ADA4610-4ARZ-R7 [ADI]

Low Noise, Precision, Rail-to-Rail Output, JFET Quad Op Amplifiers;
ADA4610-4ARZ-R7
型号: ADA4610-4ARZ-R7
厂家: ADI    ADI
描述:

Low Noise, Precision, Rail-to-Rail Output, JFET Quad Op Amplifiers

放大器 光电二极管
文件: 总27页 (文件大小:1009K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise, Precision, Rail-to-Rail Output,  
JFET Single/Dual/Quad Op Amps  
Data Sheet  
ADA4610-1/ADA4610-2/ADA4610-4  
FEATURES  
PIN CONFIGURATION  
Low offset voltage  
B grade: 0.4 mV maximum (ADA4610-1/ADA4610-2 only)  
A grade: 1 mV maximum  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
ADA4610-2  
TOP VIEW  
(Not to Scale)  
OUT B  
–IN B  
+IN B  
Low offset voltage drift  
B grade: 4 µV/°C maximum (ADA4610-1/ADA4610-2 only)  
A grade: 8 µV/°C maximum (SOIC, MSOP, LFCSP packages)  
Low input bias current: 5 pA typical  
Dual-supply operation: 5 V to 15 V  
Low voltage noise: 0.45 µV p-p at 0.1 Hz to 10 Hz  
Voltage noise density: 7.30 nV/√Hz at f = 1 kHz  
Low THD + N: 0.00025%  
Figure 1. ADA4610-2 8-Lead SOIC (R Suffix); for Additional Packages and  
Models, See the Pin Configurations and Function Descriptions Section  
No phase reversal  
Rail-to-rail output  
Unity-gain stable  
Long-term offset voltage drift (10,000 hours): 5 µV typical  
Temperature hysteresis: 8 µV typical  
APPLICATIONS  
Instrumentation  
Medical instruments  
Multipole filters  
Precision current measurement  
Photodiode amplifiers  
Sensors  
Audio  
GENERAL DESCRIPTION  
The ADA4610-1/ADA4610-2/ADA4610-4 are precision junction  
field effect transistor (JFET) amplifiers that feature low input noise  
voltage, current noise, offset voltage, input bias current, and rail-to-  
rail output. The ADA4610-1 is a single amplifier, the ADA4610-2 is  
a dual amplifier, and the ADA4610-4 is a quad amplifier.  
performance filters. Low input bias currents, low offset, and low  
noise result in a wide dynamic range for photodiode amplifier  
circuits. Low noise and distortion, high output current, and  
excellent speed make the ADA4610-1/ADA4610-2/ADA4610-4  
great choices for audio applications.  
The combination of low offset, noise, and very low input bias  
current makes these amplifiers especially suitable for high  
impedance sensor amplification and precise current measurements  
using shunts. With excellent dc precision, low noise, and fast  
settling time, the ADA4610-1/ADA4610-2/ADA4610-4 provide  
superior accuracy in medical instruments, electronic measurement,  
and automated test equipment. Unlike many competitive  
amplifiers, the ADA4610-1/ADA4610-2/ADA4610-4 maintain  
fast settling performance with substantial capacitive loads. Unlike  
many older JFET amplifiers, the ADA4610-1/ADA4610-2/  
ADA4610-4 do not suffer from output phase reversal when input  
voltages exceed the maximum common-mode voltage range.  
The ADA4610-1/ADA4610-2/ADA4610-4 are specified over  
the −40°C to +125°C extended industrial temperature range.  
The ADA4610-1 is available in an 8-lead SOIC package and in a  
5-lead SOT-23 package. The ADA4610-2 is available in 8-lead  
SOIC, 8-lea d M S O P, a n d 8 -lead LFCSP packages. The ADA4610-4  
is available in a 14-lead SOIC package and in a 16-lead LFCSP.  
Table 1. Related Precision JFET Operational Amplifiers  
Single  
Dual  
Quad  
AD8510  
AD8512  
AD8513  
AD8610  
AD820  
AD8620  
AD822  
Not applicable  
AD824  
ADA4627-1/ADA4637-1  
Not applicable  
Not applicable  
ADA4001-2  
Not applicable  
Not applicable  
The fast slew rate and great stability with capacitive loads make  
the ADA4610-1/ADA4610-2/ADA4610-4 ideal for high  
Rev. H  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2011–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADA4610-1/ADA4610-2/ADA4610-4  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Comparative Voltage and Variable Voltage Graphs............... 17  
Theory of Operation ...................................................................... 20  
Applications Information .............................................................. 21  
Input Overvoltage Protection................................................... 21  
Peak Detector.............................................................................. 21  
Current to Voltage (I to V) Conversion Applications ........... 21  
Comparator Operation.............................................................. 22  
Long-Term Drift......................................................................... 23  
Temperature Hysteresis ............................................................. 23  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 27  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 3  
Specifications..................................................................................... 4  
Electrical Characteristics............................................................. 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ........................................... 11  
Rev. H | Page 2 of 27  
Data Sheet  
ADA4610-1/ADA4610-2/ADA4610-4  
REVISION HISTORY  
5/2017—Rev. G to Rev. H  
11/2014—Rev. C to Rev. D  
Changed CP-8-21 to CP-8-11...................................... Throughout  
Changes to Features Section ............................................................1  
Changes to Figure 15 Caption, Figure 16 Caption, Figure 18  
Caption, and Figure 19 Caption....................................................12  
Changed Functional Description Section to Theory of  
Operation Section ...........................................................................20  
Added Long-Term Drift Section, Temperature Hysteresis Section,  
Figure 61, Figure 62, and Figure 63; Renumbered Sequentially.....23  
Updated Outline Dimensions........................................................24  
Changes to Ordering Guide...........................................................27  
Change to Figure 56........................................................................19  
5/2014—Rev. B to Rev. C  
Added ADA4610-4 and 14-Lead SOIC........................... Universal  
Added Voltage Noise Density to Features Section, Figure 3, and  
Table 1; Renumbered Sequentially..................................................1  
Changes to Table 2 ............................................................................3  
Changes to Table 3 ............................................................................4  
Changes to Table 4 ............................................................................6  
Added Pin Configurations and Function Descriptions  
Section, Figure 4 to Figure 6, Table 6, and Table 7 .......................7  
Changes to Typical Performance Characteristics Section ...........8  
Added Functional Description Section........................................17  
Added Input Overvoltage Protection Section, Peak Detector  
Section, I to V Conversion Applications Section, and  
Photodiode Circuits Section..........................................................18  
Change to Figure 56........................................................................18  
Added Figure 62, Outline Dimensions ........................................20  
Changes to Ordering Guide...........................................................20  
5/2016—Rev. F to Rev. G  
Changed CP-8-20 to CP-8-21...................................... Throughout  
Changes to Figure 23 Caption and Figure 26 Caption...............13  
Updated Outline Dimensions........................................................24  
Changes to Ordering Guide...........................................................25  
1/2016—Rev. E to Rev. F  
Added 5-Lead SOT-23.......................................................Universal  
Changed CP-8-9 to CP-8-20........................................ Throughout  
Change to Features Section..............................................................1  
Added Figure 3 and Table 7; Renumbered Sequentially..............8  
Updated Outline Dimensions........................................................23  
Changes to Ordering Guide...........................................................25  
8/2012—Rev. A to Rev. B  
Changes to Figure 9 ..........................................................................8  
5/2012—Rev. 0 to Rev. A  
Changes to Data Sheet Title and General Description Section ..1  
Changed Input Impedance Parameter, Differential to Input  
Capacitance Parameter, and Differential Parameter, Table 1 ......3  
Added Input Resistance in Table 1..................................................3  
Changed Input Impedance, Differential Parameter to Input  
Capacitance, Differential Parameter, Table 2 ................................4  
Added Input Resistance Parameter, Table 2 ..................................4  
Added Figure 9, Figure 10, and Figure 14; Renumbered  
Sequentially........................................................................................8  
Added Figure 15................................................................................9  
Updated Outline Dimensions........................................................16  
Changes to Ordering Guide...........................................................17  
4/2015—Rev. D to Rev. E  
Added ADA4610-1 ............................................................Universal  
Added 16-Lead LFCSP_WQ.............................................Universal  
Deleted Figure 1 and Figure 3; Renumbered Sequentially ..........1  
Changes to Features Section ............................................................1  
Changes to Table 2 ............................................................................4  
Changes to Table 3 .............................................................................5  
Added Figure 2 and Table 6; Renumbered Sequentially ..............7  
Added Figure 4 ..................................................................................8  
Added Figure 7 ..................................................................................9  
Changes to Table 8 ............................................................................9  
Changes to Figure 10 Caption and Figure 13 Caption...............10  
Changes to Figure 14 Caption, Figure 15, Figure 17 Caption,  
and Figure 18 ...................................................................................11  
Changes to Figure 22 and Figure 25 .............................................12  
Changes to Figure 26 to Figure 31 ................................................13  
Changes to Figure 32 and Figure 35 .............................................14  
Changes to Figure 38 and Figure 40 .............................................15  
Changes to Figure 42 to Figure 46 ................................................16  
Changes to Figure 48, Figure 50, and Figure 53..........................17  
Changes to Figure 54 and Figure 55 .............................................18  
Changes to Figure 57 and Figure 58 .............................................20  
Updated Outline Dimensions........................................................22  
Added Figure 64 ..............................................................................23  
Changes to Ordering Guide...........................................................24  
12/2011—Revision 0: Initial Version  
Rev. H | Page 3 of 27  
 
