIONAL VSUB KEEP-ON MODE WILEAVE CTIVE AT THE END OF READOUT.  
Figure 29SUB Programmability  
VD  
VSG  
tEXP  
SUBCK  
MSHUT  
2
1
3
MSHUT PROGRAMMABLE SETTINGS:  
1. ACTIVE POLARITY.  
2. ON POSITION IS VD UPDATED AND MAY BE SWITCHED ON AT ANY TIME.  
3. OFF POSITION CAN BE PROGRAMMED ANYWHERE FROM THE FIELD OF LAST SUBCK UNTIL THE FIELD BEFORE READOUT.  
Figure 30. MSHUT Output Programmability  
–28–  
REV. 0  
off positions. STROBON_FD is the field in which the STROBE  
is turned on, measured from the field containing the last SUBCK  
before exposure begins.The STROBON_ LN PX register gives  
the line and pixel positions with respect to STROBON_FD.The  
STROBE off position is programmable to any field, line, and  
pixel location with respect to the field of the last SUBCK.  
The same limitation applies to the triggering of the MSHUT  
signal.There must be at least one idle field after the completion  
of the MSHUT OFF operation before another MSHUT OFF  
operation may be programmed.  
TheVSUB trigger requires two idle fields between exposure/  
readout operations in order to ensure properVSUB on/off trig-  
gering. If theVSUB signal is not required to be turned on and  
off in between each successive exposure/readout operation, this  
limitation can be ignored.TheVSUB Keep-On mode is useful  
when successive exposure/readout operations are required.  
TRIGGER Register Limitations  
While theTRIGGER register can be used to perform a complete  
exposure and readout operation, there are limitations on its use.  
Once an exposure-plus-readout operation has been triggered,  
another exposure/readout operation cannot be triggered right  
away.There must be at least one idle field (VD intervals) before  
the next exposure/readout can be triggered.  
TRIGGER  
EXPOSURE  
AND STROBE  
VD  
VSG  
tEXP  
SUBCK  
STROBE  
1
3
STROBE PROGRAMMABLE SETTINGS:  
1. ACTIVE POLARITY.  
2. ON POSITION IS PROGRAMMABLE IN ANY FIELURE TIME (WITH RESPECT TO THE FIELD CONTAINING THE LAST SUBCK).  
3. OFF POSITION IS PROGRAMMABLE IN ANY FIESURE TIME.  
F31. Stput Programmability  
Table XII.VSUB, MHUT, and STROBE Register Parameters  
Register  
Length  
nge  
Description  
VSUBMODE[0]  
VSUBMODE[1]  
1b  
1b  
w  
VSUB Mode (0 = Mode 0, 1 = Mode 1) (See Figure 29).  
VSUB Keep-On Mode.VSUB will stay active after readout  
when set high.  
VSUBON[11:0]  
VSUBON[12]  
MSHUTPOL[0]  
MSHUTPOL[1]  
MSHUTON  
MSHUTOFF_FD  
MSHUTOFF_LNPX 24b  
12b  
95 Line Location  
High/Low  
High/Low  
VSUB On Position. Active starting in any line of field.  
VSUB Active Polarity.  
MSHUT Active Polarity.  
MSHUT Manual Enable (1 = Active or Open).  
MSHUT On Position Line [11:0] and Pixel [23:12] Location.  
Field Location to Switch Off MSHUT (Inactive or Closed).  
Line/Pixel Position to Switch Off MSHUT (Inactive or Closed).  
STROBE Active Polarity.  
On/Off  
0–4095 Line/Pix Location  
0–4095 Field Location  
0–4095 Line/Pix Location  
High/Low  
STROBPOL  
1b  
STROBON_FD  
STROBON_LNPX  
STROBOFF_FD  
STROBOFF_LNPX  
12b  
24b  
12b  
24b  
0–4095 Field Location  
0–4095 Line/Pix Location  
0–4095 Field Location  
0–4095 Line/Pix Location  
STROBE ON Field Location, with Respect to Last SUBCK Field.  
STROBE ON Line/Pixel Position.  
STROBE OFF Field Location, with Respect to Last SUBCK Field.  
STROBE OFF Line/Pixel Position.  
REV. 0  
–29–  
AD9995  
EXPOSURE AND READOUT EXAMPLE  
SERIAL  
WRITES  
1
9
10  
10  
2
6
7
8
VD  
STILL IMAGE READOUT  
VSG  
tEXP  
SUBCK  
4
STROBE  
5
10  
MSHUT  
OPEN  
OP
MECHANICAL  
SHUTTER  
CLOSED  
3
1
MODE 0  
VSUB  
MODE 1  
CCD  
OUT  
DRAFT IMAGE  
DRAFT IMAGE  
STILL IMAGE 1ST FIELD  
STILL IMAGD FIELD  
STILL IMAGE 3RELD  
DRAFT IMAGE  
Figure 32. Example of Exposure and Still Image Readout Using hter Signls and Mode Register  
MSHUT output turns off at the location specified in the  
SHUTFF registers (Addr. 0x6B and 0x6C).  
1. Write to the READOUT register (Addr. 0x61) to specify  
the number of fields to further suppress SUBCK while the  
CCD data is read out. In this example, READOUT = 3.  
. ThtVD falling edge will automatically start the first  
readout field.  
Write to the EXPOSURE register (Addr. 0x62) to sp
the number of fields to suppress SUBCK andVSG o
during exposure. In this example, EXPOSURE = 1.  
The nextVD falling edge will automatically start the second  
readout field.  
Write to theTRIGGER register (Addr. 0x6to enable the  
STROBE, MSHUT, andVSUB signals, d to sta
exposure/readout operation.To trigger all e evenas  
in Figure 32), set the registerTRIGGER = 31. Readouwill  
automatically occur after the exeriod is d.  
8. The nextVD falling edge will automatically start the third  
readout field.  
9. Write to the MODE register to reconfigure the single Draft  
mode field timing.  
Write to the MSHUTON register (Addr. 0x6A) to open the  
mechanical shutter.  
Write to the MODE register configure the  
next five fields.The first two fisure are the  
same as the current draft mode fie following  
three fields are the eadods.The registers  
for the Draft mothree readout fields have  
already been pro
10. VD/HD falling edge will update the serial write from 9.  
VSG outputs return to Draft mode timing.  
SUBCK output resumes operation.  
MSHUT output returns to the on position (active or open).  
VSUB output returns to the off position (inactive).  
2. VD/HD falling edthe serial writes from 1.  
3. IfVSUB mode = 0 (Addr. 0x67),VSUB output turns on at  
the line specified in theVSUBON register (Addr. 0x68).  
4. STROBE output turns on and off at the location specified  
in the STROBEON and OFF registers (Addr. 0x6E to  
Addr. 0x71).  
–30–  
REV. 0  
AD9995  
1.0F 1.0F  
REFB REFT  
1.0V  
2.0V  
DC RESTORE  
1.5V  
AD9995  
INTERNAL  
V
REF  
DOUT  
PHASE  
SHP  
SHD  
2V FULL SCALE  
6dB–42dB  
VGA  
0.1F  
12  
OUTPUT  
DATA  
LATCH  
CCDIN  
12-BIT  
ADC  
DOUT  
CDS  
OPTICAL BLACK  
CLAMP  
DAC  
VGA GAIN  
REGISTER  
LK  
CLPOB  
8
DIGITAL  
FILTER  
DOUT  
SHD PHASE  
LAMP LEVEL  
EGISTER  
CLPOB PBLK  
SHP  
PRECISION  
TIMING  
GENERATION  
V-H  
TIMING  
GENERATION  
Figure 33. Analog Front EFunctional Block Diagram  
ANALOG FRONT END DESCRIPTION AND OPE
The AD9995 signal processing chain is shown in Fig
Each processing step is essential in achieving a high qua
from the raw CCD pixel data.  
with e ADC full-scale range of 2 V. When compared to 1 V  
full-scale systems, the equivalent gain range is 0 dB to 36 dB.  
TheVGA gain curve follows a linear-in-dB characteristic. The  
exactVGA gain can be calculated for any gain register value by  
using the equation  
DC Restore  
To reduce the large dc offset of the CCoutpg, a dc  
restore circuit is used with an external 0.1 series cpling  
capacitor. This restores the dc lethe CCD signto  
approximately 1.5 V, to be cowith the V supply  
voltage of the AD9995.  
Gain dB = 0.0351× Code +6dB  
(
)
(
)
where the code range is 0 to 1023.  
42  
Correlated Double Sampler  
36  
30  
24  
18  
The CDS circuit samch CCwice to extract the  
video information frequcy noise. The timing  
shown in Figure the two internally generated  
CDS clocks, SHP sed to sample the reference  
level and level of th, respectively. The placement of  
the SHP and SHD samedges is determined by the setting  
of the SAMPCONTROL register located at Addr. 0x63. Place-  
ment of these two clock signals is critical in achieving the best  
performance from the CCD.  
12  
6
Variable Gain Amplifier  
TheVGA stage provides a gain range of 6 dB to 42 dB, program-  
mable with 10-bit resolution through the serial digital interface.  
The minimum gain of 6 dB is needed to match a 1V input signal  
0
127  
255  
383  
511  
639  
767  
895  
1023  
VGA GAIN REGISTER CODE  
Figure 34. VGA Gain Curve  
REV. 0  
–31–  
AD9995  
A/D Converter  
The CLPOB pulse should be placed during the CCD’s optical  
black pixels. It is recommended that the CLPOB pulse dura-  
tion be at least 20 pixels wide to minimize clamp noise. Shorter  
pulsewidths may be used, but clamp noise may increase, and the  
ability to track low frequency variations in the black level will  
be reduced. See the Horizontal Clamping and Blanking section  
and the HorizontalTiming Sequence Example section for timing  
examples.  
The AD9995 uses a high performance ADC architecture  
optimized for high speed and low power. Differential nonlinearity  
(DNL) performance is typically better than 0.5 LSB.The ADC  
uses a 2V input range. SeeTPC 2 andTPC 3 for typical linearity  
and noise performance plots for the AD9995.  
Optical Black Clamp  
The optical black clamp loop is used to remove residual offsets  
in the signal chain and to track low frequency variations in the  
CCD’s black level. During the optical black (shielded) pixel inter-  
val on each line, the ADC output is compared with a fixed black  
level reference, selected by the user in the Clamp Level register.  
The value can be programmed between 0 LSB and 255 LSB in  
256 steps. The resulting error signal is filtered to reduce noise,  
and the correction value is applied to the ADC input through a  
D/A converter. Normally, the optical black clamp loop is turned  
on once per horizontal line, but this loop can be updated more  
slowly to suit a particular application. If external digital clamp-  
ing is used during the postprocessing, the AD9995 optical black  
clamping may be disabled using Bit D2 in the OPRMODE regis-  
ter.When the loop is disabled, the Clamp Level register may still  
be used to provide programmable offset adjustment.  
Digital Data Outputs  
The AD9995 digital output data is latched using the DOUT  
PHASE register value, as shown in Figure 33. Output data timing  
is shown in Figure 8a. It is also possible to leave the output latches  
transparent so that the data outputs avalid immediately from  
the A/D converter. Programming e AFE ONTROL register bit  
D4 to 1 will set the output latchranspent. The data outputs  
can also be disabled (three-sted) ting the FE CONTROL  
register Bit D3 to 1.  
The data output codg is rmally straigbinary, but the  
coding my be changed to graoding by setting the AFE CON-  
TROL register it D5 to 1.  
–32–  
REV. 0  
AD9995  
POWER-UP AND SYNCHRONIZATION  
11. Write a 1 to the OUT_CONTROL register (Addr. 0x11 in  
Bank 1). This will allow the outputs to become active after  
the next SYNC rising edge.  
Recommended Power-Up Sequence for Master Mode  
When the AD9995 is powered up, the following sequence is  
recommended (refer to Figure 35 for each step). Note that a  
SYNC signal is required for Master mode operation. If an exter-  
nal SYNC pulse is not available, it is also possible generate an  
internal SYNC pulse by writing to the SYNCPOL register, as  
described in the next section.  
12. Generate a SYNC event: If SYNC is high at power-up,  
bring the SYNC input low for a minimum of 100 ns.  
Then bring SYNC back high.This will cause the internal  
counters to reset and will startVD/HD operation.The first  
VD/HD edge allows most Bank 1 register updates to occur,  
including OUT_CONTROL to enable all outputs.  
1. Turn on power supplies for AD9995.  
2. Apply the master clock input CLI.  
Table XIII. Power-Up RegisterWrite Sequence  
3. Reset the internal AD9995 registers by writing a 1 to the  
SW_RESET register (Addr. 0x10 in Bank 1).  
Address  
Data  
Descrition  
0x10  
0x00  
0x7F  
0x00–0xFF  
0x7F  
0x01  
0x04  
0x01  
ResAll Registers to DefaultValues  
er Up e AFE and CLO Oscillator  
Selgister Bak 2  
VPATSequee, and FieldTiming  
Select RBank 1  
4. By default, the AD9995 is in Standby3 mode.To place the  
part into normal power operation, write 0x004 to the AFE  
OPRMODE register (Addr. 0x00 in Bank 1).  
5. Write a 1 to the BANKSELECT register (Addr. 0x7F).  
This will select Register Bank 2.  
0x
01  
0x15  
Reset InternalTiming Core  
0x30–71  
0x20  
0x11  
orizontal and ShutterTiming  
Cgure for Master Mode  
Enable All Outputs after SYNC  
SYNCPOL (for Software SYNC Only)  
6. Load Bank 2 registers with the required VPAT group,  
V-sequence, and field timing information.  
0x01  
001  
0x01  
7. Write a 0 to the BANKSELECT register to select Bank 1.  
0x13  
8. By default, the internal timing core is held in a reset state  
with TGCORE_RSTB register = 0. Write a 1 to the TG-  
CORE_RSTB register (Addr. 0x15 in Bank 1) to start the  
internal timing core operation.  
Generating ftwe SYNC without External SYNC Signal  
If an external SNC pulse is not available, it is possible to  
generate an internal SYNC in the AD9995 by writing to the  
NCPOregister (Addr. 0x13). If the software SYNC option is  
ustSYNC input (Pin 46) should be tied to ground (VSS).  
9. Load the required registers to configure the high speed tim-  
ing, horizontal timing, and shutter timing informat
After power-up, follow the same procedure as before for Steps  
1 to 11.Then, for Step 12, instead of using the external SYNC  
pulse, write a 1 to the SYNCPOL register.This will generate the  
SYNC internally, and timing operation will begin.  
10. Configure the AD9995 for Master mode timing
1 to the MASTER register (Addr. 0x20 in Bank
VDD  
(INPUT)  
1
CLI  
(INPUT)  
2
tPWR  
SERIAL  
WRITES  
5
6
7
8
10  
11  
9
12  
tSYNC  
SYNC  
(INPUT)  
1V  
VD  
(OUTPUT)  
1ST FIELD  
1H  
HD  
(OUTPUT)  
H2/H4  
H1/H3, RG, DCLK  
DIGITAL  
OUTPUTS  
CLOCKS ACTIVE WHEN OUT CONTROL  
REGISTER IS UPDATED AT VD/HD EDGE  
Figure 35. Recommended Power-Up Sequence and Synchronization, Master Mode  
REV. 0  
–33–  
AD9995  
SYNC during Master Mode Operation  
STANDBY MODE OPERATION  
The SYNC input may be used at any time during operation to  
resync the AD9995 counters with external timing, as shown in  
Figure 36.The operation of the digital outputs may be suspended  
during the SYNC operation by setting the SYNCSUSPEND  
register (Addr. 0x14) to 1.  
The AD9995 contains three different standby modes  
to optimize the overall power dissipation in a particular  
application. Bits [1:0] of the OPRMODE register control  
the power-down state of the device:  
OPRMODE [1:0] = 00 = Normal Operation (Full Power)  
OPRMODE[1:0] = 01 = Standby 1 Mode  
Power-Up and Synchronization in Slave Mode  
The power-up procedure for Slave mode operation is the same  
as the procedure described for Master mode operation, with two  
exceptions:  
OPRMODE[1:0] = 10 = Standby 2 Mode  
OPRMODE[1:0] = 11 = Standby 3 Mode (Lowest Overall Power)  
• Eliminate Step 9. Do not write the part into Master mode.  
Table XIV summarizes the operation of each power-down  
mode. Note that the OUT_CONTRL register takes priority  
over the Standby 1 and Standby modes in determining  
the digital output states, but Sndby 3 ode takes priority  
over OUT_CONTROL. Stan3 s the lowest power  
consumption, and even sts dowe crystoscillator cir-  
cuit
between CLI and O. Therefoif LI and CLO are  
being used with a crtal generate the master clock, this  
circuit will be powered downd there will be no clock signal.  
When returninfrom Standby ode to normal operation, the  
timing core ust be reset at least 500 µs after the OPRMODE  
register is tten tThis will allow sufficient time for the crys-  
tal circuit
to
.  
• No SYNC pulse is required in Slave mode. Substitute Step 12  
with starting the external VD and HD signals. This will syn-  
chronize the part, allow Bank 1 register updates, and start the  
timing operation.  
When the AD9995 is used in Slave mode, the VD and HD inputs  
are used to synchronize the internal counters. Following a falling  
edge of VD, there will be a latency of 17 master clock cycles (CLI)  
after the falling edge of HD until the internal H-counter will be  
reset. The reset operation is shown in Figure 37.  
SYNC  
VD  
END  
HD  
H124, RG, V1–V4,  
VSG, SUBCK  
NOTES  
1. SYNC RISING EDGE RESETS VUNTERS TO.  
2. SYNC POLARITY IS PROGRACPOL REGISTER (ADDR 0x13).  
3. DURING SYNC LOW, ALL INE RESET AND VD/HD CAN BE SUSPENDED USING THE SYNCSUSPEND REGISTER (ADDR 0x14).  
4. IF SYNCSUSPEND = 1, VERTIND RG ARE HELD AT THEIR DEFAULT POLARITIES.  
5. IF SYNCSUSPEND = 0, ALL CLONUE TO OPERATE NORMALLY UNTIL SYNC RESET EDGE.  
e 36. CTiming to Synchronize AD9995 with ExternalTiming  
VD  
H-COUNTER  
RESET  
HD  
CLI  
H-COUNTER  
(PIXEL COUNTER)  
9
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
2
3
4
5
6
7
8
NOTES  
INTERNAL H-COUNTER IS RESET 17 CLI CYCLES AFTER THE HD FALLING EDGE (WHEN USING VDHDPOL = 0).  
TYPICAL TIMING RELATIONSHIP: CLI RISING EDGE IS COINCIDENT WITH HD FALLING EDGE.  
Figure 37. External VD/HD and Internal H-Counter Synchronization, Slave Mode  
–34–  
REV. 0  
Table XIV. Standby Mode Operation  
I/O Block  
Standby 3 (Default)1, 2  
OUT_CONT = LO2, 3  
Standby 23, 4  
Standby 13, 4  
AFE  
OFF  
OFF  
OFF  
HI  
No Change  
No Change  
No Change  
Running  
OFF  
OFF  
ON  
Running  
Only REFT, REFB ON  
ON  
ON  
Running  
Timing Core  
CLO Oscillator  
CLO  
V1  
LO  
LO  
LO  
LO  
V2  
V3  
LO  
LO  
LO  
LO  
LO  
LO  
LO  
LO  
V4  
V5  
LO  
LO  
LO  
HI  
LO  
HI  
LO  
HI  
V6  
LO  
LO  
LO  
LO  
LO  
LO  
LO  
LO  
HI  
HI  
HI  
HI  
HI  
HI  
HI  
LO  
LO  
LO  
LO  
HI  
LO  
HI  
LO  
HI  
HI  
HI  
HI  
HI  
HI  
LO  
HI  
HI  
HI  
HI  
H
HI  
HI  
LO  
VSG1  
VSG2  
VSG3  
VSG4  
VSG5  
SUBCK  
VSUB  
MSHUT  
STROBE  
H1  
H2  
H3  
H4  
RG  
LO  
LO  
LO  
LO  
LO  
LO  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
LO  
LO  
LO  
LO  
O (4.3 mA)  
HI (4.mA)  
LO .3 mA)  
(4.3 mA)  
LO (4.3 mA)  
VDHDPO
L
V
alue  
VDHDPO
L
V
alue  
LO  
LO (4.3 mA)  
HI (4.3 mA)  
LO (4.3 mA)  
