ADA4500-2ARMZ [ADI]

10 MHz, 14.5 nV/√Hz, Rail-to-Rail I/O, Zero Input Crossover Distortion Amplifier; 10兆赫, 14.5纳伏/ A ????赫兹,轨至轨I / O,零输入交越失真放大器
ADA4500-2ARMZ
型号: ADA4500-2ARMZ
厂家: ADI    ADI
描述:

10 MHz, 14.5 nV/√Hz, Rail-to-Rail I/O, Zero Input Crossover Distortion Amplifier
10兆赫, 14.5纳伏/ A ????赫兹,轨至轨I / O,零输入交越失真放大器

放大器
文件: 总25页 (文件大小:1122K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10 MHz, 14.5 nV/√Hz, Rail-to-Rail I/O,  
Zero Input Crossover Distortion Amplifier  
Data Sheet  
ADA4500-2  
FEATURES  
PIN CONFIGURATION  
Power supply rejection ratio (PSRR): 98 dB minimum  
Common-mode rejection ratio (CMRR): 95 dB minimum  
Offset voltage: 120 µV maximum  
Single-supply operation: 2.7 V to 5.5 V  
Dual-supply operation: 1.35 V to 2.75 V  
Wide bandwidth: 10 MHz  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
OUT B  
–IN B  
+IN B  
ADA4500-2  
TOP VIEW  
(Not to Scale)  
Figure 1. 8-Lead MSOP Pin Configuration  
Rail-to-rail input and output  
Low noise  
2 µV p-p from 0.1 Hz to 10 Hz  
14.5 nV/√Hz at 1 kHz  
For more information on the pin connections, see the Pin  
Configurations and Function Descriptions section  
100  
ADA4500-2  
V
= 5.0V  
SY  
80  
60  
Very low input bias current: 2 pA maximum  
40  
APPLICATIONS  
20  
Pressure and position sensors  
Remote security  
0
Medical monitors  
Process controls  
Hazard detectors  
Photodiode applications  
–20  
–40  
–60  
–80  
–100  
0
1
2
3
4
5
V
(V)  
CM  
Figure 2. The ADA4500-2 Eliminates Crossover Distortion  
Across its Full Supply Range  
GENERAL DESCRIPTION  
The ADA4500-2 is a dual 10 MHz, 14.5 nV/√Hz, low power  
amplifier featuring rail-to-rail input and output swings while  
operating from a 2.7 V to 5.5 V single power supply. Compatible  
with industry-standard nominal voltages of +3.0 V, +3.3 V,  
+5.0 V, and 2.5 V.  
This combination of features makes the ADA4500-2 an ideal choice  
for precision sensor applications because it minimizes errors due to  
power supply variation and maintains high CMRR over the full  
input voltage range. The ADA4500-2 is also an excellent amplifier  
for driving analog-to-digital converters (ADCs) because the output  
does not distort with the common-mode voltage, which enables  
the ADC to use its full input voltage range, maximizing the  
dynamic range of the conversion subsystem.  
Employing a novel zero-crossover distortion circuit topology, this  
amplifier offers high linearity over the full, rail-to-rail input  
common-mode range, with excellent power supply rejection ratio  
(PSRR) and common-mode rejection ratio (CMRR) performance  
without the crossover distortion seen with the traditional  
complementary rail-to-rail input stage. The resulting op amp  
also has excellent precision, wide bandwidth, and very low  
bias current.  
Many applications such as sensors, handheld instrumentation,  
precision signal conditioning, and patient monitors can benefit  
from the features of the ADA4500-2.  
The ADA4500-2 is specified for the extended industrial temperature  
range (−40°C to +125°C) and available in the standard 8-lead  
MSOP and 8-lead LFCSP packages.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2012 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
IMPORTANT LINKS for the ADA4500-2*  
Last content update 07/12/2013 06:24 pm  
PARAMETRIC SELECTION TABLES  
DESIGN COLLABORATION COMMUNITY  
Find Similar Products By Operating Parameters  
AD8605, AD8606, AD8608: available in single, dual and quad channel  
versions offering similar AC and DC specifications with lower voltage  
noise and supply current. in a precision RRIO Op Amp.  
ADA4084-2: offers similar speed and precision with lower noise and  
supply current in a 30V RRIO Op Amp.  
Collaborate Online with the ADI support team and other designers  
about select ADI products.  
Follow us on Twitter: www.twitter.com/ADI_News  
Like us on Facebook: www.facebook.com/AnalogDevicesInc  
ADA4505-1, ADA4505-2, ADA4505-4: available in single, dual and  
quad channel counts, it offers lower supply current with rail-to-rail  
linearity of a Zero Crossover Op Amp.  
AD8505, AD8506, AD8508: available in single, dual and quad channel  
versions offering lower supply current with the rail-to-rail linearity of a  
Zero Crossover Op Amp.  
DESIGN SUPPORT  
Submit your support request here:  
Linear and Data Converters  
Embedded Processing and DSP  
DOCUMENTATION  
Sensor Signal Conditioning - Amplifiers for Signal Conditioning  
Telephone our Customer Interaction Centers toll free:  
MT-095: EMI, RFI, and Shielding Concepts  
Americas:  
Europe:  
China:  
1-800-262-5643  
00800-266-822-82  
4006-100-006  
MT-053: Op Amp Distortion: HD, THD, THD + N, IMD, SFDR, MTPR  
MT-035: Op Amp Inputs, Outputs, Single-Supply, and Rail-to-Rail  
Issues  
India:  
Russia:  
1800-419-0108  
8-800-555-45-90  
MS-2066: Low Noise Signal Conditioning for Sensor-Based Circuits  
Quality and Reliability  
Lead(Pb)-Free Data  
DESIGN TOOLS, MODELS, DRIVERS & SOFTWARE  
Analog Bridge Wizard  
SAMPLE & BUY  
ADA4500-2  
Analog Filter Wizard 2.0  
ADIsimOpAmp™  
View Price & Packaging  
OpAmp Error Budget Calculator  
ADA4500 SPICE Macro Model  
Request Evaluation Board  
Request Samples Check Inventory & Purchase  
Find Local Distributors  
EVALUATION KITS & SYMBOLS & FOOTPRINTS  
View the Evaluation Boards and Kits page for documentation and  
purchasing  
Symbols and Footprints  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet.  
Note: Dynamic changes to the content on this page (labeled 'Important Links') does not  
constitute a change to the revision number of the product data sheet.  
This content may be frequently modified.  
 