ADA4610-1/ADA4610-2/ADA4610-4  
SPECIFICATIONS  
Data Sheet  
VSY  
= 5 V, VCM = 0 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
B Grade (ADA4610-1/ADA4610-2)  
0.2  
0.4  
0.4  
0.8  
1
mV  
mV  
mV  
mV  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
A Grade  
1.8  
Offset Voltage Drift  
ΔVOS/ΔT  
B Grade (ADA4610-1/ADA4610-2)1  
A Grade1 (SOIC, MSOP, LFCSP)  
A Grade1 (SOT-23)  
0.5  
1
1
4
8
µV/°C  
µV/°C  
µV/°C  
pA  
nA  
pA  
nA  
V
dB  
dB  
12  
25  
1.5  
20  
0.25  
+2.5  
Input Bias Current  
IB  
5
−40°C < TA < +125°C  
−40°C < TA < +125°C  
Input Offset Current  
IOS  
2
Input Voltage Range  
Common-Mode Rejection Ratio  
−2.5  
94  
86  
CMRR  
AVO  
VCM = −2.5 V to +2.5 V  
−40°C < TA < +125°C  
RL = 2 kΩ, VOUT = −3.5 V to +3.5 V  
110  
Large Signal Voltage Gain  
ADA4610-2  
98  
86  
96  
84  
100  
98  
dB  
dB  
dB  
dB  
−40°C < TA < +125°C  
ADA4610-1/ADA4610-4  
−40°C < TA < +125°C  
VCM = 0 V  
Input Capacitance  
Differential  
Common-Mode  
3.1  
4.8  
>1013  
pF  
pF  
Input Resistance  
VCM = 0 V  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 2 kΩ  
−40°C < TA < +125°C  
RL = 600 Ω  
−40°C < TA < +125°C  
RL = 2 kΩ  
−40°C < TA < +125°C  
RL = 600 Ω  
4.85  
4.60  
4.60  
4.05  
4.90  
4.89  
−4.95  
−4.90  
63  
V
V
V
V
V
V
V
V
Output Voltage Low  
VOL  
−4.90  
−4.75  
−4.80  
−4.40  
−40°C < TA < +125°C  
Short-Circuit Current  
POWER SUPPLY  
ISC  
mA  
Power Supply Rejection Ratio  
PSRR  
VSY = 4.5 V to 18 V  
ADA4610-2  
106  
103  
104  
100  
125  
117  
1.50  
dB  
dB  
dB  
dB  
mA  
mA  
−40°C < TA < +125°C  
ADA4610-1/ADA4610-4  
Supply Current per Amplifier  
−40°C < TA < +125°C  
IOUT = 0 mA  
−40°C < TA < +125°C  
ISY  
1.70  
1.85  
Rev. H | Page 4 of 27  
 
Data Sheet  
ADA4610-1/ADA4610-2/ADA4610-4  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
RL = 2 kΩ, AV = 1  
Rising  
Falling  
151  
151  
21  
46  
15.4  
9.3  
61  
V/µs  
V/µs  
MHz  
MHz  
Degrees  
MHz  
%
Gain Bandwidth Product  
Unity-Gain Crossover  
Phase Margin  
GBP  
UGC  
φM  
VIN = 5 mV p-p, RL = 2 kΩ, AV = 100  
VIN = 5 mV p-p, RL = 2 kΩ, AV = 1  
−3 dB Closed-Loop Bandwidth  
Total Harmonic Distortion + Noise  
NOISE PERFORMANCE  
Voltage Noise  
−3 dB  
THD + N  
AV = 1, VIN = 5 mV p-p  
1 kHz, AV = 1, RL = 2 kΩ, VIN = 1 V rms  
10.6  
0.00025  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
0.45  
14  
8.20  
7.30  
7.30  
µV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
Voltage Noise Density  
f = 10 kHz  
1 Guaranteed by design and characterization.  
ELECTRICAL CHARACTERISTICS  
VSY  
= 15 V, VCM = 0 V, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
B Grade (ADA4610-1/ADA4610-2)  
0.2  
0.4  
0.4  
0.8  
1
mV  
mV  
mV  
mV  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
A Grade  
1.8  
Offset Voltage Drift  
ΔVOS/ΔT  
B Grade (ADA4610-1/ADA4610-2)1  
A Grade1 (SOIC, MSOP, LFCSP)  
A Grade1 (SOT-23)  
0.5  
1
1
4
8
12  
25  
µV/°C  
µV/°C  
µV/°C  
pA  
Input Bias Current  
IB  
5
−40°C < TA < +125°C  
−40°C < TA < +125°C  
1.50  
20  
0.25  
+12.5  
nA  
pA  
nA  
V
dB  
dB  
Input Offset Current  
IOS  
2
Input Voltage Range  
Common-Mode Rejection Ratio  
−12.5  
100  
96  
CMRR  
AVO  
VCM = −12.5 V to +12.5 V  
−40°C < TA < +125°C  
RL = 2 kΩ, VOUT = 13.5 V  
115  
Large Signal Voltage Gain  
ADA4610-2  
104  
91  
102  
86  
107  
104  
dB  
dB  
dB  
dB  
−40°C < TA < +125°C  
ADA4610-1/ADA4610-4  
−40°C < TA < +125°C  
VCM = 0 V  
Input Capacitance  
Differential  
Common-Mode  
Input Resistance  
3.1  
4.8  
>1013  
pF  
pF  
VCM = 0 V  
Rev. H | Page 5 of 27  
 
