ADA4062-2ARMZ-RL7 [ADI]

DUAL OP-AMP, 5000uV OFFSET-MAX, 1.4MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8;
ADA4062-2ARMZ-RL7
型号: ADA4062-2ARMZ-RL7
厂家: ADI    ADI
描述:

DUAL OP-AMP, 5000uV OFFSET-MAX, 1.4MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8

放大器 光电二极管
文件: 总20页 (文件大小:496K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power JFET-Input Op Amps  
ADA4062-2/ADA4062-4  
FEATURES  
PIN CONFIGURATIONS  
Low input bias current: 50 pA maximum  
Offset voltage  
1.5 mV maximum for B grade (ADA4062-2 SOIC package)  
2.5 mV maximum for A grade  
Offset voltage drift: 5 μV/°C typical  
Slew rate: 3.3 V/μs typical  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
ADA4062-2  
TOP VIEW  
(Not to Scale)  
OUT B  
–IN B  
+IN B  
Figure 1. 8-Lead Narrow-Body SOIC and 8-Lead MSOP  
CMRR: 90 dB typical  
Low supply current: 165 μA typical  
High input impedance  
Unity-gain stable  
–IN A  
8 OUT B  
2
5 V to 15 V dual-supply operation  
Packaging  
ADA4062-2  
TOP VIEW  
(Not to Scale)  
+IN A 3  
7
–IN B  
8-lead SOIC, 8-lead MSOP, 10-lead LFCSP, 14-lead TSSOP, and  
16-lead LFCSP packages  
NC = NO CONNECT  
APPLICATIONS  
Figure 2. 10-Lead LFCSP  
Power controls and monitoring  
Active filters  
Industrial/process controls  
Body probe electronics  
Data acquisition  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT A  
–IN A  
+IN A  
V+  
OUT D  
–IN D  
+IN D  
V–  
ADA4062-4  
TOP VIEW  
(Not to Scale)  
Integrators  
Input buffering  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
8
GENERAL DESCRIPTION  
Figure 3. 14-Lead TSSOP  
The ADA4062-2 and ADA4062-4 are dual and quad JFET-input  
amplifiers with industry-leading performance. They offer lower  
power, offset voltage, drift, and ultralow bias current. The  
ADA4062-2 B grade (SOIC package) features a typical low offset  
voltage of 0.5 mV, an offset drift of 5 μV/°C, and a bias current  
of 2 pA.  
1
12 –IN D  
–IN A  
+IN A  
V+  
ADA4062-4  
+IN D  
V–  
2
3
4
11  
10  
9
TOP VIEW  
The ADA4062 family is ideal for various applications, including  
process controls, industrial and instrumentation equipment,  
active filtering, data conversion, buffering, and power control  
and monitoring. With a low supply current of 165 μA per  
amplifier, they are well suited for lower power applications.  
(Not to Scale)  
+IN B  
+IN C  
NOTES  
1. NC = NO CONNECT.  
2. IT IS RECOMMENDED TO CONNECT THE EXPOSED PAD TO V–.  
The ADA4062 family is also specified for the extended industrial  
temperature range of −40°C to +125°C. The ADA4062-2 is  
available in lead-free, 8-lead SOIC, 8-lead MSOP, and 10-lead  
LFCSP (1.6 mm × 1.3 mm × 0.55 mm) packages, while the  
ADA4062-4 is available in lead-free, 14-lead TSSOP and  
16-lead LFCSP packages.  
Figure 4. 16-Lead LFCSP  
Table 1. Low Power Op Amps  
Precision  
CMOS  
Precision  
High Bandwidth  
High  
Bandwidth  
Single  
Dual  
Quad  
AD8663  
AD8667  
AD8669  
AD8641  
AD8642  
AD8643  
AD8682  
AD8684  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2008–2010 Analog Devices, Inc. All rights reserved.  
 