ADA4500-2  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 19  
Rail-to-Rail Output .................................................................... 19  
Rail-to-Rail Input (RRI) ............................................................ 19  
Zero Cross-Over Distortion ..................................................... 19  
Overload Recovery..................................................................... 20  
Power-On Current Profile......................................................... 21  
Applications Information .............................................................. 22  
Resistance and Capacitance Sensor Circuit............................ 22  
Adaptive Single-Ended-to-Differential Signal Converter..... 22  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
VSY = 2.7 V Electrical Characteristics ........................................ 3  
VSY = 5.0 V Electrical Characteristics ........................................ 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ............................................. 9  
REVISION HISTORY  
10/12–Rev. 0 to Rev. A  
Changes to Ordering Guide .......................................................... 24  
10/12–Revision 0: Initial Version  
Rev. A | Page 2 of 24  
 
Data Sheet  
ADA4500-2  
SPECIFICATIONS  
VSY = 2.7 V ELECTRICAL CHARACTERISTICS  
VSY = 2.7 V, V CM = VSY/2, TA = 25°C, unless otherwise specified.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Conditions  
Min  
Typ  
Max Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
120  
700  
5.5  
1
170  
1
µV  
µV  
µV/°C  
pA  
pA  
pA  
pA  
V
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
Offset Voltage Drift  
Input Bias Current  
TCVOS  
IB  
0.8  
0.3  
−40°C < TA < +125°C  
Input Offset Current  
IOS  
0.3  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
VCM = V− to V+  
−40°C < TA < +125°C  
VCM = [(V−) − 0.2 V] to [(V+) + 0.2 V]  
−40°C < TA < +125°C  
RL = 2 kΩ, [(V−) + 0.05 V] < VOUT < [(V+) − 0.05 V]  
−40°C < TA < +125°C  
RL = 10 kΩ, [(V−) + 0.05 V] < VOUT < [(V+) − 0.05 V]  
−40°C < TA < +125°C  
20  
V+  
Input Voltage Range  
Common-Mode Rejection Ratio  
IVR  
CMRR  
V−  
95  
90  
90  
80  
100  
100  
105  
105  
110  
110  
110  
120  
Large Signal Voltage Gain  
AVO  
Input Capacitance  
Common Mode  
Differential  
CINCM  
CINDM  
RIN  
5
1.7  
400  
pF  
pF  
GΩ  
Input Resistance  
Common mode and differential mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 10 kΩ to V−  
−40°C < TA < +125°C  
RL = 2 kΩ to V−  
−40°C < TA < +125°C  
RL = 10 kΩ to V+  
−40°C < TA < +125°C  
RL = 2 kΩ to V+  
−40°C < TA < +125°C  
Sourcing, VOUT shorted to V−  
Sinking, VOUT shorted to V+  
f = 10 MHz, AV = 1  
2.685 2.695  
2.68  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
mA  
2.65  
2.65  
2.68  
Output Voltage Low  
Short Circuit Limit  
VOL  
3
5
10  
20  
25  
13  
ISC  
26  
−48  
70  
Closed-Loop Impedance  
POWER SUPPLY  
Power Supply Rejection Ratio  
ZOUT  
PSRR  
ISY  
VSY = 2.7 V to 5.5 V  
−40°C to +125°C  
IO = 0 mA  
98  
94  
119  
1.5  
dB  
dB  
mA  
mA  
Supply Current per Amplifier  
1.65  
1.7  
−40°C < TA < +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
RL = 10 kΩ, CL = 30 pF, AV = +1, VIN = VSY  
RL = 10 kΩ, CL = 30 pF, AV = −1, VIN = VSY  
VIN = 5 mV p-p, RL = 10 kΩ, AV = +100  
VIN = 5 mV p-p, RL = 10 kΩ, AV = +1  
VIN = 5 mV p-p, RL = 10 kΩ, AV = −1  
VIN = 5 mV p-p, RL = 10 kΩ, CL = 20 pF, AV = +1  
VIN = 2 V p-p, RL = 10 kΩ, CL = 10 pF, AV = −1  
5.5  
8.7  
10.1  
10.3  
18.4  
52  
V/µs  
V/µs  
MHz  
MHz  
MHz  
Degrees  
µs  
Gain Bandwidth Product  
Unity Gain Crossover  
−3 dB Bandwidth  
Phase Margin  
Settling Time to 0.1%  
GBP  
UGC  
−3 dB  
ΦM  
ts  
1
Rev. A | Page 3 of 24  
ADA4500-2  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Conditions  
Min  
Typ  
Max Unit  
NOISE PERFORMANCE  
Total Harmonic Distortion + Noise THD+N  
Bandwidth = 80 kHz  
Bandwidth = 500 kHz  
G = 1, f = 10 Hz to 20 kHz, VIN = 0.7 V rms at 1 kHz  
0.0006  
0.001  
3
14.5  
<0.5  
%
%
µV p-p  
nV/√Hz  
fA/√Hz  
Peak-to-Peak Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
Rev. A | Page 4 of 24  
 
Data Sheet  
ADA4500-2  
VSY = 5.0 V ELECTRICAL CHARACTERISTICS  
VSY = 5.0 V, V CM = VSY/2, TA = 25°C, unless otherwise specified.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
120  
700  
5.5  
2
190  
3
µV  
µV  
µV/°C  
pA  
pA  
pA  
pA  
V
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
Offset Voltage Drift  
Input Bias Current  
TCVOS  
IB  
0.9  
0.7  
−40°C < TA < +125°C  
Input Offset Current  
IOS  
0.3  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
VCM = V− to V+  
−40°C < TA < +125°C  
VCM = [(V−) − 0.2 V] to [(V+) + 0.2 V]  
−40°C < TA < +125°C  
RL = 2 kΩ, [(V−) + 0.05 V] < VOUT < [(V+) − 0.05 V]  
−40°C < TA < +125°C  
RL = 10 kΩ, [(V−) + 0.05 V] < VOUT < [(V+) − 0.05 V]  
−40°C < TA < +125°C  
20  
V+  
Input Voltage Range  
Common-Mode Rejection Ratio  
IVR  
CMRR  
V−  
95  
95  
95  
84  
105  
80  
110  
110  
115  
115  
110  
120  
Large Signal Voltage Gain  
AVO  
Input Capacitance  
Common Mode  
Differential  
CINCM  
CINDM  
RIN  
5
1.7  
400  
pF  
pF  
GΩ  
Input Resistance  
Common mode and differential mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 10 kΩ to V−  
−40°C < TA < +125°C  
RL = 2 kΩ to V−  
−40°C < TA < +125°C  
RL = 10 kΩ to V+  
−40°C < TA < +125°C  
RL = 2 kΩ to V+  
−40°C < TA < +125°C  
Sourcing, VOUT shorted to V−  
Sinking, VOUT shorted to V+  
f = 10 MHz, AV = +1  
4.975 4.99  
4.97  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
mA  
4.95  
4.95  
4.97  
Output Voltage Low  
Short Circuit Limit  
VOL  
7
15  
20  
40  
50  
24  
ISC  
75  
−75  
60  
Closed-Loop Impedance  
POWER SUPPLY  
Power Supply Rejection Ratio  
ZOUT  
PSRR  
ISY  
VSY = 2.7 V to 5.5 V  
−40°C to +125°C  
IO = 0 mA  
98  
94  
119  
dB  
dB  
mA  
mA  
Supply Current per Amplifier  
1.55  
1.75  
1.8  
−40°C < TA < +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
RL = 10 kΩ, CL = 30 pF, AV = +1, VIN = VSY  
RL = 10 kΩ, CL = 30 pF, AV = −1, VIN = VSY  
VIN = 5 mV p-p, RL = 10 kΩ, AV = +100  
VIN = 5 mV p-p, RL = 10 kΩ, AV = +1  
VIN = 5 mV p-p, RL = 10 kΩ, AV = −1  
VIN = 5 mV p-p, RL = 10 kΩ, CL = 20 pF, AV = +1  
VIN = 4 V p-p, RL = 10 kΩ, CL = 10 pF, AV = −1  
5.5  
8.7  
10  
10.5  
19.2  
57  
V/µs  
V/µs  
MHz  
MHz  
MHz  
Degrees  
µs  
Gain Bandwidth Product  
Unity Gain Crossover  
−3 dB Bandwidth  
Phase Margin  
Settling Time to 0.1%  
GBP  
UGC  
−3 dB  
ΦM  
ts  
1
Rev. A | Page 5 of 24  
ADA4500-2  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
NOISE PERFORMANCE  
Total Harmonic Distortion + Noise THD+N  
Bandwidth = 80 kHz  
Bandwidth = 500 kHz  
G = 1, f = 20 Hz to 20 kHz, VIN = 1.4 V rms at 1 kHz  
0.0004  
0.0008  
2
14.5  
<0.5  
%
%
µV p-p  
nV/√Hz  
fA/√Hz  
Peak-to-Peak Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
Rev. A | Page 6 of 24  
 
