ADA4075-2ACPZ-RL [ADI]

Ultralow Noise Amplifier at Lower Power; 超低噪声放大器的低功耗
ADA4075-2ACPZ-RL
型号: ADA4075-2ACPZ-RL
厂家: ADI    ADI
描述:

Ultralow Noise Amplifier at Lower Power
超低噪声放大器的低功耗

运算放大器 放大器电路 光电二极管 PC
文件: 总24页 (文件大小:1576K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Noise Amplifier at Lower Power  
Data Sheet  
ADA4075-2  
FEATURES  
PIN CONFIGURATIONS  
Ultralow noise: 2.8 nV/√Hz at 1 kHz typical  
Ultralow distortion: 0.0002% typical  
Low supply current: 1.8 mA per amplifier typical  
Offset voltage: 1 mV maximum  
OUTA  
–INA  
+INA  
V–  
1
2
3
4
8
7
6
5
V+  
ADA4075-2  
TOP VIEW  
(Not to Scale)  
OUTB  
–INB  
+INB  
Bandwidth: 6.5 MHz typical  
Slew rate: 12 V/μs typical  
Dual-supply operation: 4.5 V to 18 V  
Unity-gain stable  
Figure 1. 8-Lead SOIC  
Extended industrial temperature range  
8-lead SOIC and 2 mm × 2 mm LFCSP packages  
OUTA  
1
8
V+  
ADA4075-2  
TOP VIEW  
(Not to Scale)  
–INA  
+INA  
V–  
2
3
4
7
6
5
OUTB  
–INB  
+INB  
APPLICATIONS  
Precision instrumentation  
Professional audio  
Active filters  
Figure 2. 8-Lead, 2 mm × 2 mm LFCSP  
Low noise amplifier front end  
Integrators  
GENERAL DESCRIPTION  
Table 1. Low Noise Precision Op Amps  
The ADA4075-2 is a dual, high performance, low noise operational  
amplifier combining excellent dc and ac characteristics on the  
Analog Devices, Inc., iPolar® process. The iPolar process is an  
advanced bipolar technology implementing vertical junction  
isolation with lateral trench isolation. This allows for low noise  
performance amplifiers in smaller die size at faster speed and  
lower power. Its high slew rate, low distortion, and ultralow  
noise make the ADA4075-2 ideal for high fidelity audio and  
high performance instrumentation applications. It is also  
especially useful for lower power demands, small enclosures,  
and high density applications. The ADA4075-2 is specified for  
the −40°C to +125°C temperature range and is available in a  
standard SOIC package and a 2 mm × 2 mm LFCSP package.  
Supply 44 V  
36 V  
12 V to 16 V  
AD8665  
OP162  
5 V  
Single  
OP27  
AD8671  
AD8675  
AD8597  
ADA4004-1  
AD797  
AD8605  
AD8655  
AD8691  
Dual  
OP275  
AD8672  
AD8676  
AD8599  
ADA4004-2  
AD8674  
ADA4004-4  
AD8666  
OP262  
AD8606  
AD8656  
AD8692  
Quad  
AD8668  
OP462  
AD8608  
AD8694  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2008–2011 Analog Devices, Inc. All rights reserved.  
 
ADA4075-2  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications Information.............................................................. 16  
Input Protection ......................................................................... 16  
Total Harmonic Distortion ....................................................... 16  
Phase Reversal ............................................................................ 16  
DAC Output Filter...................................................................... 17  
Balanced Line Driver................................................................. 18  
Balanced Line Receiver.............................................................. 19  
Low Noise Parametric Equalizer.............................................. 20  
Schematic......................................................................................... 21  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
Power Sequencing ........................................................................ 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
REVISION HISTORY  
12/11—Rev. A to Rev. B  
Changes to Features Section............................................................ 1  
8/09—Rev. 0 to Rev. A  
Added 8-Lead LFCSP_WD...............................................Universal  
Changes to Table 1............................................................................ 1  
Changes to Table 2............................................................................ 3  
Changes to Table 3............................................................................ 4  
Changes to Table 4 and Table 5....................................................... 5  
Changes to Figure 3, Figure 5, Figure 6, and Figure 8 ................. 6  
Added Figure 4 and Figure 7; Renumbered Sequentially ........... 6  
Added Figure 9 and Figure 12......................................................... 7  
Changes to Figure 10, Figure 11, Figure 13, and Figure 14......... 7  
Changes to Figure 16, Figure 17, Figure 19, and Figure 20......... 8  
Changes to Figure 22 and Figure 25............................................... 9  
Changes to Figure 36...................................................................... 11  
Changes to Figure 54...................................................................... 14  
Changes to and Moved Figure 57 and Figure 60 to ................... 15  
Changes to Figure 59 and Figure 62............................................. 15  
Changes to Input Protection Section and Phase  
Reversal Section.............................................................................. 16  
Changes to DAC Output Filter Section ....................................... 17  
Changes to Figure 67...................................................................... 18  
Updated Outline Dimensions....................................................... 22  
Changes to Ordering Guide .......................................................... 22  
10/08—Revision 0: Initial Version  
Rev. B | Page 2 of 24  
 
