ADA4691-2 [ADI]

Dual, Low Power, Wideband, Low Noise, Rail-to-Rail Output, Operational Amplifiers; 双通道,低功耗,宽带,低噪声,轨到轨输出运算放大器
ADA4691-2
型号: ADA4691-2
厂家: ADI    ADI
描述:

Dual, Low Power, Wideband, Low Noise, Rail-to-Rail Output, Operational Amplifiers
双通道,低功耗,宽带,低噪声,轨到轨输出运算放大器

运算放大器
文件: 总16页 (文件大小:672K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual, Low Power, Wideband, Low Noise,  
Rail-to-Rail Output, Operational Amplifiers  
ADA4691-2/ADA4692-2  
PIN CONFIGURATIONS  
FEATURES  
Low power: 200 μA typical, 250 μA maximum  
Low distortion: 0.003% THD + N  
Low noise: 16 nV/√Hz typical  
OUT A  
–IN  
1
2
3
4
8
7
6
5
V+  
ADA4692-2  
OUT B  
–IN B  
+IN B  
+IN  
TOP VIEW  
(Not to Scale)  
V–  
3.9 MHz bandwidth  
Slew rate: 1.4 V/μs typical  
Figure 1. 8-Lead SOIC_N (R-8)  
Offset voltage: 500 μV typical  
Low offset voltage drift: 4 μV/°C maximum  
Very low input bias currents: 0.5 pA typical  
2.7 V to 5 V single supply or 1.35 V to 2.5 V dual supply  
APPLICATIONS  
–IN A 1  
8 OUT B  
ADA4691-2  
Portable audio: MP3, PDA, smart phone, notebook  
Portable instrumentation  
Portable medical devices  
Photodiode amplifiers  
Sensor amplifiers  
+IN A 2  
V– 3  
7 –IN B  
6 +IN B  
TOP VIEW  
(Not to Scale)  
Figure 2. 10-Lead LFCSP (CP-10-11)  
Low-side current sense  
ADC drivers  
Active filters  
Sample-and-hold  
Automotive sensors  
GENERAL DESCRIPTION  
The ADA4691-2 and ADA4692-2 are dual, rail-to-rail output,  
single-supply amplifiers featuring low power, wide bandwidth,  
and low noise. The ADA4691-2 has two independent shutdown  
pins, allowing further reduction in supply current. These  
amplifiers are ideal for a wide variety of applications. Audio  
preamps, filters, IR/photodiode amplifiers, charge amps, and  
high impedance sensors all benefit from this combination of  
performance features.  
enough gain and slew rate response over the audio band at low  
power. Industrial applications with high impedance sensors,  
such as pyroelectric sensors and other IR sensors, benefit from  
the high impedance input, low offset drift, and enough  
bandwidth and response for low gain applications.  
The ADA4691-2 and ADA4692-2 are specified over the extended  
industrial temperature range (−40°C to +125°C). The ADA4691-2  
is available in a 10-lead LFCSP package, and the ADA4692-2 is  
available in an 8-lead SOIC package.  
Applications for these amplifiers include consumer audio  
personal players with low noise and low distortion that provide  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
ADA4691-2/ADA4692-2  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Thermal Resistance.......................................................................6  
ESD Caution...................................................................................6  
Typical Performance Characteristics ..............................................7  
Shutdown Operation...................................................................... 15  
Input Pin Characteristics........................................................... 15  
Input Threshold.......................................................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—2.7 V Operation ............................ 3  
Electrical Characteristics—5 V Operation................................ 4  
Absolute Maximum Ratings............................................................ 6  
REVISION HISTORY  
ADA4691-2/ADA4692-2 Revision History  
6/09—Rev. 0 to Rev. A  
Added ADA4691-2 Information Throughout.............................. 1  
Added Figure 2, Renumbered Subsequent Figures...................... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to Table 4............................................................................ 6  
Changes to Captions for Figure 40, Figure 41, Figure 43,  
Figure 44 .......................................................................................... 13  
Added Shutdown Operations Section ......................................... 15  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide .......................................................... 16  
ADA4692-2 Revision History  
3/09—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
 