Data Sheet  
ADA4500-2  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Supply Voltage  
6 V  
Input Voltage  
(V−) − 0.2 V to (V+) + 0.2 V  
(V−) − 0.2 V to (V+) + 0.2 V  
Indefinite  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
Table 4. Thermal Resistance  
Package Type  
8-Lead MSOP (RM-8)1  
8-Lead LFCSP (CP-8-12)2, 3  
Differential Input Voltage1  
Output Short-Circuit Duration  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
θJA  
142  
85  
θJC  
45  
2
Unit  
°C/W  
°C/W  
1 Thermal numbers were simulated on a 4-layer JEDEC printed circuit board (PCB).  
2 Thermals numbers were simulated on a 4 layer JEDEC PCB with the exposed  
pad soldered to the PCB.  
3 θJC was simulated at the exposed pad on the bottom of the package.  
1 Differential input voltage is limited to 5.6 V or the supply voltage + 0.6 V,  
whichever is less.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. A | Page 7 of 24  
ADA4500-2  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
OUT A 1  
–IN A 2  
+IN A 3  
V– 4  
8 V+  
7 OUT B  
6 –IN B  
5 +IN B  
ADA4500-2  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
TOP VIEW  
(Not to Scale)  
OUT B  
–IN B  
+IN B  
ADA4500-2  
TOP VIEW  
(Not to Scale)  
NOTES  
1. CONNECT THE EXPOSED PAD TO V–  
OR LEAVE IT UNCONNECTED.  
Figure 4. 8-Lead LFCSP Pin Configuration  
Figure 3. 8-Lead MSOP Pin Configuration  
Table 5. 8-Lead MSOP and 8-Lead LFCSP Pin Function Descriptions  
Pin No.  
Mnemonic  
OUT A  
−IN A  
+IN A  
V−  
+IN B  
−IN B  
OUT B  
V+  
Description  
1
2
3
4
5
6
7
8
Output, Channel A.  
Inverting Input, Channel A.  
Noninverting Input, Channel A.  
Negative Supply Voltage.  
Noninverting Input, Channel B.  
Inverting Input, Channel B.  
Output, Channel B.  
Positive Supply Voltage.  
EPAD  
For the LFCSP package only, connect the exposed pad to V− or leave it unconnected.  
Rev. A | Page 8 of 24  
 