Data Sheet  
ADA4075-2  
SPECIFICATIONS  
VSY = ±±1 V, VCM = 0 V, TA = 21°C, SOIC package, unless otherwise noted.  
Table 2.  
Parameter  
INPUT CHARACTERISTICS  
Offset Voltage  
Symbol  
Conditions  
Min  
Typ  
0.2  
30  
5
Max  
Unit  
VOS  
IB  
1
mV  
mV  
nA  
nA  
nA  
nA  
V
dB  
dB  
dB  
dB  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
1.2  
100  
150  
50  
75  
+12.5  
Input Bias Current  
Input Offset Current  
IOS  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
VCM = −12.5 V to +12.5 V  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ, VO = −11 V to +11 V  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
−12.5  
110  
106  
114  
108  
112  
106  
CMRR  
AVO  
118  
117  
117  
Large Signal Voltage Gain  
RL = 600 Ω, VO = −10 V to +10 V  
−40°C ≤ TA ≤ +125°C  
dB  
dB  
Offset Voltage Drift  
∆VOS/∆T  
RINDM  
RINCM  
CINDM  
CINCM  
−40°C ≤ TA ≤ +125°C  
0.3  
1.5  
500  
2.4  
2.1  
μV/°C  
MΩ  
MΩ  
pF  
Input Resistance, Differential Mode  
Input Resistance, Common Mode  
Input Capacitance, Differential Mode  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
pF  
VOH  
RL = 2 kΩ to GND  
12.8  
12.5  
12.4  
12  
15  
14  
13  
V
V
V
V
V
V
V
V
−40°C ≤ TA ≤ +125°C  
RL = 600 Ω to GND  
−40°C ≤ TA ≤ +125°C  
12.8  
15.8  
−14  
VSY  
=
18 V, RL = 600 Ω to GND  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 600 Ω to GND  
−40°C ≤ TA ≤ +125°C  
Output Voltage Low  
VOL  
−13.6  
−13  
−13  
−12.5  
−16  
−13.6  
−16.6  
V
V
V
VSY  
=
18 V, RL = 600 Ω to GND  
−40°C ≤ TA ≤ +125°C  
−15  
V
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
40  
0.1  
mA  
Ω
f = 1 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY  
−40°C ≤ TA ≤ +125°C  
VSY 4.5 V to 18 V, IO = 0 mA  
=
4.5 V to 18 V  
106  
100  
110  
1.8  
dB  
dB  
mA  
mA  
Supply Current per Amplifier  
=
2.25  
3.35  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
GBP  
ΦM  
RL = 2 kΩ, AV = 1  
12  
3
6.5  
60  
V/μs  
μs  
MHz  
Degrees  
To 0.01%, VIN = 10 V step, RL = 1 kΩ  
RL = 1 MΩ, CL = 35 pF, AV = 1  
RL = 1 MΩ, CL = 35 pF, AV = 1  
THD + NOISE  
Total Harmonic Distortion and Noise  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
THD + N  
RL = 2 kΩ, AV = 1, VIN = 3 V rms, f = 1 kHz  
0.0002  
%
en p-p  
en  
in  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
60  
2.8  
1.2  
nV p-p  
nV/√Hz  
pA/√Hz  
Rev. B | Page 3 of 24  
 
