ADA4097-1 [ADI]

50 V, 130 kHz, 32.5 μA, Robust, Over-The-Top Precision Op Amp;
ADA4097-1
型号: ADA4097-1
厂家: ADI    ADI
描述:

50 V, 130 kHz, 32.5 μA, Robust, Over-The-Top Precision Op Amp

文件: 总27页 (文件大小:517K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
50 V, 130 kHz, 32.5 μA, Robust,  
Over-The-Top Precision Op Amp  
ADA4097-1  
Data Sheet  
FEATURES  
GENERAL DESCRIPTION  
Ultrawide common-mode input range: −VS − 0.1 V to −VS + 70 V  
Wide power supply voltage range: +3 V to +50 V (to 25 V for PSRR)  
Low power supply current: 32.5 μA (typical)  
Low input offset voltage: 60 μV maximum  
Low input offset voltage drift: 1 μVꢀ/C maximum (B grade)  
Low input voltage noise  
The ADA4097-1 is a robust, precision, rail-to-rail input and output  
operational amplifier (op amp) with inputs that operate from −VS  
to +VS and beyond, which is referred to in this data sheet as Over-  
The-Top™. The device features offset voltages of <60 μV, input bias  
currents (IB) of <0.3 nA, and can operate on single or split supplies  
that range from 3 V to 50 V. The ADA4097-1 draws 32.5 μA of  
supply current.  
6 Hz typical 1ꢀf noise corner  
1000 nV p-p typical at 0.1 Hz to 10 Hz  
The ADA4097-1 Over-The-Top input stage has robust input  
protection features for abusive environments. The inputs can  
tolerate up to 80 V of differential voltage without damage or  
degradation to dc accuracy. The operating common-mode input  
range extends from rail-to-rail and beyond, up to 70 V > –VS,  
independent of the +VS supply.  
GBP: 130 kHz typical for fTEST = 250 Hz  
Slew rate: 0.1 Vꢀμs typical at ΔVOUT = 4 V  
Low power supply current shutdown: 20 μA maximum  
Low input offset current: 300 pA maximum  
Large signal voltage gain: 120 dB minimum for ΔVOUT = 4 V  
CMRR: 120 dB minimum at VCM = −0.1 V to +70 V  
PSRR: 123 dB minimum at VSY = +3 V to 25 V  
Input overdrive tolerant with no phase reversal  
2 kV HBM and 1.25 kV FICDM  
The ADA4097-1 is unity-gain stable and can drive loads requiring  
up to 20 mA. The device can also drive capacitive loads as large as  
200 pF. The amplifier is available with low power shutdown.  
Wide temperature range: −55/C to +150/C (H grade)  
6-lead TSOT package  
The ADA4097-1 is available in a standard, 6-lead, thin small  
outline transistor (TSOT) package.  
APPLICATIONS  
Industrial sensor conditioning  
Supply current sensing  
Battery and power supply monitoring  
Front-end amplifiers in abusive environments  
4 mA to 20 mA transmitters  
TYPICAL APPLICATION CIRCUIT  
5
15V  
1.5V  
ADA4097-1  
5V  
0.1Ω  
3
10W  
M1  
V
= 1.5V TO 70V  
BAT  
100Ω  
BSS123LT1G  
SHDN  
100Ω  
1
0
V
OUT  
1V/A  
LOAD  
10mA TO 1A  
1kΩ  
–1  
–3  
Figure 1. 1 V/A Over-The-Top Current Sense Application  
(VBAT Is the Battery Voltage.)  
–5  
–7  
0.001  
0.01  
0.1  
1
LOAD CURRENT (A)  
Figure 2. Output Error vs. Load Current  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks are theproperty of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2021 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADA4097-1  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Output.......................................................................................... 20  
Shutdown Pin (SHDN).............................................................. 20  
Applications Information.............................................................. 21  
Large Resistor Gain Operation................................................. 21  
Recommended Values for Various Gains................................ 21  
Noise ............................................................................................ 22  
Distortion .................................................................................... 22  
Power Dissipation and Thermal Shutdown............................ 23  
Circuit Layout Considerations ................................................. 23  
Power Supply Bypassing............................................................ 23  
Grounding................................................................................... 24  
ESD Protection when Powered................................................. 24  
Related Products......................................................................... 24  
Typical Applications................................................................... 25  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 27  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Typical Application Circuit ............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
5 V Supply...................................................................................... 3  
15 V Supply................................................................................. 5  
Absolute Maximum Ratings............................................................ 8  
Maximum Power Dissipation ..................................................... 8  
Thermal Resistance...................................................................... 8  
Electrostatic Discharge (ESD) Ratings ...................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 18  
Input Protection.......................................................................... 19  
Over-The-Top Operation Considerations .............................. 19  
REVISION HISTORY  
5/2021—Revision 0: Initial Version  
Rev. 0 | Page 2 of 27  
 
Data Sheet  
ADA4097-1  
SPECIFICATIONS  
5 V SUPPLY  
Common-mode voltage (VCM) = 2.5 V, SHDN pin is open, load resistance (RL) = 499 kΩ to midsupply, TA = 25°C, unless otherwise noted.  
Table 1.  
B Grade  
Typ  
H Grade  
Typ  
Parameter  
Test ConditionsꢀComments Min  
Max  
Min  
Max  
Unit  
DC PERFORMANCE  
Input Offset Voltage (VOS)1  
0.25 V < VCM < 3.5 V  
Minimum temperature (TMIN  
< TA < maximum  
±20  
±±0  
±130  
±20  
±±0  
±1±0  
μV  
μV  
)
temperature (TMAX  
)
0.25 V < VCM < 70 V  
TMIN < TA < TMAX  
−0.1 V < VCM < +70 V  
TMIN < TA < TMAX  
±30  
±30  
±±0  
±1±0  
±±0  
±ꢁ00  
±1  
±0.3  
±10  
1.5  
2.25  
1
10  
±300  
±5  
±30  
±30  
±±0  
±1ꢀ5  
±±0  
±ꢁ50  
±1.5  
±0.3  
±25  
1.5  
2.5  
1
10  
±300  
±10  
μV  
μV  
μV  
μV  
Input Offset Voltage Drift2  
Input Bias Current (IB)  
TMIN < TA < TMAX  
±0.1  
±0.1  
±0.1  
±0.1  
μV/°C  
nA  
nA  
μA  
μA  
μA  
μA  
pA  
nA  
μA  
μA  
dB  
TMIN < TA < TMAX  
VCM = 70 V, Over-The-Top  
TMIN < TA < TMAX  
0 V < VCM < 70 V, VSY = 0 V  
TMIN < TA < TMAX  
0.25  
0.175  
0.ꢀ  
0.25  
0.125  
0.ꢀ  
0.001  
±100  
0.001  
±100  
Input Offset Current (IOS)  
TMIN < TA < TMAX  
VCM = 70 V, Over-The-Top3  
TMIN < TA < TMAX  
±0.025 ±0.0±5  
±0.0ꢂ5  
1ꢁ5  
±0.025 ±0.0±5  
±0.15  
1ꢁ5  
Common-Mode Rejection  
Ratio (CMRR)  
VCM = −0.1 V to +70 V  
120  
120  
TMIN < TA < TMAX  
VCM = 0.25 V to 3.5 V  
TMIN < TA < TMAX  
10ꢁ  
115  
110  
−0.1  
103  
115  
107  
−0.1  
dB  
dB  
dB  
V
13ꢁ  
13ꢁ  
Common-Mode Input  
Range  
Guaranteed by CMRR tests  
+70  
+70  
Large Signal Voltage  
Gain (AOL)  
Delta output voltage  
(ΔVOUT) = ꢁ V  
120  
1ꢁ0  
120  
1ꢁ0  
dB  
TMIN < TA < TMAX  
ΔVOUT = ꢁ V, RL = 10 kΩ  
TMIN < TA < TMAX  
11ꢁ  
100  
ꢂꢁ  
112  
100  
ꢂ0  
dB  
dB  
dB  
10ꢀ  
10ꢀ  
NOISE PERFORMANCE  
Input Voltage Noise  
Frequency (f) = 0.1 Hz to 10 Hz  
1/f noise corner  
1000  
±
1000  
±
nV p-p  
Hz  
f = 100 Hz  
f = 100 Hz, VCM > 5 V  
f = 100 Hz  
53  
±5  
0.05  
0.5  
53  
±5  
0.05  
0.5  
nV/√Hz  
nV/√Hz  
pA/√Hz  
pA/√Hz  
Over-The-Top  
Input Current Noise  
Over-The-Top  
f = 100 Hz, VCM > 5 V  
DYNAMIC PERFORMANCE  
Slew Rate  
ΔVOUT = ꢁ V  
TMIN < TA < TMAX  
Test frequency (fTEST) = 250 Hz  
0.025  
0.01ꢀ  
120  
0.1  
0.025  
0.015  
120  
0.1  
V/μs  
V/μs  
kHz  
Gain Bandwidth Product  
(GBP)  
130  
130  
TMIN < TA < TMAX  
100  
100  
kHz  
Rev. 0 | Page 3 of 27  
 
 
 