Data Sheet  
ADA4500-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
ADA4500-2  
ADA4500-2  
V
V
= 2.7V  
V
V
= 5.0V  
= V /2  
SY  
SY  
SY  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
= V /2  
CM  
SY  
CM  
–120 –100 –80 –60 –40 –20  
0
20 40 60 80 100 120  
(µV)  
–120 –100 –80 –60 –40 –20  
0
20 40 60 80 100 120  
(µV)  
V
V
OS  
OS  
Figure 5. Input Offset Voltage Distribution, VSY = 2.7 V  
Figure 8. Input Offset Voltage Distribution, VSY = 5.0 V  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
ADA4500-2  
ADA4500-2  
V
V
= 2.7V  
V
V
= 5.0V  
SY  
SY  
= V /2  
= V /2  
CM  
SY  
CM  
SY  
–40°C ≤ T ≤ +125°C  
–40°C ≤ T ≤ +125°C  
A
A
0
0
0
1.25  
2.50  
3.75  
5.00  
6.25  
7.50  
8.75  
0
1.25  
2.50  
3.75  
5.00  
6.25  
7.50  
8.75  
TCV (µV/°C)  
TCV (µV/°C)  
OS  
OS  
Figure 6. Input Offset Voltage Drift Distribution, VSY = 2.7 V  
Figure 9. Input Offset Voltage Drift Distribution, VSY = 5.0 V  
100  
100  
ADA4500-2  
= 2.7V  
ADA4500-2  
= 5.0V  
V
V
SY  
SY  
80  
60  
80  
60  
40  
40  
20  
20  
0
0
–20  
–40  
–60  
–80  
–100  
–20  
–40  
–60  
–80  
–100  
–0.2  
0.8  
1.8  
2.8  
(V)  
3.8  
4.8  
–0.2  
0.3  
0.8  
1.3  
1.8  
2.3  
2.8  
V
V
(V)  
CM  
CM  
Figure 10. Input Offset Voltage (VOS) vs. Common-Mode Voltage (VCM), VSY = 5.0 V  
Figure 7. Input Offset Voltage (VOS) vs. Common-Mode Voltage (VCM), VSY = 2.7 V  
Rev. A | Page 9 of 24  
ADA4500-2  
Data Sheet  
TA = 25°C, unless otherwise noted.  
100  
100  
80  
ADA4500-2  
ADA4500-2  
V
V
= 2.7V  
V
V
= 5.0V  
SY  
SY  
= V /2  
= V /2  
80  
60  
CM  
SY  
CM  
SY  
I
+
B
60  
40  
40  
I
B
20  
20  
I
+
B
0
0
I
B
–20  
–40  
–20  
–40  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Input Bias Current (IB) vs. Temperature, VSY = 2.7 V  
Figure 14. Input Bias Current (IB) vs. Temperature, VSY = 5.0 V  
100  
100  
ADA4500-2  
= 2.7V  
ADA4500-2  
V = 5.0V  
SY  
V
SY  
80  
60  
80  
60  
40  
40  
20  
20  
0
0
–20  
–40  
–20  
–40  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
3.0  
0
1
2
3
4
5
V
V
(V)  
CM  
CM  
Figure 12. Input Bias Current (IB) vs. Common-Mode Voltage (VCM), VSY = 2.7 V  
Figure 15. Input Bias Current (IB) vs. Common-Mode Voltage (VCM), VSY = 5.0 V  
10k  
10k  
ADA4500-2  
ADA4500-2  
V
= 2.7V  
V
= 5.0V  
SY  
SY  
SOURCING OUTPUT CURRENT  
SOURCING OUTPUT CURRENT  
1k  
100  
10  
1k  
100  
10  
+125°C  
+125°C  
+25°C  
+25°C  
–40°C  
1
1
–40°C  
0.1  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 13. Output Voltage (VOH) to Supply Rail vs. Load Current, VSY = 2.7 V  
Figure 16. Output Voltage (VOH) to Supply Rail vs. Load Current, VSY = 5.0 V  
Rev. A | Page 10 of 24  
Data Sheet  
ADA4500-2  
TA = 25°C, unless otherwise noted.  
10k  
10k  
1k  
ADA4500-2  
ADA4500-2  
= 5.0V  
SINKING OUTPUT CURRENT  
V
= 2.7V  
V
SY  
SY  
SINKING OUTPUT CURRENT  
1k  
100  
10  
+25°C  
100  
10  
+125°C  
+125°C  
–40°C  
+25°C  
–40°C  
1
1
0.1  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 17. Output Voltage (VOL) to Supply Rail vs. Temperature, VSY = 2.7 V  
Figure 20. Output Voltage (VOL) to Supply Rail vs. Load Current, VSY = 5.0 V  
50  
50  
ADA4500-2  
ADA4500-2  
V
= 2.7V  
V
= 5.0V  
SY  
SY  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
R
= 2kΩ  
L
R
= 2kΩ  
L
R
= 10kΩ  
L
R
= 10kΩ  
L
–50  
–25  
0
25  
50  
75  
100  
125  
150  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. Output Voltage (VOH) to Supply Rail vs. Temperature, VSY = 2.7 V  
Figure 21. Output Voltage (VOH) to Supply Rail vs. Temperature, VSY = 5.0 V  
50  
20  
ADA4500-2  
ADA4500-2  
V
= 5.0V  
SY  
V
= 2.7V  
SY  
40  
30  
20  
10  
0
15  
10  
5
R
= 2kΩ  
L
R
= 2kΩ  
L
R
= 10kΩ  
L
R
= 10kΩ  
L
0
–50  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 22. Output Voltage (VOL) to Supply Rail vs. Temperature, VSY = 5.0 V  
Figure 19. Output Voltage (VOL) to Supply Rail vs. Temperature, VSY = 2.7 V  
Rev. A | Page 11 of 24  
ADA4500-2  
Data Sheet  
TA = 25°C, unless otherwise noted.  
1.75  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
ADA4500-2  
ADA4500-2  
1.50  
1.25  
+85°C  
V
= ±2.5V  
SY  
1.00  
+125°C  
+25°C  
0.75  
0.50  
0.25  
0
V
= ±1.35V  
SY  
–40°C  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
Figure 23. Supply Current per Amp vs. Supply Voltage  
Figure 26. Supply Current per Amp vs. Temperature  
150  
150  
150  
100  
50  
150  
100  
50  
ADA4500-2  
ADA4500-2  
PHASE  
100  
PHASE  
100  
50  
50  
GAIN  
GAIN  
0
0
0
0
–50  
–50  
–50  
–50  
R
= 10kΩ  
= 20pF  
= 2.7V  
L
R
= 10kΩ  
= 20pF  
= 5.0V  
L
C
L
C
L
V
V
SY  
CM  
V
V
SY  
CM  
= V /2  
SY  
= V /2  
SY  
–100  
–100  
–100  
–100  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 24. Open-Loop Gain and Phase vs. Frequency, VSY = 2.7 V  
Figure 27. Open-Loop Gain and Phase vs. Frequency, VSY = 5.0 V  
60  
60  
ADA4500-2  
ADA4500-2  
V
V
= 2.7V  
V
V
= 5.0V  
SY  
SY  
50  
40  
50  
40  
= V /2  
= V /2  
CM  
SY  
CM  
SY  
A
= +100  
= +10  
= +1  
A
= +100  
= +10  
= +1  
V
V
30  
30  
A
A
V
V
20  
20  
10  
10  
A
A
V
V
0
0
–10  
–20  
–10  
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 25. Closed Loop Gain vs. Frequency, VSY = 2.7 V  
Figure 28. Closed-Loop Gain vs. Frequency, VSY = 5.0 V  
Rev. A | Page 12 of 24  
Data Sheet  
ADA4500-2  
TA = 25°C, unless otherwise noted.  
160  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
20  
ADA4500-2  
ADA4500-2  
20  
0
V
V
= 5.0V  
V
V
= 2.7V  
SY  
SY  
= V /2  
= V /2  
CM  
SY  
CM  
SY  
0
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 29. CMRR vs. Frequency, VSY = 2.7 V  
Figure 32. CMRR vs. Frequency, VSY = 5.0 V  
140  
120  
100  
80  
140  
120  
100  
80  
PSRR+  
PSRR–  
PSRR+  
PSRR–  
ADA4500-2  
ADA4500-2  
V
V
= 5.0V  
V
V
= 2.7V  
SY  
SY  
= V /2  
= V /2  
CM  
SY  
CM  
SY  
60  
60  
40  
40  
20  
20  
0
0
–20  
100  
–20  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 30. PSRR vs. Frequency, VSY = 2.7 V  
Figure 33. PSRR vs. Frequency, VSY = 5.0 V  
1k  
100  
10  
1k  
100  
10  
ADA4500-2  
ADA4500-2  
V
V
= 2.7V  
V
V
= 5.0V  
= V /2  
SY  
SY  
SY  
= V /2  
CM  
SY  
CM  
A
= +100  
A
= +100  
V
V
1
1
0.1  
0.1  
A = +1  
V
A
= +1  
A
= +10  
V
V
A
= +10  
V
0.01  
0.001  
0.01  
0.001  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 31. Closed Loop Output Impedance (ZOUT) vs. Frequency, VSY = 2.7 V  
Figure 34. Closed Loop Output Impedance (ZOUT) vs. Frequency, VSY = 5.0 V  
Rev. A | Page 13 of 24  
ADA4500-2  
Data Sheet  
TA = 25°C, unless otherwise noted.  
ADA4500-2  
ADA4500-2  
V
V
V
A
R
C
= 5.0V  
V
V
V
A
R
C
= 2.7V  
SY  
SY  
= V /2  
= V /2  
CM  
SY  
CM  
SY  
= 4V p-p  
= +1  
= 10kΩ  
= 100pF  
= 2V p-p  
= +1  
= 10kΩ  
= 100pF  
IN  
IN  
V
L
L
V
L
L
TIME (400ns/DIV)  
TIME (200ns/DIV)  
Figure 35. Large Signal Transient Response, VSY = 2.7 V  
Figure 38. Large Signal Transient Response, VSY = 5.0 V  
ADA4500-2  
ADA4500-2  
V
V
V
A
R
C
= 5.0V  
V
V
V
A
R
C
= 2.7V  
SY  
SY  
= V /2  
= V /2  
CM  
SY  
CM  
SY  
= 100mV p-p  
= +1  
= 10kΩ  
= 100pF  
= 100mV p-p  
= +1  
= 10kΩ  
= 100pF  
IN  
IN  
V
L
L
V
L
L
TIME (200ns/DIV)  
TIME (200ns/DIV)  
Figure 36. Small Signal Transient Response, VSY = 2.7 V  
Figure 39. Small Signal Transient Response, VSY = 5.0 V  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
ADA4500-2  
ADA4500-2  
V
V
V
A
R
= 2.7V  
V
V
V
= 5.0V  
= V /2  
SY  
= 100mV p-p  
SY  
SY  
= V /2  
CM  
SY  
CM  
= 100mV p-p  
= +1  
IN  
IN  
A
R
= +1  
= 10kΩ  
V
L
V
L
= 10kΩ  
OS–  
OS+  
OS+  
OS–  
1
10  
LOAD CAPACITANCE (pF)  
100  
1
10  
100  
LOAD CAPACITANCE (pF)  
Figure 37. Small Signal Overshoot vs. Load Capacitance, VSY = 2.7 V  
Figure 40. Small Signal Overshoot vs. Load Capacitance, VSY = 5.0 V  
Rev. A | Page 14 of 24  
 