 
 
ADA4610-1/ADA4610-2/ADA4610-4  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 2 kΩ  
−40°C < TA < +125°C  
RL = 600 Ω  
−40°C < TA < +125°C  
RL = 2 kΩ  
−40°C < TA < +125°C  
RL = 600 Ω  
14.80 14.90  
14.65  
14.25 14.47  
13.35  
V
V
V
V
V
V
V
V
Output Voltage Low  
VOL  
−14.90  
−14.85  
−14.75  
−14.60  
−14.30  
−14.68  
79  
−40°C < TA < +125°C  
Short-Circuit Current  
POWER SUPPLY  
ISC  
mA  
Power Supply Rejection Ratio  
ADA4610-2  
PSRR  
VSY = 4.5 V to 18 V  
106  
103  
104  
100  
125  
117  
1.60  
dB  
dB  
dB  
dB  
mA  
mA  
−40°C < TA < +125°C  
ADA4610-1/ADA4610-4  
−40°C < TA < +125°C  
IOUT = 0 mA  
−40°C < TA < +125°C  
Supply Current per Amplifier  
ISY  
1.85  
2.0  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
RL = 2 kΩ, AV = +1  
Rising  
Falling  
171  
171  
25  
61  
16.3  
9.3  
66  
V/µs  
V/µs  
MHz  
MHz  
Degrees  
MHz  
%
Gain Bandwidth Product  
Unity-Gain Crossover  
Phase Margin  
GBP  
UGC  
φM  
VIN = 5 mV p-p, RL = 2 kΩ, AV = 100  
VIN = 5 mV p-p, RL = 2 kΩ, AV = 1  
−3 dB Closed-Loop Bandwidth  
Total Harmonic Distortion + Noise  
NOISE PERFORMANCE  
Peak-to-Peak Voltage Noise  
Voltage Noise Density  
−3 dB  
AV = 1, VIN = 5 mV p-p  
9.5  
0.00025  
THD + N 1 kHz, AV = 1, RL = 2 kΩ, VIN = 5 V rms  
en p-p  
en  
0.1 Hz to 10 Hz bandwidth  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
0.45  
14  
8.50  
7.30  
7.30  
µV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
1 Guaranteed by design and characterization.  
Rev. H | Page 6 of 27  
 
 
Data Sheet  
ADA4610-1/ADA4610-2/ADA4610-4  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 4.  
Parameter  
Rating  
Table 5. Thermal Resistance  
Package Type  
5-Lead SOT-23  
8-Lead SOIC  
8-Lead LFCSP  
8-Lead MSOP  
Supply Voltage  
Input Voltage  
Input Current1  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Electrostatic Discharge (ESD)  
Human Body Model (HBM)2  
18 V  
VS  
10 mA  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
1
θJA  
θJC  
155.6  
43  
12  
45  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
219.4  
120  
57  
142  
115  
65  
14-Lead SOIC  
16-Lead LFCSP  
36  
3.2  
1 θJA is specified for worst-case conditions, that is, θJA is specified for a device  
soldered in a circuit board for surface-mount packages.  
2500 V  
Field Induced Charge Device Model (FICDM)3 1250 V  
1 The input pins have clamp diodes connected to the power supply pins. Limit  
the input current to 10 mA or less whenever input signals exceed the power  
supply rail by 0.3 V.  
ESD CAUTION  
2 ESDA/JEDEC JS-001-2011 applicable standard.  
3 JESD22-C101 (ESD FICDM standard of JEDEC) applicable standard.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. H | Page 7 of 27  
 
 
 
ADA4610-1/ADA4610-2/ADA4610-4  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
NIC  
–IN  
+IN  
V–  
1
2
3
4
8
7
6
5
NIC  
V+  
ADA4610-1  
TOP VIEW  
(Not to Scale)  
OUT  
NIC  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED.  
Figure 2. ADA4610-1 Pin Configuration, 8-Lead SOIC (R Suffix)  
Table 6. ADA4610-1 Pin Function Descriptions, 8-Lead SOIC  
Pin No.  
Mnemonic  
Description  
1, 5, 8  
NIC  
−IN  
+IN  
V−  
OUT  
V+  
Not Internally Connected.  
Inverting Input.  
Noninverting Input.  
Negative Supply Voltage.  
Output.  
2
3
4
6
7
Positive Supply Voltage.  
OUT  
V–  
1
2
3
5
4
V+  
ADA4610-1  
TOP VIEW  
(Not to Scale)  
+IN  
–IN  
Figure 3. ADA4610-1 Pin Configuration, 5-Lead SOT-23 (RJ Suffix)  
Table 7. ADA4610-1 Pin Function Descriptions, 5-Lead SOT-23  
Pin No.  
Mnemonic  
OUT  
V−  
+IN  
−IN  
Description  
1
2
3
4
5
Output.  
Negative Supply Voltage.  
Noninverting Input.  
Inverting Input.  
V+  
Positive Supply Voltage.  
Rev. H | Page 8 of 27  
 