ADA4062-2/ADA4062-4  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................5  
Typical Performance Characteristics ..............................................6  
Applications Information.............................................................. 15  
Notch Filter ................................................................................. 15  
High-Side Signal Conditioning ................................................ 15  
Micropower Instrumentation Amplifier................................. 15  
Phase Reversal ............................................................................ 16  
Schematic......................................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Configurations ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
Power Sequencing ........................................................................ 5  
REVISION HISTORY  
2/10—Rev. A to Rev. B  
7/09—Rev. 0 to Rev. A  
Added 16-Lead LFCSP Package........................................Universal  
Changes to Features Section, General Description Section, and  
Table 1 ................................................................................................ 1  
Changes to Offset Voltage Drift Parameter, Table 2 .................... 3  
Changes to Table 4............................................................................ 5  
Changes to Typical Performance Characteristics Layout............ 6  
Added Figure 6 and Figure 9; Renumbered Sequentially ........... 6  
Changes to Figure 7, Figure 8, and Figure 10 ............................... 6  
Changes to Figure 25 and Figure 28............................................... 9  
Changes to Figure 37 and Figure 40............................................. 11  
Changes to Figure 41 to Figure 46................................................ 12  
Changes to Figure 47 and Figure 50............................................. 13  
Changes to Figure 53 to Figure 58................................................ 14  
Changes to Notch Filter Section and Micropower Instrumentation  
Amplifier Section............................................................................ 15  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide .......................................................... 20  
Added ADA4062-4.............................................................Universal  
Added 14-Lead TSSOP Package.......................................Universal  
Added 10-Lead LFCSP Package .......................................Universal  
Changes to Features Section and Table 1 .......................................1  
Changes to Table 2.............................................................................3  
Changes to Thermal Resistance Section ........................................5  
Changes to Figure 5, Figure 6, Figure 8, and Figure 9..................6  
Changes to Figure 37 and Figure 40............................................. 11  
Changes to Figure 41 and Figure 44............................................. 12  
Changes to Figure 47, Figure 48, Figure 50, and Figure 51....... 13  
Added Figure 49 and Figure 52; Renumbered Sequentially ..... 13  
Changes to Figure 57 and Figure 59............................................. 15  
Changes to Phase Reversal Section and Figure 61..................... 16  
Changes to Figure 63...................................................................... 17  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide.......................................................... 19  
10/08—Revision 0: Initial Version  
Rev. B | Page 2 of 20  
 
ADA4062-2/ADA4062-4  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VSY  
= 15 V, VCM = 0 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
B Grade (ADA4062-2, 8-Lead SOIC Only)  
0.5  
1.5  
3
2.5  
5
mV  
mV  
mV  
mV  
μV/°C  
pA  
−40°C ≤ TA ≤ +125°C  
A Grade  
0.75  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Bias Current  
∆VOS/∆T  
IB  
5
2
50  
5
−40°C ≤ TA ≤ +125°C  
nA  
Input Offset Current  
IOS  
0.5  
25  
2.5  
+15  
pA  
nA  
V
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
−11.5  
Common-Mode Rejection Ratio  
B Grade (ADA4062-2, 8-Lead SOIC Only)  
CMRR  
VCM = −11.5 V to +11.5 V  
−40°C ≤ TA ≤ +125°C  
VCM = −11.5 V to +11.5 V  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = −10 V to +10 V  
−40°C ≤ TA ≤ +125°C  
80  
80  
73  
70  
76  
72  
90  
90  
83  
dB  
dB  
dB  
dB  
dB  
dB  
TΩ  
pF  
pF  
A Grade  
Large-Signal Voltage Gain  
AVO  
Input Resistance  
RIN  
CINDM  
CINCM  
10  
1.5  
4.8  
Input Capacitance, Differential Mode  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to VCM  
13  
12.5  
13.5  
V
V
V
Output Voltage Low  
−13.8  
−13  
−40°C ≤ TA ≤ +125°C  
−12.5  
V
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
20  
1
mA  
Ω
f = 1 kHz, AV = 1  
Power Supply Rejection Ratio  
B Grade (ADA4062-2, 8-Lead SOIC Only)  
PSRR  
VSY  
−40°C ≤ TA ≤ +125°C  
VSY 4 V to 18 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
=
4 V to 18 V  
80  
80  
74  
70  
90  
dB  
dB  
dB  
dB  
μA  
μA  
A Grade  
=
90  
Supply Current per Amplifier  
ISY  
165  
220  
260  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
SR  
tS  
RL = 10 kΩ, CL = 100 pF, AV = 1  
To 0.1%, VIN = 10 V step, CL = 100 pF,  
RL = 10 kΩ, AV = 1  
3.3  
3.5  
V/μs  
μs  
Gain Bandwidth Product  
Phase Margin  
Channel Separation (ADA4062-2 Only)  
Channel Separation (ADA4062-4 Only)  
GBP  
ΦM  
CS  
RL = 10 kΩ, AV = 1  
RL = 10 kΩ, AV = 1  
f = 1 kHz  
1.4  
78  
135  
130  
MHz  
Degrees  
dB  
CS  
f = 1 kHz  
dB  
Rev. B | Page 3 of 20  
 