Data Sheet  
ADA4500-2  
TA = 25°C, unless otherwise noted.  
0.05  
0.1  
0
INPUT  
INPUT  
0
–0.05  
–0.10  
–0.1  
–0.2  
ADA4500-2  
ADA4500-2  
V
V
A
R
C
= ±1.35V  
= 50mV p-p  
= –100  
V
V
A
R
C
= ±2.5V  
= 100mV p-p  
= –100  
SY  
IN  
SY  
IN  
1.5  
1.0  
0.5  
0
3
V
L
L
V
L
L
= 10kΩ  
= 10kΩ  
= 100pF  
= 100pF  
2
1
0
OUTPUT  
OUTPUT  
–0.5  
–1  
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 41. Positive Overload Recovery, VSY  
=
1.35 V  
Figure 43. Positive Overload Recovery, VSY = 2.5 V  
0.10  
0.05  
0
0.2  
0.1  
0
INPUT  
INPUT  
–0.1  
–0.05  
1
0.5  
OUTPUT  
OUTPUT  
0
0
ADA4500-2  
ADA4500-2  
–1  
–2  
–3  
–0.5  
–1.0  
–1.5  
V
V
A
R
C
= ±2.5V  
= 100mV p-p  
= –100  
V
V
A
R
C
= ±1.35V  
= 50mV p-p  
= –100  
SY  
IN  
SY  
IN  
V
L
L
V
L
L
= 10kΩ  
= 10kΩ  
= 100pF  
= 100pF  
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 44. Negative Overload Recovery, VSY  
= 2.5 V  
Figure 42. Negative Overload Recovery, VSY  
= 1.35 V  
Rev. A | Page 15 of 24  
ADA4500-2  
Data Sheet  
TA = 25°C, unless otherwise noted.  
INPUT  
INPUT  
ADA4500-2  
ADA4500-2  
V
V
= 2.7V  
V
= 5.0V  
= V /2  
SY  
SY  
SY  
= V /2  
V
CM  
SY  
CM  
R
C
= 10kΩ  
= 10pF  
R
= 10kΩ  
= 10pF  
L
L
C
L
L
DUT A = –1  
DUT A = –1  
V
V
ERROR BAND  
POST GAIN = 20  
ERROR BAND  
POST GAIN = 20  
+20mV  
0
+40mV  
0
OUTPUT  
OUTPUT  
–20mV  
–40mV  
TIME (400ns/DIV)  
TIME (400ns/DIV)  
Figure 45. Positive Settling Time to 0.1%, VSY = 2.7 V  
Figure 47. Positive Settling Time to 0.1%, VSY = 5.0 V  
ADA4500-2  
ADA4500-2  
V
V
= 2.7V  
V
V
= 5.0V  
SY  
SY  
= V /2  
= V /2  
CM  
SY  
CM  
SY  
R
C
= 10kΩ  
= 10pF  
R
C
= 10kΩ  
= 10pF  
L
L
L
L
DUT A = –1  
DUT A = –1  
V
V
INPUT  
INPUT  
ERROR BAND  
POST GAIN = 20  
ERROR BAND  
POST GAIN = 20  
+20mV  
0
+40mV  
0
OUTPUT  
OUTPUT  
–20mV  
–40mV  
TIME (400ns/DIV)  
TIME (400ns/DIV)  
Figure 46. Negative Settling Time to 0.1%, VSY = 2.7 V  
Figure 48. Negative Settling Time to 0.1%, VSY = 5.0 V  
Rev. A | Page 16 of 24  
Data Sheet  
ADA4500-2  
TA = 25°C, unless otherwise noted.  
1k  
1k  
100  
10  
ADA4500-2  
ADA4500-2  
V
V
= 2.7V  
V
= 5.0V  
SY  
SY  
= V /2  
V
= V /2  
SY  
CM  
SY  
CM  
100  
10  
1
1
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 49. Voltage Noise Density vs. Frequency, VSY = 2.7 V  
(10 Hz to 10 MHz)  
Figure 52. Voltage Noise Density vs. Frequency, VSY = 5.0 V  
(10 Hz to 10 MHz)  
1k  
1k  
ADA4500-2  
ADA4500-2  
V
V
= 2.7V  
V
= 5.0V  
= V /2  
SY  
SY  
SY  
= V /2  
V
CM  
SY  
CM  
100  
10  
1
100  
10  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 50. Voltage Noise Density vs. Frequency, VSY = 2.7 V  
(10 Hz to 100 MHz)  
Figure 53. Voltage Noise Density vs. Frequency, VSY = 5.0 V  
(10 Hz to 100 MHz)  
ADA4500-2  
V
V
= 2.7V, A = +100  
SY  
V
= V /2  
CM  
SY  
ADA4500-2  
V
= 5.0V  
= +100  
SY  
V
A
V
= V /2  
CM  
SY  
TIME (1s/DIV)  
TIME (1s/DIV)  
Figure 51. 0.1 to 10 Hz Noise, VSY = 2.7 V  
Figure 54. 0.1 to 10 Hz Noise, VSY = 5.0 V  
Rev. A | Page 17 of 24  
ADA4500-2  
Data Sheet  
TA = 25°C, unless otherwise noted.  
100  
100  
10  
ADA4500-2  
ADA4500-2  
V
V
= 2.7V  
V
V
= 5.0V  
= V /2  
SY  
SY  
SY  
= V /2  
CM  
SY  
CM  
10  
1
A
= +1  
A = +1  
V
V
80kHz LOW-PASS FILTER  
80kHz LOW-PASS FILTER  
R = 10kΩ  
L
R
= 10kΩ  
L
1
0.1  
0.1  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
V
(V rms)  
V
(V rms)  
IN  
IN  
Figure 55. THD + Noise vs. Amplitude, VSY = 2.7 V  
Figure 57. THD + Noise vs. Amplitude, VSY = 5.0 V  
1
1
ADA4500-2  
ADA4500-2  
V
A
= 2.7V  
= +1  
V
= 5.0V  
A = +1  
V
SY  
SY  
V
80kHz LOW-PASS FILTER  
80kHz LOW-PASS FILTER  
R
= 10kΩ  
= 0.7V rms  
R
= 10kΩ  
= 1.4V rms  
L
L
0.1  
0.01  
0.1  
0.01  
V
V
IN  
IN  
0.001  
0.0001  
0.001  
0.0001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 56. THD + Noise vs. Frequency, VSY = 2.7 V  
Figure 58. THD + Noise vs. Frequency, VSY = 5.0 V  
Rev. A | Page 18 of 24  
 