Data Sheet  
ADA4610-1/ADA4610-2/ADA4610-4  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
ADA4610-2  
TOP VIEW  
(Not to Scale)  
OUT B  
–IN B  
+IN B  
Figure 4. ADA4610-2 Pin Configuration, 8-Lead SOIC (R Suffix)  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
ADA4610-2  
TOP VIEW  
(Not to Scale)  
OUT B  
–IN B  
+IN B  
Figure 5. ADA4610-2 Pin Configuration, 8-Lead MSOP (RM Suffix)  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
OUT B  
–IN B  
ADA4610-2  
TOP VIEW  
(Not to Scale)  
+IN B  
NOTES  
1. THE EXPOSED PAD MUST BE  
CONNECTED TO V–.  
Figure 6. ADA4610-2 Pin Configuration, 8-Lead LFCSP (CP Suffix)  
Table 8. ADA4610-2 Pin Function Descriptions, 8-Lead SOIC, 8-Lead MSOP, and 8-Lead LFCSP  
Pin No.  
Mnemonic  
OUT A  
−IN A  
+IN A  
V−  
+IN B  
−IN B  
OUT B  
V+  
Description  
1
2
3
4
5
6
7
8
Output Channel A.  
Inverting Input Channel A.  
Noninverting Input Channel A.  
Negative Supply Voltage.  
Noninverting Input Channel B.  
Inverting Input Channel B.  
Output Channel B.  
Positive Supply Voltage.  
EPAD  
Exposed Pad for the 8-Lead LFCSP (CP Suffix). The exposed pad must be connected to V−.  
Rev. H | Page 9 of 27  
ADA4610-1/ADA4610-2/ADA4610-4  
Data Sheet  
–IN A  
+IN A  
V+  
1
2
3
4
12 –IN D  
11 +IN D  
10 V–  
ADA4610-4  
TOP  
VIEW  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
9
+IN C  
+IN B  
ADA4610-4  
TOP VIEW  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
10 +IN C  
9
8
–IN C  
NOTES  
OUT C  
1. NIC = NOT INTERNALLY CONNECTED.  
2.THE EXPOSED PAD MUST BE CONNECTED TO V–.  
Figure 7. ADA4610-4 Pin Configuration, 14-Lead SOIC (R Suffix)  
Figure 8. ADA4610-4 Pin Configuration, 16-Lead LFCSP (CP Suffix)  
Table 9. ADA4610-4 Pin Function Descriptions, 14-Lead SOIC and 16-Lead LFCSP  
Pin No.  
14-Lead SOIC  
16-Lead LFCSP  
Mnemonic  
OUT A  
−IN A  
+IN A  
V+  
Description  
1
2
3
4
15  
1
2
Output Channel A.  
Inverting Input Channel A.  
Noninverting Input Channel A.  
Positive Supply Voltage.  
3
5
6
7
8
9
10  
11  
12  
4
5
6
7
8
9
+IN B  
−IN B  
OUT B  
OUT C  
−IN C  
+IN C  
V−  
+IN D  
−IN D  
OUT D  
NIC  
Noninverting Input Channel B.  
Inverting Input Channel B.  
Output Channel B.  
Output Channel C.  
Inverting Input Channel C.  
Noninverting Input Channel C.  
Negative Supply Voltage.  
Noninverting Input Channel D.  
Inverting Input Channel D.  
Output Channel D.  
10  
11  
12  
14  
13, 16  
13  
14  
Not applicable  
Not applicable  
Not Internally Connected.  
Exposed Pad. The exposed pad must be connected to V−.  
EPAD  
Rev. H | Page 10 of 27  
Data Sheet  
ADA4610-1/ADA4610-2/ADA4610-4  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
400  
400  
350  
300  
250  
200  
150  
100  
50  
SOIC  
350  
SOIC  
300  
250  
200  
150  
100  
50  
0
0
–1000 –800 –600 –400 –200  
0
200 400 600 800 1000 1200  
–1000 –800 –600 –400 –200  
0
200 400 600 800 1000 1200  
OFFSET VOLTAGE (µV)  
OFFSET VOLTAGE (µV)  
Figure 9. Input Offset Voltage Distribution, VSY  
=
5 V  
Figure 12. Input Offset Voltage Distribution, VSY = 15 V  
350  
300  
250  
200  
150  
350  
300  
250  
200  
150  
100  
50  
SOIC  
SOIC  
100  
50  
0
0
TCV (µV/°C)  
OS  
TCV (µV/°C)  
OS  
Figure 10. Input Offset Voltage Drift (TCVOS) Distribution, VSY  
=
5 V  
Figure 13. TCVOS Distribution, VSY  
= 15 V  
1500  
1000  
500  
0
1500  
1000  
500  
0
–500  
–500  
–1000  
–1500  
MEAN  
MEAN + 3σ  
MEAN – 3σ  
MEAN  
MEAN + 3σ  
MEAN – 3σ  
–1000  
–1500  
–15  
–10  
–5  
0
5
10  
15  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
V
(V)  
CM  
V
(V)  
CM  
Figure 11. Input Offset Voltage vs. Common-Mode Input Voltage (VCM),  
VSY 5 V, RL = ∞  
Figure 14. Input Offset Voltage vs. Input Common-Mode Voltage (VCM),  
VSY 15 V, RL = ∞  
=
=
Rev. H | Page 11 of 27  
 