ADA4097-1  
Data Sheet  
B Grade  
Typ  
5ꢀ  
70  
100  
H Grade  
Typ  
5ꢀ  
70  
100  
Parameter  
Phase Margin  
1% Settling Time  
0.1% Settling Time  
Test ConditionsꢀComments Min  
Max  
Min  
Max  
Unit  
Degrees  
μs  
ΔVOUT = ±2 V  
ΔVOUT = ±2 V  
μs  
Total Harmonic Distortion  
Plus Noise (THD + N)  
f = 1 kHz, VOUT = 2 V p-p, RL =  
10 kΩ, bandwidth = ꢀ0 kHz  
0.05  
0.05  
%
INPUT CHARACTERISTICS  
Input Resistance  
Differential mode  
Common mode  
Differential mode, VCM > 5 V  
Common mode, VCM > 5 V  
Differential mode  
10  
>1  
±0  
>1  
1
10  
>1  
±0  
>1  
1
MΩ  
GΩ  
kΩ  
GΩ  
pF  
Over-The-Top  
Input Capacitance  
Common mode  
3
3
pF  
SHDN PIN  
Input Logic Low  
Amplifier active, SHDN pin  
voltage (VSHDN) < −VS + 0.5 V,  
−VS + 0.5  
−VS + 0.5  
V
V
T
MIN < TA < TMAX  
Input Logic High  
Response Time  
Amplifier shutdown, VSHDN  
>
−VS + 1.5  
−VS + 1.5  
−VS + 1.5 V, TMIN < TA < TMAX  
Amplifier active to shutdown  
Amplifier shutdown to active  
2.5  
100  
0.±  
2.5  
100  
0.±  
μs  
μs  
μA  
Pull-Down Current  
V
SHDN = −VS + 0.5 V,  
TMIN < TA < TMAX  
SHDN = −VS + 1.5 V,  
3
3
V
0.3  
2.5  
0.3  
2.5  
μA  
TMIN < TA < TMAX  
OUTPUT CHARACTERISTICS  
Output Voltage Swing Low  
Overdrive voltage (VOD) =  
30 mV, no load  
15  
ꢁ0  
15  
ꢁ0  
mV  
TMIN < TA < TMAX  
ꢁ5  
325  
50  
325  
mV  
mV  
VOD = 30 mV,  
2ꢁ0  
2ꢁ0  
sink current (ISINK) = 5 mA  
TMIN < TA < TMAX  
VOD = 30 mV, no load  
TMIN < TA < TMAX  
3ꢀ0  
5
10  
ꢁ00  
5
15  
mV  
mV  
mV  
mV  
Output Voltage Swing High  
Short-Circuit Current  
2.5  
2.5  
V
OD = 30 mV, source current  
570  
700  
570  
700  
(ISOURCE) = 5 mA  
TMIN < TA < TMAX  
ISOURCE  
TMIN< TA < TMAX  
ISINK  
1000  
1100  
mV  
mA  
mA  
mA  
mA  
nA  
20  
10  
35  
10  
30  
ꢁ0  
±5  
20  
±
35  
±
30  
ꢁ0  
±5  
TMIN < TA < TMAX  
VSHDN = −VS + 1.5 V  
Output Pin Leakage  
During Shutdown  
±100  
±10  
±100  
±10  
TMIN < TA < TMAX  
μA  
Rev. 0 | Page ꢁ of 27  
Data Sheet  
ADA4097-1  
B Grade  
Typ  
H Grade  
Typ  
Parameter  
Test ConditionsꢀComments Min  
Max  
Min  
Max  
Unit  
POWER SUPPLY  
Maximum Operating  
Voltage5  
Voltage Range (VSY)  
50  
50  
50  
50  
V
V
Guaranteed by power supply  
rejection ratio (PSRR)  
3
3
Supply Current  
Amplifier active  
TMIN < TA < TMAX  
Amplifier shutdown,  
VSHDN = −VS + 1.5 V  
32.5  
12  
3±  
55  
20  
32.5  
12  
3±  
±0  
20  
μA  
μA  
μA  
TMIN < TA < TMAX  
VSY = +3 V to ±25 V  
TMIN < TA < TMAX  
22.5  
22.5  
μA  
dB  
dB  
PSRR  
123  
120  
1ꢁ5  
123  
120  
1ꢁ5  
THERMAL SHUTDOWN±  
Temperature  
Hysteresis  
TJ  
175  
20  
175  
20  
°C  
°C  
°C  
Operating Temperature  
TA  
−ꢁ0  
+125  
−55  
+150  
1 Thermoelectric voltages present in the high speed production test limit the measurement accuracy of this parameter. The limits shown in Table 1 are determined by  
test capability and are not necessarily indicative of actual device performance.  
2 Offset voltage drift is guaranteed through lab characterization and is not production tested.  
3 Test accuracy is limited by high speed production test equipment repeatability. Bench measurements indicate that the input offset current in Over-The-Top  
configuration is typically controlled to under 50 nA at +25°C and 100 nA over the −55°C < TA < +150°C temperature range.  
VOD is +30 mV for VOUT high and −30 mV for VOUT low.  
5 Maximum operating voltage is limited by the time-dependent dielectric breakdown (TDDB) of the on-chip capacitor oxides. The amplifier tolerates temporary  
transient overshoot up to the specified absolute maximum rating, but the dc supply voltage must be limited to the maximum operating voltage.  
± Thermal shutdown is lab characterized only and is not tested in production.  
15 V SUPPLY  
VCM = 0 V, SHDN pin is open, RL = 499 kΩ to ground, and TA = 25°C, unless otherwise noted.  
Table 2.  
B Grade  
Typ  
H Grade  
Typ  
Parameter  
Test ConditionsꢀComments  
Min  
Max  
Min  
Max  
Unit  
DC PERFORMANCE  
1
VOS  
±20  
±20  
±±0  
±150  
±±0  
±150  
±1  
±0.3  
±10  
±0.3  
±10  
±0.3  
±5  
±20  
±20  
±±0  
±175  
±±0  
±175  
±1.5  
±0.3  
±25  
±0.3  
±25  
±0.3  
±10  
±0.3  
±10  
μV  
μV  
μV  
μV  
μV/°C  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
TMIN < TA < TMAX  
VSY = ±25 V  
TMIN < TA < TMAX  
TMIN < TA < TMAX  
Input Offset Voltage Drift2  
IB  
±0.1  
±0.1  
±0.1  
±0.1  
TMIN < TA < TMAX  
VSY = ±25 V  
TMIN < TA < TMAX  
±0.1  
±0.1  
±0.1  
±0.1  
±0.1  
±0.1  
IOS  
TMIN < TA < TMAX  
VSY = ±25 V  
TMIN < TA < TMAX  
±0.3  
±5  
Rev. 0 | Page 5 of 27  
 
 
 
ADA4097-1  
Data Sheet  
B Grade  
Typ  
135  
H Grade  
Typ  
135  
Parameter  
CMRR  
Test ConditionsꢀComments  
VCM = −1ꢁ.75 V to +13.5 V  
TMIN < TA < TMAX  
VCM = −15.1 V to +13.5 V  
TMIN < TA < TMAX  
VCM = −15.1 V to +55 V  
TMIN < TA < TMAX  
Guaranteed by CMRR tests  
ΔVOUT = 25 V  
Min  
117  
10ꢂ  
117  
ꢂꢂ  
117  
103  
−15.1  
120  
11ꢁ  
100  
ꢂꢁ  
Max  
Min  
117  
10ꢂ  
117  
ꢂ5  
117  
103  
−15.1  
120  
112  
100  
ꢂ0  
Max  
Unit  
dB  
dB  
dB  
dB  
dB  
dB  
V
dB  
dB  
dB  
dB  
135  
1ꢁ0  
135  
1ꢁ0  
Common-Mode Input Range  
AOL  
+55  
+55  
150  
10ꢀ  
150  
10ꢀ  
TMIN < TA < TMAX  
ΔVOUT = 25 V, RL =10 kΩ  
TMIN < TA < TMAX  
NOISE PERFORMANCE  
Input Voltage Noise  
f = 0.1 Hz to 10 Hz  
1/f noise corner  
f = 100 Hz  
f = 100 Hz, VCM > +VS  
f =100 Hz  
1
±
53  
±5  
0.05  
0.5  
1
±
53  
±5  
0.05  
0.5  
μV p-p  
Hz  
nV/√Hz  
nV/√Hz  
pA/√Hz  
pA/√Hz  
Over-The-Top  
Input Current Noise  
Over-The-Top  
f = 100 Hz, VCM > +VS  
DYNAMIC PERFORMANCE  
Slew Rate  
ΔVOUT = 25 V  
0.03  
0.02  
125  
100  
0.1  
0.03  
0.015  
125  
0.1  
V/μs  
V/μs  
kHz  
kHz  
Degrees  
μs  
TMIN < TA < TMAX  
fTEST = 250 Hz  
TMIN < TA < TMAX  
GBP  
130  
130  
100  
Phase Margin  
1% Settling Time  
0.1% Settling Time  
THD + N  
5ꢂ  
70  
100  
0.1  
5ꢂ  
70  
100  
0.1  
ΔVOUT = ±2 V  
ΔVOUT = ±2 V  
f = 1 kHz, VOUT = 5.± V p-p,  
μs  
%
RL = 10 kΩ, bandwidth = ꢀ0 kHz  
INPUT CHARACTERISTICS  
Input Resistance  
Differential mode  
Common mode  
Differential mode  
Common mode  
10  
>1  
1
10  
>1  
1
MΩ  
GΩ  
pF  
Input Capacitance  
3
3
pF  
SHDN PIN  
Input Logic Low  
Amplifier active,  
VSHDN < −VS + 0.5 V  
Amplifier shutdown,  
VSHDN > −VS + 1.5 V  
Amplifier active to shutdown  
Amplifier shutdown to active  
−VS + 0.5  
−VS + 0.5  
V
V
Input Logic High  
Response Time  
−VS + 1.5  
−VS + 1.5  
2.5  
100  
0.3  
2.5  
100  
0.3  
μs  
μs  
μA  
Pull-Down Current  
V
SHDN = −VS + 0.5 V,  
TMIN < TA < TMAX  
SHDN = −VS + 1.5 V,  
TMIN < TA < TMAX  
3
3
V
0.±  
2.5  
0.±  
2.5  
μA  
Rev. 0 | Page ± of 27  
Data Sheet  
ADA4097-1  
B Grade  
Typ  
H Grade  
Typ  
Parameter  
Test ConditionsꢀComments  
Min  
Max  
Min  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Voltage Swing Low  
VOD3 = 30 mV, no load  
TMIN < TA < TMAX  
VOD = 30 mV, ISINK = 5 mA  
TMIN < TA < TMAX  
VOD = 30 mV, no load  
TMIN < TA < TMAX  
VOD = 30 mV, ISOURCE = 5 mA  
TMIN < TA < TMAX  
ISOURCE  
15  
ꢁ0  
ꢁ5  
325  
3ꢀ0  
10  
15  
700  
1000  
15  
ꢁ0  
50  
325  
ꢁ00  
10  
20  
700  
1100  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
mA  
mA  
2ꢁ0  
2.5  
570  
30  
2ꢁ0  
2.5  
570  
30  
Output Voltage Swing High  
Short-Circuit Current  
POWER SUPPLY  
20  
10  
35  
10  
20  
±
35  
±
TMIN < TA < TMAX  
ISINK  
TMIN < TA < TMAX  
ꢁ5  
ꢁ5  
Maximum Operating  
Voltageꢁ  
50  
50  
V
Voltage Range  
Supply Current  
Guaranteed by PSRR  
Amplifier active  
TMIN < TA < TMAX  
VSY = ±25 V  
TMIN < TA < TMAX  
Amplifier shutdown,  
VSHDN = −VS + 1.5 V  
3
50  
ꢁꢁ  
±5  
ꢁꢀ  
70  
22.5  
3
50  
ꢁꢁ  
70  
ꢁꢀ  
75  
22.5  
V
ꢁ0  
ꢁ2  
15  
ꢁ0  
ꢁ2  
15  
μA  
μA  
μA  
μA  
μA  
TMIN < TA < TMAX  
VSY = 3 V to 50 V  
TMIN < TA < TMAX  
25  
25  
μA  
dB  
dB  
PSRR  
123  
120  
1ꢁ5  
123  
120  
1ꢁ5  
THERMAL SHUTDOWN5  
Temperature  
Hysteresis  
TJ  
175  
20  
175  
20  
°C  
°C  
°C  
Operating Temperature  
TA  
−ꢁ0  
+125  
−55  
+150  
1 Thermoelectric voltages present in the high speed production test limit the measurement accuracy of this parameter. The limits shown in Table 2 are determined by  
test capability and are not necessarily indicative of actual device performance.  
2 Offset voltage drift is guaranteed through lab characterization and is not production tested.  
3 VOD is +30 mV for VOUT high and −30 mV for VOUT low.  
Maximum operating voltage is limited by the TDDB of the on-chip capacitor oxides. The amplifier tolerates temporary transient overshoot up to the specified absolute  
maximum rating and the dc supply voltage must be limited to the maximum operating voltage.  
5 Thermal shutdown is lab characterized only and is not tested in production.  
Rev. 0 | Page 7 of 27  
 