ADA4075-2  
Data Sheet  
VSY = ±±1 V, VCM = 0 V, TA = 21°C, LFCSP package, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
0.3  
30  
5
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
1
mV  
mV  
nA  
nA  
nA  
nA  
V
dB  
dB  
dB  
dB  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
1.5  
100  
150  
50  
75  
+12.5  
Input Bias Current  
Input Offset Current  
IOS  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
VCM = −12.5 V to +12.5 V  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ, VO = −11 V to +11 V  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
−12.5  
110  
106  
110  
102  
108  
100  
CMRR  
AVO  
116  
117  
117  
Large Signal Voltage Gain  
RL = 600 Ω, VO = −10 V to +10 V  
−40°C ≤ TA ≤ +125°C  
dB  
dB  
Offset Voltage Drift  
∆VOS/∆T  
RINDM  
RINCM  
CINDM  
CINCM  
−40°C ≤ TA ≤ +125°C  
3
μV/°C  
MΩ  
MΩ  
pF  
Input Resistance, Differential Mode  
Input Resistance, Common Mode  
Input Capacitance, Differential Mode  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
1.5  
500  
2.4  
2.1  
pF  
VOH  
RL = 2 kΩ to GND  
12.8  
12.5  
12.4  
12  
15  
14  
13  
V
V
V
V
V
V
V
V
−40°C ≤ TA ≤ +125°C  
RL = 600 Ω to GND  
−40°C ≤ TA ≤ +125°C  
12.8  
15.8  
−14  
VSY  
=
18 V, RL = 600 Ω to GND  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 600 Ω to GND  
−40°C ≤ TA ≤ +125°C  
Output Voltage Low  
VOL  
−13.6  
−13  
−13  
−12.5  
−16  
−13.6  
−16.6  
V
V
V
VSY  
=
18 V, RL = 600 Ω to GND  
−40°C ≤ TA ≤ +125°C  
−15  
V
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
40  
0.1  
mA  
Ω
f = 1 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY  
−40°C ≤ TA ≤ +125°C  
VSY 4.5 V to 18 V, IO = 0 mA  
=
4.5 V to 18 V  
100  
95  
104  
1.8  
dB  
dB  
mA  
mA  
Supply Current per Amplifier  
=
2.25  
3.35  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
GBP  
ΦM  
RL = 2 kΩ, AV = 1  
12  
3
6.5  
60  
V/μs  
μs  
MHz  
Degrees  
To 0.01%, VIN = 10 V step, RL = 1 kΩ  
RL = 1 MΩ, CL = 35 pF, AV = 1  
RL = 1 MΩ, CL = 35 pF, AV = 1  
THD + NOISE  
Total Harmonic Distortion and Noise  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
THD + N  
RL = 2 kΩ, AV = 1, VIN = 3 V rms, f = 1 kHz  
0.0002  
%
en p-p  
en  
in  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
60  
2.8  
1.2  
nV p-p  
nV/√Hz  
pA/√Hz  
Rev. B | Page 4 of 24  
Data Sheet  
ADA4075-2  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages. This  
was measured using a standard 4-layer board.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
Input Current1  
Differential Input Voltage  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
20 V  
VSY  
10 mA  
1.2 V  
Indefinite  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
Table 5. Thermal Resistance  
Package Type  
θJA  
θJC  
43  
40  
Unit  
°C/W  
°C/W  
8-Lead SOIC  
8-Lead LFCSP  
158  
115  
POWER SEQUENCING  
Lead Temperature (Soldering, 60 sec) 300°C  
The op amp supplies must be established simultaneously with,  
or before, any input signals that are applied. If this is not possible,  
limit the input current to 10 mA.  
1 The input pins have clamp diodes to the power supply pins.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. B | Page 5 of 24  
 
ADA4075-2  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
250  
200  
150  
100  
50  
250  
V
V
= ±5V  
= 0V  
V
V
= ±15V  
= 0V  
SY  
SY  
CM  
CM  
BASED ON 600 OP AMPS  
SOIC PACKAGE  
BASED ON 600 OP AMPS  
SOIC PACKAGE  
200  
150  
100  
50  
0
0
–1.0  
–0.5  
0
0.5  
1.0  
–1.0  
–0.5  
0
0.5  
1.0  
1.0  
2.0  
V
(mV)  
V
(mV)  
OS  
OS  
Figure 3. Input Offset Voltage Distribution  
Figure 6. Input Offset Voltage Distribution  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
V
V
= ±15V  
= 0V  
V
V
= ±5V  
= 0V  
SY  
SY  
CM  
CM  
BASED ON 300 OP AMPS  
LFCSP PACKAGE  
BASED ON 300 OP AMPS  
LFCSP PACKAGE  
–1.0  
–0.5  
0
0.5  
–1.0  
–0.5  
0
0.5  
1.0  
V
(mV)  
V
(mV)  
OS  
OS  
Figure 4. Input Offset Voltage Distribution  
Figure 7. Input Offset Voltage Distribution  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
V
= ±15V  
V
= ±5V  
SY  
SY  
–40°C T +125°C  
–40°C T +125°C  
A
A
BASED ON 200 OP AMPS  
SOIC PACKAGE  
BASED ON 200 OP AMPS  
SOIC PACKAGE  
–2.0 –1.6 –1.2 –0.8 –0.4  
0
0.4  
0.8  
1.2  
1.6  
2.0  
–2.0 –1.6 –1.2 –0.8 –0.4  
0
0.4  
0.8  
1.2  
1.6  
TCV (μV/°C)  
TCV (μV/°C)  
OS  
OS  
Figure 8. Input Offset Voltage Drift Distribution  
Figure 5. Input Offset Voltage Drift Distribution  
Rev. B | Page 6 of 24  
 