HI (4.3 mA)  
LO (4.3 mA)  
Running  
Running  
Running  
LO  
VD  
HD  
DCLK  
DOUT  
VDHDPO
L
V
e  
VD
L
V
alu
LO  
NOTES  
1 To exit Standby 3, first write 00 to OPRMODE[1:0], thet theTi~500 µs to guarantee proper settling of the oscillator.  
2 Standby 3 mode takes priority over OUT_CONTROor determining the t polarities.  
3 These polarities assume OUT_CONT = HI becausUT_COL = LO takes priority over Standby 1 and 2.  
4 Standby 1 and 2 will set H and RG drive strength to nivalue 3 mA).  
REV. 0  
–35–  
AD9995  
3V  
ANALOG  
SUPPLY  
0.1F  
TO STROBE CIRCUIT  
TO MECHANICAL SHUTTER CIRCUIT  
3
EXTERNAL SYNC FROM ASIC/DSP  
LINE/FIELD/DCLK TO ASIC/DSP  
3
SERIAL INTERFACE TO ASIC OR DSP  
42 SDI  
D5  
D6  
1
2
3
4
5
6
7
8
9
PIN 1  
IDENTIFIER  
41 SL  
1F  
1F  
D7  
40 REFB  
39 REFT  
38 AVSS  
37 CCDIN  
36 AVDD  
35 CLI  
D8  
D9  
D10  
AD9995  
TOP VIEW  
OUT FROM CCD  
D11  
12  
ASTER CLOCK INPUT  
DATA OUTPUTS  
0.1F  
0.
DRVDD  
DRVSS  
3V  
ANALOG  
SUPPLY  
34 CLO  
3V  
DRIVER  
SUPPLY  
+
VSUB 10  
SUBCK 11  
V1 12  
33 TVDD  
32 VSS  
RGVDD  
0 RG  
+
0.1F  
4.7F  
4.7F  
3V  
RG  
SUPPLY  
V2 13  
+
V3 14  
RS  
4.7F  
VSUB TO CCD  
1F  
RG, H1–H4 TO CCD  
5
3V  
H1–H4  
SUPPLY  
+
4.7F  
1F  
TO
gure cal Circuit Configuration  
CIRCUIT LAYOUT INFORMATION  
The H1–H4 and RG traces should be designed to have low  
inductance to avoid excessive distortion of the signals. Heavier  
traces are recommended because of the large transient cur-  
rent demand on H1–H4 by the CCD. If possible, locating the  
AD9995 physically closer to the CCD will reduce the inductance  
on these lines. As always, the routing path should be as direct as  
possible from the AD9995 to the CCD.  
The AD9995 typical circuit conneown in Figure 38.  
The PCB layout is critical in achquality from  
the AD999x products. All of the sucularly the  
AVDD1, TCVDD, RGVDnd HVies, must be  
decoupled to ground wality, frequency chip  
capacitors. The decoshould be located as  
close as possible to thd should have a very low  
impedance path to a cond plane. There should  
also be a 4.7 µF or larger pass capacitor for each main  
supply—AVDD, RGVDD, HVDD, and DRVDD—although  
this is not necessary for each individual pin. In most applications,  
it is easier to share the supply for RGVDD and HVDD, which  
may be done as long as the individual supply pins are separately  
bypassed. A separate 3 V supply may also be used for DRVDD,  
but this supply pin should still be decoupled to the same ground  
plane as the rest of the chip. A separate ground for DRVSS is  
not recommended. It is recommended that the exposed paddle  
on the bottom of the package be soldered to a large pad, with  
multiple vias connecting the pad to the ground plane.  
The AD9995 also contains an on-chip oscillator for driving an  
external crystal. Figure 39 shows an example application using  
a typical 24 MHz crystal. For the exact values of the external  
resistors and capacitors, it is best to consult with the crystal  
manufacturer’s data sheet.  
AD9995  
01D  
35  
CLI  
34 CLO  
500M  
20pF  
1M  
The analog bypass pins (REFT, REFB) should also be carefully  
decoupled to ground as close as possible to their respective pins.  
The analog input (CCDIN) capacitor should also be located  
close to the pin.  
20pF  
24MHz  
XTAL  
Figure 39. Crystal Driver Application  
–36–  
REV. 0  
AD9995  
SERIAL INTERFACETIMING  
Figure 40b shows a more efficient way to write to the registers,  
using the AD9995’s address auto-increment capability. Using  
this method, the lowest desired address is written first, followed  
by multiple 24-bit data-words. Each new 24-bit data-word will  
automatically be written to the next highest register address. By  
eliminating the need to write each 8-bit address, faster register  
loading is achieved. Continuous write operations may be used  
starting with any register location, and may be used to write to as  
few as two registers, or as many as the entire register space.  
All of the internal registers of the AD9995 are accessed through  
a 3-wire serial interface. Each register consists of an 8-bit address  
and a 24-bit data-word. Both the 8-bit address and 24-bit data-  
word are written starting with the LSB.To write to each register,  
a 32-bit operation is required, as shown in Figure 40a. Although  
many registers are fewer than 24 bits wide, all 24 bits must be  
written for each register. For example, if the register is only  
10 bits wide, the upper 14 bits are don’t cares and may be filled  
with 0s during the serial write operation. If fewer than 24 bits are  
written, the register will not be updated with new data.  
8-BIT ADDRESS  
24-BIT DATA  
...  
D21 D22 D
SDATA  
SCK  
SL  
A0  
A1  
A2  
A4  
A5  
A6  
A7  
D0  
D1  
D2  
D3  
A3  
tDS  
tDH  
...  
1
2
3
4
5
6
7
8
9
10  
11  
12  
31  
32  
tL
tLS  
...  
NOTES  
1. SDATA BITS ARE LATCHED ON SCK RISING EDGES. SCK MAY IDLE HOR IN BETWEEN WRITE OPERATIONS.  
2. ALL 32 BITS MUST BE WRITTEN: 8 BITS FOR ADDRESS AND 24 BITS FO.  
3. IF THE REGISTER LENGTH IS <24 BITS, “DON’T CARE” BITS MUST BE USECOMPLTHE 24-BIT DATA LENGTH.  
4. NEW DATA VALUES ARE UPDATED IN THE SPECIFIED REGISTER LOCATION DIFFNT TIMES, DEPENDING ON THE  
PARTICULAR REGISTER WRITTEN TO. SEE THE REGISTER UPDATES SECTIORE INFORMATION.  
Figure 40a. Seriarite Operation  
ARTING  
DDRESS  
DATA FOR NEXT  
REGISTER ADDRESS  
...  
...  
...  
SDATA  
A0  
A1  
A2  
A4  
A6  
A
D0  
D1  
D22 D23 D0  
D1  
D22 D23 D0  
A3  
D1  
D2  
...  
...  
59 ...  
...  
SCK  
SL  
58  
1
2
3
6
7
8
9
10  
31  
32  
33  
34  
55  
56  
57  
...  
...  
NOTE
1. ENTIAL TERS MAY BE LOADED CONTINUOUSLY.  
2T ADDSS) REGISTER ADDRESS IS WRITTEN, FOLLOWED BY MULTIPLE 24-BIT DATA-WORDS.  
AUTOMATICALLY INCREMENT WITH EACH 24-BIT DATA-WORD (ALL 24 BITS MUST BE WRITTEN).  
TIL THE LAST DESIRED REGISTER HAS BEEN LOADED.  
Figure 40b. Continuous Serial Write Operation  
REV. 0  
–37–  
AD9995  
Register Address Banks 1 and 2  
When writing to the AD9995, Address 0x7F is used to specify  
which address bank is being written to.To write to Bank 1, the  
LSB of Address 0x7F should be set to 0; to write to Bank 2, the  
LSB of Address 0x7F should be set to 1.  
The AD9995 address space is divided into two different regis-  
ter banks, referred to as Register Bank 1 and Register Bank 2.  
Figure 41 illustrates how the two banks are divided. Register  
Bank 1 contains the registers for the AFE, miscellaneous func-  
tions, VD/HD parameters, timing core, CLPOB masking, VSG  
patterns, and shutter functions. Register Bank 2 contains all  
of the information for the V-pattern groups, V-sequences, and  
field information.  
Note that Register Bank 1 contains many unused addresses. Any  
undefined addresses between 0x00 and 0x7F are considered  
don’t cares, and it is acceptable if these addresses are filled in  
with all 0s during a continuous register write operation. However,  
the undefined addresses above 0x7F must not be written to, or  
the AD9995 may not operate properly.  
REGISTER BK 2  
ADDR 0x00  
REGISTER BANK 1  
ADDR 0x00  
AFE REGISTERS  
ADDR 0x10  
MISCELLANEOUS REGISTERS  
VPATVPATTERS  
ADDR 0x20  
VD/HD REGISTERS  
ADDR 0x30  
TIMING CORE REGISTERS  
ADDR 0x7E  
ADDR 0x7F  
ADDR 0x80  
ADDR 0x40  
CLPOB MASK REGISTERS  
SWITCH TGISTER BANK 1  
VSEQ0–VSEQ9 REGISTERS  
ADDR 0x50  
VSG PATTERN REGISTERS  
ADDR 0x60  
SHUTTER REGISTERS  
ADDR 0xCF  
ADDR 0xD0  
ADDR 0x7F  
ADDR 0x8F  
SWITCH TO REGISTER BANK 2  
INVALID—DO NOT ACCESS  
FIELD 0–FIELD 5 REGISTERS  
ADx
ADDR 0xFF  
TE TO ADDRESTO SWITCH REGISTER BANKS  
Figure out onternal Register Banks 1 and 2  
–38–  
REV. 0  
Updating New RegisterValues  
3.
SG-Line Updated: A few of the registers in Bank 1 are  
updated at the end of the SG active line, at the HD falling  
edge.These are the registers to control the SUBCK signal so  
that the SUBCK output will not be updated until after the SG  
line has been completed.These registers are darkly shaded in  
gray in the Bank 1 register list.  
The AD9995’s internal registers are updated at different times,  
depending on the particular register.Table XV summarizes the  
four different types of register updates:  
1.
SCK Updated: Some of the registers in Bank 1 are updated  
immediately, as soon as the 24th data bit (D23) is written.  
These registers are used for functions that do not require gat-  
ing with the nextVD boundary, such as power-up and reset  
functions.These registers are lightly shaded in gray in the  
Bank 1 register list.  
4.
SCP Updated: In Bank 2, all of the V-pattern group and  
V-sequence registers (Addr. 0x00 through 0xCF, exclud-  
ing 0x7F) are updated at the next SCP, where they will  
be used. For example, in Figure 42, this field has selected  
Region 1 to use V-Sequence 3 for the vertical outputs. This  
means that a write to any of the V-Sequence 3 registers, or  
any of the V-pattern group gisters that are referenced by  
V-Sequence 3 will be upted at SCP1. If multiple writes  
are done to the same reer, tlast one done before SCP1  
will be the one that updLikewisregister writes to  
any V-Sequence registers wbe uated at SCP2, and  
register writes o y V-Sequenregisters will be updated  
at SCP3.  
The Bank Select register (Addr. 0x7F in Bank 1 and 2) is also  
SCK updated.  
2.
VD Updated: Most of the registers in Bank 1, as well as the  
Field registers in Bank 2, are updated at the next VD falling  
edge. By updating these values at the next VD edge, the cur-  
rent field will not be corrupted and the new register values  
will be applied to the next field.The Bank 1 register updates  
may be further delayed past the VD falling edge by using  
the UPDATE register (Addr. 0x19).This will delay the VD  
updated register updates to any HD line in the field. Note that  
the Bank 2 registers are not affected by the UPDATE register.  
Table XV. Register Update Locans  
Description  
UpdateType  
Register Bank  
SCK Updated  
VD Updated  
Bank 1 Only  
Bank 1 and Bank 2  
Register is immetely updad when the 24th data bit (D23) is clocked in.  
Regisdated heD falling edge.VD updated registers in Bank 1 may be  
dey usinhe UPDATE register at Address 0x19 in Bank 1. Bank 2  
ue affected by the UPDATE register.  
SG Line Updated  
SCP Updated  
Bank 1 Only  
Bank 2 Only  
Rd at the HD falling edge at the end of the SG-active line.  
Reged at the next SCP when the register will be used.  
SCK  
SG  
DATED  
SCP  
UPDATED  
UPDATED UPDATED  
SERIAL  
WRITE  
VD  
H
SGLINE  
VSG  
USE VSEQ2  
USE VSEQ3  
REGION 1  
USE VSEQ5  
USE VSEQ8  
REGION 3  
V1–V6  
REGION 0  
SCP 0  
REGION 2  
SCP 0  
SCP 2  
SCP 1  
SCP 3  
Figure 42. Register Update Locations (SeeTable XV for Definitions)  
REV. 0  
–39–  
AD9995  
COMPLETE LISTING FOR REGISTER BANK 1  
All registers areVD updated, except where noted:  
All address and default values are in hexadecimal.  
= SCK Updated  
= SG-Line Updated  
Table XVI. AFE Register Map  
Register Description  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
OPRMODE  
00  
01  
02  
03  
[11:0]  
[9:0]  
7
AFE Operation Modes (seeTable XXIV for detail).  
VGA Gain.  
0
VGAGAIN  
[7:0]  
80  
4
CLAMPLEVEL  
CTLMODE  
Optical Black Clamp Level.  
[11:0]  
AFE Control Modes (seeTable XXV for detail).  
Table XVII. Miscellaneous Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
SW_RST  
Register Description  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
0
0
1
0
0
0
1
Software Reset. 1 = Reset all regiers to fault, then self-clear back to 0.  
Output Control. 0 = Make aoutputs dc inve.  
Internal Use Only. Must e set to .  
OUTCONTROL  
TEST USE  
SYNCPOL  
SYNC Active Polarity (Ace Low).  
SYNCSUSPEND  
TGCORE_RSTB  
OSC_PWRDOWN  
Suspend Clocks during SYActiv1 = Suspend).  
Timing Core Reset Bar. 0 = ReTG Core, 1 = Resume Operation.  
CLO Oscillatoower-Down (0 = Oscillator is powered-down).  
Unus
[0]  
0
0
0
0
0
TEST USE  
UPDATE  
Iy. Mut be set to 0.  
[11:0]  
[0]  
Sne (HD) in the field to updateVD updated registers.  
Predate of theVD Updated Registers. 1 = Prevent update.  
Mode Register.  
PREVENTUPDAT
MODE  
[23:0]  
[1:0]  
FIELDVAL  
FiValue Sync. 0 = Next Field 0, 1 = Next Field 1, 2/3 = Next Field 2.  
TaVIII.VD/HD Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Reg
AST
Register Description  
20  
21  
22  
[0]  
0
VD/HD Master or SlaveTiming (0 = Slave mode).  
VD/HD Active Polarity. 0 = Low, 1 = High.  
Rising Edge Location forVD [17:12] and HD [11:0].  
[0]  
DPOL  
DRISE  
[17:0]  
–40–  
REV. 0  
Table XIX.Timing Core Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Register Description  
30  
31  
[0]  
0
CLIDIVIDE  
Divide CLI Input Clock by 2. 1 = Divide by 2.  
[12:0]  
01001  
H1CONTROL  
H1 Signal Control: Polarity [0](0 = Inversion, 1 = No Inversion).  
H1 Positive Edge Location [6:1]. H1 Negative Edge Location [12:7].  
32  
33  
34  
[12:0]  
[12:0]  
[1:0]  
01001  
00801  
0
H3CONTROL  
RGCONTROL  
HBLKRETIME  
H3 Signal Control: Polarity [0](0 = Inversion, 1 = No Inversion).  
H3 Positive Edge Location [6:1]. H3 Negative Edge Location [12:7].  
RG Signal Control: Polarity [0](0 = Inversion, 1 = No Inversion).  
RG Positive Edge Location [6:1]. RG Negative Edge Location [12:7].  
Retime HBLK to Internal H1/H3 Clocks. HRetime [0]. H3 Retime [1].  
Preferred setting is 1 for each bit. Setting ch bit to 1 will add one cycle delay  
to HBLK toggle positions.  
35  
[14:0]  
1249  
DRVCONTROL  
Drive Strength Control for H1 [2:0H2 [5H3 [8:6H4 [11:9], and  
RG [14:12]. Drive CurrentValu0 = Off, 1 .3 , 2 = 8.6 mA,  
3 = 12.9 mA, 4 = 17.2 mA, 5 2mA, 6 = 25mA, 7 = 30.1 mA.  
36  
37  
[11:0]  
[8:0]  
00024  
100  
SAMPCONTROL  
DOUTCONTROL  
SHP/SHD Sample Control: SHP Samng Location [5:0].  
SHD Sampling Locati[11:6].  
DOUT Phase Conl [5:0]CLK Mode [6]. DOUTDELAY [8:7].  
Table XX. CLPOB Masking Regir Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Register escription  
40  
41  
42  
[23:0]  
[23:0]  
[11:0]  
FFFFFF CLPMASK01  
FFFFFF CLPMASK23  
FFFFFF CLPMASK4  
CLPOB Line askinLine #0 [11:0]. Line #1 [23:0].  
ne Maing. Line #2 [11:0]. Line #3 [23:0].  
Masking. Line #4 [11:0].  
Table XXttern Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register
Register Description  
50  
[3:0]  
F
S
L  
Start Polarity for SG Patterns. Pattern #0 [0]. Pattern #1 [1].  
Pattern #2 [2]. Pattern #3 [3].  
51  
52  
53  
54  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
FFFFF
FFFFFF S1  
SGT12_2  
GTOG12_3  
Pattern #0.Toggle Position 1 [11:0].Toggle Position 2 [23:12].  
Pattern #1.Toggle Position 1 [11:0].Toggle Position 2 [23:12].  
Pattern #2.Toggle Position 1 [11:0].Toggle Position 2 [23:12].  
Pattern #3.Toggle Position 1 [11:0].Toggle Position 2 [23:12].  
Table XXII. Shutter Control Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Register Description  
60  
[4:0]  
0
TRIGGER  
Trigger forVSUB [0], MSHUT [1], STROBE [2], Exposure [3], and  
Readout [4]. Note that to trigger the readout to automatically occur after the  
exposure period, both exposure and readout should be triggered together.  
61  
62  
[2:0]  
2
READOUT  
Number of Fields to Suppress the SUBCK Pulses after theVSG Line.  
[11:0]  
[12]  
0
0
EXPOSURE  
VDHDOFF  
Number of Fields to Suppress the SUBCK andVSG Pulses.  
Set = 1 to disable theVD/HD outputs during exposure (when >1 field).  
63  
[11:0]  
[23:12]  
0
0
SUBCKSUPPRESS  
SUBCKNUM  
Number of SUBCK Pulses to Suppress afterVSG Line.  
Number of SUBCK Pulses per Field.  
64  
65  
66  
[0]  
1
SUBCKPOL  
SUBCK Pulse Start Polarity.  
[23:0]  
[23:0]  
FFFFFF SUBCK1TOG  
FFFFFF SUBCK2TOG  
First SUBCK Pulse.Toggle Position 1 [11:0].Toggle Position 2 [23:0].  
Second SUBCK Pulse.Toggle Position 1 [11:0].Toggle Position 2 [23:0].  
REV. 0  
–41–  
AD9995  
Table XXII. Shutter Control Register Map (continued)  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Register Description  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
[1:0]  
0
VSUBMODE  
VSUBON  
VSUB Readout Mode [0].VSUB Keep-On Mode [1].  
VSUB ON Position [11:0].VSUB Active Polarity [12].  
MSHUT Active Polarity [0]. MSHUT Manual Enable [1].  
MSHUT ON Position. Line [11:0]. Pixel [23:0].  
MSHUT OFF Field Position.  
[12:0]  
[1:0]  
1000  
1
0
0
0
1
0
0
0
0
MSHUTPOL  
MSHUTON  
MSHUTOFF_FD  
[23:0]  
[11:0]  
[23:0]  
[0]  
MSHUTOFF_LNPX MSHUT OFF Position. Line [11:0]. Pixel [23:12].  
STROBPOL  
STROBE Active Polarity.  
[11:0]  
[23:0]  
[11:0]  
[23:0]  
STROBON_FD  
STROBON_LNPX  
STROBOFF_FD  
STROBOFF_LNPX  
STROBE ON Field Position.  
STROBE ON Position. Line [11:0]. Pixel [22].  
STROBE OFF Field Position.  
STROBE OFF Position. Line [11:. el [23:12].  
Table XXIII. Register Map Selectio
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
BANKSELECT1  
Register Description  
7F [0]  
0
Register Bank Access from k 1 to ank 2. 0 = Bank 1, 1 = Bank 2.  
Table XXIV. AFE OperatRegister Detail  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
PWRDOWN  
CLPENABLE  
CLPSPEED  
TEST  
Recripti
00  
[1:0]  
[2]  
3
1
0
0
0
0
0
0
0 ation, 1 = Standby 1, 2 = Standby 2, 3 = Standby 3.  
0 lamp, 1 = Enable OB Clamp.  
0 = mal OB Clamp Settling, 1 = Select Fast OB Clamp Settling.  
t Use Only. Set to 0.  
[3]  
[4]  
[5]  
PBLK_LVL  
TES
DOTValue during PBLK: 0 = Blank to Zero, 1 = Blank to Clamp Level.  
t Use Only. Set to 0.  
[7:6]  
[8]  
D
0 = Enable DC Restore Circuit, 1 = Bypass DC Restore Circuit during PBLK.  
Test Use Only. Set to 0.  
[9]  
TE
Table XXV. AFE Control Register Detail  
Data Bit
 