ADA4097-1  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
from metal traces through vias, ground, and power planes  
Table 3.  
reduces θJA.  
Parameter  
Supply Voltage1  
Rating  
Figure 3 shows the maximum PD vs. TA for the single and dual  
6-lead TSOT packages on a JEDEC standard, 4-layer board, with  
−VS connected to a pad that is thermally connected to a printed  
circuit board (PCB) plane. θJA values are approximations.  
1.4  
Transient  
Continuous  
Power Dissipation (PD)  
Differential Input Voltage  
±IN Pin Voltage  
±0 V  
50 V  
See Figure 3  
±ꢀ0 V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
Continuous  
Survival  
±IN Pin Current  
−10 V to +ꢀ0 V  
−15 V to +ꢀ0 V  
10 mA  
−0.3 V to +±0 V  
−±5°C to +150°C  
−55°C to +150°C  
300°C  
SHDN Pin Voltage  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec)  
TJ  
1 Maximum supply voltage is limited by the TDDB of the on-chip capacitor  
oxides. The amplifier tolerates temporary transient overshoot up to the  
specified transient maximum rating. The continuous operating supply  
voltage must be limited to no more than 50 V.  
175°C  
–60  
–30  
0
30  
60  
90  
120  
150  
AMBIENT TEMPERATURE (°C)  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the device. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Figure 3. Maximum Power Dissipation vs. Ambient Temperature  
THERMAL RESISTANCE  
Thermal performance is directly linked to PCB design and  
operating environment. Careful attention to PCB thermal  
design is required.  
θ
JA is the junction to ambient thermal resistance.  
TJ exceeding 125°C promotes accelerated aging. The ADA4097-1  
demonstrates 25 V supply operation beyond 1000 hours at  
TA = 150°C.  
Table 4. Thermal Resistance  
Package Type  
UJ-±  
θJA  
1ꢂ2  
Unit  
C/W  
MAXIMUM POWER DISSIPATION  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
The maximum safe PD on the device is limited by the associated  
rise in either TC or TJ on the die. At approximately TC = 150°C,  
which is the glass transition temperature, the properties of the  
plastic changes. Exceeding this temperature limit, even temporarily,  
may change the stresses that the package exerts on the die, which  
permanently shifts the parametric performance of the ADA4097-1.  
Exceeding TJ = 175°C for an extended period may result in changes  
in the silicon devices and may potentially cause failure of the device.  
The following ESD information is provided for handling of  
ESD-sensitive devices in an ESD protected area only.  
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.  
Field induced charged device model (FICDM) per  
ANSI/ESDA/JEDEC JS-002.  
ESD Ratings for ADA4097-1  
Table 5. ADA4097-1, 6-Lead TSOT  
The PD on the package is the sum of the quiescent power dissipation  
and the power dissipated in the package due to the output load  
drive. The quiescent power is expressed as VSY × ISY, where ISY is  
the quiescent current.  
ESD Model  
HBM  
FICDM  
Withstand Threshold  
±2 kV  
±1.25 kV  
Class  
3A  
3
ESD CAUTION  
The PD due to the load drive depends on the application. The PD  
due to load drive is calculated by multiplying the load current  
by the associated voltage drop across the device. RMS voltages  
and currents must be used in these calculations.  
Airflow increases heat dissipation, effectively reducing θJA.  
Additional metal that is directly in contact with the package leads  
Rev. 0 | Page ꢀ of 27  
 
 
 
 
 
 
Data Sheet  
ADA4097-1  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADA4097-1  
V
1
2
3
6
5
4
+V  
S
OUT  
–V  
SHDN  
–IN  
S
+IN  
TOP VIEW  
(Not to Scale)  
Figure 4. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
VOUT  
−VS  
Amplifier Output.  
Negative Power Supply. In single-supply applications, the −VS pin is normally soldered to a low impedance ground  
plane. In split-supply applications, bypass the −VS pin with a capacitance of at least 0.1 ꢃF to a low impedance  
ground plane, as close to the −VS pin as possible.  
3
5
+IN  
−IN  
SHDN  
Noninverting Input of the Amplifier.  
Inverting Input of the Amplifier.  
Op Amp Shutdown. The threshold for shutdown is approximately 1 V above the negative supply. If the SHDN pin is  
not connected or hard tied to −VS, the amplifier is active. If the SHDN pin is asserted high (VSHDN > −VS + 1.5 V), the  
amplifier is placed in a shutdown state, and the output of the amplifier goes to a high impedance state. If the SHDN  
pin is left unconnected, it is recommended to connect a small capacitor of 1 nF between the SHDN pin and the −VS  
pin to prevent signals from the −IN pin from capacitively coupling to the SHDN pin.  
±
+VS  
Positive Power Supply. Bypass the +VS pin with a capacitance of at least 0.1 ꢃF to a low impedance ground plane, as  
close to the +VS pin as possible.  
Rev. 0 | Page ꢂ of 27  
 
ADA4097-1  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
70  
20  
15  
10  
5
T
T
T
T
= –55°C  
= +25°C  
= +125°C  
= +150°C  
A
A
A
A
60  
50  
40  
30  
20  
T
T
T
T
= –55°C  
= +25°C  
= +125°C  
= +150°C  
A
A
A
A
10  
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
1
10  
50  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 5. Supply Current vs. Supply Voltage  
Figure 8. Shutdown Supply Current vs. Supply Voltage  
70  
60  
50  
40  
30  
20  
10  
20  
18  
16  
14  
12  
10  
8
V
= 5V  
SY  
10 REPRESENTATIVE UNITS  
V
V
= MIDSUPPLY  
CM  
1080 UNITS  
= ±25V  
SY  
V
= +5V  
SY  
6
4
2
0
–60  
–30  
0
30  
60  
90  
120  
150  
–30 –24 –18 –12  
–6  
0
6
12  
18  
24  
30  
TEMPERATURE (°C)  
INPUT OFFSET VOLTAGE (µV)  
Figure 6. Supply Current vs. Temperature Across Various Supply Voltages  
Figure 9. Typical Distribution of Input Offset Voltage, VSY = 5 V  
100  
20  
V
= ±15V  
= 0V  
V
= 5V  
SY  
SY  
18  
16  
14  
12  
10  
8
V
CM  
1080 UNITS  
10  
6
T
T
T
T
= –55°C  
= +25°C  
= +125°C  
= +150°C  
A
A
A
A
4
2
1
0
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
–30 –24 –18 –12  
–6  
0
6
12  
18  
24  
30  
V
WITH RESPECT TO –V (V)  
INPUT OFFSET VOLTAGE (µV)  
SHDN  
S
Figure 10. Typical Distribution of Input Offset Voltage with VSY  
= 15 V  
Figure 7. Supply Current vs. VSHDN with Respect to −VS  
Rev. 0 | Page 10 of 27  
 