Data Sheet  
ADA4075-2  
40  
40  
V
V
= ±15V  
= 0V  
V
V
= ±5V  
= 0V  
SY  
SY  
CM  
CM  
35  
30  
25  
20  
35  
30  
25  
20  
BASED ON 300 OP AMPS  
LFCSP PACKAGE  
BASED ON 300 OP AMPS  
LFCSP PACKAGE  
15  
10  
5
15  
10  
5
0
0
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
TCV (µV/°C)  
OS  
TCV (µV/°C)  
OS  
Figure 9. Input Offset Voltage Drift Distribution  
Figure 12. Input Offset Voltage Drift Distribution  
300  
200  
100  
0
300  
200  
100  
0
V
= ±15V  
SY  
BASED ON 60 OP AMPS  
V
= ±5V  
SY  
BASED ON 60 OP AMPS  
–100  
–200  
–300  
–100  
–200  
–300  
–15  
–10  
–5  
0
5
10  
15  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
V
(V)  
CM  
V
(V)  
CM  
Figure 10. Input Offset Voltage vs. Common-Mode Voltage  
Figure 13. Input Offset Voltage vs. Common-Mode Voltage  
80  
100  
80  
60  
40  
20  
0
V
= ±15V  
V
= ±5V  
SY  
SY  
60  
40  
20  
0
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Input Bias Current vs. Temperature  
Figure 14. Input Bias Current vs. Temperature  
Rev. B | Page 7 of 24  
ADA4075-2  
Data Sheet  
60  
60  
50  
40  
30  
20  
10  
0
V
= ±15V  
V
= ±5V  
SY  
SY  
50  
40  
30  
20  
10  
0
–15  
–10  
–5  
0
5
10  
15  
–4  
–3  
–2  
–1  
0
1
2
3
4
V
(V)  
V
(V)  
CM  
CM  
Figure 15. Input Bias Current vs. Input Common-Mode Voltage  
Figure 18. Input Bias Current vs. Input Common-Mode Voltage  
10  
10  
V
= ±15V  
SY  
V
= ±5V  
SY  
V+ – V  
OH  
V+ – V  
OH  
1
1
V
– V–  
V
– V–  
OL  
OL  
0.1  
0.001  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 16. Output Voltage to Supply Rail vs. Load Current  
Figure 19. Output Voltage to Supply Rail vs. Load Current  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
V
R
= ±15V  
= 2kΩ  
SY  
V
R
= ±5V  
SY  
= 2k  
L
V+ – V  
OH  
L
V+ – V  
OH  
V
– V–  
OL  
V
– V–  
OL  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Output Voltage to Supply Rail vs. Temperature  
Figure 20. Output Voltage to Supply Rail vs. Temperature  
Rev. B | Page 8 of 24  
Data Sheet  
ADA4075-2  
140  
120  
100  
80  
140  
120  
100  
80  
140  
120  
100  
80  
140  
V
= ±15V  
V
= ±5V  
SY  
SY  
120  
100  
80  
PHASE  
PHASE  
60  
60  
60  
60  
GAIN  
40  
40  
40  
40  
20  
20  
20  
20  
GAIN  
0
0
0
0
–20  
–40  
–60  
–80  
–100  
–20  
–40  
–60  
–80  
–100  
–20  
–40  
–60  
–80  
–100  
–20  
–40  
–60  
–80  
–100  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. Open-Loop Gain and Phase vs. Frequency  
Figure 24. Open-Loop Gain and Phase vs. Frequency  
50  
50  
V
= ±15V  
V
= ±5V  
SY  
SY  
A
= +100  
= +10  
A
= +100  
= +10  
V
V
V
V
40  
30  
40  
30  
A
A
20  
20  
10  
10  
A
= +1  
A
= +1  
V
V
0
0
–10  
–20  
–10  
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. Closed-Loop Gain vs. Frequency  
Figure 25. Closed-Loop Gain vs. Frequency  
1k  
100  
10  
1k  
100  
10  
V
= ±15V  
V
= ±5V  
SY  
SY  
A
= +10  
A
= +10  
V
V
A
= +100  
A
= +100  
V
V
A
= +1  
V
A
= +1  
V
1
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 26. Output Impedance vs. Frequency  
Figure 23. Output Impedance vs. Frequency  
Rev. B | Page 9 of 24  
ADA4075-2  
Data Sheet  
140  
120  
100  
80  
140  
120  
100  
80  
V
= ±15V  
V
= ±5V  
SY  
SY  
60  
60  
40  
40  
20  
20  
0
100  
0
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 30. CMRR vs. Frequency  
Figure 27. CMRR vs. Frequency  
120  
100  
80  
120  
100  
80  
V
= ±15V  
V
= ±5V  
SY  
SY  
60  
60  
PSRR–  
PSRR+  
PSRR–  
PSRR+  
40  
40  
20  
20  
0
0
–20  
10  
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 31. PSRR vs. Frequency  
Figure 28. PSRR vs. Frequency  
40  
35  
30  
25  
20  
15  
10  
5
40  
V
A
R
= ±5V  
V
A
R
= ±15V  
SY  
V
L
SY  
V
L
= +1  
= +1  
= 2k  
35  
30  
25  
20  
15  
10  
5
= 2k  
0
10  
0
10  
100  
1000  
100  
1000  
CAPACITANCE (pF)  
CAPACITANCE (pF)  
Figure 32. Small Signal Overshoot vs. Load Capacitance  
Figure 29. Small Signal Overshoot vs. Load Capacitance  
Rev. B | Page 10 of 24  
Data Sheet  
ADA4075-2  
V
V
A
R
C
= ±5V  
V
V
A
R
C
= ±15V  
= 20V p-p  
= +1  
SY  
IN  
V
L
L
SY  
IN  
= 7V p-p  
= +1  
V
L
L
= 2kΩ  
= 100pF  
= 2kΩ  
= 100pF  
0V  
0V  
TIME (4µs/DIV)  
TIME (4µs/DIV)  
Figure 33. Large Signal Transient Response  
Figure 36. Large Signal Transient Response  
V
V
A
R
C
= ±15V  
= 100mV p-p  
= +1  
SY  
IN  
V
V
A
R
C
= ±5V  
SY  
IN  
V
L
L
= 100mV p-p  
= +1  
V
L
L
= 2kΩ  
= 100pF  
= 2k  
= 100pF  
0V  
0V  
TIME (10µs/DIV)  
TIME (10µs/DIV)  
Figure 34. Small Signal Transient Response  
Figure 37. Small Signal Transient Response  
4
2
0
4
2
0
V
= ±15V  
V
= ±5V  
SY  
SY  
INPUT  
INPUT  
OUTPUT  
OUTPUT  
0
0
–5  
–2  
–4  
–6  
–8  
–10  
–15  
–20  
TIME (1µs/DIV)  
TIME (1µs/DIV)  
Figure 35. Negative Overload Recovery  
Figure 38. Negative Overload Recovery  
Rev. B | Page 11 of 24  
ADA4075-2  
Data Sheet  
4
2
4
V
= ±5V  
V
= ±15V  
SY  
SY  
2
INPUT  
INPUT  
0
0
–2  
–2  
15  
10  
5
4
2
OUTPUT  
OUTPUT  
0
0
–2  
–4  
–5  
–10  
TIME (1µs/DIV)  
TIME (1µs/DIV)  
Figure 42. Positive Overload Recovery  
Figure 39. Positive Overload Recovery  
V
= ±5V  
V
= ±15V  
SY  
SY  
INPUT  
INPUT  
+6mV  
+10mV  
OUTPUT  
OUTPUT  
0V  
0V  
ERROR BAND  
ERROR BAND  
–10mV  
–6mV  
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 43. Positive Settling Time to 0.01%  
Figure 40. Positive Settling Time to 0.01%  
V
= ±5V  
V
= ±15V  
SY  
SY  
INPUT  
INPUT  
+6mV  
+10mV  
0V  
ERROR BAND  
OUTPUT  
OUTPUT  
0V  
ERROR BAND  
–10mV  
–6mV  
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 44. Negative Settling Time to 0.01%  
Figure 41. Negative Settling Time to 0.01%  
Rev. B | Page 12 of 24  
Data Sheet  
ADA4075-2  
10  
10  
V
= ±15V  
V
= ±5V  
SY  
SY  
1
1
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 45. Voltage Noise Density  
Figure 48. Voltage Noise Density  
10  
10  
V
= ±5V  
R
V
= ±15V  
R
SY  
S1  
SY  
S1  
R
R
S2  
S2  
UNCORRELATED  
= 0ꢀ  
UNCORRELATED  
= 0  
R
R
S1  
S1  
1
1
CORRELATED  
= R  
CORRELATED  
= R  
R
R
S1  
S2  
S1  
S2  
0.1  
0.1  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 49. Current Noise Density  
Figure 46. Current Noise Density  
V
= ±5V  
V
= ±15V  
SY  
SY  
TIME (1s/DIV)  
TIME (1s/DIV)  
Figure 47. 0.1 Hz to 10 Hz Noise  
Figure 50. 0.1 Hz to 10 Hz Noise  
Rev. B | Page 13 of 24  
ADA4075-2  
Data Sheet  
8
6
5
4
3
2
1
0
6
V
= ±15V  
= ±5V  
SY  
+125°C  
+85°C  
V
SY  
4
2
0
+25°C  
–40°C  
4
6
8
10  
12  
14  
16  
18  
–50  
–25  
0
25  
50  
75  
100  
125  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
Figure 54. Supply Current vs. Temperature  
Figure 51. Supply Current vs. Supply Voltage  
10  
1
10  
1
V
= ±5V  
V
= ±15V  
SY  
SY  
f = 1kHz  
f = 1kHz  
0.1  
0.1  
0.01  
0.01  
0.001  
0.0001  
0.00001  
600  
0.001  
0.0001  
0.00001  
600ꢀ  
2kꢀ  
2kꢀ  
0.0001  
0.001  
0.01  
0.1  
1
10  
0.0001  
0.001  
0.01  
0.1  
1
10  
AMPLITUDE (V rms)  
AMPLITUDE (V rms)  
Figure 52. THD + Noise vs. Amplitude  
Figure 55. THD + Noise vs. Amplitude  
1
0.1  
1
0.1  
V
IN  
= ±15V  
= 3V rms  
V
V
= ±5V  
= 1.5V rms  
SY  
SY  
V
IN  
0.01  
0.01  
600ꢀ  
0.001  
0.0001  
0.001  
600ꢀ  
2kꢀ  
2kꢀ  
0.0001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 53. THD + Noise vs. Frequency  
Figure 56. THD + Noise vs. Frequency  
Rev. B | Page 14 of 24  
 