Address Content
ter Name  
ST  
Register Description  
03  
[1:0]  
[2]  
0
1
0
0
0
Test Use Only. Set to 00.  
TEST  
Test Use Only. Set to 1.  
[3]  
DOUTDISABLE  
DOUTLATCH  
GRAYENCODE  
0 = Data Outputs are Driven, 1 = Data Outputs areThree-Stated.  
0 = Latch Data Outputs with DOUT Phase, 1 = Output LatchTransparent.  
0 = Binary Encode Data Outputs, 1 = Gray Encode Data Outputs.  
[4]  
[5]  
–42–  
REV. 0  
COMPLETE LISTING FOR REGISTER BANK 2  
AllV-pattern group andV-sequence registers are SCP updated, and all Field registers areVD updated.  
All address and default values are in hexadecimal.  
Table XXVI.V-Pattern Group 0 (VPAT0) Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Description  
00  
[5:0]  
[11:6]  
[23:12]  
0
0
0
VPOL_0  
UNUSED  
VPATLEN_0  
VPAT0 Start Polarity. V1[0]. V2[1]. V3[2]. V4[3]. V5[4]. V6[5].  
Unused.  
Total Length of VPAT0. Note: If using VPAT0 as a second V-sequence in  
the VSG active line, this value is the start position for the second V-sequence.  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
[11:0]  
[23:12]  
0
0
V1TOG1_0  
V1TOG2_0  
V1 Toggle Position 1  
V1 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V1TOG3_0  
V2TOG1_0  
V1 Toggle Position 3  
V2 Toggle Position 1  
[11:0]  
[23:12]  
0
0
V2TOG2_0  
V2TOG3_0  
V2 Toggle Position 2  
V2 Toggle Position 3  
[11:0]  
[23:12]  
0
0
V3TOG1_0  
V3TOG2_0  
V3 Toggle Position 1  
V3 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V3TOG3_0  
V4TOG1_0  
V3 Toggle Positio
V4 Toggle Position
[11:0]  
[23:12]  
0
0
V4TOG2_0  
V4TOG3_0  
V4 Toggle Position 2  
V4 Toggle Position 3  
[11:0]  
[23:12]  
0
0
V5TOG1_0  
V5TOG2_0  
V5 Togglosition 1  
V5 Toggle Ption 2  
[11:0]  
[23:12]  
0
0
V5TOG3_0  
V6TOG1_0  
Posit
osition 1  
[11:0]  
[23:12]  
0
0
V6TOG2_0  
V6TOG3_0  
osition 2  
Position 3  
[11:0]  
[23:12]  
0
0
FREEZE
0  
RESUM
_0  
V1–V6 Freeze Position 1  
V1–V6 Resume Position 1  
[11:0]  
[23:12]  
0
0
FREEZE2_0  
ME2_0  
V1–V6 Freeze Position 2  
V1–V6 Resume Position 2  
XVII.V-Pattern Group 1 (VPAT1) Register Map  
Data Bit
 