 
Data Sheet  
ADA4097-1  
20  
200  
150  
100  
50  
V
V
= ±25V  
= 0V  
V
V
= ±25V  
= 0V  
SY  
SY  
18  
16  
14  
12  
10  
8
CM  
CM  
10 REPRESENTATIVE UNITS  
1080 UNITS  
0
–50  
–100  
–150  
–200  
6
4
2
0
–30 –24 –18 –12  
–6  
0
6
12  
18  
24  
30  
–60  
–30  
0
30  
60  
90  
120  
150  
INPUT OFFSET VOLTAGE (µV)  
TEMPERATURE (°C)  
Figure 11. Typical Distribution of Input Offset Voltage with VSY  
=
25 V  
Figure 14. Offset Voltage vs. Temperature with VSY  
=
25 V  
200  
2.0  
1.5  
V
V
= 5V  
V
V
= 5V  
SY  
SY  
150  
100  
50  
= MIDSUPPLY  
= MIDSUPPLY  
CM  
CM  
10 REPRESENTATIVE UNITS  
10 REPRESENTATIVE UNITS  
1.0  
0.5  
0
0
–50  
–100  
–150  
–200  
–0.5  
–1.0  
–1.5  
–2.0  
–60  
–30  
0
30  
60  
90  
120  
150  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Midsupply Offset Voltage vs. Temperature with VSY = 5 V  
Figure 15. Midsupply Input Bias Current vs. Temperature with VSY = 5 V  
200  
2.0  
V
V
= ±15V  
= 0V  
V
V
= ±15V  
= 0V  
SY  
SY  
150  
100  
50  
1.5  
1.0  
CM  
CM  
10 REPRESENTATIVE UNITS  
10 REPRESENTATIVE UNITS  
0.5  
0
0
–50  
–100  
–150  
–200  
–0.5  
–1.0  
–1.5  
–2.0  
–60  
–30  
0
30  
60  
90  
120  
150  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. Offset Voltage vs. Temperature with VSY  
=
15 V  
Figure 16. Input Bias Current vs. Temperature with VSY  
= 15 V  
Rev. 0 | Page 11 of 27  
ADA4097-1  
Data Sheet  
200  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= 5V  
= 6V  
V
V
= 5V  
= 6V  
SY  
SY  
150  
100  
50  
CM  
CM  
10 REPRESENTATIVE UNITS  
10 REPRESENTATIVE UNITS  
0
–50  
–100  
–150  
–200  
–60  
–30  
0
30  
60  
90  
120  
150  
–60  
–30  
0
30  
60  
90  
120  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Offset Voltage vs. Temperature with VCM = 6 V,  
Over-The-Top  
Figure 20. Input Bias Current vs. Temperature with VCM = 6 V,  
Over-The-Top  
200  
150  
100  
50  
2.0  
1.5  
1.0  
0.5  
0
V = 5V  
SY  
V
V
= 5V  
SY  
= 70V  
CM  
10 REPRESENTATIVE UNITS  
0
–50  
–100  
–150  
–200  
V
V
= 6V  
= 70V  
CM  
CM  
–60  
–30  
0
30  
60  
90  
120  
150  
–60  
–30  
0
30  
60  
90  
120  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. Offset Voltage vs. Temperature with VCM = 70 V  
Figure 21. Input Bias Current vs. Temperature Across Various VCM  
20  
18  
16  
14  
12  
10  
8
5
V
V
V
V
V
= +3V  
= +5V  
= ±5V  
= ±15V  
= ±25V  
V
= 5V  
SY  
SY  
SY  
SY  
SY  
SY  
4
3
V
= MIDSUPPLY  
CM  
1080 UNITS  
2
V
= MIDSUPPLY  
CM  
1
0
–1  
–2  
–3  
–4  
–5  
6
4
2
0
–100 –70 –40 –10  
20  
50  
80  
110 140 170 200  
–60  
–30  
0
30  
60  
90  
120  
150  
INPUT BIAS CURRENT (pA)  
TEMPERATURE (°C)  
Figure 19. Typical Distribution of Input Bias Current, VSY = 5 V  
Figure 22. Input Bias Current vs. Temperature Across Various Supply Voltages  
Rev. 0 | Page 12 of 27  
Data Sheet  
ADA4097-1  
100  
10  
1
V
= 5V  
SY  
V
= +3V  
= +5V  
= ±5V  
= ±15V  
= ±25V  
SY  
SY  
SY  
SY  
SY  
V
V
V
V
75  
50  
0.1  
V
= MIDSUPPLY  
CM  
25  
0
0.01  
0.001  
0.0001  
0
–25  
–50  
–75  
–100  
T
T
T
T
= –55°C  
= +25°C  
= +125°C  
= +150°C  
A
A
A
A
–60  
–30  
0
30  
60  
90  
120  
150  
3.0  
3.5  
4.0  
4.5  
5.0  
TEMPERATURE (°C)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 23. Offset Voltage vs. Temperature Across Various Supply Voltages  
Figure 26. Input Bias Current vs. Input Common-Mode Voltage from  
Normal Operation to Over-The-Top Operation  
200  
200  
V
= 5V  
V
= 5V  
SY  
SY  
150  
100  
50  
150  
100  
50  
0
0
–50  
–100  
–150  
–200  
–50  
–100  
–150  
–200  
T
T
T
T
= –55°C  
= +25°C  
= +125°C  
= +150°C  
T
T
T
T
= –55°C  
= +25°C  
= +125°C  
= +150°C  
A
A
A
A
A
A
A
A
0.1  
1
10  
100  
–0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
INPUT COMMON-MODE VOLTAGE (V)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 24. Offset Voltage vs. Input Common-Mode Voltage from  
Normal Operation to Over-The-Top Operation  
Figure 27. Offset Voltage vs. Input Common-Mode Voltage for  
Ground Sensing Applications  
200  
0.5  
T
T
T
T
= –55°C  
= +25°C  
= +125°C  
= +150°C  
A
A
A
A
V
= 5V  
SY  
V
= 5V  
SY  
150  
100  
50  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
0
–50  
–100  
–150  
–200  
T
T
T
T
= –55°C  
= +25°C  
= +125°C  
= +150°C  
A
A
A
A
3.0  
3.5  
4.0  
4.5  
5.0  
–0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
INPUT COMMON-MODE VOLTAGE (V)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 25. Offset Voltage vs. Input Common-Mode Voltage over  
the Input Common-Mode Range  
Figure 28. Input Bias Current vs. Input Common-Mode Voltage for Ground  
Sensing Applications  
Rev. 0 | Page 13 of 27  
ADA4097-1  
Data Sheet  
10  
100  
75  
T
A
= –55°C  
= +25°C  
= +125°C  
= +150°C  
V
= 5V  
SY  
T
A
T
A
T
1
0.1  
A
50  
25  
0
0.01  
–25  
–50  
–75  
–100  
T
T
T
T
= –55°C  
= +25°C  
= +125°C  
= +150°C  
A
A
A
A
0.001  
0.0001  
V
= MIDSUPPLY  
CM  
1
10  
INPUT COMMON-MODE VOLTAGE (V)  
100  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
SUPPLY VOLTAGE (V)  
Figure 29. Input Bias Current vs. Input Common-Mode Voltage  
Figure 32. Offset Voltage vs. Supply Voltage  
60  
300  
200  
100  
0
T
T
T
T
= –55°C  
= +25°C  
= +125°C  
= +150°C  
A
A
A
A
V
= ±15V  
SY  
50  
40  
30  
20  
10  
0
–100  
–200  
–300  
R
R
R
R
R
= 499kΩ  
= 100kΩ  
= 10kΩ  
= 5kΩ  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= MIDSUPPLY  
4
CM  
= 2kΩ  
0
1
2
3
5
–15  
–10  
–5  
0
5
10  
15  
MINIMUM SUPPLY VOLTAGE (V)  
V
(V)  
OUT  
Figure 30. Supply Current vs. Minimum Supply Voltage  
Figure 33. ΔOffset Voltage vs. VOUT Across Various RLOAD  
100  
75  
400  
300  
T
T
T
T
= –55°C  
= 25°C  
= 125°C  
= 150°C  
A
A
A
A
V
=
±15V  
SY  
R
= 10 kΩ  
LOAD  
50  
200  
25  
100  
0
0
–25  
–50  
–75  
–100  
–100  
–200  
–300  
–400  
T
T
T
T
= –55°C  
= +25°C  
= +125°C  
= +150°C  
A
A
A
A
V
= MIDSUPPLY  
CM  
2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00  
–15  
–10  
–5  
0
5
10  
15  
MINIMUM SUPPLY VOLTAGE (V)  
V
(V)  
OUT  
Figure 31. Offset Voltage vs. Minimum Supply Voltage  
Figure 34. ΔOffset Voltage vs. VOUT Across Various Temperatures  
Rev. 0 | Page 1ꢁ of 27  
Data Sheet  
ADA4097-1  
1.00  
50  
40  
30  
20  
10  
0
90  
75  
60  
45  
30  
15  
V
= 5V  
SY  
0.75  
0.50  
0.25  
0
OPEN-LOOP GAIN (V = 5V)  
OPEN-LOOP GAIN (V = ±15V)  
SY  
OPEN-LOOP PHASE MARGIN (V = 5V)  
SY  
OPEN-LOOP PHASE MARGIN (V = ±15V)  
SY  
SY  
T
T
T
T
= –55°C  
= +25°C  
= +125°C  
= +150°C  
A
A
A
A
–10  
0
500  
0
0.5  
1.0  
1.5  
2.0  
1
10  
100  
V