Data Sheet  
ADA4500-2  
THEORY OF OPERATION  
VDD  
M10  
RAIL-TO-RAIL OUTPUT  
M9  
BIAS5  
BIAS4  
When processing a signal through an op amp to a load, it is often  
desirable to have the output of the op amp swing as close to the  
voltage supply rails as possible. For example, when an op amp is  
driving an ADC and both the op amp and ADC are using the  
same supply rail voltages, the op amp must drive as close to the  
V+ and V− rails as possible so that all codes in the ADC are  
usable. A non-rail-to-rail output can require as much as 1.5 V  
or more between the output and the rails, thus limiting the  
input dynamic range to the ADC, resulting in less precision  
(number of codes) in the converted signal.  
M3 M4  
M12  
M11  
BIAS2  
BIAS1  
–A  
M8  
OUT  
V
V
+
V –  
IN  
VSS  
VDD  
IN  
M7  
M5  
BIAS3  
M1 M2  
The ADA4500-2 can drive its output to within a few millivolts  
of the supply rails (see the output voltage high and output voltage  
low specifications in Table 1 and Table 2). The rail-to-rail output  
maximizes the dynamic range of the output, increasing the range  
and precision, and often saving the cost, board space, and added  
error of the additional gain stages.  
M6  
VSS  
Figure 59. Typical PMOS-NMOS Rail-to-Rail Input Structure  
300  
250  
200  
150  
100  
50  
V
= 5V  
= 25°C  
SY  
T
A
RAIL-TO-RAIL INPUT (RRI)  
Using a CMOS nonrail-to-rail input stage (that is, a single  
differential pair) limits the input voltage to approximately one gate-  
source voltage (VGS) away from one of the supply lines. Because  
0
–50  
–100  
–150  
–200  
–250  
–300  
V
GS for normal operation is commonly more than 1 V, a single  
differential pair, input stage op amp greatly restricts the allowable  
input voltage. This can be quite limiting with low supply voltages  
supplies. To solve this problem, RRI stages are designed to allow  
the input signal to range to the supply voltages (see the input  
voltage range specifications in Table 1 and Table 2). In the case  
of the ADA4500-2, the inputs continue to operate 200 mV beyond  
the supply rails (see Figure 7 and Figure 10).  
0
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
V
CM  
Figure 60. Typical Input Offset Voltage (VOS) vs. Common-Mode Voltage (VCM  
Response in a Dual Differential Pair Input Stage Op Amp (Powered by a 5 V  
Supply; Results of Approximately 100 Units per Graph Are Displayed)  
)
ZERO CROSS-OVER DISTORTION  
A typical rail-to-rail input stage uses two differential pairs (see  
Figure 59). One differential pair amplifies the input signal when  
the common-mode voltage is on the high end, and the other  
pair amplifies the input signal when the common-mode voltage  
is on the low end. This classic dual-differential pair topology  
does have a potential drawback. If the signal level moves through  
the range where one input stage turns off and the other input  
stage turns on, noticeable distortion occurs. Figure 60 shows the  
distortion in a typical plot of VOS (voltage difference between the  
inverting and the noninverting input) vs. VCM (input voltage).  
This distortion in the offset error forces the designer to live with  
the bump in the common-mode error or devise impractical ways  
to avoid the crossover distortion areas, thereby narrowing the  
common-mode dynamic range of the op amp.  
Rev. A | Page 19 of 24  
 