ult  
Address Conten
RegName  
Description  
0C  
[5:0]  
[11:6]  
[23:12]  
POL_1  
NUSED  
VPATLEN_1  
VPAT1 Start Polarity. V1[0]. V2[1]. V3[2]. V4[3]. V5[4]. V6[5].  
Unused.  
Total Length of VPAT1. Note: If using VPAT1 as a second V-sequence in  
the VSG active line, this value is the start position for the second V-sequence.  
0D  
0E  
0F  
10  
11  
12  
[11:0]  
[23:12]  
0
0
V1TOG1_1  
V1TOG2_1  
V1 Toggle Position 1  
V1 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V1TOG3_1  
V2TOG1_1  
V1 Toggle Position 3  
V2 Toggle Position 1  
[11:0]  
[23:12]  
0
0
V2TOG2_1  
V2TOG3_1  
V2 Toggle Position 2  
V2 Toggle Position 3  
[11:0]  
[23:12]  
0
0
V3TOG1_1  
V3TOG2_1  
V3 Toggle Position 1  
V3 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V3TOG3_1  
V4TOG1_1  
V3Toggle Position 3  
V4 Toggle Position 1  
[11:0]  
[23:12]  
0
0
V4TOG2_1  
V4TOG3_1  
V4 Toggle Position 2  
V4 Toggle Position 3  
REV. 0  
–43–  
AD9995  
Table XXVII.V-Pattern Group 1 (VPAT1) Register Map (continued)  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Description  
13  
14  
15  
16  
17  
[11:0]  
[23:12]  
0
0
V5TOG1_1  
V5TOG2_1  
V5 Toggle Position 1  
V5 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V5TOG3_1  
V6TOG1_1  
V5 Toggle Position 3  
V6 Toggle Position 1  
[11:0]  
[23:12]  
0
0
V6TOG2_1  
V6TOG3_1  
V6 Toggle Position 2  
V6 Toggle Position 3  
[11:0]  
[23:12]  
0
0
FREEZE1_1  
RESUME1_1  
V1–V6 Freeze Position 1  
V1–V6 Resume Position 1  
[11:0]  
[23:12]  
0
0
FREEZE2_1  
RESUME2_1  
V1–V6 Freeze Position 2  
V1–V6 Resume Position 2  
Table XXVIII.V-Pattern Group 2 (VPAT2) Register M
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Description  
18  
[5:0]  
[11:6]  
[23:12]  
0
0
0
VPOL_2  
UNUSED  
VPATLEN_2  
VPAT2 Start Polarity. V1[. V2[1]. V3[2]. V3]. V5[4]. V6[5].  
Unused.  
Total Length of VPAT2otf using VPAT2 as a second V-sequence in  
the VSG active line, this vais the st position for the second V-sequence.  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
[11:0]  
[23:12]  
0
0
V1TOG1_2  
V1TOG2_2  
V1 Toggle Position 1  
V1 Toggle Pion 2  
[11:0]  
[23:12]  
0
0
V1TOG3_2  
V2TOG1_2  
V1 Toggle Positi3  
V2 sition
[11:0]  
[23:12]  
0
0
V2TOG2_2  
V2TOG3_2  
Von 2  
Vn 3  
[11:0]  
[23:12]  
0
0
V3TOG1_2  
V3TOG2_2  
V3 ion 1  
V3 Toosition 2  
[11:0]  
[23:12]  
0
0
V3TOG3_2  
V4TOG1_2  
Voggle Position 3  
V4 oggle Position 1  
[11:0]  
[23:12]  
0
0
V4T
V
Toggle Position 2  
V4 Toggle Position 3  
[11:0]  
[23:12]  
0
0
V5
V5T
V5 Toggle Position 1  
V5 Toggle Position 2  
[11:0]  
[23:12]  
0
TOG3
OG1_2  
V5 Toggle Position 3  
V6 Toggle Position 1  
[11:0]  
[23:12]  
0
G2_2  
OG3_2  
V6 Toggle Position 2  
V6 Toggle Position 3  
[11:0]  
[23:12]  
0
0
FREEZE1_2  
RESUME1_2  
V1–V6 Freeze Position 1  
V1–V6 Resume Position 1  
[11:0]  
[23:12]  
0
0
FREEZE2_2  
RESUME2_2  
V1–V6 Freeze Position 2  
V1–V6 Resume Position 2  
Table XXIX.V-Pattern Group 3 (VPAT3) Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Description  
24  
[5:0]  
[11:6]  
[23:12]  
0
0
0
VPOL_3  
UNUSED  
VPATLEN_3  
VPAT3 Start Polarity. V1[0]. V2[1]. V3[2]. V4[3]. V5[4]. V6[5].  
Unused.  
Total Length of VPAT3. Note: If using VPAT3 as a second V-sequence in  
the VSG active line, this value is the start position for the second V-sequence.  
25  
[11:0]  
[23:12]  
0
0
V1TOG1_3  
V1TOG2_3  
V1 Toggle Position 1  
V1 Toggle Position 2  
–44–  
REV. 0  
Table XXIX.V-Pattern Group 3 (VPAT3) Register Map (continued)  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Description  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
[11:0]  
[23:12]  
0
0
V1TOG3_3  
V2TOG1_3  
V1 Toggle Position 3  
V2 Toggle Position 1  
[11:0]  
[23:12]  
0
0
V2TOG2_3  
V2TOG3_3  
V2 Toggle Position 2  
V2 Toggle Position 3  
[11:0]  
[23:12]  
0
0
V3TOG1_3  
V3TOG2_3  
V3 Toggle Position 1  
V3 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V3TOG3_3  
V4TOG1_3  
V3Toggle Position 3  
V4 Toggle Position 1  
[11:0]  
[23:12]  
0
0
V4TOG2_3  
V4TOG3_3  
V4 Toggle Position 2  
V4 Toggle Position 3  
[11:0]  
[23:12]  
0
0
V5TOG1_3  
V5TOG2_3  
V5 Toggle Position 1  
V5 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V5TOG3_3  
V6TOG1_3  
V5 Toggle Position 3  
V6 Toggle Position 1  
[11:0]  
[23:12]  
0
0
V6TOG2_3  
V6TOG3_3  
V6 Toggle Position 2  
V6 Toggle Position
[11:0]  
[23:12]  
0
0
FREEZE1_3  
RESUME1_3  
V1–V6 Freeze Positi
1  
V1–V6 Resume Positio
[11:0]  
[23:12]  
0
0
FREEZE2_3  
RESUME2_3  
V1–V6
reeze Position 2  
V1–V6 R
me Position 2  
Table XXX.V-Pup 4 (4) Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name 
30  
[5:0]  
[11:6]  
[23:12]  
0
0
0
VPOL_4  
UNUSED  
VPATLE
_4  
art Polarity. V1[0]. V2[1]. V3[2]. V4[3]. V5[4]. V6[5].  
Unused.  
Total Length of VPAT4. Note: If using VPAT4 as a second V-sequence in  
he VSG active line, this value is the start position for the second V-sequence.  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
[11:0]  
[23:12]  
0
0
1_4  
2_4  
V1 Toggle Position 1  
V1 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V1 Toggle Position 3  
V2 Toggle Position 1  
[11:0]  
[23:12
V2T
_4  
2TOG3_4  
V2 Toggle Position 2  
V2 Toggle Position 3  
[11:0]  
[23:12]  
3TOG1_4  
V3TOG2_4  
V3 Toggle Position 1  
V3 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V3TOG3_4  
V4TOG1_4  
V3Toggle Position 3  
V4 Toggle Position 1  
[11:0]  
[23:12]  
0
0
V4TOG2_4  
V4TOG3_4  
V4 Toggle Position 2  
V4 Toggle Position 3  
[11:0]  
[23:12]  
0
0
V5TOG1_4  
V5TOG2_4  
V5 Toggle Position 1  
V5 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V5TOG3_4  
V6TOG1_4  
V5 Toggle Position 3  
V6 Toggle Position 1  
[11:0]  
[23:12]  
0
0
V6TOG2_4  
V6TOG3_4  
V6 Toggle Position 2  
V6 Toggle Position 3  
[11:0]  
[23:12]  
0
0
FREEZE1_4  
RESUME1_4  
V1–V6 Freeze Position 1  
V1–V6 Resume Position 1  
[11:0]  
[23:12]  
0
0
FREEZE2_4  
RESUME2_4  
V1–V6 Freeze Position 2  
V1–V6 Resume Position 2  
REV. 0  
–45–  
AD9995  
Table XXXI.V-Pattern Group 5 (VPAT5) Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Description  
3C  
[5:0]  
[11:6]  
[23:12]  
0
0
0
VPOL_5  
UNUSED  
VPATLEN_5  
VPAT5 Start Polarity. V1[0]. V2[1]. V3[2]. V4[3]. V5[4]. V6[5].  
Unused.  
Total Length of VPAT5. Note: If using VPAT5 as a second V-sequence in  
the VSG active line, this value is the start position for the second V-sequence.  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
[11:0]  
[23:12]  
0
0
V1TOG1_5  
V1TOG2_5  
V1 Toggle Position 1  
V1 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V1TOG3_5  
V2TOG1_5  
V1 Toggle Position 3  
V2 Toggle Position 1  
[11:0]  
[23:12]  
0
0
V2TOG2_5  
V2TOG3_5  
V2 Toggle Position 2  
V2 Toggle Position 3  
[11:0]  
[23:12]  
0
0
V3TOG1_5  
V3TOG2_5  
V3 Toggle Position 1  
V3 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V3TOG3_5  
V4TOG1_5  
V3Toggle Position 3  
V4 Toggle Position 1  
[11:0]  
[23:12]  
0
0
V4TOG2_5  
V4TOG3_5  
V4 Toggle Position 2  
V4 Toggle Position 3  
[11:0]  
[23:12]  
0
0
V5TOG1_5  
V5TOG2_5  
V5 Toggle Position 1  
V5 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V5TOG3_5  
V6TOG1_5  
V5 Toggle Position 3  
V6 Toggle Pion 1  
[11:0]  
[23:12]  
0
0
V6TOG2_5  
V6TOG3_5  
V6 Toggle Positi2  
V6 sition
[11:0]  
[23:12]  
0
0
FREEZE1_5  
RESUME1_5  
V
sition 1  
V
osition 1  
[11:0]  
[23:12]  
0
0
FREEZE2_5  
RESUME2_5  
V1
osition 2  
V1–V6
me Position 2  
Table XX.V-PattGroup 6 (VPAT6) Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Rme  
Description  
48  
[5:0]  
[11:6]  
[23:12]  
0
0
0
VP
UNU
ATL
VPAT6 Start Polarity. V1[0]. V2[1]. V3[2]. V4[3]. V5[4]. V6[5].  
Unused.  
Total Length of VPAT6. Note: If using VPAT6 as a second V-sequence in  
the VSG active line, this value is the start position for the second V-sequence.  
49  
[11:0]  
[23:12]  
0
G1_6  
OG2_6  
V1 Toggle Position 1  
V1 Toggle Position 2  
4A  
4B  
4C  
4D  
4E  
4F  
[11:0]  
[23:12]  
0
0
V1TOG3_6  
V2TOG1_6  
V1 Toggle Position 3  
V2 Toggle Position 1  
[11:0]  
[23:12]  
0
0
V2TOG2_6  
V2TOG3_6  
V2 Toggle Position 2  
V2 Toggle Position 3  
[11:0]  
[23:12]  
0
0
V3TOG1_6  
V3TOG2_6  
V3 Toggle Position 1  
V3 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V3TOG3_6  
V4TOG1_6  
V3 Toggle Position 3  
V4 Toggle Position 1  
[11:0]  
[23:12]  
0
0
V4TOG2_6  
V4TOG3_6  
V4 Toggle Position 2  
V4 Toggle Position 3  
[11:0]  
[23:12]  
0
0
V5TOG1_6  
V5TOG2_6  
V5 Toggle Position 1  
V5 Toggle Position 2  
–46–  
REV. 0  
Table XXXII.V-Pattern Group 6 (VPAT6) Register Map (continued)  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Description  
50  
51  
52  
53  
[11:0]  
[23:12]  
0
0
V5TOG3_6  
V6TOG1_6  
V5 Toggle Position 3  
V6 Toggle Position 1  
[11:0]  
[23:12]  
0
0
V6TOG2_6  
V6TOG3_6  
V6 Toggle Position 2  
V6 Toggle Position 3  
[11:0]  
[23:12]  
0
0
FREEZE1_6  
RESUME1_6  
V1–V6 Freeze Position 1  
V1–V6 Resume Position 1  
[11:0]  
[23:12]  
0
0
FREEZE2_6  
RESUME2_6  
V1–V6 Freeze Position 2  
V1–V6 Resume Position 2  
Table XXXIII.V-Pattern Group 7 (VPAT7) Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name Description  
54  
[5:0]  
[11:6]  
[23:12]  
0
0
0
VPOL_7  
UNUSED  
VPATLEN_7  
VPAT7 Start Polarity. V1[0]V2[1V3[2]. V4[3V5[4]. V6[5].  
Unused.  
Total Length of VPATNote: If using AT7 as a second V-sequence in  
the VSG active line, his valuis the start position for the second V-sequence.  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
[11:0]  
[23:12]  
0
0
V1TOG1_7  
V1TOG2_7  
V1 Toggle Position
V1 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V1TOG3_7  
V2TOG1_7  
V1 Toggle Position 3  
V2 ToggPosition 1  
[11:0]  
[23:12]  
0
0
V2TOG2_7  
V2TOG3_7  
V2 Toggle Ption 2  
e Posn
[11:0]  
[23:12]  
0
0
V3TOG1_7  
V3TOG2_7  
osition 1  
osition 2  
[11:0]  
[23:12]  
0
0
V3TOG3_7  
V4TOG1_
Position 3  
V4 gle Position 1  
[11:0]  
[23:12]  
0
0
V4TOG2
V4TOG3_7  
V4 Toggle Position 2  
V4 Toggle Position 3  
[11:0]  
[23:12]  
0
0
1_7  
2_7  
V5 Toggle Position 1  
V5 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V5 Toggle Position 3  
V6 Toggle Position 1  
[11:0]  
[23:12
V6T
_7  
6TOG3_7  
V6 Toggle Position 2  
V6 Toggle Position 3  
[11:0]  
[23:12]  
REEZE1_7  
RESUME1_7  
V1–V6 Freeze Position 1  
V1–V6 Resume Position 1  
[11:0]  
[23:12]  
0
0
FREEZE2_7  
RESUME2_7  
V1–V6 Freeze Position 2  
V1–V6 Resume Position 2  
Table XXXIV.V-Pattern Group 8 (VPAT8) Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Description  
60  
[5:0]  
[11:6]  
[23:12]  
0
0
0
VPOL_8  
UNUSED  
VPATLEN_8  
VPAT8 Start Polarity. V1[0]. V2[1]. V3[2]. V4[3]. V5[4]. V6[5].  
Unused.  
Total Length of VPAT8. Note: If using VPAT8 as a second V-sequence in  
the VSG active line, this value is the start position for the second V-sequence.  
61  
62  
[11:0]  
[23:12]  
0
0
V1TOG1_8  
V1TOG2_8  
V1 Toggle Position 1  
V1 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V1TOG3_8  
V1TOG4_8  
V1 Toggle Position 3  
V1 Toggle Position 4  
REV. 0  
–47–  
AD9995  
Table XXXIV.V-Pattern Group 8 (VPAT8) Register Map (continued)  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Description  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
[11:0]  
[23:12]  
0
0
V2TOG1_8  
V2TOG2_8  
V2 Toggle Position 1  
V2 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V3TOG3_8  
V3TOG4_8  
V2 Toggle Position 3  
V2 Toggle Position 4  
[11:0]  
[23:12]  
0
0
V3TOG1_8  
V4TOG2_8  
V3 Toggle Position 1  
V3 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V4TOG3_8  
V4TOG4_8  
V3 Toggle Position 3  
V3 Toggle Position 4  
[11:0]  
[23:12]  
0
0
V5TOG1_8  
V5TOG2_8  
V4 Toggle Position 1  
V4 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V5TOG3_8  
V6TOG4_8  
V4 Toggle Position 3  
V4 Toggle Position 4  
[11:0]  
[23:12]  
0
0
V6TOG1_8  
V6TOG2_8  
V5 Toggle Position 1  
V5 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V6TOG3_8  
V6TOG4_8  
V5 Toggle Position 3  
V5 Toggle Position 4  
[11:0]  
[23:12]  
0
0
V6TOG1_8  
V6TOG2_8  
V6 Toggle Position 1  
V6 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V6TOG3_8  
V6TOG4_8  
V6 Toggle Psition 3  
V6 Toggle Poon 4  
[11:0]  
[23:12]  
0
0
FREEZE1_8  
RESUME1_8  
V1–V6
reeze Po
on 1  
V1
e Posi
[11:0]  
[23:12]  
0
0
FREEZE2_8  
RESUME2_8  
V
sition 2  
V
osition 2  
UNUSED  
Unu
Table XXVPattGroup 9 (VPAT9) Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Regme  