ADA4062-2/ADA4062-4  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
1.5  
36  
5
μV p-p  
nV/√Hz  
fA/√Hz  
Rev. B | Page 4 of 20  
ADA4062-2/ADA4062-4  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages. It was  
measured using a standard 4-layer board.  
Parameter  
Rating  
18 V  
VSY  
Supply Voltage  
Input Voltage  
Differential Input Voltage  
Input Current  
Output Short-Circuit Duration to GND Indefinite  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
VSY  
10 mA  
Table 4. Thermal Resistance  
Package Type  
θJA  
θJC  
45  
45  
46  
35  
12  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
8-Lead SOIC  
120  
142  
132  
112  
75  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
8-Lead MSOP  
10-Lead LFCSP  
14-Lead TSSOP  
16-Lead LFCSP  
Lead Temperature (Soldering, 60 sec) 300°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
POWER SEQUENCING  
The supply voltages of the op amps must be established  
simultaneously with, or before, any input signals are applied. If  
this is not possible, the input current must be limited to 10 mA.  
ESD CAUTION  
Rev. B | Page 5 of 20  
 
ADA4062-2/ADA4062-4  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
70  
280  
V
V
= ±5V  
= 0V  
V
V
= ±15V  
= 0V  
SY  
SY  
CM  
CM  
BASED ON 600 OP AMPS  
60  
50  
40  
30  
20  
10  
0
240 BASED ON 600 OP AMPS  
200  
160  
120  
80  
40  
0
–4  
–3  
–2  
–1  
0
1
2
3
4
–4  
–2  
0
–3  
–2  
–1  
0
1
2
3
4
V
(mV)  
V
(mV)  
OS  
OS  
Figure 5. Input Offset Voltage Distribution  
Figure 8. Input Offset Voltage Distribution  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
ADA4062-2 ONLY  
= ±5V  
ADA4062-2 ONLY  
SY  
–40°C T +125°C  
BASED ON 200 OP AMPS  
V
V
= ±15V  
SY  
–40°C T +125°C  
A
A
BASED ON 200 OP AMPS  
–2  
0
2
4
6
8
10  
0
2
4
6
8
10  
TCV (µV/°C)  
OS  
TCV  
(µV/°C)  
OS  
Figure 6. Input Offset Voltage Drift Distribution  
Figure 9. Input Offset Voltage Drift Distribution  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
ADA4062-4 ONLY  
ADA4062-4 ONLY  
= ±5V  
–40°C T 125°C  
V
= ±15V  
V
SY  
SY  
–40°C T 125°C  
BASED ON 200 OP AMPS  
BASED ON 200 OP AMPS  
0
0
0
2
4
6
8
10  
12  
14  
16  
18  
2
4
6
8
10  
12  
14  
16  
18  
TCV (µV/°C)  
TCV (µV/°C)  
OS  
OS  
Figure 10. Input Offset Voltage Drift Distribution  
Figure 7. Input Offset Voltage Drift Distribution  
Rev. B | Page 6 of 20  
 