WITH RESPECT TO −VS (V)  
FREQUENCY (kHz)  
SHDN  
Figure 38. Open-Loop Gain and Open-Loop Phase Margin vs. Frequency  
Figure 35. SHDN Pin Current (ISHDN) vs. VSHDN with Respect to −VS over Various  
Temperatures  
25  
20  
15  
10  
5
100  
V
OL  
10  
1
V
OH  
0
–5  
–10  
V
V
= 5V  
SY  
0.1  
0.01  
R
R
R
R
= 0Ω, R = OPEN  
G
F
F
F
F
= MIDSUPPLY  
CM  
= 10kΩ, R = 10kΩ  
G
10 REPRESENTATIVE UNITS  
–15  
–20  
= 40kΩ, R = 10kΩ  
G
R
= OPEN  
= 100kΩ, R = 10kΩ  
LOAD  
G
1
10  
100  
500  
–60  
–30  
0
30  
60  
90  
120  
150  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
Figure 39. Noninverting Small Signal Frequency Response  
Figure 36. Output Swing Relative to Supply vs. Temperature  
25  
200  
175  
150  
125  
100  
75  
V
V
= ±15V  
= 0V  
SY  
20  
15  
CM  
10 REPRESENTATIVE UNITS  
10  
5
0
–5  
50  
–10  
–15  
–20  
R
R
R
R
= 10kΩ, R = 10kΩ  
G
F
F
F
F
= 20kΩ, R = 10kΩ  
G
25  
= 49.9kΩ, R = 10kΩ  
G
= 100kΩ, R = 10kΩ  
G
0
–60  
1
10  
100  
500  
–30  
0
30  
60  
90  
120  
150  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
Figure 40. Inverting Small Signal Frequency Response  
Figure 37. Gain Bandwidth vs. Temperature  
Rev. 0 | Page 15 of 27  
ADA4097-1  
Data Sheet  
250  
225  
200  
175  
150  
125  
100  
75  
V
= ±15V  
SY  
V
IN  
10V/DIV  
V
OUT  
10V/DIV  
50  
V
V
IN  
25  
OUT  
0
0.2ms/DIV  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1k  
FREQUENCY (kHz)  
Figure 41. Output Noise vs. Frequency  
Figure 44. Unity-Gain Large Signal Step Response  
100  
10  
0
G = +1, R  
G = +1, R  
G = +1, R  
G = +1, R  
G = +1, R  
G = +1, R  
G = +1, R  
G = +1, R  
G = +1, R  
= 2kΩ, V = 100mV rms  
IN  
V
= ±8V  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
SY  
= 2kΩ, V = 300mV rms  
IN  
= 2kΩ, V = 1V rms  
IN  
= 5kΩ, V = 100mV rms  
–20  
–40  
–60  
–80  
–100  
–120  
IN  
= 5kΩ, V = 300mV rms  
IN  
= 5kΩ, V = 1V rms  
IN  
= 10kΩ, V = 100mV rms  
IN  
1
= 10kΩ, V = 300mV rms  
IN  
= 10kΩ, V = 1V rms  
IN  
0.1  
OUTPUT NOISE  
200nV/DIV  
0.01  
0.001  
0.0001  
20  
TIME (1s/DIV)  
200  
2000  
20000  
FREQUENCY (Hz)  
Figure 42. 0.1 Hz to 10 Hz Noise  
Figure 45. THD + N vs. Frequency over Load  
100  
10  
0
G = +1, 250Hz, R  
= 10kΩ  
= 10kΩ  
= 10kΩ  
= 10kΩ  
= 10kΩ  
= 10kΩ  
= 20kΩ  
= 20kΩ  
= 20kΩ  
LOAD  
V
= ±8V  
SY  
G = +1, 500Hz, R  
G = +1, 1kHz, R  
LOAD  
V
= ±15V  
SY  
LOAD  
G = +1, 2kHz, R  
LOAD  
LOAD  
G = +1, 5kHz, R  
–20  
–40  
–60  
–80  
–100  
G = +1, 10kHz, R  
G = +1, 250Hz, R  
LOAD  
LOAD  
V
IN  
G = +1, 500Hz, R  
G = +1, 1kHz, R  
LOAD  
50mV/DIV  
LOAD  
1
V
0.1  
0.01  
OUT  
50mV/DIV  
V
G = +1, 2kHz, R  
LOAD  
= 20kΩ  
= 20kΩ  
= 20kΩ  
IN  
G = +1, 5kHz, R  
V
LOAD  
OUT  
G = +1, 10kHz, R  
LOAD  
0.001  
0.01  
0.1  
1
10  
20µs/DIV  
OUTPUT AMPLITUDE (V rms)  
Figure 46. THD + N vs. Output Amplitude  
Figure 43. Unity-Gain Small Signal Step Response  
Rev. 0 | Page 1± of 27  
Data Sheet  
ADA4097-1  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
0
G = +1, R  
= 200Ω  
= 500Ω  
= 1kΩ  
G = –1, R  
G = –1, R  
G = –1, R  
G = –1, R  
G = –1, R  
G = –1, R  
G = –1, R  
= 200Ω  
= 500Ω  
= 1kΩ  
V
= ±8V  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
SY  
G = +1, R  
G = +1, R  
G = +1, R  
G = +1, R  
= 2kΩ  
= 2kΩ  
= 5kΩ  
= 10kΩ  
= 20kΩ  
= 5kΩ  
= 10kΩ  
= 20kΩ  
+V PSRR  
S
10  
–20  
–40  
–60  
–80  
–100  
G = +1, R  
G = +1, R  
1
–V PSRR  
S
0.1  
0.01  
0.001  
0.01  
0.1  
1
10  
10  
100  
1k  
10k  
100k  
1M  
OUTPUT AMPLITUDE (V rms)  
FREQUENCY (Hz)  
Figure 49. PSRR vs. Frequency  
Figure 47. THD + N vs. Output Amplitude and Load  
100  
10  
1
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
GAIN = 100V/V  
GAIN = 10V/V  
GAIN = 1V/V  
0.1  
100  
–10  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 50. Output Impedance vs. Frequency  
Figure 48. CMRR vs. Frequency  
Rev. 0 | Page 17 of 27  
ADA4097-1  
Data Sheet  
THEORY OF OPERATION  
The ADA4097-1 is a robust, voltage feedback amplifier that  
combines unity-gain stability with low offset, low offset drift, and  
53 nV/√Hz of input voltage noise. Figure 53 shows a simplified  
schematic of the device. The ADA4097-1 has two input stages:  
a common emitter differential input stage consisting of the Q1  
and Q2 PNP transistors that operate with the inputs biased  
between −VS and 1 V below +VS, and a common base input  
stage that consists of the Q3 to Q6 PNP transistors that operate  
when the common-mode input is biased >+VS − 1 V. These input  
stages result in two distinct operating regions, as shown in  
Figure 51.  
For common-mode input voltages that are approximately 1 V  
below the +VS supply, where Q1 and Q2 are active (see Figure 51),  
the common emitter PNP input stage is active and the input bias  
current is typically <0.3 nA. When the common-mode input is  
above +VS − 1 V, the Q9 transistor turns on, which diverts bias  
current away from the common emitter differential input pair  
to the mirror that consists of M3 and M4. The current from M4  
biases the common base differential input pair (Q3 to Q6). The  
Over-The-Top input pair operates in a common base configuration  
and the input bias current increases to ~0.8 μA. The offset  
voltages of both input stages are tightly trimmed and are  
specified in Table 1 and Table 2.  
10  
V
= 5V  
SY  
As the input common-mode transitions to the Over-The-Top  
region, the input CMRR degrades slightly when compared to  
the rest of the input common-mode range, as shown in Figure 52.  
200  
1
0.1  
V
= 5V  
SY  
0.01  
0.001  
0.0001  
0
150  
100  
50  
T
T
T
T
= –55°C  
= +25°C  
= +125°C  
= +150°C  
A
A
A
A
0
–50  
–100  
–150  
–200  
3.0  
3.5  
4.0  
4.5  
5.0  
INPUT COMMON-MODE VOLTAGE (V)  
T
T
T
T
= –55°C  
= +25°C  
= +125°C  
= +150°C  
A
A
A
A
Figure 51. Input Bias Current vs. Input Common-Mode Voltage over  
Temperature, VSY = 5 V  
3.0  
3.5  
4.0  
4.5  
5.0  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 52 . Offset Voltage vs. Input Common-Mode Voltage over  
Temperature, VSY = 5 V  
+V  
S
Q10  
PNP  
I2  
1µA  
I3  
1µA  
I1  
0.85µA  
M1  
PMOS  
R5  
40kΩ  
Q9  
PNP  
D3  
ESD  
R1  
OUTPUT  
DRIVER  
–IN  
+IN  
880Ω  
R2  
J1  
NJF  
P
N
I
Q2 Q1  
SD  
OUT  
880Ω  
PNP  
PNP  
Q6  
PNP  
Q5  
PNP  
Q4  
PNP  
Q3  
PNP  
R6  
2MΩ  
Q8  
Q7  
U1  
NPN  
NPN  
SHDN  
Q13  
NPN  
D3  
ESD  
D4  
ESD  
V1  
1V  
R4  
100kΩ  
R3  
100kΩ  
D1  
ESD  
D2  
ESD  
M1  
M2  
M3  
M4  
NMOS  
NMOS NMOS  
NMOS  
–V  
S
Figure 53. Simplified ADA4097-1 Schematic  
Rev. 0 | Page 1ꢀ of 27  
 