escription  
70  
[5:0]  
[11:6]  
[23:12]  
0
0
0
UN
VPAT
VPAT9 Start Polarity. V1[0]. V2[1]. V3[2]. V4[3]. V5[4]. V6[5].  
Unused.  
Total Length of VPAT9. Note: If using VPAT9 as a second V-sequence in  
the VSG active line, this value is the start position for the second V-sequence.  
71  
72  
73  
74  
75  
76  
77  
78  
[11:0]  
[23:12]  
G1_9  
G2_9  
V1 Toggle Position 1  
V1 Toggle Position 2  
[11:0]  
[23:12]  
0
0
TOG3_9  
V1TOG4_9  
V1 Toggle Position 3  
V1 Toggle Position 4  
[11:0]  
[23:12]  
0
0
V2TOG1_9  
V2TOG2_9  
V2 Toggle Position 1  
V2 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V3TOG3_9  
V3TOG4_9  
V2 Toggle Position 3  
V2 Toggle Position 4  
[11:0]  
[23:12]  
0
0
V3TOG1_9  
V4TOG2_9  
V3 Toggle Position 1  
V3 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V4TOG3_9  
V4TOG4_9  
V3 Toggle Position 3  
V3 Toggle Position 4  
[11:0]  
[23:12]  
0
0
V5TOG1_9  
V5TOG2_9  
V4 Toggle Position 1  
V4 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V5TOG3_9  
V6TOG4_9  
V4 Toggle Position 3  
V4 Toggle Position 4  
–48–  
REV. 0  
Table XXXV.V-Pattern Group 9 (VPAT9) Register Map (continued)  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Description  
79  
[11:0]  
[23:12]  
0
0
V6TOG1_9  
V6TOG2_9  
V5 Toggle Position 1  
V5 Toggle Position 2  
7A  
7B  
7C  
7D  
7E  
[11:0]  
[23:12]  
0
0
V6TOG3_9  
V6TOG4_9  
V5 Toggle Position 3  
V5 Toggle Position 4  
[11:0]  
[23:12]  
0
0
V6TOG1_9  
V6TOG2_9  
V6 Toggle Position 1  
V6 Toggle Position 2  
[11:0]  
[23:12]  
0
0
V6TOG3_9  
V6TOG4_9  
V6 Toggle Position 3  
V6 Toggle Position 4  
[11:0]  
[23:12]  
0
0
FREEZE1_9  
RESUME1_9  
V1–V6 Freeze Position 1  
V1–V6 Resume Position 1  
[11:0]  
[23:12]  
0
0
FREEZE2_9  
RESUME2_9  
V1–V6 Freeze Position 2  
V1–V6 Resume Position 2  
Table XXXVI. Register Map Selection (SCK Updated Reger)  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Register Descripn  
7F [0]  
0
BANKSELECT2  
Register Bank AccesoBank 2 Bank 1. 0 = Bank 1, 1 = Bank 2.  
Table XXXVII.V-Sequee 0 (VSEQ0) Reger Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Description  
80  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
[11:10]  
[23:12]  
0
0
0
0
0
0
0
HBLKMASK_0  
CLPOBPOL_0  
PBLKPOL_0  
VPATSEL_0  
VMASK_
HBLKA_0  
UNUSED  
larity ring HBLK. H1 [0]. H3 [1].  
t Polarity  
Polarity  
Pattern Group for V-Sequence 0  
EnMasking of V-Outputs (Specified by FREEZE/RESUME Registers)  
Enable HBLK Alternation  
Unused  
81  
82  
83  
84  
85  
86  
87  
[11:0]  
[23:12]  
0
0
V
REPO_0  
EPE_0  
Number of Selected V-Pattern Group Repetitions for Odd Lines  
Number of Selected V-Pattern Group Repetitions for Even Lines  
[11:0]  
[23:12]  
0
0
_0  
Start Position in the Line for the Selected V-Pattern Group  
HD Line Length (Number of Pixels) for V-Sequence 0  
[11:0]  
[23:12
PB
G1_0  
PBLK
OG2_0  
PBLK Toggle Position 1 for V-Sequence 0  
PBLK Toggle Position 2 for V-Sequence 0  
[11:0]  
[23:12]  
BLKTOG1_0  
HBLKTOG2_0  
HBLK Toggle Position 1 for V-Sequence 0  
HBLK Toggle Position 2 for V-Sequence 0  
[11:0]  
[23:12]  
0
0
HBLKTOG3_0  
HBLKTOG4_0  
HBLK Toggle Position 3 for V-Sequence 0  
HBLK Toggle Position 4 for V-Sequence 0  
[11:0]  
[23:12]  
0
0
HBLKTOG5_0  
HBLKTOG6_0  
HBLK Toggle Position 5 for V-Sequence 0  
HBLK Toggle Position 6 for V-Sequence 0  
[11:0]  
[23:12]  
0
0
CLPOBTOG1_0  
CLPOBTOG2_0  
CLPOB Toggle Position 1 for V-Sequence 0  
CLPOB Toggle Position 2 for V-Sequence 0  
REV. 0  
–49–  
AD9995  
Table XXXVIII.V-Sequence 1 (VSEQ1) Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Description  
88  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
[11:10]  
[23:12]  
0
0
0
0
0
0
0
HBLKMASK_1  
CLPOBPOL_1  
PBLKPOL_1  
VPATSEL_1  
VMASK_1  
HBLKALT_1  
UNUSED  
Masking Polarity during HBLK. H1 [0]. H3 [1].  
CLPOB Start Polarity  
PBLK Start Polarity  
Selected V-Pattern Group for V-Sequence 1  
Enable Masking of V-Outputs (Specified by FREEZE/RESUME Registers)  
Enable HBLK Alternation  
Unused  
89  
[11:0]  
[23:12]  
0
0
VPATREPO_1  
VPATREPE_1  
Number of Selected V-Pattern Group Repetitions for Odd Lines  
Number of Selected V-Pattern Group Repetitions r Even Lines  
8A  
8B  
8C  
8D  
8E  
8F  
[11:0]  
[23:12]  
0
0
VPATSTART_1  
HDLEN_1  
Start Position in the Line for the Selected V-Ptern Grup  
HD Line Length (Number of Pixels) for V-Suenc
[11:0]  
[23:12]  
0
0
PBLKTOG1_1  
PBLKTOG2_1  
PBLK Toggle Position 1 for V-Sequen1  
PBLK Toggle Position 2 for V-Seque 1  
[11:0]  
[23:12]  
0
0
HBLKTOG1_1  
HBLKTOG2_1  
HBLK Toggle Position 1 for V-Squenc
HBLK Toggle Position 2 for -Sequence 1  
[11:0]  
[23:12]  
0
0
HBLKTOG3_1  
HBLKTOG4_1  
HBLK Toggle Position 3 r V-Sequence 1  
HBLK Toggle Position for V-quence 1  
[11:0]  
[23:12]  
0
0
HBLKTOG5_1  
HBLKTOG6_1  
HBLK Toggle Position 5 -Sequen1  
HBLK Toggle Position 6 for Seqnce 1  
[11:0]  
[23:12]  
0
0
CLPOBTOG1_1  
CLPOBTOG2_1  
CLPOB Toe Position 1 for Vequence 1  
CLPOB Togglosition 2 foV-Sequence 1  
Table XXXIX.V-SSEQ2egister Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
D
90  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
[11:10]  
[23:12]  
0
0
0
0
0
0
0
HBLKMASK_2  
CLPOBPOL_
PBLKPOL_2  
VPATSEL_2  
VMA
H2  
U
Maskity during HBLK. H1 [0]. H3 [1].  
CLPOB Start Polarity  
PBK Start Polarity  
Seted V-Pattern Group for V-Sequence 2  
able Masking of V-Outputs (Specified by FREEZE/RESUME Registers)  
Enable HBLK Alternation  
Unused  
91  
92  
93  
94  
95  
96  
97  
[11:0]  
[23:12]  
0
0
VPA
PATR
Number of Selected V-Pattern Group Repetitions for Odd Lines  
Number of Selected V-Pattern Group Repetitions for Even Lines  
[11:0]  
[23:12]  
TSTART_2  
EN_2  
Start Position in the Line for the Selected V-Pattern Group  
HD Line Length (Number of Pixels) for V-Sequence 2  
[11:0]  
[23:12]  
0
0
KTOG1_2  
BLKTOG2_2  
PBLK Toggle Position 1 for V-Sequence 2  
PBLK Toggle Position 2 for V-Sequence 2  
[11:0]  
[23:12]  
0
0
HBLKTOG1_2  
HBLKTOG2_2  
HBLK Toggle Position 1 for V-Sequence 2  
HBLK Toggle Position 2 for V-Sequence 2  
[11:0]  
[23:12]  
0
0
HBLKTOG3_2  
HBLKTOG4_2  
HBLK Toggle Position 3 for V-Sequence 2  
HBLK Toggle Position 4 for V-Sequence 2  
[11:0]  
[23:12]  
0
0
HBLKTOG5_2  
HBLKTOG6_2  
HBLK Toggle Position 5 for V-Sequence 2  
HBLK Toggle Position 6 for V-Sequence 2  
[11:0]  
[23:12]  
0
0
CLPOBTOG1_2  
CLPOBTOG2_2  
CLPOB Toggle Position 1 for V-Sequence 2  
CLPOB Toggle Position 2 for V-Sequence 2  
–50–  
REV. 0  
Table XL.V-Sequence 3 (VSEQ3) Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Description  
98  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
[11:10]  
[23:12]  
0
0
0
0
0
0
0
HBLKMASK_3  
CLPOBPOL_3  
PBLKPOL_3  
VPATSEL_3  
VMASK_3  
HBLKALT_3  
UNUSED  
Masking Polarity during HBLK. H1 [0]. H3 [1].  
CLPOB Start Polarity  
PBLK Start Polarity  
Selected V-Pattern Group for V-Sequence 3  
Enable Masking of V-Outputs (Specified by FREEZE/RESUME Registers)  
Enable HBLK Alternation  
Unused  
99  
[11:0]  
[23:12]  
0
0
VPATREPO_3  
VPATREPE_3  
Number of Selected V-Pattern Group Repetitions for Odd Lines  
Number of Selected V-Pattern Group Repetins for Even Lines  
9A  
9B  
9C  
9D  
9E  
9F  
[11:0]  
[23:12]  
0
0
VPATSTART_3  
HDLEN_3  
Start Position in the Line for the Selected -PatterGroup  
HD Line Length (Number of Pixels) foSeqnce 3  
[11:0]  
[23:12]  
0
0
PBLKTOG1_3  
PBLKTOG2_3  
PBLK Toggle Position 1 for V-Seence 3  
PBLK Toggle Position 2 for V-uence 3  
[11:0]  
[23:12]  
0
0
HBLKTOG1_3  
HBLKTOG2_3  
HBLK Toggle Position 1 foV-Seqnce 3  
HBLK Toggle Position 2 or V-Seque3  
[11:0]  
[23:12]  
0
0
HBLKTOG3_3  
HBLKTOG4_3  
HBLK Toggle Positi3 for V-Sequence
HBLK Toggle Poon 4 foV-Sequence 3  
[11:0]  
[23:12]  
0
0
HBLKTOG5_3  
HBLKTOG6_3  
HBLK Toggle Positifor V-Seence 3  
HBLK Toggle Position or Vquence 3  
[11:0]  
[23:12]  
0
0
CLPOBTOG1_3  
CLPOBTOG2_3  
CLPOB oggle Position 1 fV-Sequence 3  
CLPOB Tgle Position 2 for V-Sequence 3  
Table XLI.V(VSE) Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
A0  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
[11:10]  
[23:12]  
0
0
0
0
0
0
0
HBLKMAS_4  
CLPOBP
L_4  
PBLKPO
4  
VPATSEL_4  
K_4  
LT_4  
Polarity during HBLK. H1 [0]. H3 [1].  
CLPOB Start Polarity  
PBLK Start Polarity  
Selected V-Pattern Group for V-Sequence 4  
Enable Masking of V-Outputs (Specified by FREEZE/RESUME Registers)  
Enable HBLK Alternation  
Unused  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
[11:0]  
[23:12]  
0
_4  
VP
E_4  
Number of Selected V-Pattern Group Repetitions for Odd Lines  
Number of Selected V-Pattern Group Repetitions for Even Lines  
[11:0]  
[23:12
VPATSTART_4  
DLEN_4  
Start Position in the Line for the Selected V-Pattern Group  
HD Line Length (Number of Pixels) for V-Sequence 4  
[11:0]  
[23:12]  
0
PBLKTOG1_4  
PBLKTOG2_4  
PBLK Toggle Position 1 for V-Sequence 4  
PBLK Toggle Position 2 for V-Sequence 4  
[11:0]  
[23:12]  
0
0
HBLKTOG1_4  
HBLKTOG2_4  
HBLK Toggle Position 1 for V-Sequence 4  
HBLK Toggle Position 2 for V-Sequence 4  
[11:0]  
[23:12]  
0
0
HBLKTOG3_4  
HBLKTOG4_4  
HBLK Toggle Position 3 for V-Sequence 4  
HBLK Toggle Position 4 for V-Sequence 4  
[11:0]  
[23:12]  
0
0
HBLKTOG5_4  
HBLKTOG6_4  
HBLK Toggle Position 5 for V-Sequence 4  
HBLK Toggle Position 6 for V-Sequence 4  
[11:0]  
[23:12]  
0
0
CLPOBTOG1_4  
CLPOBTOG2_4  
CLPOB Toggle Position 1 for V-Sequence 4  
CLPOB Toggle Position 2 for V-Sequence 4  
REV. 0  
–51–  
AD9995  
Table XLII.V-Sequence 5 (VSEQ5) Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Description  
A8  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
[11:10]  
[23:12]  
0
0
0
0
0
0
0
HBLKMASK_5  
CLPOBPOL_5  
PBLKPOL_5  
VPATSEL_5  
VMASK_5  
HBLKALT_5  
UNUSED  
Masking Polarity during HBLK. H1 [0]. H3 [1].  
CLPOB Start Polarity  
PBLK Start Polarity  
SelectedV-Pattern Group forV-Sequence 5  
Enable Masking of V-Outputs (Specified by FREEZE/RESUME Registers)  
Enable HBLK Alternation  
Unused  
A9  
[11:0]  
[23:12]  
0
0
VPATREPO_5  
VPATREPE_5  
Number of SelectedV-Pattern Group Repetitions for Odd Lines  
Number of SelectedV-Pattern Group Repetitions r Even Lines  
AA  
AB  
AC  
AD  
AE  
AF  
[11:0]  
[23:12]  
0
0
VPATSTART_5  
HDLEN_5  
Start Position in the Line for the SelectedV-Pern Grp  
HD Line Length (Number of Pixels) forV-Sence
[11:0]  
[23:12]  
0
0
PBLKTOG1_5  
PBLKTOG2_5  
PBLKToggle Position 1 forV-Sequenc
PBLKToggle Position 2 forV-Seque5  
[11:0]  
[23:12]  
0
0
HBLKTOG1_5  
HBLKTOG2_5  
HBLKToggle Position 1 forV-Seuence
HBLKToggle Position 2 forVSequence 5  
[11:0]  
[23:12]  
0
0
HBLKTOG3_5  
HBLKTOG4_5  
HBLKToggle Position 3 V-Sequence 5  
HBLKToggle Position orV-Suence 5  
[11:0]  
[23:12]  
0
0
HBLKTOG5_5  
HBLKTOG6_5  
HBLKToggle Position 5 fSequenc5  
HBLKToggle Position 6 forequce 5  
[11:0]  
[23:12]  
0
0
CLPOBTOG1_5  
CLPOBTOG2_5  
CLPOBTogPosition 1 forV-quence 5  
CLPOBToggle osition 2 forV-Sequence 5  
Table XLIII.V-SeEQ6) gister Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
D
B0  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
[11:10]  
[23:12]  
0
0
0
0
0
0
0
HBLKMASK_6  
CLPOBPOL_
PBLKPOL_6  
VPATSEL_6  
VMA
H6  
U
Maskity during HBLK. H1 [0]. H3 [1].  
CLPOB StartPolarity  
PBK Start Polarity  
SetedV-Pattern Group forV-Sequence 6  
able Masking of V-Outputs (Specified by FREEZE/RESUME Registers)  
Enable HBLK Alternation  
Unused  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
[11:0]  
[23:12]  
0
0
VPA
PATR
Number of SelectedV-Pattern Group Repetitions for Odd Lines  
Number of SelectedV-Pattern Group Repetitions for Even Lines  
[11:0]  
[23:12]  
START_6  
EN_6  
Start Position in the Line for the SelectedV-Pattern Group  
HD Line Length (Number of Pixels) forV-Sequence 6  
[11:0]  
[23:12]  
0
0
KTOG1_6  
BLKTOG2_6  
PBLKToggle Position 1 forV-Sequence 6  
PBLKToggle Position 2 forV-Sequence 6  
[11:0]  
[23:12]  
0
0
HBLKTOG1_6  
HBLKTOG2_6  
HBLKToggle Position 1 forV-Sequence 6  
HBLKToggle Position 2 forV-Sequence 6  
[11:0]  
[23:12]  
0
0
HBLKTOG3_6  
HBLKTOG4_6  
HBLKToggle Position 3 forV-Sequence 6  
HBLKToggle Position 4 forV-Sequence 6  
[11:0]  
[23:12]  
0
0
HBLKTOG5_6  
HBLKTOG6_6  
HBLKToggle Position 5 forV-Sequence 6  
HBLKToggle Position 6 forV-Sequence 6  
[11:0]  
[23:12]  
0
0
CLPOBTOG1_6  
CLPOBTOG2_6  
CLPOBToggle Position 1 forV-Sequence 6  