ADA4062-2/ADA4062-4  
5
4
5
4
V
= ±5V  
V
= ±15V  
SY  
SY  
3
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
–15 –12  
–9  
–6  
–3  
0
3
6
9
12  
15  
V
(V)  
V
(V)  
CM  
CM  
Figure 11. Input Offset Voltage vs. Common-Mode Voltage  
Figure 14. Input Offset Voltage vs. Common-Mode Voltage  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
V
SY  
= ±15V  
V
= ±5V  
SY  
1
1
0.1  
–50  
0.1  
–50  
–25  
0
25  
50  
75  
100  
125  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Input Bias Current vs. Temperature  
Figure 15. Input Bias Current vs. Temperature  
5
4
3
2
1
0
3
2
V
= ±15V  
V
= ±5V  
SY  
SY  
1
0
–1  
–2  
–12 –10 –8 –6 –4 –2  
0
2
4
6
8
10 12 14 16  
–3  
–2  
–1  
0
1
2
3
4
5
V
(V)  
V
(V)  
CM  
CM  
Figure 16. Input Bias Current vs. Common-Mode Voltage  
Figure 13. Input Bias Current vs. Common-Mode Voltage  
Rev. B | Page 7 of 20  
ADA4062-2/ADA4062-4  
10  
10  
V
= ±15V  
V
= ±5V  
SY  
SY  
V+ – V  
OH  
V+ – V  
OH  
1
1
V
– V–  
V
– V–  
OL  
OL  
0.1  
0.01  
0.1  
0.01  
0.1  
1
LOAD CURRENT (mA)  
10  
100  
0.1  
1
LOAD CURRENT (mA)  
10  
100  
Figure 17. Output Voltage to Supply Rail vs. Load Current  
Figure 20. Output Voltage to Supply Rail vs. Load Current  
220  
200  
+125°C  
200  
180  
160  
140  
120  
100  
80  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
+85°C  
V
= ±15V  
SY  
+25°C  
–40°C  
V
= ±5V  
SY  
60  
40  
20  
0
0
2
4
6
8
10  
12  
14  
16  
18  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
Figure 18. Supply Current/Amp vs. Supply Voltage  
Figure 21. Supply Current/Amp vs. Temperature  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
V
R
= ±15V  
V
R
= ±5V  
SY  
L
SY  
= 10kΩ  
= 10k  
L
V+ – V  
OH  
V+ – V  
OH  
V
– V–  
OL  
V
– V–  
OL  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 19. Output Voltage to Supply Rail vs. Temperature  
Figure 22. Output Voltage to Supply Rail vs. Temperature  
Rev. B | Page 8 of 20  
ADA4062-2/ADA4062-4  
120  
100  
80  
120  
100  
80  
120  
100  
80  
120  
V
= ±5V  
V
= ±15V  
SY  
SY  
PHASE  
100  
80  
PHASE  
60  
60  
60  
60  
40  
40  
40  
40  
GAIN  
GAIN  
20  
20  
20  
20  
0
0
0
0
–20  
–40  
–60  
–20  
–40  
–60  
–20  
–40  
–60  
–20  
–40  
–60  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. Open-Loop Gain and Phase vs. Frequency  
Figure 26. Open-Loop Gain and Phase vs. Frequency  
50  
50  
V
= ±5V  
V
= ±15V  
SY  
SY  
A
= +100  
= +10  
A
= +100  
= +10  
V
V
V
V
40  
30  
40  
30  
A
A
20  
20  
10  
10  
A
= +1  
A
= +1  
V
V
0
0
–10  
–20  
–10  
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 24. Closed-Loop Gain vs. Frequency  
Figure 27. Closed-Loop Gain vs. Frequency  
1000  
100  
10  
1000  
100  
10  
V
= ±5V  
V
= ±15V  
SY  
SY  
A
= +100  
= +10  
V
A
= +100  
= +10  
V
A
A
V
V
1
1
A
= +1  
V
A
= +1  
V
0.1  
100  
0.1  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 25. Output Impedance vs. Frequency  
Figure 28. Output Impedance vs. Frequency  
Rev. B | Page 9 of 20  
ADA4062-2/ADA4062-4  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±5V  
V
= ±15V  
SY  
SY  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 29. CMRR vs. Frequency  
Figure 32. CMRR vs. Frequency  
120  
140  
120  
100  
80  
V
= ±5V  
V
= ±15V  
SY  
SY  
100  
80  
60  
40  
20  
0
PSRR+  
60  
PSRR+  
40  
PSRR–  
PSRR–  
20  
0
–20  
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 30. PSRR vs. Frequency  
Figure 33. PSRR vs. Frequency  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
= ±5V  
V
= ±15V  
SY  
V
L
SY  
V
L
A
R
= +1  
A
R
= +1  
= 10k  
= 10kΩ  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
C
(pF)  
C
(pF)  
L
L
Figure 31. Small-Signal Overshoot vs. Load Capacitance  