ADA4610-1/ADA4610-2/ADA4610-4  
Data Sheet  
50  
40  
50  
40  
30  
20  
10  
0
30  
20  
10  
0
–10  
–20  
–30  
–40  
–50  
–10  
MEAN  
MEAN + 3σ  
MEAN – 3σ  
MEAN  
MEAN + 3σ  
MEAN – 3σ  
–20  
–30  
–40  
–50  
–15  
–10  
–5  
0
5
10  
15  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
V
(V)  
V
(V)  
CM  
CM  
Figure 18. Input Bias Current vs. Common-Mode Input Voltage (VCM),  
Figure 15. Input Bias Current vs. Common-Mode Input Voltage (VCM),  
Mean and Three Standard Deviations, VSY 5 V, RL = ∞  
Mean and Three Standard Deviations, VSY  
=
15 V, RL = ∞  
=
100k  
100k  
SOIC  
SOIC  
10k  
1k  
10k  
1k  
+125°C  
100  
10  
+125°C  
100  
10  
+25°C  
1
+25°C  
–40°C  
–2  
1
0.1  
0.01  
–40°C  
0.1  
–15  
–5  
–4  
–3  
–1  
0
1
2
3
4
5
–10  
–5  
0
5
10  
15  
V
(V)  
V
(V)  
CM  
CM  
Figure 16. Input Bias Current vs. Common-Mode Input Voltage (VCM),  
Figure 19. Input Bias Current vs. Common-Mode Input Voltage (VCM),  
Three Temperatures, VSY  
=
5 V, RL = ∞  
Three Temperatures, VSY  
=
15 V, RL = ∞  
100  
100  
10  
10  
1
1
0.1  
–50  
0.1  
–50  
–25  
0
25  
50  
75  
100  
125  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Input Bias Current vs. Temperature, VSY  
=
5 V  
Figure 20. Input Bias Current vs. Temperature, VSY = 15 V  
Rev. H | Page 12 of 27  
Data Sheet  
ADA4610-1/ADA4610-2/ADA4610-4  
1
1
0.1  
0.1  
0.01  
0.1  
0.01  
0.1  
1
10  
SOURCE (mA)  
100  
1
10  
SOURCE (mA)  
100  
I
I
OUT  
OUT  
Figure 21. Dropout Voltage (V+ − VOUT) vs. IOUT Source, VSY  
=
5 V  
Figure 24. Dropout Voltage (V+ − VOUT) vs. IOUT Source, VSY  
=
15 V  
10  
10  
1
1
0.1  
0.1  
0.01  
0.01  
0.01  
0.1  
0.1  
1
10  
100  
1
10  
100  
I
SINK (mA)  
I
SINK (mA)  
OUT  
OUT  
Figure 25. Dropout Voltage (VOUT − V−) vs. IOUT Sink, VSY  
= 15 V  
Figure 22. Dropout Voltage (VOUT − V−) vs. IOUT Sink, VSY  
=
5 V  
120  
270  
120  
270  
100  
80  
225  
180  
135  
90  
100  
80  
225  
180  
135  
90  
GAIN  
GAIN  
60  
60  
40  
40  
PHASE  
PHASE  
20  
0
45  
20  
0
45  
0
0
–20  
–40  
–45  
–90  
–20  
–40  
–45  
–90  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 26. Open-Loop Gain and Phase Margin vs. Frequency,  
VSY 15 V, RL = 2 kΩ, VIN = 5 mV  
Figure 23. Open-Loop Gain and Phase Margin vs. Frequency,  
VSY 5 V, RL = 2 kΩ, VIN = 5 mV  
=
=
Rev. H | Page 13 of 27  
ADA4610-1/ADA4610-2/ADA4610-4  
Data Sheet  
60  
60  
40  
A
= +100  
= +10  
A
= +100  
= +10  
V
V
40  
A
A
V
V
20  
0
20  
0
A
= +1  
A = +1  
V
V
–20  
–40  
–20  
–40  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 27. Closed-Loop Gain vs. Frequency, VSY  
=
5 V  
Figure 30. Closed-Loop Gain vs. Frequency, VSY  
=
15 V  
1k  
1k  
100  
100  
10  
1
10  
1
A
= +100  
V
A
= +100  
V
A
= +10  
= +1  
A
= +10  
= +1  
V
V
0.1  
0.1  
A
A
V
V
0.01  
100  
0.01  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 28. Closed-Loop Output Impedance (ZOUT) vs. Frequency, VSY  
=
5 V  
Figure 31. Closed-Loop Output Impedance (ZOUT) vs. Frequency, VSY  
= 15 V  
120  
100  
80  
120  
100  
80  
PSRR–  
PSRR–  
60  
60  
40  
40  
PSRR+  
PSRR+  
20  
0
20  
0
–20  
100  
–20  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 29. PSRR vs. Frequency, VSY  
=
5 V  
Figure 32. PSRR vs. Frequency, VSY  
=
15 V  
Rev. H | Page 14 of 27  
Data Sheet  
ADA4610-1/ADA4610-2/ADA4610-4  
140  
120  
100  
140  
120  
100  
80  
80  
60  
40  
60  
40  
20  
20  
0
100  
0
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 33. CMRR vs. Frequency, VSY  
=
5 V  
Figure 36. CMRR vs. Frequency, VSY  
=
15 V  
3
12  
2
1
8
4
0
0
–1  
–4  
–2  
–3  
–8  
–12  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (µs)  
TIME (µs)  
Figure 37. Large Signal Transient Response, VSY  
RL = 2 kΩ, CL = 100 pF  
= 15 V, AV = 1,  
Figure 34. Large Signal Transient Response, VSY  
RL = 2 kΩ, CL = 100 pF  
= 5 V, AV = 1,  
75  
75  
50  
25  
50  
25  
0
0
–25  
–25  
–50  
–75  
–50  
–75  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (µs)  
TIME (µs)  
Figure 38. Small Signal Transient Response, VSY  
RL = 2 kΩ, CL = 100 pF  
= 15 V, AV = 1,  
Figure 35. Small Signal Transient Response, VSY  
RL = 2 kΩ, CL = 100 pF  
=
5 V, AV = 1,  
Rev. H | Page 15 of 27  
ADA4610-1/ADA4610-2/ADA4610-4  
Data Sheet  
100  
100  
10  
1
10  
1
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 39. Voltage Noise Density vs. Frequency, VSY  
=
5 V  
Figure 41. Voltage Noise Density vs. Frequency, VSY = 15 V  
50  
50  
40  
30  
20  
10  
0
40  
OS+  
OS+  
30  
20  
OS–  
OS–  
10  
0
0.01  
0.1  
LOAD CAPACITANCE (nF)  
1
0.01  
0.1  
LOAD CAPACITANCE (nF)  
1
Figure 40. Overshoot vs. Load Capacitance, VSY  
RL = 2 kΩ, VIN = 100 mV p-p  
=
5 V, AV = 1,  
Figure 42. Overshoot vs. Load Capacitance, VSY  
RL = 2 kΩ, VIN = 100 mV p-p  
= 15 V, AV = 1,  
Rev. H | Page 16 of 27  
Data Sheet  
ADA4610-1/ADA4610-2/ADA4610-4  
COMPARATIVE VOLTAGE AND VARIABLE VOLTAGE GRAPHS  
10  
10  
1
V
= ±5V  
= 2kΩ  
V
= ±15V  
= 2kΩ  
SY  
SY  
R
R
fINL = 1kHz  
fINL = 1kHz  
1
0.1  
80kHz FILTER  
80kHz FILTER  
0.1  
0.01  
0.01  
0.001  
0.0001  
0.00001  
0.001  
0.0001  
0.00001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
10  
AMPLITUDE (V rms)  
AMPLITUDE (V rms)  
Figure 43. THD + N vs. Amplitude, VSY  
=
5 V  
Figure 46. THD + N vs. Amplitude, VSY = 15 V  
1
0.1  
1
V
V
= ±5V  
= 1.5V rms  
SY  
IN  
V
V
= ±15V  
= 5V rms  
SY  
IN  
0.1  
0.01  
0.01  
500kHz BAND-PASS FILTER  
80kHz BAND-PASS FILTER  
0.001  
0.0001  
0.00001  
0.001  
500kHz BAND-PASS FILTER  
80kHz BAND-PASS FILTER  
0.0001  
0.00001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 44. THD + N vs. Frequency, VSY  
=
5 V  
Figure 47. THD + N vs. Frequency, VSY = 15 V  
–40  
–60  
–80  
16  
12  
8
4
0
–100  
–120  
–140  
–160  
–4  
–8  
–12  
OUTPUT  
INPUT  
–16  
0
100  
1k  
10k  
100k  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
FREQUENCY (Hz)  
TIME (ms)  
Figure 45. Channel Separation vs. Frequency  
Figure 48. No Phase Reversal, VSY  
= 15 V, AV = +1, RL = 2 kΩ, CL = 100 pF  
Rev. H | Page 17 of 27  
 