 
 
 
Data Sheet  
ADA4097-1  
INPUT PROTECTION  
OVER-THE-TOP OPERATION CONSIDERATIONS  
The inputs are protected against temporary voltage excursions  
to 15 V below –VS (see Figure 54) by internal 880 ꢀ resistors  
(see Figure 53). These resistors limit the current in the series  
D1 diode and D2 diode that are tied to the bases of the Q1 and  
Q2 transistors, respectively. Adding additional external series  
resistance extends the protection to >15 V below −VS, at the  
cost of stability and added thermal noise. The input stage of the  
ADA4097-1 incorporates phase reversal protection to prevent  
the output from phase reversing for inputs below −VS. The  
ADA4097-1 op amp does not have clamping diodes between the  
inputs and can be differentially overdriven up to 80 V without  
damage, inducing parametric shifts, or drawing appreciable input  
current. Figure 55 summarizes the input fault types that can be  
applied to the ADA4097-1 without compromising input integrity.  
When the ADA4097-1 input common-mode is biased near or  
>+VS supply, the amplifier operates in the Over-The-Top  
configuration. The differential input pair that controls amplifier  
operation is the common base pair, Q3 to Q6 (see Figure 53).  
Input bias currents change from< 0.3 nA in normal operation  
to approximately 0.8 ꢁA in Over-The-Top operation when the  
input stage transitions from common emitter to common base.  
The Over-The-Top input bias currents are well matched, and the  
associated offset is typically <50 nA. Ensure that the impedance  
connected to the inverting and noninverting inputs is well matched  
to avoid any input bias current induced voltage offsets.  
Differential input impedance, RIN (see Figure 56), decreases  
from >10 Mꢀ in normal operation to ~60 kꢀ in Over-The-Top  
operation (see Table 1 and Table 2).  
V
= 5V  
SY  
R
F
R
I
V
R
IN  
IN  
R
I
V
INCM  
R
F
V
OUT  
Figure 56. Difference Amplifier Configured for Normal Operation and  
Over-The-Top Operation (RI Is a Gain Setting Resistor)  
This RIN resistance appears across the summing nodes in Over-  
The-Top operation due to the configuration of the common  
base input stage.  
V
IN  
TIME (400ms/DIV)  
The RIN value is derived from the specified IB that flows to the  
op amp inputs, as expressed in the following equation:  
Figure 54. ADA4097-1 as Unity-Gain Buffer with Noninverting Input Driven  
Beyond the Supply (VSY = 5 V)  
R
IN = 2kT/(qIB)  
5V  
5V  
OK!  
OK!  
where:  
k is Boltzmann’s constant.  
T is the operating temperature.  
q is the charge of an electron.  
IB is the operating input bias current in Over-The-Top  
operation.  
80V  
80V  
INPUTS DRIVEN  
ABOVE THE SUPPLY  
TOLERANT  
LARGE DIFFERENTIAL  
INPUT VOLTAGE  
TOLERANT  
5V  
5V  
The inputs are biased proportional to absolute temperature.  
Therefore, RIN is relatively constant with temperature. This  
resistance appears across the summing nodes of the amplifier,  
which is forced to 0 V differentially by the feedback action of  
the amplifier and can seem relatively harmless. However,  
depending on the configuration, this input resistance can boost  
the noise gain, lower overall amplifier loop gain and closed-  
loop bandwidth, and raise output noise. The singular benefit of  
this configuration is an increase in closed-loop amplifier stability.  
OK!  
OK!  
80V  
–5V  
LARGE DIFFERENTIAL  
INPUT VOLTAGE  
TOLERANT  
INPUTS DRIVEN  
BELOW GROUND  
TOLERANT  
Figure 55. ADA4097-1 Fault Tolerant Conditions  
In normal mode (−VS < VCM < +VS −1 V), RIN is typically large  
compared to the value of the gain setting resistors (RF and RI),  
and RIN can be ignored.  
Rev. 0 | Page 1ꢂ of 27  
 
 
 
 
 
ADA4097-1  
Data Sheet  
In this case, the noise gain is defined by the following equation:  
OUTPUT  
Noise Gain = 1 + RF/RI  
The output of the ADA4097-1 can swing rail-to-rail to within  
15 mV of the either supply with no load. The output can source  
30 mA and sink 40 mA. The amplifier is internally compensated to  
drive at least 200 pF of CLOAD. Adding a series resistance of 50 ꢀ  
between the output and larger capacitive loads extends the  
capacitive drive capability of the amplifier.  
When the amplifier transitions to Over-The-Top operation with  
the input common-mode biased near or above the +VS supply,  
consider the value of RIN.  
The noise gain of the amplifier increases as shown in the  
following equation:  
If the ADA4097-1 enters shutdown, the VOUT pin appears as  
high impedance with two steering diodes connected to either  
supply. In this state, the output typically leaks <5 nA.  
RF  
RI || RF  
RIN  
Noise GainOTT   1   
1   
RI || RIN RI || RF  
SHUTDOWN PIN (SHDN)  
where Noise GainOTT is the Over-The-Top noise gain.  
The ADA4097-1 has a dedicated SHDN pin to place the  
amplifier in a very low power shutdown state when asserted  
high. A logic high is defined by a voltage ≥1.5 V applied to the  
SHDN pin with respect to the −VS pin. In shutdown, the amplifier  
draws <20 ꢁA of supply current (see Figure 7) and the VOUT pin  
is placed in a high impedance state.  
The dc closed-loop gain remains mostly unaffected (RF/RI).  
However, the loop gain of the amplifier decreases, as expressed  
in the following equation:  
AOL  
RF  
AOL  
Noise GainOTT  
to  
1  
RI  
The SHDN pin can be driven beyond the +VS supply up to the  
absolute maximum voltage (60 V with respect to −VS) and draws  
little current (<2.5 ꢁA). For normal active amplifier operation,  
the SHDN pin can be floated or driven by an external voltage  
source low (within 0.5 V of −VS). If the SHDN pin is left floating,  
an internal current source (~600 nA) pulls the SHDN pin to –VS,  
which places the amplifier into a default, active amplifying state.  
Because of the close proximity of the −IN pin and SHDN pin,  
fast edges on the −IN pin may ac-couple to the adjacent high  
impedance SHDN pin, inadvertently placing the device in  
shutdown. If this scenario is a concern, add a 1 nF capacitor  
between the SHDN pin and the −VS pin.  
Likewise, the closed-loop bandwidth (BWCLOSED_LOOP) of the  
amplifier changes going from normal operation to Over-The-  
Top operation.  
In normal operation,  
GBP  
BWCLOSED_LOOP  
RF  
RI  
1  
In Over-The-Top operation,  
GBP  
Noise GainOTT  
BWCLOSED_LOOP  
Alternatively, the amplifier can be effectively placed in a low power  
state by removing +VS. In this low power state, the inputs typically  
leak <1 nA with either IN pin biased between −VS and 70 V  
above −VS. If the IN pins are taken below −VS, they appear as a  
diode connected to the −VS supply in series with a resistance of  
880 ꢀ. In this condition, limit the current to <10 mA.  
Output voltage noise density (eno) is impacted when the device  
transitions from normal operation to Over-The-Top operation.  
Resistor noise is neglected in both modes of operation in the  
following equations.  
In normal operation, neglecting resistor noise,  
Using an external source to drive the output beyond either VS  
supply under shutdown conditions may produce unlimited  
current and may damage the device.  
RF  
RI   
eno e 1   
n   
where en is input referred voltage noise density.  
In Over-The-Top operation, neglecting resistor noise,  
eno en Noise GainOTT  
Rev. 0 | Page 20 of 27  
 
 
Data Sheet  
ADA4097-1  
APPLICATIONS INFORMATION  
10  
5
LARGE RESISTOR GAIN OPERATION  
R
= R = 1MΩ  
G
F
The ADA4097-1 has approximately 3.5 pF of input capacitance.  
The parallel combination of the RF and RG on the inverting  
input can combine with this input capacitance (CIN) to form a  
pole that can reduce bandwidth, cause frequency response  
peaking, or produce oscillations (see Figure 58). To mitigate  
these consequences, place a feedback capacitor with a value of  
CF > CIN(RG/RF) in parallel with RF for summing node impedances  
>200 kꢀ (RF||RG > 200 kꢀ). This capacitor placement cancels the  
input pole and optimizes dynamic performance (see Figure 57).  
0
–5  
–10  
–15  
C
C
C
= 0pF  
= 1pF  
= 2pF  
F
F
F
For applications where the noise gain is unity (RG→∞), and the  
feedback resistor exceeds 200 kꢀ, CF ≥ CIN. Optimize PCB layouts  
to keep layout related summing node capacitance to an absolute  
minimum.  
0.1  
1
10  
FREQUENCY (kHz)  
100  
Figure 58. Inverting Gain of 1, Small Signal Frequency Response,  
RF = RG = 1 MΩ  
C
F
RECOMMENDED VALUES FOR VARIOUS GAINS  
R
F
Table 7 is a reference for determining various recommended  
gains and associated noise performance. The total impedance  
seen at the inverting input is kept to <200 kΩ for gains >1 to  
maintain ideal small signal bandwidth.  
1MΩ  
U1  
R
G
V
IN  
1MΩ  
C
IN  
V
OUT  
3.5pF  
Figure 57. Inverting Gain Schematic  
Table 7. Gains and Associated Recommended Resistor Values (TA = 25°C)  
Total System Noise (nVꢀ√Hz at 1 kHz),  
Referred to Input  
Gain RF (kΩ)  
RG (kΩ)  
CF (pF)  
Approximate −3 dB Frequency (kHz)  
+1  
+2  
+2  
+5  
+10  
−1  
−1  
−1  
−2  
−5  
−10  
0
10  
100  
10  
10  
Not applicable  
10  
100  
ꢁ0.2  
ꢂ0  
Not applicable 220  
53  
5ꢁ  
0
0
0
0
0
0
2
0
0
0
ꢀ0  
100  
33.5  
1ꢀ  
ꢀ7  
ꢂ5  
55  
5±  
2ꢂ  
17  
5ꢂ.5  
53.2  
53.2  
10ꢀ  
11ꢂ  
215  
ꢀ0  
10  
10  
100  
1000  
10  
10  
10  
100  
1000  
20  
ꢁꢂ.ꢂ  
100  
±ꢁ.2  
5ꢀ.5  
Rev. 0 | Page 21 of 27  
 