Figure 34. Small-Signal Overshoot vs. Load Capacitance  
Rev. B | Page 10 of 20  
ADA4062-2/ADA4062-4  
V
V
A
R
C
= ±5V  
= 4V p-p  
= +1  
V
V
A
R
C
= ±15V  
= 20V p-p  
= +1  
SY  
IN  
SY  
IN  
V
L
L
V
L
L
= 10k  
= 100pF  
= 10kΩ  
= 100pF  
TIME (4µs/DIV)  
TIME (10µs/DIV)  
Figure 35. Large-Signal Transient Response  
Figure 38. Large-Signal Transient Response  
V
V
A
R
C
= ±5V  
V
V
A
R
C
= ±15V  
= 100mV p-p  
= +1  
SY  
IN  
V
L
L
SY  
IN  
= 100mV p-p  
= +1  
V
L
L
= 10kΩ  
= 100pF  
= 10kΩ  
= 100pF  
TIME (10µs/DIV)  
TIME (10µs/DIV)  
Figure 36. Small-Signal Transient Response  
Figure 39. Small-Signal Transient Response  
4
2
0
4
2
0
V
A
= ±15V  
= –10  
SY  
V
A
= ±5V  
= –10  
SY  
V
V
INPUT  
INPUT  
OUTPUT  
0
OUTPUT  
0
–5  
–2  
–4  
–6  
–10  
–15  
–20  
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 40. Negative Overload Recovery  
Figure 37. Negative Overload Recovery  
Rev. B | Page 11 of 20  
ADA4062-2/ADA4062-4  
2
2
0
V
A
= ±5V  
= –10  
V
= ±15V  
A = –10  
V
SY  
SY  
V
INPUT  
0
INPUT  
–2  
–2  
15  
10  
5
4
2
OUTPUT  
OUTPUT  
0
0
–2  
–5  
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 41. Positive Overload Recovery  
Figure 44. Positive Overload Recovery  
INPUT  
INPUT  
+20mV  
0V  
+100mV  
0V  
OUTPUT  
OUTPUT  
–20mV  
–100mV  
ERROR BAND  
ERROR BAND  
V
C
R
= ±5V  
= 100pF  
= 10kΩ  
V
C
R
= ±15V  
= 100pF  
= 10kΩ  
SY  
L
L
SY  
L
L
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 42. Positive Settling Time to 0.1%  
Figure 45. Positive Settling Time to 0.1%  
V
= ±5V  
= 100pF  
= 10kΩ  
V
C
R
= ±15V  
SY  
L
L
SY  
L
L
C
R
= 100pF  
INPUT  
INPUT  
= 10kΩ  
+20mV  
0V  
+100mV  
0V  
OUTPUT  
OUTPUT  
–20mV  
–100mV  
ERROR BAND  
ERROR BAND  
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 43. Negative Settling Time to 0.1%  
Figure 46. Negative Settling Time to 0.1%  
Rev. B | Page 12 of 20  
ADA4062-2/ADA4062-4  
1000  
100  
10  
1000  
100  
10  
V
= ±15V  
V
= ±5V  
SY  
SY  
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 47. Voltage Noise Density  
Figure 50. Voltage Noise Density  
V
= ±5V  
V
= ±15V  
SY  
SY  
TIME (1s/DIV)  
TIME (1s/DIV)  
Figure 48. 0.1 Hz to 10 Hz Noise  
Figure 51. 0.1 Hz to 10 Hz Noise  
0
–20  
0
–20  
V
V
R
= ±5V  
= 5V p-p  
= 10k  
V
V
R
= ±15V  
= 10V p-p  
= 10kꢀ  
SY  
100kꢀ  
100kꢀ  
SY  
IN  
IN  
1kꢀ  
1kꢀ  
L
L
ADA4062-2 ONLY  
ADA4062-2 ONLY  
–40  
–40  
R
R
L
L
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
100  
1k  
10k  
100k  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
FREQUENCY (Hz)  
Figure 49. Channel Separation vs. Frequency (ADA4062-2 Only)  
Figure 52. Channel Separation vs. Frequency (ADA4062-2 Only)  
Rev. B | Page 13 of 20  
ADA4062-2/ADA4062-4  
0
–20  
0
V
V
R
= ±5V  
= 5V p-p  
= 10kꢀ  
V
V
R
= ±15V  
= 10V p-p  
= 10kꢀ  
100kꢀ  
SY  
100kꢀ  
SY  
IN  
IN  
1kꢀ  
1kꢀ  
–20  
–40  
L
L
ADA4062-4 ONLY  
ADA4062-4 ONLY  
–40  
R
R
L
L
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 56. Channel Separation vs. Frequency (ADA4062-4 Only)  
Figure 53. Channel Separation vs. Frequency (ADA4062-4 Only)  
100  
10  
V
= ±5V  
S
f = 1kHz  
= 10kꢀ  
R
L
10  
1
1
0.1  
0.1  
0.01  
0.01  
V
= ±15V  
S
f = 1kHz  
= 10kꢀ  
R
L
0.001  
0.001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
AMPLITUDE (V rms)  
AMPLITUDE (V rms)  
Figure 57 THD + N vs. Amplitude  
Figure 54. THD + N vs. Amplitude  
1
1
V
V
R
= ±5V  
= 0.5V rms  
= 10kꢀ  
V
V
R
= ±15V  
SY  
IN  
S
= 2V rms  
IN  
L
= 10kꢀ  
L
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 58. THD + N vs. Frequency  
Figure 55. THD + N vs. Frequency  
Rev. B | Page 14 of 20  
ADA4062-2/ADA4062-4  
APPLICATIONS INFORMATION  
NOTCH FILTER  
HIGH-SIDE SIGNAL CONDITIONING  