ADA4610-1/ADA4610-2/ADA4610-4  
Data Sheet  
400  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
300  
+125°C  
200  
+85°C  
100  
+25°C  
–40°C  
0
–100  
–200  
–300  
–400  
0
1
2
3
4
5
6
7
8
9
10  
0
5
10  
15  
V
20  
(V)  
25  
30  
35  
TIME (Seconds)  
SY  
Figure 49. Voltage Noise, 0.1 Hz to 10 Hz  
Figure 52. Supply Current (ISY) per Amplifier vs. Supply Voltage (VSY) at  
Various Temperatures  
12  
10  
8
12  
10  
8
0.01%  
0.1%  
0.1%  
6
6
0.01%  
4
2
0
4
2
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
SETTLING TIME (µs)  
SETTLING TIME (µs)  
Figure 50. Positive Step Settling Time  
Figure 53. Negative Step Settling Time  
18  
16  
14  
12  
10  
8
4
2
V
= 7.3 × V  
IN  
OUT  
V
= 7.3 × V  
OUT  
IN  
V
OUT  
0
V
IN  
–2  
–4  
–6  
6
–8  
4
–10  
–12  
–14  
–16  
–18  
2
V
IN  
0
V
OUT  
–2  
–4  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
TIME (µs)  
TIME (µs)  
Figure 51. Positive Overload Recovery  
Figure 54. Negative Overload Recovery  
Rev. H | Page 18 of 27  
Data Sheet  
ADA4610-1/ADA4610-2/ADA4610-4  
3
15  
10  
5
V
V
A
R
C
= ±15V  
= ±10V  
= +1  
SY  
IN  
V
V
A
R
C
= ±5V  
SY  
IN  
V
L
L
=
±2V  
V
IN  
V
L
L
= +1  
= 2kΩ  
2
= 2kΩ  
= 100 pF  
= 100pF  
INPUT  
1
V
OUT  
0
–1  
–2  
–3  
0
OUTPUT  
–5  
–10  
–15  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
–0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
TIME (µs)  
TIME (µs)  
Figure 55. Positive and Negative Slew Rate (VSY  
=
5 V, AV = 1, RL = 2 kΩ)  
Figure 56. Positive and Negative Slew Rate (VSY = 15 V, AV = 1, RL = 2 kΩ)  
Rev. H | Page 19 of 27  
ADA4610-1/ADA4610-2/ADA4610-4  
Data Sheet  
THEORY OF OPERATION  
The ADA4610-1/ADA4610-2/ADA4610-4 are manufactured  
using the Analog Devices, Inc., iPolar® process, a 36 V dielectrically  
isolated (DI) process with P-channel JFET technology. The  
unique architecture of the ADA4610-1/ADA4610-2/ADA4610-4  
makes it possible to combine high precision and high speed  
characteristics into a high voltage, low power op amp. A simplified  
schematic for the ADA4610-1/ADA4610-2/ADA4610-4 is  
shown in Figure 57. The JFET input stage architecture offers  
advantages of low input bias current, high bandwidth, high  
gain, low noise, and no phase reversal when the applied input  
signal exceeds the common-mode voltage range. The output  
stage is rail-to-rail with high drive characteristics and low  
dropout voltage for both sinking and sourcing currents.  
The ADA4610-1/ADA4610-2 B grades achieve less than 0.4 mV  
of offset and 4 µV/°C of offset drift; these characteristics are  
usually associated with very high precision bipolar input amplifiers.  
The gate current of a typical JFET doubles every 10°C, resulting  
in a similar increase in input bias current over temperature. The  
low power consumption characteristic of the ADA4610-1/  
ADA4610-2/ADA4610-4 minimizes the die temperature, which  
warrants low input bias currents even at elevated ambient tem-  
peratures, making the amplifiers ideal for applications that require  
low leakage specifications without active cooling. Ensure proper  
printed circuit board (PCB) layout to minimize leakage currents  
between PCB traces. Improper layout and board handling can  
generate leakage currents exceeding the bias currents of the  
operational amplifier.  
The ADA4610-1/ADA4610-2/ADA4610-4 are unconditionally  
stable for all gain configurations, even with capacitive loads well  
in excess of 1 nF. The devices have internal protective circuitry  
that allows voltages as high as 0.3 V beyond the supplies to be  
applied at the input of either terminal without causing damage (for  
higher input voltages, refer to the Input Overvoltage Protection  
section).  
The ADA4610-1/ADA4610-2/ADA4610-4 are fully specified with  
supply voltages from 5 V to 15 V over the extended industrial  
temperature range of −40°C to +125°C. The ADA4610-1 is  
available in an 8-lead SOIC. The ADA4610-2 is available in an  
8-lead MSOP, an 8-lead SOIC, and an 8-lead LFCSP. The  
ADA4610-4 is available in a 14-lead SOIC and a 16-lead LFCSP.  
All these packages are surface-mount type.  
V+  
D31  
R6  
R7  
Q9  
C3  
R16  
Q30  
Q14  
Q29  
Q8  
Q28  
C2  
RC4  
+
1+  
A2  
DE5  
Q12  
C4  
Q18  
A1  
Q15  
DE1  
R10  
Q13  
R11  
Q5  
Q1  
Q4  
R3  
Q23  
Q16  
Q17  
V
OUT  
DE3  
R2  
V
V
J1  
J2  
IN+  
R5  
DE6  
IN–  
C1  
DE4  
Q6  
Q7  
Q27  
DE2  
R15  
D26  
Q25  
I
I
I
4
Q24  
2
3
V–  
Figure 57. Simplified Schematic  
Rev. H | Page 20 of 27  
 
 
Data Sheet  
ADA4610-1/ADA4610-2/ADA4610-4  
APPLICATIONS INFORMATION  
The ADA4610-1/ADA4610-2/ADA4610-4, shown in Figure 58,  
are ideal for building a peak detector because U2A requires dc  
precision and high output current during fast peaks, and U2B  
requires low input bias current (IB) to minimize capacitance  
discharge between peaks. A low leakage and low dielectric  
absorption capacitor, such as polystyrene or polypropylene, is  
required for C3. Reversing the diode directions causes the  
circuit to detect negative peaks.  
INPUT OVERVOLTAGE PROTECTION  
The ADA4610-1/ADA4610-2/ADA4610-4 have internal protective  
circuitry that allows voltages as high as 0.3 V beyond the supplies  
to be applied at the input of either terminal without causing  
damage. For higher input voltages, a series resistor is necessary  
to limit the input current. Determine the resistor value by  
VIN VS  
10 mA  
RS  
CURRENT TO VOLTAGE (I TO V) CONVERSION  
APPLICATIONS  
Photodiode Circuits  
where:  
VIN is the input voltage.  
VS is the voltage of either V+ or V−.  
RS is the series resistor.  
Common applications for I to V conversion include photodiode  
circuits where the amplifier converts a current emitted by a diode  
placed at the negative input terminal into an output voltage.  
With a very low bias current of <1.5 nA up to 125°C, higher  
resistor values can be used in series with the inputs. A 5 kΩ  
resistor protects the inputs from voltages as high as 25 V  
beyond the supplies and adds less than 10 µV to the offset.  
The low input bias current, wide bandwidth, and low noise of  
the ADA4610-1/ADA4610-2/ADA4610-4 make them excellent  
choices for various photodiode applications, including fax  
machines, fiber optic controls, motion sensors, and barcode  
readers.  
PEAK DETECTOR  
The function of a peak detector is to capture the peak value of a  
signal and produce an output equal to it. By taking advantage of  
the dc precision and super low input bias current of the JFET input  
amplifiers, such as the ADA4610-1/ADA4610-2/ADA4610-4, a  
highly accurate peak detector can be built, as shown in Figure 58.  
The circuit shown in Figure 59 uses a silicon diode with zero  
bias voltage. This setup is a photovoltaic mode, which uses  
many large photodiodes. This configuration limits the overall  
noise and is suitable for instrumentation applications.  
V
CC  
C
F
+PEAK  
ADA4610-1/  
ADA4610-2  
ADA4610-4  
8
ADA4610-1/  
ADA4610-2  
ADA4610-4  
3
2
R
F
8
5
6
U2A  
4
+
1
U2B  
D3  
D4  
V
EE  
7
1N4148 1N4148  
4
C4  
50pF  
C3  
1µF  
V
IN  
4
V
EE  
2
3
R7  
1/2  
10kΩ  
ADA4610-1/  
ADA4610-2  
ADA4610-4  
D2  
1N448  
1
R
C
T
D
R6  
1kΩ  
8
Figure 58. Positive Peak Detector  
V
CC  
In this application, Diode D3 and Diode D4 act as unidirectional  
current switches that open up when the output is kept constant (in  
hold mode). To detect a positive peak, U2A drives C3 through D3  
and D4 until C3 is charged to a voltage equal to the input peak  
value. Feedback from the output of the U2B + peak through R6  
limits the output voltage of U2A. After detecting the peak, the  
output of U2A swings low but is clamped by D2. Diode D3  
reverses bias and the common node of D3, D4, and R7 is held to a  
voltage equal to + peak by R7. The voltage across D4 is 0 V;  
therefore, its leakage is small. The bias current of U2B is also small.  
With almost no leakage, C3 has a long hold time.  
Figure 59. Equivalent Preamplifier Photodiode Circuit  
A larger signal bandwidth can be attained at the expense of  
additional output noise. The total input capacitance (CT) consists of  
the sum of the diode capacitance (typically 30 pF to 40 pF) and  
the amplifier input capacitance (<10 pF), which includes external  
parasitic capacitance. CT creates a zero in the frequency response  
that can lead to an unstable system. To ensure stability and  
optimize the bandwidth of the signal, place a capacitor in the  
feedback loop of the circuit shown in Figure 59. The capacitor  
creates a pole and yields a bandwidth with a corner frequency of  
1/(2π(RFCF))  
where:  
RF is the feedback resistor.  
CF is the feedback capacitor.  
Rev. H | Page 21 of 27  
 