CLPOBToggle Position 2 forV-Sequence 6  
–52–  
REV. 0  
Table XLIV.V-Sequence 7 (VSEQ7) Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Description  
B8  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
[11:10]  
[23:12]  
0
0
0
0
0
0
0
HBLKMASK_7  
CLPOBPOL_7  
PBLKPOL_7  
VPATSEL_7  
VMASK_7  
HBLKALT_7  
UNUSED  
Masking Polarity during HBLK. H1 [0]. H3 [1].  
CLPOB Start Polarity  
PBLK Start Polarity  
SelectedV-Pattern Group forV-Sequence 7  
Enable Masking of V-Outputs (Specified by FREEZE/RESUME Registers)  
Enable HBLK Alternation  
Unused  
B9  
[11:0]  
[23:12]  
0
0
VPATREPO_7  
VPATREPE_7  
Number of SelectedV-Pattern Group Repetitions for Odd Lines  
Number of SelectedV-Pattern Group Repetitns for Even Lines  
BA  
BB  
BC  
BD  
BE  
BF  
[11:0]  
[23:12]  
0
0
VPATSTART_7  
HDLEN_7  
Start Position in the Line for the Selected-PatterGroup  
HD Line Length (Number of Pixels) foSequce 7  
[11:0]  
[23:12]  
0
0
PBLKTOG1_7  
PBLKTOG2_7  
PBLKToggle Position 1 forV-Seqnce 7  
PBLKToggle Position 2 forV-Sence 7  
[11:0]  
[23:12]  
0
0
HBLKTOG1_7  
HBLKTOG2_7  
HBLKToggle Position 1 for-Sequce 7  
HBLKToggle Position 2 orV-Sequen7  
[11:0]  
[23:12]  
0
0
HBLKTOG3_7  
HBLKTOG4_7  
HBLKToggle Positio3 forV-Sequence 7  
HBLKToggle Posn 4 fo-Sequence 7  
[11:0]  
[23:12]  
0
0
HBLKTOG5_7  
HBLKTOG6_7  
HBLKToggle PositioorV-Seqnce 7  
HBLKToggle Position rV-quence 7  
[11:0]  
[23:12]  
0
0
CLPOBTOG1_7  
CLPOBTOG2_7  
CLPOBoggle Position 1 fV-Sequence 7  
CLPOBTle Position 2 forV-Sequence 7  
Table XLV.V(VSE) Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
C0  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
[11:10]  
[23:12]  
0
0
0
0
0
0
0
HBLKMAS_8  
CLPOBP
L_8  
PBLKPO
8  
VPATSEL_8  
K_8  
LT_8  
Polarity during HBLK. H1 [0]. H3 [1].  
CLPOB Start Polarity  
PBLK Start Polarity  
SelectedV-Pattern Group forV-Sequence 8  
Enable Masking of V-Outputs (Specified by FREEZE/RESUME Registers)  
Enable HBLK Alternation  
Unused  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
[11:0]  
[23:12]  
0
8  
VP
E_8  
Number of SelectedV-Pattern Group Repetitions for Odd Lines  
Number of SelectedV-Pattern Group Repetitions for Even Lines  
[11:0]  
[23:12
VPATSTART_8  
DLEN_8  
Start Position in the Line for the SelectedV-Pattern Group  
HD Line Length (Number of Pixels) forV-Sequence 8  
[11:0]  
[23:12]  
0
PBLKTOG1_8  
PBLKTOG2_8  
PBLKToggle Position 1 forV-Sequence 8  
PBLKToggle Position 2 forV-Sequence 8  
[11:0]  
[23:12]  
0
0
HBLKTOG1_8  
HBLKTOG2_8  
HBLKToggle Position 1 forV-Sequence 8  
HBLKToggle Position 2 forV-Sequence 8  
[11:0]  
[23:12]  
0
0
HBLKTOG3_8  
HBLKTOG4_8  
HBLKToggle Position 3 forV-Sequence 8  
HBLKToggle Position 4 forV-Sequence 8  
[11:0]  
[23:12]  
0
0
HBLKTOG5_8  
HBLKTOG6_8  
HBLKToggle Position 5 forV-Sequence 8  
HBLKToggle Position 6 forV-Sequence 8  
[11:0]  
[23:12]  
0
0
CLPOBTOG1_8  
CLPOBTOG2_8  
CLPOBToggle Position 1 forV-Sequence 8  
CLPOBToggle Position 2 forV-Sequence 8  
REV. 0  
–53–  
AD9995  
Table XLVI.V-Sequence 9 (VSEQ9) Register Map  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Description  
C8  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
[11:10]  
[23:12]  
0
0
0
0
0
0
0
HBLKMASK_9  
CLPOBPOL_9  
PBLKPOL_9  
VPATSEL_9  
VMASK_9  
HBLKALT_9  
UNUSED  
Masking Polarity during HBLK. H1 [0]. H3 [1].  
CLPOB Start Polarity  
PBLK Start Polarity  
SelectedV-Pattern Group forV-Sequence 9  
Enable Masking of V-Outputs (Specified by FREEZE/RESUME Registers)  
Enable HBLK Alternation  
Unused  
C9  
[11:0]  
[23:12]  
0
0
VPATREPO_9  
VPATREPE_9  
Number of SelectedV-Pattern Group Repetitions for Odd Lines  
Number of SelectedV-Pattern Group Repetitions r Even Lines  
CA  
CB  
CC  
CD  
CE  
CF  
[11:0]  
[23:12]  
0
0
VPATSTART_9  
HDLEN_9  
Start Position in the Line for the SelectedV-Pern Grp  
HD Line Length (Number of Pixels) forV-Sence
[11:0]  
[23:12]  
0
0
PBLKTOG1_9  
PBLKTOG2_9  
PBLKToggle Position 1 forV-Sequenc
PBLKToggle Position 2 forV-Seque9  
[11:0]  
[23:12]  
0
0
HBLKTOG1_9  
HBLKTOG2_9  
HBLKToggle Position 1 forV-Seuence
HBLKToggle Position 2 forVSequence 9  
[11:0]  
[23:12]  
0
0
HBLKTOG3_9  
HBLKTOG4_9  
HBLKToggle Position 3 V-Sequence 9  
HBLKToggle Position orV-Suence 9  
[11:0]  
[23:12]  
0
0
HBLKTOG5_9  
HBLKTOG6_9  
HBLKToggle Position 5 fSequenc9  
HBLKToggle Position 6 forequce 9  
[11:0]  
[23:12]  
0
0
CLPOBTOG1_9  
CLPOBTOG2_9  
CLPOBTogPosition 1 forV-quence 9  
CLPOBToggle osition 2 forV-Sequence 9  
Table XLegisteap  
D
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
D0  
[3:0]  
[4]  
[5]  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
[21:18]  
[22]  
[23]  
0
0
0
0
0
0
0
0
0
0
VSEQSEL0_0  
SWEEP0_0  
MULTI0_0  
VSEQSEL1_0  
SWE
M
V
SW
MULT
QSE0  
EP3_0  
TI3_0  
Selecuence for Region 0.  
elect Sweep Region for Region 0. 0 = No Sweep, 1= Sweep.  
Set Multiplier Region for Region 0. 0 = No Multiplier, 1 = Multiplier.  
SetedV-Sequence for Region 1.  
ect Sweep Region for Region 1. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 1. 0 = No Multiplier, 1 = Multiplier.  
SelectedV-Sequence for Region 2.  
Select Sweep Region for Region 2. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 2. 0 = No Multiplier, 1 = Multiplier.  
SelectedV-Sequence for Region 3.  
Select Sweep Region for Region 3. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 3. 0 = No Multiplier, 1 = Multiplier.  
D1  
[3:0]  
[4]  
[5]  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
0
0
0
0
0
0
0
0
0
QSEL4_0  
SWEEP4_0  
MULTI4_0  
VSEQSEL5_0  
SWEEP5_0  
MULTI5_0  
VSEQSEL6_0  
SWEEP6_0  
MULTI6_0  
UNUSED  
SelectedV-Sequence for Region 4.  
Select Sweep Region for Region 4. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 4. 0 = No Multiplier, 1 = Multiplier.  
SelectedV-Sequence for Region 5.  
Select Sweep Region for Region 5. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 5. 0 = No Multiplier, 1 = Multiplier.  
SelectedV-Sequence for Region 6.  
Select Sweep Region for Region 6. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 6. 0 = No Multiplier, 1 = Multiplier.  
Unused.  
[23:18]  
D2  
D3  
D4  
[11:0]  
[23:12]  
0
0
SCP1_0  
SCP2_0  
V-Sequence Change Position #1 for Field 0.  
V-Sequence Change Position #2 for Field 0.  
[11:0]  
[23:12]  
0
0
SCP3_0  
SCP4_0  
V-Sequence Change Position #3 for Field 0.  
V-Sequence Change Position #4 for Field 0.  
[11:0]  
[23:12]  
0
0
VDLEN_0  
HDLAST_0  
VD Field Length (Number of Lines) for Field 0.  
HD Line Length (Number of Pixels) for Last Line in Field 0.  
–54–  
REV. 0  
Table XLVII. Field 0 Register Map (continued)  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Description  
D5  
[3:0]  
[9:4]  
[21:10]  
0
0
0
VPATSECOND_0  
SGMASK_0  
SGPATSEL_0  
Selected Second V-Pattern Group for VSG Active Line.  
Masking of VSG Outputs during VSG Active Line.  
Selection of VSG Patterns for Each VSG Output.  
D6  
D7  
[11:0]  
[23:12]  
0
0
SGLINE1_0  
SGLINE2_0  
VSG Active Line 1.  
VSG Active Line 2 (if no Second Line Needed, Set to Same as Line 1 or Max).  
[11:0]  
[23:12]  
0
0
SCP5_0  
SCP6_0  
V-Sequence Change Position #5 for Field 0.  
V-Sequence Change Position #6 for Field 0.  
Table XLVIII. Field 1 Register Map  
Description  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
D8  
[3:0]  
[4]  
[5]  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
[21:18]  
[22]  
[23]  
0
0
0
0
0
0
0
0
0
0
0
0
VSEQSEL0_1  
SWEEP0_1  
MULTI0_1  
VSEQSEL1_1  
SWEEP1_1  
MULTI1_1  
VSEQSEL2_1  
SWEEP2_1  
MULTI2_1  
VSEQSEL3_1  
SWEEP3_1  
MULTI3_1  
Selected V-Sequence for Region
Select Sweep Region for Regi0= No Swee= Sweep.  
Select Multiplier Region for Region = No Multiplier, 1 = Multiplier.  
Selected V-Sequence foRegion 1.  
Select Sweep Region r Region 1. 0 = No Sweep, 1 = Sweep.  
Select Multiplier ion foegion 1. 0 = No Multiplier, 1 = Multiplier.  
Selected V-Sequencor egion 2.  
Select Sweep Region foegion 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region fion 2. 0 = No Multiplier, 1 = Multiplier.  
Selected -Sequence for Region 3.  
Select SweRegion foegion 3. 0 = No Sweep, 1 = Sweep.  
SMultipRegn for Region 3. 0 = No Multiplier, 1 = Multiplier.  
D9  
[3:0]  
[4]  
[5]  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
0
0
0
0
0
0
0
0
0
VSEQSEL4_1  
SWEEP4_1  
MULTI4_1  
VSEQSEL5_
SWEEP5_
MULTI5
VSEQSEL
S
P6_1  
6_1  
Sequee for Region 4.  
Region for Region 4. 0 = No Sweep, 1 = Sweep.  
plier Region for Region 4. 0 = No Multiplier, 1 = Multiplier.  
Sequence for Region 5.  
SeleSweep Region for Region 5. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 5. 0 = No Multiplier, 1 = Multiplier.  
elected V-Sequence for Region 6.  
Select Sweep Region for Region 6. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 6. 0 = No Multiplier, 1 = Multiplier.  
Unused.  
[23:18]  
DA  
DB  
DC  
DD  
[11:0]  
[23:12]  
0
S
V-Sequence Change Position #1 for Field 1.  
V-Sequence Change Position #2 for Field 1.  
[11:0]  
[23:12
SCP3
CP4_1  
V-Sequence Change Position #3 for Field 1.  
V-Sequence Change Position #4 for Field 1.  
[11:0]  
[23:12]  
VDLEN_1  
HDLAST_1  
VD Field Length (Number of Lines) for Field 1.  
HD Line Length (Number of Pixels) for Last Line in Field 1.  
[3:0]  
[9:4]  
[21:10]  
0
0
0
VPATSECOND_1  
SGMASK_1  
SGPATSEL_1  
Selected Second V-Pattern Group for VSG Active Line.  
Masking of VSG Outputs during VSG Active Line.  
Selection of VSG Patterns for Each VSG Output.  
DE  
DF  
[11:0]  
[23:12]  
0
0
SGLINE1_1  
SGLINE2_1  
VSG Active Line 1.  
VSG Active Line 2 (if no Second Line Needed, Set to Same as Line 1 or Max).  
[11:0]  
[23:12]  
0
0
SCP5_1  
SCP6_1  
V-Sequence Change Position #5 for Field 1.  
V-Sequence Change Position #6 for Field 1.  
REV. 0  
–55–  
AD9995  
Table XLIX. Field 2 Register Map  
Description  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
E0  
[3:0]  
[4]  
[5]  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
[21:18]  
[22]  
[23]  
0
0
0
0
0
0
0
0
0
0
0
0
VSEQSEL_2  
SWEEP0_2  
MULTI0_2  
VSEQSEL1_2  
SWEEP1_2  
MULTI1_2  
VSEQSEL2_2  
SWEEP2_2  
MULTI2_2  
VSEQSEL3_2  
SWEEP3_2  
MULTI3_2  
Selected V-Sequence for Region 0.  
Select Sweep Region for Region 0. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 0. 0 = No Multiplier, 1 = Multiplier.  
Selected V-Sequence for Region 1.  
Select Sweep Region for Region 1. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 1. 0 = No Multiplier, 1 = Multiplier.  
Selected V-Sequence for Region 2.  
Select Sweep Region for Region 2. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 2. 0 = No Mulplier, 1 = Multiplier.  
Selected V-Sequence for Region 3.  
Select Sweep Region for Region 3. 0 = No Sep, 1 = weep  
Select Multiplier Region for Region 3. 0 = Nultier, 1 = Multiplier.  
E1  
[3:0]  
[4]  
[5]  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
0
0
0
0
0
0
0
0
0
VSEQSEL4_2  
SWEEP4_2  
MULTI4_2  
VSEQSEL5_2  
SWEEP5_2  
MULTI5_2  
VSEQSEL6_2  
SWEEP6_2  
MULTI6_2  
UNUSED  
Selected V-Sequence for Region 4.  
Select Sweep Region for Region 4. No Sweep, 1 eep.  
Select Multiplier Region for Regin 4. 0 No Multiplier, 1 = Multiplier.  
Selected V-Sequence for Regin 5.  
Select Sweep Region for Ron 5. 0 = No Swp, 1 = Sweep.  
Select Multiplier Region or Regi5. 0 = No Multiplier, 1 = Multiplier.  
Selected V-Sequence foegio6.  
Select Sweep Region for Rn 6. 0 = o Sweep, 1 = Sweep.  
Select Multiplier Region for ion 0 = No Multiplier, 1 = Multiplier.  
Unused.  
[23:18]  
E2  
E3  
E4  
E5  
[11:0]  
[23:12]  
0
0
SCP1_2  
SCP2_2  
V-Sequence Chge Position #1 for Field 2.  
V-Seque ChanPositn #2 for Field 2.  
[11:0]  
[23:12]  
0
0
SCP3_2  
SCP4_2  
Vange Pition #3 for Field 2.  
Vge Position #4 for Field 2.  
[11:0]  
[23:12]  
0
0
VDLEN0_2  
HDLAST_2  
V(Number of Lines) for Field 2.  
HD th (Number of Pixels) for Last Line in Field 2.  
[3:0]  
[9:4]  
[21:10]  
0
0
0
VPATSECON
_2  
SGMASK_2  
SGPATSEL_2  
ected Second V-Pattern Group for VSG Active Line.  
Ming of VSG Outputs during VSG Active Line.  
Setion of VSG Patterns for Each VSG Output.  
E6  
E7  
[11:0]  
[23:12]  
0
0
SG
S
SG Active Line 1.  
VSG Active Line 2 (if no Second Line Needed, Set to Same as Line 1 or Max).  
[11:0]  
[23:12]  
0
0
SC
SCP6_
V-Sequence Change Position #5 for Field 2.  
V-Sequence Change Position #6 for Field 2.  
Table L. Field 3 Register Map  
Description  
Data Bit
 