ADA4500-2  
Data Sheet  
The ADA4500-2 solves the crossover distortion problem by using  
an on-chip charge pump in its input structure to power the input  
differential pair (see Figure 61). The charge pump creates a  
supply voltage higher than the voltage of the supply, allowing  
the input stage to handle a wide range of input signal voltages  
without using a second differential pair. With this solution, the  
input voltage can vary from one supply voltage to the other with  
no distortion, thereby restoring the full common-mode dynamic  
range of the op amp.  
Figure 62 shows the elimination of the crossover distortion in  
the ADA4500-2. This solution improves the CMRR performance  
tremendously. For example, if the input varies from rail to rail  
on a 5 V supply rail, using a part with a CMRR of 70 dB minimum,  
an input-referred error of 1581 µV is introduced. The ADA4500-2,  
with its high CMRR of 90 dB minimum (over its full operating  
temperature) reduces distortion to a maximum error of 158 µV  
with a 5 V supply. The ADA4500-2 eliminates crossover distortion  
without unnecessary circuitry complexity and increased cost.  
VCP  
300  
ADA4500-2  
V
= 5.0V  
BIAS6  
SY  
240  
180  
120  
60  
CHARGE  
PUMP  
VDD  
VDD  
BIAS5  
0
V
+
V –  
IN  
IN  
BIAS4  
M1 M2  
–60  
–120  
–180  
–240  
–300  
–A  
OUT  
V
BIAS3  
0
1
2
3
4
5
V
(V)  
CM  
Figure 62. Charge Pump Design Eliminates Crossover Distortion  
VSS  
VSS  
OVERLOAD RECOVERY  
Figure 61. ADA4500-2 Input Structure  
When the output is driven to one of the supply rails, the  
ADA4500-2 is in an overload condition. The ADA4500-2 recovers  
quickly from the overload condition. Typical op amp recovery  
times can be in the tens of microseconds. The ADA4500-2 typically  
recovers from an overload condition in 1 µs from the time the  
overload condition is removed until the output is active again.  
This is important in, for example, a feedback control system. The  
fast overload recovery of the ADA4500-2 greatly reduces loop  
delay and increases the response time of the control loop (see  
Figure 41 to Figure 44).  
Some charge pumps are designed to run in an open-loop  
configuration. Disadvantages of this design include: a large ripple  
voltage on the output, no output regulation, slow start-up, and a  
large power-supply current ripple. The charge pump in this op  
amp uses a feedback network that includes a controllable clock  
driver and a differential amplifier. This topology results in a low  
ripple voltage; a regulated output that is robust to line, load, and  
process variations; a fast power-on startup; and lower ripple on  
the power supply current.1 The charge pump ripple does not  
show up on an oscilloscope; however, it can be seen at a high  
frequency on a spectrum analyzer. The charge pump clock speed  
adjusts between 3.5 MHz (when the supply voltage is 2.7 V) to  
5 MHz (at VSY = 5 V). The noise and distortion are limited only by  
the input signal and the thermal or flicker noise.  
1 Oto, D.H.; Dham, V.K.; Gudger, K.H.; Reitsma, M.J.; Gongwer, G.S.; Hu, Y.W.; Olund, J.F.; Jones, H.S.; Nieh, S.T.K.; "High-Voltage Regulation and Process  
Considerations for High-Density 5 V-Only E2PROM's," IEEE Journal of Solid-State Circuits, Vol. SC-18, No.5, pp.532-538, October 1983.  
Rev. A | Page 20 of 24  
 
Data Sheet  
ADA4500-2  
5
4
3
2
1
0
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
POWER-ON CURRENT PROFILE  
The ADA4500-2 powers up with a smooth current profile, with  
no supply current overshoot (see Figure 63). When powering up  
a system, spikes in the power-up current are undesirable (see  
Figure 64). The overshoot requires a designer to source a large  
enough power supply (such as a voltage regulator) to supply the  
peak current, even though a heavier supply is not necessary once  
the system is powered up. If multiple amplifiers are pulling a  
spike in current, the system can go into a current limit state and  
not power up. This is all avoided with the smooth power up of  
the ADA4500-2.  
5
4
3
2
1
0
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
TIME (µs)  
Figure 64. ISY and VSY vs. Time with a Power-Up Spike  
For systems that are frequently switching off and on, the power-  
up overshoot results in excess power use. As the amplifier switches  
off and on, the power consumed by the large spike is repeated  
on each power-up, increasing the total power consumption by  
magnitudes. As an example, if a battery-powered sensor system  
periodically powers up the sensor and signal path, takes a reading,  
and shuts down until the next reading, the ADA4500-2 enables  
much longer battery life because there is no excess charge being  
consumed at each power-up.  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
TIME (µs)  
Figure 63. ISY and VSY vs. Time for ADA4500-2 with No Spike  
Rev. A | Page 21 of 24  
 
ADA4500-2  
Data Sheet  
APPLICATIONS INFORMATION  
Three key challenges are encountered often when designing a  
single-ended-to-differential signal converter circuit with a  
single supply:  
RESISTANCE AND CAPACITANCE SENSOR CIRCUIT  
The application shown in Figure 65 generates a square-wave  
output in which the period is proportional to the value of RX  
and CX by Equation 1. By fixing the CX and measuring the  
period of the output signal, RX can be determined. Fixing RX  
allows for the measurement of CX.  
When the supply is limited to a single voltage, the input  
signal level to the circuit is generally limited to operate  
from ground to the supply voltage (VSY). This limitation  
on the input dynamic range can require attenuation and/or  
level-shifting of the source signal before it even gets to the  
single-ended-to-differential signal converter. This results in  
reduced signal-to-noise ratio (SNR) and additional error.  
The dc part of the input signal, on which the ac signal rides, is  
generally not known during system operation. For example, if  
multiple input signals from varying sources are multiplexed  
into the single-ended-to-differential signal converter circuit,  
each one could have a different dc level. Accommodating  
multiple dc input levels means that the system design must  
compromise the maximum allowed peak voltage of the ac  
part of the input so that it does not clip against the rails.  
The system processor does not know what the dc level is of the  
original signal so it cannot make adjustments accordingly.  
Period = 4.80 × RX × CX  
(1)  
U1A takes advantage of the high input impedance and large rail-  
to-rail input dynamic range of the ADA4500-2 to measure a  
wide range of resistances (RX).  
U1B is used as a comparator; with the noninverting input  
swinging between (1/12) × VPOS and (11/12) × VPOS, and the  
output swinging from rail to rail. Because the accuracy of the  
circuit depends on the propagation time through the amplifers,  
the fast recovery of U1B from the output overload conditions  
makes it ideal for this application.  
V
POS  
V
POS  
Rx  
Cx  
U1A  
ADA4500-2  
V
POS  
OUTPUT  
U1B  
ADA4500-2  
R3  
The Solution  
100kΩ  
These challenges are solved with the adaptive single-ended to  
differential converter shown in Figure 66. This circuit operates  
off a single supply from 2.7 V to 5.5 V, it automatically adjusts the  
dc common mode of the output to a desired level, and it provides  
the ability to measure the dc component of the input signal. This  
circuit uses two voltage sources: a positive supply rail (VSY) and  
a reference voltage (VREF). U1A buffers the input signal, while  
U1B integrates that signal and feeds the integrated (dc) voltage  
back to U1A to center the output signal on VREF. Resistors R10  
and R11 are set to equal the impedance of the resistors R8 and R9  
for a matched ac response and for balancing the effects of the  
bias current.  
R1  
R2  
100kΩ  
10kΩ  
Figure 65. A Resistance/Capacitance Sensor  
ADAPTIVE SINGLE-ENDED-TO-DIFFERENTIAL  
SIGNAL CONVERTER  
The Challenge  
When designing a signal path in systems that have a single voltage  
supply, the biggest challenge is how to represent the full range of  
an input signal that may have positive, zero, and negative values.  
By including zero in the output, the output signal must go  
completely to ground, which single-supply amplifiers cannot do.  
Converting the single-ended input signal to a differential signal  
(through a single-ended-to-differential signal converter circuit)  
allows zero to be represented as the positive and negative outputs  
being equal, requiring neither amplifier to go to ground.  
The input frequency can range from 10 Hz to 1 MHz. Peak-to-peak  
amplitude of the input signal can be as large as VSY − 100 mV.  
The dc common mode (VCM) of the input signal can be as high  
as +1.5 × VSY and −0.5 × VSY; therefore, a system with a +5 V supply  
voltage can take a common mode from as high as +7.5 V and as  
low as −2.5 V with a signal amplitude of 5 V p-p. The wide range of  
There are other benefits of the single-ended-to-differential signal  
conversion, such as doubling the amplitude of the signal for  
better signal-to-noise ratio, rejecting common-mode noise, and  
driving the input of a high precision differential ADC.  
V
CM above and below ground, along with a signal amplitude as  
large as the supply, eliminates the need to reduce the amplitude  
of the input signal and sacrifice SNR. When measuring both the  
ac and the dc parts of the signal, a capacitor cannot be in the signal  
path. Figure 66 shows examples of the voltage ranges of the single-  
ended-to-differential signal converter circuit.  
In addition to converting to a differential signal, the circuit must set  
the common-mode dc level of its output to a level that gives the ac  
signal maximum swing at the load (like the input to an ADC).  
Rev. A | Page 22 of 24  
 