 
 
 
 
 
ADA4610-1/ADA4610-2/ADA4610-4  
Data Sheet  
Determine the RF value by the following ratio:  
COMPARATOR OPERATION  
V/ID  
Although op amps are quite different from comparators,  
occasionally an unused section of a dual or a quad op amp can  
be used as a comparator; however, this is not recommended for  
rail-to-rail output op amps. For rail-to-rail output op amps, the  
output stage is generally a ratioed current mirror with bipolar or  
MOSFET transistors. With the device operating in open-loop  
mode, the second stage increases the current drive to the ratioed  
mirror to close the loop. However, the second stage cannot close  
the loop, which results in an increase in supply current. With  
the ADA4610-1/ADA4610-2/ADA4610-4 op amps configured  
as comparators, the supply current can be significantly higher  
(see Figure 60 for the supply current vs. the supply voltage for the  
ADA4610-4). Configuring an unused section as a voltage follower  
with the noninverting input connected to a voltage within the  
input voltage range is recommended. The ADA4610-1/ADA4610-2/  
ADA4610-4 have a unique output stage design that reduces the  
excess supply current but does not entirely eliminate this effect  
when the op amp is operating in open-loop mode.  
where:  
V is the desired output voltage of the op amp.  
ID is the diode current.  
For example, if ID is 100 µA and a 10 V output voltage is needed,  
RF must be 100 kΩ. The resistance of the photodiode (RD) is a  
junction resistance (see Figure 59).  
A typical value for RD is 1000 MΩ. Because RD >> RF, the circuit  
behavior is not impacted by the effect of the junction resistance.  
The maximum signal bandwidth (fMAX) is  
ft  
fMAX  
=
2πRFCT  
where ft is the unity-gain frequency of the op amp.  
Calculate CF by  
CT  
CF =  
9
2πRF ft  
COMPARATOR, V  
= HIGH  
OUT  
8
7
6
5
4
3
2
1
0
where ft is the unity-gain frequency of the op amp, and achieves a  
phase margin, φM, of approximately 45°.  
COMPARATOR, V  
= LOW  
OUT  
Increase the CF value to obtain a higher phase margin. Setting  
CF to twice the previous value yields approximately φM = 65° and a  
maximal flat frequency response, but it reduces the maximum  
signal bandwidth by 50%.  
FOLLOWER  
Using the previous parameters with a CF 7 pF, the signal  
bandwidth is approximately 250 kHz.  
0
5
10  
15  
20  
(V)  
25  
30  
35  
40  
V
SY  
Figure 60. Supply Current (ISY) vs. Supply Voltage (VSY) for the ADA4610-4 Only  
Rev. H | Page 22 of 27  
 
 
Data Sheet  
ADA4610-1/ADA4610-2/ADA4610-4  
LONG-TERM DRIFT  
TEMPERATURE HYSTERESIS  
The stability of a precision signal path over its lifetime or  
between calibration procedures is dependent on the long-term  
stability of the analog components in the path, such as op amps,  
references, and data converters. To help system designers  
predict the long-term drift of circuits that use the ADA4610-1/  
ADA4610-2/ADA4610-4, Analog Devices measured the offset  
voltage of multiple units for 10,000 hours (more than 13 months)  
using a high precision measurement system, including an  
ultrastable oil bath. To replicate real-world system performance,  
the devices under test (DUTs) were soldered onto an FR4 PCB  
using a standard reflow profile (as defined in the JEDEC J-STD-  
020D standard), as opposed to testing them in sockets. This  
manner of testing is important because expansion and  
In addition to stability over time as described in the Long-Term  
Drift section, it is useful to know the temperature hysteresis,  
that is, the stability vs. cycling of temperature. Hysteresis is an  
important parameter because it tells the system designer how  
closely the signal returns to its starting amplitude after the  
ambient temperature changes and subsequent return to room  
temperature. Figure 62 shows the change in input offset voltage  
as the temperature cycles three times from room temperature to  
125°C to −40°C and back to room temperature. The dotted line  
is an initial preconditioning cycle to eliminate the original  
temperature-induced offset shift from exposure to production  
solder reflow temperatures. In the three full cycles, the offset  
hysteresis is typically only 8 µV, or 1% of its 800 µV maximum  
offset voltage over the full operating temperature range. The  
histogram in Figure 63 shows that the hysteresis is larger when  
the device is cycled through only a half cycle, from room  
temperature to 125°C and back to room temperature.  
contraction of the PCB can apply stress to the integrated circuit  
(IC) package and contribute to shifts in the offset voltage.  
The ADA4610-1/ADA4610-2/ADA4610-4 have extremely low  
long-term drift, as shown in Figure 61. The red, blue, and green  
traces show sample units. Note that the ADA4610-1/  
ADA4610-2/ADA4610-4 (B-grade) have a mean drift over  
10,000 hours of approximately 5 µV, or less than 2% of their  
maximum specified offset voltage of 400 µV at room  
temperature.  
150  
PRECONDITION  
V
= 10V  
SY  
CYCLE 1  
CYCLE 2  
CYCLE 3  
100  
50  
60  
0
MEAN  
MEAN PLUS ONE STANDARD DEVIATION  
MEAN MINUS ONE STANDARD DEVIATION  
40  
–50  
20  
0
–100  
–150  
0
–40  
–20  
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
–20  
Figure 62. Change in Offset Voltage over Three Full Temperature Cycles  
SAMPLE 1  
SAMPLE 2  
SAMPLE 3  
–40  
–60  
50  
V
= 10V  
SY  
V
= 10V  
HALF CYCLE  
FULL CYCLE  
SY  
45  
40  
35  
30  
25  
20  
15  
10  
5
27 UNITS  
= 25°C  
27 UNITS × 3 CYCLES  
HALF CYCLE = +26°C, +125°C, +26°C  
FULL CYCLE = +26°C, +125°C, +26°C, –40°C, +26°C  
T
A
TIME (Hours)  
Figure 61. Measured Long-Term Drift of the ADA4610-1/ADA4610-2/  
ADA4610-4 Offset Voltage over 10,000 Hours  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
–80  
–64  
–48  
–32  
–16  
0
16  
32  
48  
64  
80  
OFFSET VOLTAGE HYSTERESIS (µV)  
Figure 63. Histogram Showing the Temperature Hysteresis of the Offset  
Voltage over Three Full Cycles and over Three Half Cycles  
Rev. H | Page 23 of 27  
 