Data Sheet  
ADA4075-2  
0
0
–20  
V
V
R
= ±15V  
= 10V p-p  
= 2kꢀ  
V
V
R
= ±5V  
= 5V p-p  
= 2kꢀ  
100kꢀ  
SY  
IN  
SY  
IN  
100kꢀ  
1kꢀ  
1kꢀ  
–20  
L
L
–40  
–40  
R
R
L
L
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
–140  
–140  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
Figure 57. Channel Separation vs. Frequency  
Figure 60. Channel Separation vs. Frequency  
10  
1
1
0.1  
V
IN  
= ±18V  
= 8V rms  
V
= ±18V  
SY  
SY  
V
f = 1kHz  
0.1  
0.01  
0.01  
0.001  
0.0001  
0.00001  
0.001  
0.0001  
0.00001  
600ꢀ  
600ꢀ  
2kꢀ  
2kꢀ  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
10  
100  
1k  
10k  
100k  
AMPLITUDE (V rms)  
FREQUENCY (Hz)  
Figure 61. THD + Noise vs. Frequency  
Figure 58. THD + Noise vs. Amplitude  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= ±18V  
SY  
V
R
= ±18V  
= 2kꢀ  
SY  
L
V+ – V  
OH  
V+ – V  
OH  
1
V
– V–  
OL  
V
– V–  
OL  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
–50  
–25  
0
25  
50  
75  
100  
125  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 59. Output Voltage to Supply Rail vs. Temperature  
Figure 62. Output Voltage to Supply Rail vs. Load Current  
Rev. B | Page 15 of 24  
 