Data Sheet  
ADA4500-2  
Besides converting the ac signal from single-ended to differential,  
this circuit separates the ac and dc part of the input signal and  
automatically adjusts the common-mode dc level of the output  
signal to the same voltage as VREF. The output signal is then a  
differential version of the input signal with its common-mode  
voltage set to an optimal value (such as, ½ the full-scale input  
range to the ADC). The noninverted ac part of the signal is  
output at OUTP, and the inverted ac signal is output at OUTN.  
The differential output signal (OUTP to OUTN) is centered on  
the voltage applied to REF. In this design, R3 and R4 set REF to  
½VPOS for maximum signal peak-to-peak swing; however, these  
resistors can be eliminated, and the REF input can be driven  
from an external source, such as a reference or the output of a  
digital-to-analog converter (DAC).  
The dc common-mode part of the input signal (VDC) was measured  
using the voltage applied at REF and the voltage measured at the  
feedback (FB) output using Equation 2. With VCM of the input  
signal known to the system, it can respond appropriately to, for  
example, a situation when the common mode is getting too close to  
the rails.  
VDC = (2 × FB) − (REF)  
(2)  
C2  
10pF  
R11  
5kΩ  
R2  
2kΩ  
V
SY  
V
R1A  
1kΩ  
R1B  
1kΩ  
SY  
R10  
5kΩ  
OUTN  
OUTP  
INPUT  
U2A  
R9  
C1  
100pF  
ADA4500-2  
5kΩ  
U1A  
ADA4500-2  
R8  
5kΩ  
V
SY  
C7  
1µF  
C6  
1µF  
U2B  
R5  
10kΩ  
V
V
R6  
10kΩ  
SY  
SY  
R4  
100kΩ  
REF  
FB  
U1B  
C5  
0.01µF  
C3  
1µF  
R3  
100kΩ  
INPUT  
OUTPUT  
OUTP  
V
V
REF  
CM  
V
V
PP  
PP  
OUTN  
V
V
V
= 1.5 × V  
SY  
CM_MAX  
CM_MIN  
PP_MAX  
= –0.5 × V  
SY  
= V – 0.1V  
SY  
EXAMPLES (V = 5V)  
SY  
+10V  
+7.5V  
+5V  
OUTP  
+5V  
OR  
V
PP  
+2.5V  
0V  
0V  
–2.5V  
–5V  
OUTN  
Figure 66. Single-Ended-to-Differential Conversion Circuit Separates the AC and DC Part of the Signal  
Rev. A | Page 23 of 24  
 
ADA4500-2  
Data Sheet  
OUTLINE DIMENSIONS  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
8
5
PIN 1 INDEX  
EXPOSED  
PAD  
1.70  
1.60 SQ  
1.50  
AREA  
0.50  
0.40  
0.30  
4
1
PIN 1  
INDICATOR  
(R 0.15)  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-229-WEED  
Figure 67. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very, Very Thin, Dual Lead  
(CP-8-12)  
Dimensions shown in millimeters  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 68. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature  
Package Description  
Package Option  
Branding  
A2Z  
A2Z  
A2Z  
A2Z  
ADA4500-2ACPZ-R7  
ADA4500-2ACPZ-RL  
ADA4500-2ARMZ  
ADA4500-2ARMZ-R7  
ADA4500-2ARMZ-RL  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
CP-8-12  
CP-8-12  
RM-8  
RM-8  
RM-8  
A2Z  
1 Z = RoHS Compliant Part.  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10617-0-10/12(A)  
Rev. A | Page 24 of 24  

相关型号:

ADA4500-2ARMZ-R7

10 MHz, 14.5 nV/√Hz, Rail-to-Rail I/O, Zero Input Crossover Distortion Amplifier
ADI

ADA4500-2ARMZ-RL

10 MHz, 14.5 nV/√Hz, Rail-to-Rail I/O, Zero Input Crossover Distortion Amplifier
ADI

ADA4500-2_12

10 MHz, 14.5 nV/√Hz, Rail-to-Rail I/O, Zero Input Crossover Distortion Amplifier
ADI

ADA4500-2_13

10 MHz, 14.5 nV/√Hz, Rail-to-Rail I/O, Zero Input Crossover Distortion Amplifier
ADI

ADA4505-1

22 μA, RRIO, CMOS, 18 V
ADI

ADA4505-12

Operational Amplifiers Selection Guide
ADI

ADA4505-1ACBZ-R7

10 UA, Rail-to-Rail I/O, Zero InputCrossover Distortion Amplifiers
ADI

ADA4505-1ACBZ-RL

10 UA, Rail-to-Rail I/O, Zero InputCrossover Distortion Amplifiers
ADI

ADA4505-1ARJZ-R2

10 UA, Rail-to-Rail I/O, Zero InputCrossover Distortion Amplifiers
ADI

ADA4505-1ARJZ-R7

10 UA, Rail-to-Rail I/O, Zero InputCrossover Distortion Amplifiers
ADI

ADA4505-1ARJZ-RL

10 UA, Rail-to-Rail I/O, Zero InputCrossover Distortion Amplifiers
ADI

ADA4505-2

10 レA, Rail-to-Rail I/O, Zero Input Crossover Distortion Amplifier
ADI