 
 
 
 
ADA4610-1/ADA4610-2/ADA4610-4  
OUTLINE DIMENSIONS  
Data Sheet  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 64. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 65. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. H | Page 24 of 27  
 
Data Sheet  
ADA4610-1/ADA4610-2/ADA4610-4  
3.00  
2.90  
2.80  
5
1
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
2
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.55  
0.45  
0.15 MAX  
0.05 MIN  
10°  
5°  
0°  
SEATING  
PLANE  
0.60  
0.50 MAX  
0.35 MIN  
0.35  
BSC  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 66. 5-Lead Small Outline Transistor Package [SOT-23]  
(RJ-5)  
Dimensions shown in millimeters  
DETAIL A  
(JEDEC 95)  
2.44  
2.34  
2.24  
3.10  
3.00 SQ  
0.50 BSC  
2.90  
8
5
PIN 1 INDEX  
AREA  
1.70  
1.60  
1.50  
EXPOSED  
PAD  
0.50  
0.40  
0.30  
4
1
0.20 MIN  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
PIN 1  
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET  
0.30  
0.25  
0.20  
SEATING  
PLANE  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-229-W3030D-4  
Figure 67. 8-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 mm Package Height  
(CP-8-11)  
Dimensions shown in millimeters  
Rev. H | Page 25 of 27  
ADA4610-1/ADA4610-2/ADA4610-4  
Data Sheet  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 68. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.35  
0.30  
0.25  
PIN 1  
INDICATOR  
PIN 1  
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
13  
16  
0.65  
BSC  
1
12  
2.25  
2.10 SQ  
1.95  
EXPOSED  
PAD  
9
4
8
5
0.70  
0.60  
0.50  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
SECTION OF THIS DATA SHEET.  
0.08  
SEATING  
PLANE  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.  
Figure 69. 16-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.75 mm Package Height  
(CP-16-23)  
Dimensions shown in millimeters  
Rev. H | Page 26 of 27  
Data Sheet  
ADA4610-1/ADA4610-2/ADA4610-4  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RJ-5  
RJ-5  
Branding  
ADA4610-1ARZ  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
5-Lead Small Outline Transistor Package [SOT-23]  
5-Lead Small Outline Transistor Package [SOT-23]  
5-Lead Small Outline Transistor Package [SOT-23]  
8-Lead Lead Frame Chip Scale Package [LFCSP]  
8-Lead Lead Frame Chip Scale Package [LFCSP]  
8-Lead Mini Small Outline Package [MSOP]  
ADA4610-1ARZ-R7  
ADA4610-1ARZ-RL  
ADA4610-1BRZ  
ADA4610-1BRZ-R7  
ADA4610-1BRZ-RL  
ADA4610-1ARJZ-R2  
ADA4610-1ARJZ-R7  
ADA4610-1ARJZ-RL  
ADA4610-2ACPZ-R7  
ADA4610-2ACPZ-RL  
ADA4610-2ARMZ  
ADA4610-2ARMZ-R7  
ADA4610-2ARMZ-RL  
ADA4610-2ARZ  
ADA4610-2ARZ-R7  
ADA4610-2ARZ-RL  
ADA4610-2BRZ  
ADA4610-2BRZ-R7  
ADA4610-2BRZ-RL  
ADA4610-4ARZ  
A37  
A37  
A37  
A2U  
A2U  
A2U  
A2U  
A2U  
RJ-5  
CP-8-11  
CP-8-11  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
14-Lead Standard Small Outline Package [SOIC_N]  
14-Lead Standard Small Outline Package [SOIC_N]  
14-Lead Standard Small Outline Package [SOIC_N]  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
R-8  
R-14  
R-14  
R-14  
CP-16-23  
CP-16-23  
ADA4610-4ARZ-R7  
ADA4610-4ARZ-RL  
ADA4610-4ACPZ-R7  
ADA4610-4ACPZ-RL  
1 Z = RoHS Compliant Part.  
©2011–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09646-0-5/17(H)  
Rev. H | Page 27 of 27  
 

相关型号:

ADA4610-4ARZ-RL

Low Noise, Precision, Rail-to-Rail Output, JFET Single/Dual/Quad Op Amps
ADI

ADA4610R703F

Low Noise, Precision, Rail to Rail Output, JFET Dual Operational Amplifier
ADI

ADA4610S

Low Noise, Precision, Rail to Rail Output, JFET Dual Operational Amplifier
ADI

ADA4622-1

30 V, 8 MHz, Low Bias Current, Single-Supply, RRO, Precision Op Amps
ADI

ADA4622-1ARJZ-R2

30 V, 8 MHz, Low Bias Current, Single-Supply, RRO, Precision Op Amps
ADI

ADA4622-1ARJZ-R7

30 V, 8 MHz, Low Bias Current, Single-Supply, RRO, Precision Op Amps
ADI

ADA4622-1ARJZ-RL

30 V, 8 MHz, Low Bias Current, Single-Supply, RRO, Precision Op Amps
ADI

ADA4622-1ARZ

30 V, 8 MHz, Low Bias Current, Single-Supply, RRO, Precision Op Amps
ADI

ADA4622-1ARZ-R7

30 V, 8 MHz, Low Bias Current, Single-Supply, RRO, Precision Op Amps
ADI

ADA4622-1ARZ-RL

30 V, 8 MHz, Low Bias Current, Single-Supply, RRO, Precision Op Amps
ADI

ADA4622-1BRZ

30 V, 8 MHz, Low Bias Current, Single-Supply, RRO, Precision Op Amps
ADI

ADA4622-1BRZ-R7

30 V, 8 MHz, Low Bias Current, Single-Supply, RRO, Precision Op Amps
ADI