ADA4075-2  
Data Sheet  
APPLICATIONS INFORMATION  
1
0.1  
INPUT PROTECTION  
To prevent base-emitter junction breakdown from occurring in  
the input stage of the ADA4075-2 when a very large differential  
voltage is applied, the inputs are clamped by the internal diodes  
to 1.2 . To preserve the ultralow voltage noise feature of the  
ADA4075-2, the commonly used internal current-limiting  
resistors in series with the inputs are not used.  
V
= ±4V  
SY  
0.01  
R
= 2k  
L
V
= 1.5V rms  
IN  
V
= ±15V  
= 2kꢀ  
= 3V rms  
SY  
In small signal applications, current limiting is not required;  
however, in applications where the differential voltage of the  
ADA4075-2 exceeds 1.2 , large currents may flow through  
these diodes. Employ external current-limiting resistors as  
shown in Figure 63 to reduce the input currents to less than  
10 mA. Note that depending on the value of these resistors,  
the total voltage noise will most likely be degraded. For example,  
a 1 kΩ resistor at room temperature has a thermal noise of  
4 nꢀ/√Hz, whereas the ADA4075-2 has an ultralow voltage  
noise of only 2.8 nꢀ/√Hz typical.  
R
V
L
0.001  
0.0001  
IN  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 64. THD + Noise vs. Frequency  
PHASE REVERSAL  
An undesired phenomenon, phase reversal (also known as phase  
inversion) occurs in many op amps when one or both of the  
inputs are driven beyond the specified input common-mode  
voltage (ꢀICM) range, in effect reversing the polarity of the output.  
In some cases, phase reversal can induce lockups and cause  
equipment damage as well as self destruction.  
ADA4075-2  
R1  
R2  
2
3
1
The ADA4075-2 incorporates phase reversal prevention circuitry  
that clamps the output to 2 ꢀ typical from the supply rails when  
one or both inputs exceed the ꢀICM range. Figure 65 shows the  
input/output waveforms of the ADA4075-2 configured as a unity-  
gain buffer for a supply voltage of 15 .  
Figure 63. Input Protection  
TOTAL HARMONIC DISTORTION  
The total harmonic distortion + noise (THD + N) of the  
ADA4075-2 is 0.0002% typical with a load resistance of 2 kꢁ.  
Figure 64 shows the performance of the ADA4075-2 driving a  
2 kꢁ load with supply voltages of 4 ꢀ and 15 . Notice that  
there is more distortion for the supply voltage of 4 ꢀ than for a  
supply voltage of 15 . Therefore, it is important to operate the  
ADA4075-2 at a supply voltage greater than 5 ꢀ for optimum  
distortion. The THD + noise graphs for supply voltages of 5 ꢀ  
and 18 ꢀ are available in Figure 56 and Figure 61.  
V
= ±15V  
SY  
V
IN  
V
OUT  
TIME (40µs/DIV)  
Figure 65. No Phase Reversal  
Rev. B | Page 16 of 24  
 
 
 
 
Data Sheet  
ADA4075-2  
For a DAC output filter, an op amp with reasonable slew rate and  
bandwidth is required. The ADA4075-2 has a high slew rate of the  
12 V/μs and a relatively wide bandwidth of 6.5 MHz. The cutoff  
frequency of the low-pass filter is approximately 167 kHz. In  
addition, the 100 kΩ − 47 μF RC network provides ac coupling  
to block out the dc components at the output.  
DAC OUTPUT FILTER  
The ultralow voltage noise, low distortion, and high slew rate of  
the ADA4075-2 make it an ideal choice for professional audio  
signal processing. Figure 66 shows the ADA4075-2 used in a  
typical audio DAC output filter configuration. The differential  
outputs of the DAC are fed into the ADA4075-2. The ADA4075-2  
is configured as a differential Sallen-Key filter. It operates as an  
external low-pass filter to remove high frequency noise present  
on the output pins of the DAC. It also provides differential-to-  
single-ended conversion from the differential outputs of the DAC.  
11k  
68pF  
11kΩ  
3.01kΩ  
47µF  
DAC OUTN  
DAC OUTP  
100Ω  
1/2  
OUTPUT  
100kΩ  
5.62kΩ  
1.5kΩ  
270pF  
2.2nF  
ADA4075-2  
560pF  
150pF  
5.62kΩ  
Figure 66. Typical DAC Output Filter Circuit (Differential)  
Rev. B | Page 17 of 24  
 