Address Content
V
a
l
gister Name  
E8  
[3:0]  
[4]  
[5]  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
[21:18]  
[22]  
[23]  
0
0
0
0
0
0
0
0
0
0
0
0
VSEQSEL_3  
SWEEP0_3  
MULTI0_3  
VSEQSEL1_3  
SWEEP1_3  
MULTI1_3  
VSEQSEL2_3  
SWEEP2_3  
MULTI2_3  
VSEQSEL3_3  
SWEEP3_3  
MULTI3_3  
Selected V-Sequence for Region 0.  
Select Sweep Region for Region 0. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 0. 0 = No Multiplier, 1 = Multiplier.  
Selected V-Sequence for Region 1.  
Select Sweep Region for Region 1. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 1. 0 = No Multiplier, 1 = Multiplier.  
Selected V-Sequence for Region 2.  
Select Sweep Region for Region 2. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 2. 0 = No Multiplier, 1 = Multiplier.  
Selected V-Sequence for Region 3.  
Select Sweep Region for Region 3. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 3. 0 = No Multiplier, 1 = Multiplier.  
–56–  
REV. 0  
Table L. Field 3 Register Map (continued)  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Description  
E9  
[3:0]  
[4]  
[5]  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
0
0
0
0
0
0
0
0
0
VSEQSEL4_3  
SWEEP4_3  
MULTI4_3  
VSEQSEL5_3  
SWEEP5_3  
MULTI5_3  
VSEQSEL6_3  
SWEEP6_3  
MULTI6_3  
UNUSED  
Selected V-Sequence for Region 4.  
Select Sweep Region for Region 4. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 4. 0 = No Multiplier, 1 = Multiplier.  
Selected V-Sequence for Region 5.  
Select Sweep Region for Region 5. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 5. 0 = No Multiplier, 1 = Multiplier.  
Selected V-Sequence for Region 6.  
Select Sweep Region for Region 6. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 6. 0 = No Multiplier, 1 = Multiplier.  
Unused.  
[23:18]  
EA  
[11:0]  
[23:12]  
0
0
SCP1_3  
SCP2_3  
V-Sequence Change Position #1 for Fi3.  
V-Sequence Change Position #2 for Field
EB  
[23:12]  
[11:0]  
0
0
SCP3_3  
SCP4_3  
V-Sequence Change Position #3 r Field 3.  
V-Sequence Change Position 4 Field 3.  
EC  
ED  
[11:0]  
[23:12]  
0
0
VDLEN_3  
HDLAST_3  
VD Field Length (Number of Lines) Field 3.  
HD Line Length (Numer of Pixels) for st Line in Field 3.  
[3:0]  
[9:4]  
[21:10]  
0
0
0
VPATSECOND_3  
SGMASK_3  
SGPATSEL_3  
Selected Second V-attern Goup for VSG Active Line.  
Masking of VSG Outs uring VSG Active Line.  
Selection of VSG Pattfor EaVSG Output.  
EE  
EF  
[11:0]  
[23:12]  
0
0
SGLINE1_3  
SGLINE2_3  
VSG Active Line 1.  
VSG Ace Line 2 (if no Second Line Needed, Set to Same as Line 1 or Max).  
[11:0]  
[23:12]  
0
0
SCP5_3  
SCP6_3  
V-Sequence hange Ption #5 for Field 3.  
nce Cge osition #6 for Field 3.  
TRegister Map  
Dtion  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Nme  
F0  
[3:0]  
[4]  
[5]  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
[21:18
[22]  
[23]  
0
0
0
0
0
0
0
VSEQSE_4  
SWEEP0_
MI0_4  
EL1_4  
V_4  
SW_4  
MULTI2_4  
SEQSEL3_4  
WEEP3_4  
MULTI3_4  
Selected V-Sequence for Region 0.  
elect Sweep Region for Region 0. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 0. 0 = No Multiplier, 1 = Multiplier.  
Selected V-Sequence for Region 1.  
Select Sweep Region for Region 1. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 1. 0 = No Multiplier, 1 = Multiplier.  
Selected V-Sequence for Region 2.  
Select Sweep Region for Region 2. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 2. 0 = No Multiplier, 1 = Multiplier.  
Selected V-Sequence for Region 3.  
Select Sweep Region for Region 3. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 3. 0 = No Multiplier, 1 = Multiplier.  
F1  
[3:0]  
[4]  
[5]  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
0
0
0
0
0
0
0
0
0
VSEQSEL4_4  
SWEEP4_4  
MULTI4_4  
VSEQSEL5_4  
SWEEP5_4  
MULTI5_4  
VSEQSEL6_4  
SWEEP6_4  
MULTI6_4  
UNUSED  
Selected V-Sequence for Region 4.  
Select Sweep Region for Region 4. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 4. 0 = No Multiplier, 1 = Multiplier.  
Selected V-Sequence for Region 5.  
Select Sweep Region for Region 5. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 5. 0 = No Multiplier, 1 = Multiplier..  
Selected V-Sequence for Region 6.  
Select Sweep Region for Region 6. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 6. 0 = No Multiplier, 1 = Multiplier.  
Unused.  
[23:18]  
F2  
F3  
[11:0]  
[23:12]  
0
0
SCP1_4  
SCP2_4  
V-Sequence Change Position #1 for Field 4.  
V-Sequence Change Position #2 for Field 4.  
[11:0]  
[23:12]  
0
0
SCP3_4  
SCP4_4  
V-Sequence Change Position #3 for Field 4.  
V-Sequence Change Position #4 for Field 4.  
REV. 0  
–57–  
AD9995  
Table LI. Field 4 Register Map (continued)  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
Description  
F4  
[11:0]  
[23:12]  
0
0
VDLEN_4  
HDLAST_4  
VD Field Length (Number of Lines) for Field 4.  
HD Line Length (Number of Pixels) for Last Line in Field 4.  
F5  
[3:0]  
[9:4]  
[21:10]  
0
0
0
VPATSECOND_4  
SGMASK_4  
SGPATSEL_4  
Selected Second V-Pattern Group for VSG Active Line.  
Masking of VSG Outputs during VSG Active Line.  
Selection of VSG Patterns for Each VSG Output.  
F6  
F7  
[11:0]  
[23:12]  
0
0
SGLINE1_4  
SGLINE2_4  
VSG Active Line 1.  
VSG Active Line 2 (if no Second Line Needed, Set to Same as Line 1 or Max).  
[11:0]  
[23:12]  
0
0
SCP5_4  
SCP6_4  
V-Sequence Change Position #5 for Field 4.  
V-Sequence Change Position #6 for Field 4.  
Table LII. Field 5 Register Map  
Description  
Data Bit
 