 
 
 
 
 
ADA4097-1  
Data Sheet  
is determined by the resistor and current noise density. The  
ADA4097-1 has an en of 53 nV/Hz.  
NOISE  
To analyze the noise performance of an amplifier circuit,  
identify the noise sources, and then determine if each source  
has a significant contribution to the overall noise performance  
of the amplifier. To simplify the noise calculations, noise spectral  
densities (NSDs) are used rather than actual voltages, to leave  
bandwidth out of the expressions. NSD is generally expressed in  
nV/Hz and is equivalent to the noise in a 1 Hz bandwidth.  
If resistor and current noise contributions are less than half this  
value, the en introduced by the op amp dominates and provides  
optimal noise performance of the device.  
1k  
100  
10  
The noise model shown in Figure 59 has six individual noise  
sources: the Johnson noise of the three resistors (R1 to R3), the  
op amp voltage noise, and the current noise (IN ) in each input  
of the amplifier. Each noise source has its own contribution to  
the noise at the output. Noise is generally specified as referring  
to input (RTI), but it is often simpler to calculate the noise referred  
to the output (RTO), and then divide by the noise gain to obtain  
the RTI noise.  
1
RTI NOISE  
V
NR  
I
× R  
EQ  
N
V
N
0.1  
eN, R2  
1k  
10k  
100k  
(Ω)  
1M  
10M  
R2  
GAIN FROM  
=
R
EQ  
4kTR2  
A TO OUTPUT  
Figure 60. Noise Contributions vs. Equivalent Input Resistance  
NOISE GAIN =  
R2  
eN, R1  
I
I
For the ADA4097-1, this lower bound of resistance in the feedback  
network is about 40 kꢀ. For the amplifier configuration shown  
in Figure 59, REQ < 40 kꢀ provides stable noise performance. If  
noise performance is not important, en is typically fixed for a  
given TA, en,R increases with the square root of the resistor value,  
and the IN × REQ resistance increases linearly, but does not impact  
total noise until it approaches the value of en,R. With REQ < ~6 Mꢀ,  
en,R is larger than IN × REQ. A safe value for REQ < 2 Mꢀ to ensure  
that IN is not the majority contributor to total noise seen by the  
input.  
N–  
N+  
NG = 1 +  
R1  
R1  
R3  
B
A
eN  
4kTR1  
eN, R3  
V
OUT  
R2  
R1  
GAIN FROM  
B TO OUTPUT  
= –  
4kTR3  
2
R2  
R1 + R2  
2
2
eN + 4kTR3 + 4kTR1  
2
R1 × R2  
R1  
RTI NOISE =  
2
2
2
+I  
R3 + I  
+ 4kTR2  
N+  
N–  
R1 + R2  
R1 + R2  
RTO NOISE = NG × RTI NOISE  
Figure 60 shows the noise contributions for the range of resistance  
values discussed in this section.  
Figure 59. Op Amp Noise Analysis Model  
Assuming IN+ = IN− = IN, the equation for RTI noise can be  
simplified to the following form:  
DISTORTION  
There are two main contributors of distortion in op amps: output  
crossover distortion as the output transitions from sourcing to  
sinking, and distortion caused by nonlinear common-mode  
rejection. If the op amp is operating in an inverting configuration,  
there is no common-mode induced distortion. If the op amp is  
operating in the noninverting configurations within the normal  
input common-mode range (−VS to +VS − 1 V), distortion is  
acceptable. When the inputs transition from normal to Over-  
The-Top operation or vice versa, a significant degradation  
occurs in linearity due to the change of input circuitry.  
2
2
RTI Noise = en +en,R2+ I R  
EQ   
N
en,R  
EQ = R3 + R1||R2  
where:  
=
4kTREQ  
R
en is the op amp voltage noise.  
n,R is the thermal noise contribution of the surrounding R1 to  
R3 resistors.  
e
R
EQ is the equivalent input resistance.  
As RL decreases, distortion increases due to a net decrease in loop  
gain and greater signal swings internal to the amplifier that are  
necessary to drive the load. The lowest distortion can be achieved  
with the ADA4097-1 operating in Class A operation in an inverting  
configuration, with the input common-mode biased at midsupply.  
k is Boltzmann’s constant (1.38 × 10−23 J/K).  
T is the absolute temperature in Kelvin.  
A 50 Ω resistor generates a Johnson noise of 1 nV/√Hz at 25°C.  
For optimal performance, the lower bound of resistance in a  
feedback network is determined by the amount of quiescent  
power and distortion that can be tolerated. The upper bound  
Rev. 0 | Page 22 of 27  
 
 
 
 
Data Sheet  
ADA4097-1  
For a given supply voltage, use Figure 62 as a guide for estimating  
the minimum load resistance that the ADA4097-1 can drive for  
a given supply voltage and a given rise in junction temperature  
(ΔTJ). For example, to limit ΔTJ to 50°C, the load driven on the  
15 V supplies (+30 V total supply) must not be lower than  
0.8 kꢀ. It is assumed that θJA is 192°C/W.  
POWER DISSIPATION AND THERMAL SHUTDOWN  
The ADA4097-1 can drive heavy loads on power supplies up to  
25 V. Therefore, ensure that TJ on the integrated circuit does  
not exceed 175°C. The ADA4097-1 is housed in a 6-lead TSOT  
package (θJA = 192°C/W).  
Junction temperatures exceeding 125°C promote accelerated aging.  
Reliability of the ADA4097-1 may be impaired if the junction  
temperature exceeds 175°C. If the junction temperature exceeds  
175°C, the ADA4097-1 has a final safety measure in the form of  
a thermal shutdown that shuts off the output stage and reduces  
the internal device currents. When this thermal shutdown function  
triggers, the output remains disabled in a high impedance state  
until the junction temperature drops 20°C. Persistent heavy loads  
and elevated ambient temperatures can cause the ADA4097-1 to  
oscillate in and out of thermal shutdown depending on the power  
dissipated on the die, until the heavy load is removed (see  
Figure 61).  
4
1
0.1  
ΔT = 50°C  
0.01  
J
ΔT = 75°C  
J
ΔT = 100°C  
J
ΔT = 125°C  
J
0.001  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
T
= 150°C  
A
V
= ±25V  
TOTAL SUPPY VOLTAGE (V)  
SY  
R
= 550Ω  
LOAD  
Figure 62. Minimum Load Resistance for Given ΔTJ and VSY  
INPUT  
10V/DIV  
CIRCUIT LAYOUT CONSIDERATIONS  
Careful and deliberate attention to detail when laying out the  
ADA4097-1 boards yields optimal performance. Power supply  
bypassing, parasitic capacitance, and component selection all  
contribute to the overall performance of the amplifier.  
OUTPUT  
10V/DIV  
T < 155°C  
J
T
> 175°C  
POWER SUPPLY BYPASSING  
J
On single supplies, solder the −VS supply pin directly to a low  
impedance ground plane. Bypass the +VS pin to a low impedance  
ground plane with a low effective series resistance (ESR) multilayer  
ceramic capacitor (MLCC) of 0.1 μF, typically, as close to the VS  
supply pins as possible. When driving heavy loads, add 10 μF of  
supply capacitance. When using split supplies, these conditions  
are applicable to the −VS supply pin.  
100ms/DIV  
Figure 61. ADA4097-1 Cycling In and Out of Thermal Shutdown  
It is not recommended to operate near the maximum junction  
temperature.  
Typically, TJ can be estimated from TA and the device power  
dissipation (PD × θJA), as shown in the following equation:  
The ADA4097-1 has an internal current source of ~0.6 ꢁA on  
the SHDN pin to pull the pin down to −VS and to place the  
amplifier in the default amplifying state. If the SHDN state is not  
required, hard tie the SHDN pin to the −VS pin. If the SHDN pin is  
left floating or driven by a source with significant source impe-  
dance (>100 ꢀ), bypass the −VS supply pin with a small, 1 nF  
capacitor to prevent stray signals from coupling on the SHDN pin,  
which can inadvertently trigger shutdown.  
TJ = TA + PD × θJA  
The power dissipation in the IC varies as a function of supply  
voltage, the output voltage, and load resistance. For a given supply  
voltage, the worst case power dissipation (PD(MAX)) in the IC occurs  
when the supply current is maximum, and the output voltage is  
at half of either supply voltage.  
V
2
RL  
2  
SY  
PD(MAX) VsIs(MAX)  
Rev. 0 | Page 23 of 27  
 
 
 
 
 