 
ADA4075-2  
Data Sheet  
Finally, even with these precautions, it is vital that the positive  
feedback be accurately controlled. This is partly achieved by  
using 1% resistors. In addition, the following setup procedure  
ensures that the positive feedback does not become excessive:  
BALANCED LINE DRIVER  
The circuit of Figure 67 shows a balanced line driver designed  
for audio use. Such drivers are intended to mimic an output  
transformer in operation, whereby the common-mode voltage  
can be impressed by the load. Furthermore, either output can be  
shorted to ground in single-ended applications without affecting  
the overall operation.  
1. Set R11 to its midposition (or short the ends together,  
whichever is easier) and temporarily short the negative  
output to ground.  
2. Apply a 10 ꢀ p-p sine wave at approximately 1 kHz to the  
input and adjust R7 to provide 930 mꢀ p-p at TEST (see  
Figure 67).  
3. Remove the short from the negative output (and across  
R11, if used) and adjust R11 until the output waveforms  
are symmetric.  
Circuits of this type use positive and negative feedback to obtain a  
high common-mode output impedance, and they are somewhat  
notorious for component sensitivity and susceptibility to latch-up.  
This circuit uses several techniques to avoid spurious behavior.  
First, the 4-op-amp arrangement ensures that the input impedance  
is load independent (the input impedance can become negative  
with some configurations). Note that the output op amps are  
packaged with the input op amps to maximize drive capability.  
The overall gain of the driver is equal to 2, which provides an  
extra 6 dB of headroom in balanced differential mode. The  
output noise is about −109 dBꢀ in a 20 kHz bandwidth.  
Second, the positive feedback is ac-coupled by C2 and C3, which  
eliminates the need for offset trim. Because the circuit is ac-coupled  
at the input, these capacitors do not have significant dc voltage  
across them, thus tantalum types of capacitors can be used.  
C5  
IN  
50pF  
R5  
C1  
R4  
10µF  
A1  
1/2  
4.7kꢀ  
4.7kꢀ  
A2  
R1  
R13  
10kꢀ  
OUT+  
1/2  
100ꢀ  
ADA4075-2  
ADA4075-2  
R18  
4.7kꢀ  
R7  
250ꢀ  
R6  
R8  
R9  
R2  
4.7kꢀ  
4.7kꢀ  
1004.7kꢀ  
FEEDBACK  
TRIM  
C4  
50pF  
R3  
SYMMETRY  
TRIM  
TEST  
C3  
10µF  
C2  
10µF  
R10  
R12  
4.7kꢀ  
C6  
4.7kꢀ  
4.7kꢀ  
R11  
250ꢀ  
A3  
1/2  
50pF  
A4  
R14  
ADA4075-2  
OUT–  
1/2  
R15  
100ꢀ  
4.7kꢀ  
ADA4075-2  
R16  
R17  
4.7kꢀ  
100ꢀ  
NOTES  
1. ALL RESISTORS SHOULD HAVE 1% TOLERANCE.  
2. A1/A2 IN SAME PACKAGE; A3/A4 IN SAME PACKAGE.  
Figure 67. Balanced Line Driver  
Rev. B | Page 18 of 24  
 
 
Data Sheet  
ADA4075-2  
Note that A3 is not in the signal path, and almost any op amp  
works well here. Although it may seem as though the inverting  
output should be noisier than the noninverting one, they are in  
fact symmetric at about −111 dBV (20 kHz bandwidth).  
BALANCED LINE RECEIVER  
Figure 68 depicts a unity-gain balanced line receiver capable of  
a high degree of hum rejection. The CMRR is approximately  
given by  
Sometimes an overall gain of ½ is desired to provide an extra  
6 dB of differential input headroom. This can be attained by  
reducing R3 and R4 to 5 kΩ and increasing R9 to 22 kΩ.  
R1R4  
R2 R3  
20 log  
10   
Therefore, R1 to R4 should be close tolerance components to  
obtain the best possible CMRR without adjustment. The presence  
of A2 ensures that the impedances are symmetric at the two inputs  
(unlike many other designs), and, as a bonus, A2 also provides  
a complementary output. A3 raises the common-mode input  
impedance from approximately 7.5 kΩ to approximately 70 kΩ,  
reducing the degradation of CMRR due to mismatches in source  
impedance.  
C2  
50pF  
R3  
OUT+  
C3  
10k  
50pF  
R6  
R1  
5kΩ  
A1  
IN–  
IN+  
R5  
A2  
5kΩ  
1/2  
R2  
5kΩ  
OUT–  
1/2  
5kΩ  
ADA4075-2  
ADA4075-2  
R7  
5.6kΩ  
R8  
5.6kΩ  
R4  
10kΩ  
C1  
22µF  
A3*  
(NON-POLAR)  
R9  
R10  
11kΩ  
11kΩ  
*A3 REDUCES THE DEGRADATION OF CMRR  
(SEE THE BALANCED LINE RECEIVER SECTION FOR MORE DETAILS).  
Figure 68. Balanced Line Receiver  
Rev. B | Page 19 of 24  
 