Default  
Address Content
V
a
lue  
Register Name  
F8  
[3:0]  
[4]  
[5]  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
[21:18]  
[22]  
[23]  
0
0
0
0
0
0
0
0
0
0
0
0
VSEQSEL0_5  
SWEEP0_5  
MULTI0_5  
VSEQSEL1_5  
SWEEP1_5  
MULTI1_5  
VSEQSEL2_5  
SWEEP2_5  
MULTI2_5  
VSEQSEL3_5  
SWEEP3_5  
MULTI3_5  
Selected V-Sequence for Region 0.  
Select Sweep Region for Reon 0. 0 = No Sp, 1 = Sweep.  
Select Multiplier Region r Regio0. 0 = No Multiplier, 1 = Multiplier.  
Selected V-Sequence fRegio1.  
Select Sweep Region for Rn 1. 0 = o Sweep, 1 = Sweep.  
Select Multiplier Region for gion 0 = No Multiplier, 1 = Multiplier.  
Selected V-Squence for Regio
Select Sweep gion for Region 2. 0 = No Sweep, 1 = Sweep.  
Select Multiplier gion foegion 2. 0 = No Multiplier, 1 = Multiplier.  
Selequencor egion 3.  
Sgion fRegion 3. 0 = No Sweep, 1 = Sweep.  
SRegion for Region 3. 0 = No Multiplier, 1 = Multiplier.  
F9  
[3:0]  
[4]  
[5]  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
0
0
0
0
0
0
0
0
0
VSEQSEL4_5  
SWEEP4_5  
MULTI4_5  
VSEQSEL5_
SWEEP5_5  
MUL
VS5  
S
MU
UNUS
Sence for Region 4.  
Selecegion for Region 4. 0 = No Sweep, 1 = Sweep  
Select Multiplier Region for Region 4. 0 = No Multiplier, 1 = Multiplier.  
Seted V-Sequence for Region 5.  
Set Sweep Region for Region 5. 0 = No Sweep, 1 = Sweep.  
Sect Multiplier Region for Region 5. 0 =No Multiplier, 1 = Multiplier.  
Selected V-Sequence for Region 6.  
Select Sweep Region for Region 6. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 6. 0 = No Multiplier, 1 = Multiplier.  
Unused.  
[23:18]  
FA  
FB  
FC  
FD  
[11:0]  
[23:12]  
1_5  
_5  
V-Sequence Change Position #1 for Field 5.  
V-Sequence Change Position #2 for Field 5.  
[11:0]  
[23:12]  
0
0
_5  
P4_5  
V-Sequence Change Position #3 for Field 5.  
V-Sequence Change Position #4 for Field 5.  
[11:0]  
[23:12]  
0
0
VDLEN_5  
HDLAST_5  
VD Field Length (Number of Lines) for Field 5.  
HD Line Length (Number of Pixels) for Last Line in Field 5.  
[3:0]  
[9:4]  
[21:10]  
0
0
0
VPATSECOND_5  
SGMASK_5  
SGPATSEL_5  
Selected Second V-Pattern Group for VSG Active Line.  
Masking of VSG Outputs during VSG Active Line.  
Selection of VSG Patterns for Each VSG Output.  
FE  
FF  
[11:0]  
[23:12]  
0
0
SGLINE1_5  
SGLINE2_5  
VSG Active Line 1.  
VSG Active Line 2 (if no Second Line Needed, Set to Same as Line 1 or Max).  
[11:0]  
[23:12]  
0
0
SCP5_5  
SCP6_5  
V-Sequence Change Position #5 for Field 5.  
V-Sequence Change Position #6 for Field 5.  
–58–  
REV. 0  
OUTLINE DIMENSIONS  
56-Lead Lead Frame Chip Scale Package [LFCSP]  
8 mm
8 mm Body  
(CP-56)  
Dimensions shown in millimeters  
0.30  
8.00  
BSC SQ  
0.23  
0.18  
0.60 MAX  
PIN 1  
INDICATOR  
0.60 MAX  
43  
56  
1
42  
PIN 1  
INDICATOR  
6.25  
6.10
5.
7.75  
BSC SQ  
BOTTOM  
VIEW  
TOP  
VIEW  
0.50  
0.40  
0.30  
29  
28  
14  
15  
0.25 MIN  
6.50  
REF  
0.80 MAX  
0.65 NOM  
1.00  
0.90  
0.80  
12MAX  
0.05 MAX  
0.02 NOM  
0.20  
REF  
COPLANARITY  
0.08  
0.50 BSC  
SEATING  
PLANE  
COMPLIANT TO JEDEC ANDARDS MO-220-VL
REV. 0  
–59–  
–60–  

相关型号:

AD9C1747

Small and light size
VANLONG

AD9C1747/1842F75KCA

Array Duplexer (AD Type)
VANLONG

AD9C1950

Small and light size
VANLONG

AD9C1950/2140F60HCA

Array Duplexer (AD Type)
VANLONG

AD9C830/875F10KCA

Array Duplexer (AD Type)
VANLONG

AD9C902/947F25HCA

Array Duplexer (AD Type)
VANLONG

AD9C902/947F25KCA

Array Duplexer (AD Type)
VANLONG

ADA-4543

Silicon Bipolar Darlington Amplifier
AGILENT

ADA-4543-BLK

Silicon Bipolar Darlington Amplifier
AGILENT

ADA-4543-BLK

0MHz - 2500MHz RF/MICROWAVE WIDE BAND LOW POWER AMPLIFIER, PLASTIC, SC-70, SOT-343, 4 PIN
AVAGO

ADA-4543-BLKG

Silicon Bipolar Darlington Amplifier
AGILENT

ADA-4543-TR1

Silicon Bipolar Darlington Amplifier
AGILENT