Many applications require the sensing of signals near the positive  
rail. The ADA4062-x can be used in high-side current sensing  
applications. Figure 61 shows a high-side signal conditioning  
circuit using the ADA4062-x. The ADA4062-x has an input  
common-mode range that includes the positive supply (−11.5 V ≤  
A notch filter rejects a specific interfering frequency and can be  
implemented using a single op amp. Figure 59 shows a 60 Hz  
notch filter that uses the twin-T network with the ADA4062-x  
configured as a voltage follower. The ADA4062-x works as a buffer  
that provides high input resistance and low output impedance.  
The low bias current (2 pA typical) and high input resistance  
(10 TΩ typical) of the ADA4062-x enable large resistors and small  
capacitors to be used.  
VCM ≤ +15 V). In the circuit, the voltage drop across a low value  
resistor, such as the 0.1 Ω shown in Figure 61, is amplified by a  
factor of 5 using the ADA4062-x.  
0.1  
+15V  
Alternatively, different combinations of resistor and capacitor  
values can be used to achieve the desired notch frequency.  
However, the major drawback to this circuit topology is the  
need to ensure that all the resistors and capacitors be closely  
matched. If they are not closely matched, the notch frequency  
offset and drift cause the circuit to attenuate at a frequency  
other than the ideal notch frequency.  
500kꢀ  
R
V
L
100kꢀ  
+15V  
100kꢀ  
500kꢀ  
O
ADA4062-x  
–15V  
Figure 61. High-Side Signal Conditioning  
Therefore, to achieve the desired performance, 1% or better  
component tolerances are usually required. In addition, a notch  
filter requires an op amp with a bandwidth of at least 100× to  
200× the center frequency. Hence, using the ADA4062-x with  
a bandwidth of 1.4 MHz is excellent for a 60 Hz notch filter.  
Figure 60 shows the frequency response of the notch filter. At  
60 Hz, the notch filter has about 50 dB attenuation of signal.  
MICROPOWER INSTRUMENTATION AMPLIFIER  
The ADA4062-2 is a dual amplifier and is perfectly suited for  
applications that require lower supply currents. For supply  
voltages of 15 V, the supply current per amplifier is 165 μA  
typical. The ADA4062-2 also offers a typical low offset voltage  
drift of 5 μV/°C and a very low bias current of 2 pA, which  
make it well suited for instrumentation amplifiers.  
+V  
SY  
Figure 62 shows the classic 2-op-amp instrumentation amplifier  
with four resistors using the ADA4062-2. The key to high CMRR  
for this instrumentation amplifier are resistors that are well  
matched to both the resistive ratio and relative drift. For true  
difference amplification, matching of the resistor ratio is very  
important, where R3/R4 = R1/R2. Assuming perfectly matched  
resistors, the gain of the circuit is 1 + R2/R1, which is approximately  
100. Tighter matching of two op amps in one package, as is the  
case with the ADA4062-2, offers a significant boost in performance  
over the classical 3-op-amp configuration. Overall, the circuit only  
requires about 330 μA of supply current.  
R1  
R2  
V
O
804k  
804kꢀ  
IN  
ADA4062-x  
C3  
6.6nF  
–V  
R3  
SY  
402kꢀ  
C1  
3.3nF  
C2  
3.3nF  
1
fO  
=
2π R  
C
1
1
R1 = R2 = 2R3  
C3  
C1 = C2 =  
2
R3  
10.1kꢀ  
Figure 59. Notch Filter Circuit  
R2  
1Mꢀ  
20  
10  
+15V  
R4  
+15V  
1Mꢀ  
R1  
10.1kꢀ  
1/2  
0
V
1/2  
O
ADA4062-2  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
ADA4062-2  
–15V  
V1  
V2  
–15V  
V
= 100(V2 – V1)  
TYPICAL: 0.5mV < V2 – V1< 135mV  
TYPICAL: –13.8V < V < +13.5V  
USE MATCHED RESISTORS  
O
O
Figure 62. Micropower Instrumentation Amplifier  
10  
100  
1k  
FREQUENCY (Hz)  
Figure 60. Frequency Response of the Notch Filter  
Rev. B | Page 15 of 20  
 