 
ADA4075-2  
Data Sheet  
The bandwidth control adjusts the Q from 2.9 to about 11. The  
overall noise is setting dependent, but with all controls centered,  
it is about −124 dBV in a ±2 kHz bandwidth. Such a low noise  
level can obviate the need for a bypass switch in many applications.  
LOW NOISE PARAMETRIC EQUALIZER  
The circuit in Figure 69 is a reciprocal parametric equalizer  
yielding ±±2 dB of cut or boost with variable bandwidth and  
frequency. The frequency control range is 6.9:1, with the geometric  
mean center frequency conveniently occurring at the midpoint  
of the potentiometer setting. The center frequency is equal to  
48 Hz/Ct, where Ct is the value of C1 and C± in microfarads.  
47µF  
6.2k  
6.2kΩ  
620Ω  
IN  
OUT  
1/2  
ADA4075-2  
100Ω  
BOOST  
CUT  
BANDWIDTH  
1kΩ  
5kΩ  
2.7kΩ  
1.5kΩ  
ADA4075-2  
C1*  
C2*  
1.5kΩ  
2.5kΩ  
1/2  
1.3kΩ  
1.3kΩ  
2.5kΩ  
2.5kΩ  
620Ω  
2.5kΩ  
1/2  
1/2  
ADA4075-2  
ADA4075-2  
620Ω  
FREQUENCY (GANGED POTENTIOMETER)  
*THE CENTER FREQUENCY IS AFFECTED BY THE VALUE OF C1 AND C2  
(SEE THE LOW NOISE PARAMETRIC EQUALIZER SECTION FOR MORE DETAILS).  
Figure 69. Low Noise Parametric Equalizer  
Rev. B | Page 20 of 24  
 
 
Data Sheet  
SCHEMATIC  
ADA4075-2  
V+  
OUTA/  
OUTB  
–INA/  
–INB  
+INA/  
+INB  
V–  
Figure 70. Simplified Schematic  
Rev. B | Page 21 of 24  
 
ADA4075-2  
Data Sheet  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 71. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
0.30  
0.25  
0.18  
2.00  
BSC SQ  
0.50 BSC  
8
1
5
4
0.65  
0.60  
0.55  
PIN 1 INDEX  
AREA  
PIN 1  
INDICATOR  
TOP VIEW  
BOTTOM VIEW  
0.60  
0.55  
0.50  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.20 REF  
Figure 72. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
2 mm × 2 mm Body, Very Very Thin, Dual Lead  
(CP-8-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADA4075-2ARZ  
ADA4075-2ARZ-R7  
ADA4075-2ARZ-RL  
ADA4075-2ACPZ-R7  
ADA4075-2ACPZ-RL  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
Package Option  
Branding  
R-8  
R-8  
R-8  
CP-8-6  
CP-8-6  
A0  
A0  
1 Z = RoHS Compliant Part.  
Rev. B | Page 22 of 24  
 
Data Sheet  
NOTES  
ADA4075-2  
Rev. B | Page 23 of 24  
ADA4075-2  
NOTES  
Data Sheet  
©2008–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07642-0-12/11(B)  
Rev. B | Page 24 of 24  
 

相关型号:

ADA4075-2ARZ

Ultralow Noise Amplifier at Lower Power
ADI

ADA4075-2ARZ-R7

Ultralow Noise Amplifier at Lower Power
ADI

ADA4075-2ARZ-RL

Ultralow Noise Amplifier at Lower Power
ADI

ADA4077-1

4 MHz, 7 nV/√Hz, Low Offset and Drift, High Precision Amplifiers
ADI

ADA4077-1ARMZ

4 MHz, 7 nV/√Hz, Low Offset and Drift, High Precision Single Amplifier
ADI

ADA4077-1ARMZ-R7

4 MHz, 7 nV/√Hz, Low Offset and Drift, High Precision Amplifiers
ADI

ADA4077-1ARMZ-RL

4 MHz, 7 nV/√Hz, Low Offset and Drift, High Precision Amplifiers
ADI

ADA4077-1ARZ

4 MHz, 7 nV/√Hz, Low Offset and Drift, High Precision Single Amplifier
ADI

ADA4077-1ARZ-R7

4 MHz, 7 nV/√Hz, Low Offset and Drift, High Precision Single Amplifier
ADI

ADA4077-1ARZ-RL

4 MHz, 7 nV/√Hz, Low Offset and Drift, High Precision Amplifiers
ADI

ADA4077-1BRZ

4 MHz, 7 nV/√Hz, Low Offset and Drift, High Precision Single Amplifier
ADI

ADA4077-1BRZ-R7

4 MHz, 7 nV/√Hz, Low Offset and Drift, High Precision Amplifiers
ADI