ADA4097-1  
Data Sheet  
In the circuit shown in Figure 63, R1 is a 220 ꢀ, Panasonic,  
0805, ERJ-P6 series, and C1 is a 100 pF, Yageo, 0805, 100 V,  
C0G/NPO.  
GROUNDING  
Use ground and power planes where possible to reduce the  
resistance and inductance of the supply and ground returns.  
Place bypass capacitors as close as possible to the VS supply  
pins, with the other ends connected to the ground plane. It is  
recommended to use a bypass capacitor of at least 0.1 μF when  
driving light loads (load currents < 100 μA), and more capacitance  
when driving heavier loads. Routing from the output to the load  
and return to the ground plane must have minimal loop area to  
keep inductance to a minimum.  
VCC  
ADVANTAGES DISADVANTAGES  
8
R1  
U1  
VIN  
IN+  
3
INEXPENSIVE  
(~5 CENTS)  
R1 INTRODUCES  
THERMAL NOISE  
1 VOUT  
V+  
V–  
C1  
2
SMALL  
RC NETWORK  
LIMITS SPEED  
FOOTPRINT  
VEE  
GND  
4
MINIMAL  
LEAKAGE  
NEED TO CAREFULLY  
CHARACTERIZE  
CAPACITOR  
NOT AS ROBUST  
AGAINST REPEATED  
STRIKES  
Figure 63. ESD Protection Circuit (RC Network)  
ESD PROTECTION WHEN POWERED  
In the circuit shown in Figure 64, R1 is a 220 ꢀ, Panasonic,  
0805, ERJ-P6 series, and D1 is a Bourns CDSOD323-T36SC.  
An ESD varistor can be considered for D1.  
ICs react to ESD strikes differently when unpowered vs.  
powered, which falls under IEC-61000-4-2 standards (see  
the Absolute Maximum Ratings section). A device that  
performs well under HBM conditions can perform poorly  
under International Electrotechnical Commission (IEC)  
conditions. The ADA4097-1 is thoroughly abused with ESD  
strikes under IEC conditions to create a front-end circuit  
protection scheme that protects the device if subjected to ESD  
strikes. Figure 63 and Figure 64 show two different protection  
schemes that extend the protection of the ADA4097-1 to 8 kV  
ESD strikes.  
For more information on system level ESD considerations, see  
the technical article, When Good Electrons Go Bad: How to  
Protect Your Analog Front End, on the Analog Devices, Inc.,  
website.  
RELATED PRODUCTS  
Table 8 describes several alternative precision amplifiers that  
can also be considered for certain applications.  
Consider the following when selecting components:  
A component size of 0805 or larger to reduce chance of  
arc-over.  
Pulse withstanding, thick film resistors.  
C0G MLCC with a minimum rating of 100 V.  
Bidirectional, transient voltage suppression (TVS) diodes.  
VCC  
8
ADVANTAGES DISADVANTAGES  
R1  
U1  
VIN  
IN+  
3
2
INEXPENSIVE  
R1 INTRODUCES  
1
VOUT  
(20 TO 30 CENTS) NOISE  
V+  
V–  
D_TVS  
D1  
SMALL  
FOOTPRINT  
D1 HAS LEAKAGE  
CURRENT  
GND  
4
VEE  
VERY ROBUST  
D1 HAS  
CAPACITANCE  
(5pF TO 300pF)  
Figure 64. ESD Protection Circuit (R-TVS Network)  
Table 8. ADA4097-1 Related Products  
Model  
VOS (μV)  
±0  
30  
30  
35  
50  
±0  
375  
500  
IB (nA)  
0.3  
0.7  
10  
1
5
0.ꢁ  
1
GBP (kHz)  
130  
en (nVꢀ√Hz)  
ISY (ꢁA)  
33  
Common-Mode Input Range (V)  
−VS to −VS + 70  
−VS to −VS + 70  
−VS to −VS + 70  
−VS to +VS  
−VS to −VS + 7±  
−VS to +VS  
−VS to −VS + 3±  
−VS to −VS + ꢁꢁ  
ADAꢁ0ꢂ7-1  
ADAꢁ0ꢂꢀ-1  
ADAꢁ0ꢂꢂ-1  
ADAꢁ077-1  
LT±015  
LT±01ꢁ  
LT1ꢁꢂꢁ  
LT1ꢁꢂ0A  
53  
17  
7
1000  
ꢀ000  
3ꢂ00  
3200  
1±00  
2.7  
1±5  
1500  
500  
335  
1±5  
1.5  
7
1ꢀ  
ꢂ.5  
1ꢀ5  
50  
1ꢀ0  
55  
Rev. 0 | Page 2ꢁ of 27  
 
 
 
 
 
 
Data Sheet  
ADA4097-1  
TYPICAL APPLICATIONS  
5kΩ  
5V  
1.25kΩ  
+
LT6654-2.5  
SHDN  
V
OUT  
1.25kΩ  
ADA4097-1  
5V  
IN  
OUT  
GND  
C2  
100nF  
C1  
10µF  
5kΩ  
±10V  
LT5400-7  
Figure 65. 10 V to 0 V to +5 V Funnel Amplifier, High CMRR and 80 V Input Protection via LT5400-7 Resistor Network  
V
= 5V  
SY  
INPUT  
OUTPUT  
5V/DIV  
V
OUT  
V
IN  
TIME (200µs/DIV)  
Figure 66. 10 V to 0 V to +5 V Funnel Amplifier, Input and Output Voltages  
0
DIFFERENTIAL  
–10  
–20  
–30  
–40  
COMMON MODE  
–50  
–60  
–70  
–80  
–90  
0.1  
1
10  
100  
1k  
FREQUENCY (kHz)  
Figure 67. 10 V to 0 V to +5 V Funnel Amplifier, System Gain  
Rev. 0 | Page 25 of 27  
 
ADA4097-1  
Data Sheet  
V
= 5V  
SY  
OUTPUT  
INPUT  
2V/DIV  
V
OUT  
V
IN  
TIME (200µs/DIV)  
Figure 68. 10 V to 0 V to +5 V Funnel Amplifier, Large Signal Pulse Response  
R3  
R2  
V
OUT  
1kΩ  
9.09kΩ  
D1*  
5V  
+
1N4148  
V
BAT  
SHDN  
R4  
ADA4097-1  
909Ω  
R1  
0.1Ω  
*DIODE IMPROVES SINGLE SUPPLY AMPLIFIER  
ACCURACY AT LOW LOAD CURRENTS  
Figure 69. 1 V/A Low-Side Current Sense  
100Ω  
ADA4097-1  
5V  
0.1Ω  
10W  
M1  
V
= 1.5V TO 70V  
BAT  
BSS123LT1G  
SHDN  
100Ω  
100Ω  
V
OUT  
1V/A  
LOAD  
10mA TO 1A  
1kΩ  
Figure 70. 1 V/A High-Side Current Sense  
1.8V TO 5V LOGIC  
A1  
R3  
R2  
SHDN  
1kΩ  
10kΩ  
15V  
SHDN  
M1  
BSS84  
ADA4097-1  
R4  
10MΩ  
C1  
1nF  
–15V  
Figure 71. Microprocessor Control of SHDN Pin in Split Supply Applications  
Rev. 0 | Page 2± of 27  
Data Sheet  
ADA4097-1  
OUTLINE DIMENSIONS  
3.05  
2.90  
2.75  
6
1
5
2
4
3
3.05  
2.80  
2.55  
1.75  
1.60  
1.45  
TOP VIEW  
0.95 BSC  
1.90 REF  
0.90  
SIDE VIEW  
END VIEW  
0.87  
0.84  
1.00 MAX  
0.20  
0.08  
0.60  
0.45  
0.30  
8°  
4°  
0°  
SEATING  
PLANE  
0.60  
REF  
0.10 MAX  
0.50  
0.30  
COMPLIANT TO JEDEC STANDARDS MO-193-AA  
Figure 72. 6-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADAꢁ0ꢂ7-1BUJZ-R5  
ADAꢁ0ꢂ7-1BUJZ-RL7  
ADAꢁ0ꢂ7-1HUJZ-RL7  
EVAL-ADAꢁ0ꢂ7-1HUJZ  
Temperature Range  
−ꢁ0°C to +125°C  
−ꢁ0°C to +125°C  
−55°C to +150°C  
Package Description  
±-Lead TSOT  
±-Lead TSOT  
±-Lead TSOT  
Evaluation Board  
Package Option  
Marking Code  
UJ-±  
UJ-±  
UJ-±  
Y7K  
Y7K  
Y7L  
1 Z = RoHS Compliant Part.  
©2021 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D23812-5ꢀ21(0)  
Rev. 0 | Page 27 of 27  
 
 

相关型号:

ADA4097-1BUJZ-R5

50 V, 130 kHz, 32.5 μA, Robust, Over-The-Top Precision Op Amp
ADI

ADA4097-1BUJZ-RL7

50 V, 130 kHz, 32.5 μA, Robust, Over-The-Top Precision Op Amp
ADI

ADA4097-1HUJZ-RL7

50 V, 130 kHz, 32.5 μA, Robust, Over-The-Top Precision Op Amp
ADI

ADA4097-2

50 V、130 kHz、每通道32.5 μA、稳定可靠的Over-The-Top精密运算放大器
ADI

ADA4099-1

50 V, 8 MHz, 1.5 mA per Channel, Robust, Over-The-Top, Precision Op Amps
ADI

ADA4099-1BUJZ-R5

50 V, 8 MHz, 1.5 mA per Channel, Robust, Over-The-Top, Precision Op Amps
ADI

ADA4099-1BUJZ-RL7

50 V, 8 MHz, 1.5 mA per Channel, Robust, Over-The-Top, Precision Op Amps
ADI

ADA4099-1HUJZ-RL7

50 V, 8 MHz, 1.5 mA per Channel, Robust, Over-The-Top, Precision Op Amps
ADI

ADA4099-2

50 V, 8 MHz, 1.5 mA per Channel, Robust, Over-The-Top, Precision Op Amps
ADI

ADA4099-2BCPZ

50 V, 8 MHz, 1.5 mA per Channel, Robust, Over-The-Top, Precision Op Amps
ADI

ADA4099-2BCPZ-RL7

50 V, 8 MHz, 1.5 mA per Channel, Robust, Over-The-Top, Precision Op Amps
ADI

ADA4099-2BRMZ

50 V, 8 MHz, 1.5 mA per Channel, Robust, Over-The-Top, Precision Op Amps
ADI