 
 
 
 
ADA4062-2/ADA4062-4  
V
PHASE REVERSAL  
IN  
V
= ±15V  
SY  
Phase reversal occurs in some amplifiers when the input common-  
mode voltage range is exceeded. When the voltage driving the  
input to these amplifiers exceeds the maximum input common-  
mode voltage range, the output of the amplifiers changes polarity.  
Most JFET input amplifiers have phase reversal if either input  
exceeds the input common-mode range.  
V
OUT  
For the ADA4062-x, the output does not phase reverse if one  
or both of the inputs exceeds the input voltage range but remains  
within the positive supply rail and 0.5 V above the negative  
supply rail. In other words, for an application with a supply  
voltage of 15 V, the input voltage can be as high as +15 V  
without any output phase reversal. However, when the voltage  
of the inputs is driven beyond −14.5 V, phase reversal occurs  
due to saturation of the input stage leading to forward biasing  
of the gate-drain diode. Phase reversal in ADA4062-x can be  
prevented by using a Schottky diode to clamp the input terminals  
to each other. In the simple buffer circuit in Figure 63, D1  
protects the op amp against phase reversal, and R limits the  
input current that flows into the op amp.  
TIME (40µs/DIV)  
Figure 64. No Phase Reversal  
+V  
SY  
R
10kꢀ  
D1  
IN5711  
V
O
ADA4062-x  
–V  
SY  
Figure 63. Phase Reversal Solution Circuit  
Rev. B | Page 16 of 20  
 
 
ADA4062-2/ADA4062-4  
SCHEMATIC  
V+  
OUT  
–IN  
+IN  
V–  
Figure 65. Simplified Schematic of the ADA4062-x  
Rev. B | Page 17 of 20  
 
ADA4062-2/ADA4062-4  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 66. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 67. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
0.55  
0.40  
0.30  
0.20 DIA  
TYP  
1.30  
PIN 1  
IDENTIFIER  
9
1
4
1.60  
0.35  
0.30  
0.25  
0.40  
BSC  
6
BOTTOM VIEW  
TOP VIEW  
0.20 BSC  
0.60  
0.55  
0.50  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
Figure 68. 10-Lead Lead Frame Chip Scale Package [LFCSP_UQ]  
1.30 mm × 1.60 mm, Body, Ultra Thin Quad  
(CP-10-10)  
Dimensions shown in millimeters  
Rev. B | Page 18 of 20  
 
ADA4062-2/ADA4062-4  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
0.60  
0.45  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 69. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
3.10  
3.00 SQ  
2.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.50  
BSC  
1
4
12  
EXPOSED  
PAD  
1.75  
1.60 SQ  
1.45  
9
8
5
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.  
Figure 70. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
3 mm × 3 mm Body, Very Very Thin Quad  
(CP-16-22)  
Dimensions shown in millimeters  
Rev. B | Page 19 of 20  
ADA4062-2/ADA4062-4  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
Package Option  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
Branding  
A25  
A25  
ADA4062-2ARMZ  
ADA4062-2ARMZ-RL  
ADA4062-2ARMZ-RL7  
ADA4062-2ARZ  
ADA4062-2ARZ-R7  
ADA4062-2ARZ-RL  
ADA4062-2BRZ  
ADA4062-2BRZ-R7  
ADA4062-2BRZ-RL  
ADA4062-2ACPZ-R2  
ADA4062-2ACPZ-RL  
ADA4062-2ACPZ-R7  
ADA4062-4ARUZ  
ADA4062-4ARUZ-RL  
ADA4062-4ACPZ-R2  
ADA4062-4ACPZ-R7  
ADA4062-4ACPZ-RL  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
A25  
8-Lead SOIC_N  
R-8  
10-Lead LFCSP_UQ  
10-Lead LFCSP_UQ  
10-Lead LFCSP_UQ  
14-Lead TSSOP  
CP-10-10  
CP-10-10  
CP-10-10  
RU-14  
RU-14  
CP-16-22  
CP-16-22  
CP-16-22  
J
J
J
14-Lead TSSOP  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
A2K  
A2K  
A2K  
1 Z = RoHS Compliant Part.  
©2008–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07670-0-2/10(B)  
Rev. B | Page 20 of 20  
 
 

相关型号:

ADA4062-2ARZ

Tiny, Low Power JFET-Input Op Amp
ADI

ADA4062-2ARZ

DUAL OP-AMP, 5000 uV OFFSET-MAX, 1.4 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

ADA4062-2ARZ-R7

Tiny, Low Power JFET-Input Op Amp
ADI

ADA4062-2ARZ-R7

DUAL OP-AMP, 5000 uV OFFSET-MAX, 1.4 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

ADA4062-2ARZ-RL

Tiny, Low Power JFET-Input Op Amp
ADI

ADA4062-2ARZ-RL

DUAL OP-AMP, 5000 uV OFFSET-MAX, 1.4 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

ADA4062-2B

Operational Amplifiers Selection Guide
ADI

ADA4062-2BRZ

Tiny, Low Power JFET-Input Op Amp
ADI

ADA4062-2BRZ

DUAL OP-AMP, 3000 uV OFFSET-MAX, 1.4 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

ADA4062-2BRZ-R7

Tiny, Low Power JFET-Input Op Amp
ADI

ADA4062-2BRZ-RL

Tiny, Low Power JFET-Input Op Amp
ADI

ADA4062-4

22 μA, RRIO, CMOS, 18 V
ADI