ADA4691-2/ADA4692-2  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—2.7 V OPERATION  
VSY = 2.7 V, VCM = VSY/2, TA = 25°C, unless otherwise specified.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
0.5  
Max Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
VCM = −0.3 V to +1.6 V  
VCM = −0.1 V to +1.6 V; −40°C < TA < +125°C  
2.5  
3.5  
5
350  
325  
5
mV  
mV  
pA  
pA  
pA  
pA  
pA  
V
Input Bias Current  
ADA4691  
ADA4692  
0.5  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
Input Offset Current  
IOS  
1
−40°C < TA < +125°C  
−40°C < TA < +125°C  
VCM = −0.3 V to +1.6 V  
VCM = −0.1 V to +1.6 V; −40°C < TA < +125°C  
VCM = −0.1 V to +1.6 V; −40°C < TA < +125°C  
RL = 2 kΩ, VOUT = 0.5 V to 2.2 V  
−40°C < TA < +85°C  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
225  
+1.6  
Input Voltage Range  
Common-Mode Rejection Ratio  
ADA4691  
ADA4692  
Large Signal Voltage Gain  
ADA4691  
ADA4692  
ADA4691  
ADA4692  
−0.3  
70  
62  
70  
90  
80  
85  
67  
73  
85  
CMRR  
AVO  
90  
100  
dB  
dB  
dB  
dB  
dB  
dB  
−40°C < TA < +125°C  
RL = 600 Ω, VOUT = 0.5 V to 2.2 V  
−40°C < TA < +125°C  
95  
0.8  
dB  
Offset Voltage Drift  
Input Capacitance  
∆VOS/∆T  
CIN  
3
μV/°C  
Differential Mode  
Common Mode  
CINDM  
CINCM  
VIH  
VIL  
IIN  
2.5  
7
pF  
pF  
V
V
μA  
Logic High Voltage (Enabled)  
Logic Low Voltage (Power-Down)  
Logic Input Current (Per Pin)  
OUTPUT CHARACTERISTICS  
Output Voltage High  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
−40°C < TA < +125°C, 0 V ≤ VSD ≤ 2.7 V  
+1.6  
0.5  
1
VOH  
RL = 2 kΩ to GND  
2.65 2.67  
V
−40°C < TA < +125°C  
RL = 600 Ω to GND  
2.6  
V
V
2.55 2.59  
−40°C < TA < +125°C  
RL = 2 kΩ to VSY  
−40°C < TA < +125°C  
RL = 600 Ω to VSY  
−40°C < TA < +125°C  
VOUT = VSY or GND  
f = 1 MHz, AV = −100  
−40°C < TA < +125°C, shutdown active, VSD = VSS  
2.5  
24  
V
Output Voltage Low  
VOL  
30  
40  
95  
125  
mV  
mV  
mV  
mV  
mA  
Ω
78  
Short-Circuit Current  
ISC  
ZOUT  
15  
372  
1
Closed-Loop Output Impedance  
Output Pin Leakage Current  
POWER SUPPLY  
nA  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
−40°C < TA < +125°C  
VOUT = VSY/2  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
All amplifiers shut down, VShutDown = VSS  
40°C < TA < +125°C  
80  
75  
90  
dB  
dB  
μA  
μA  
μA  
nA  
ꢀA  
Supply Current Per Amplifier  
ADA4691-2  
ADA4692-2  
165  
200  
240  
225  
Supply Current Shutdown Mode  
ISD  
10  
2
Rev. A | Page 3 of 16  
 
ADA4691-2/ADA4692-2  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
Slew Rate  
Slew Rate  
Settling Time to 0.1%  
Gain Bandwidth Product  
ADA4691  
SR  
SR  
tS  
RL = 600 Ω, CL = 20 pF, AV = +1  
RL = 2 kΩ, CL = 20 pF, AV = +1  
Step = 0.5 V, RL = 2 kΩ, 600 Ω  
RL = 1 MΩ, CL = 35 pF, AV = +1  
1.1  
1.4  
1
V/μs  
V/μs  
ꢀs  
GBP  
3.6  
MHz  
Gain Bandwidth Product  
ADA4692  
Phase Margin  
Turn-on, Turn-off time  
NOISE PERFORMANCE  
Distortion  
GBP  
ΦM  
RL = 1 MΩ, CL = 35 pF, AV = +1  
3.9  
MHz  
RL = 1 MΩ, CL = 35 pF, AV = +1  
RL = 600 Ω  
49  
1
Degrees  
μs  
THD + N AV = −1, RL = 2 kΩ, f = 1 kHz, VIN rms = 0.15 V rms  
0.009  
%
AV = −1, RL = 600 Ω, f = 1 kHz, VIN rms = 0.15 V rms  
AV = +1, RL = 2 kΩ, f = 1 kHz, VIN rms = 0.15 V rms  
AV = +1, RL = 600 Ω, f = 1 kHz, VIN rms = 0.15 V rms  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
0.01  
0.006  
0.007  
3.1  
16  
13  
%
%
%
μV p-p  
nV/√Hz  
nV/√Hz  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
f = 10 kHz  
ELECTRICAL CHARACTERISTICS—5 V OPERATION  
VSY = 5 V, VCM = VSY/2, TA = 25°C, unless otherwise specified.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
0.5  
0.5  
1
Max Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
VCM = −0.3 V to +3.9 V  
VCM = −0.1 V to +3.9 V; −40°C < TA < +125°C  
2.5  
3.5  
5
360  
5
mV  
mV  
pA  
pA  
pA  
pA  
V
Input Bias Current  
−40°C < TA < +125°C  
Input Offset Current  
IOS  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
VCM = −0.3 V to +3.9 V  
VCM = −0.1 V to +3.9 V; −40°C < TA < +125°C  
VCM = −0.1 V to +3.9 V; −40°C < TA < +125°C  
RL = 2 kΩ, VO = 0.5 V to 4.5 V, VCM = 0 V  
−40°C < TA < +85°C  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
260  
+3.9  
Input Voltage Range  
Common-Mode Rejection Ratio  
ADA4691-2  
ADA4629-2  
Large Signal Voltage Gain  
ADA4691-2  
ADA4692-2  
ADA4691-2  
ADA4692-2  
−0.3  
75  
68  
75  
95  
80  
90  
75  
80  
90  
CMRR  
AVO  
98  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
μV/°C  
110  
−40°C < TA < +125°C  
RL = 600 Ω, VO = 0.5 V to 4.5 V, VCM = 0 V  
−40°C < TA < +125°C  
ADA4691-2 and ADA46920-2  
Offset Voltage Drift  
Input Capacitance  
100  
1
∆VOS/∆T  
4
Differential Mode  
Common Mode  
CINDM  
CINCM  
VIH  
VIL  
IIN  
2.5  
7
pF  
pF  
V
V
μA  
Logic High Voltage (Enabled)  
Logic Low Voltage (Power-Down)  
Logic Input Current (Per Pin)  
OUTPUT CHARACTERISTICS  
Output Voltage High  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
−40°C < TA < +125°C, 0 V ≤ VSD ≤ 2.7 V  
+2.0  
0.8  
1
VOH  
RL = 2 kΩ  
−40°C ≤ TA ≤ +125°C  
RL = 600 Ω to GND  
4.95 4.97  
4.90  
4.85 4.88  
V
V
V
Rev. A | Page 4 of 16  
 
ADA4691-2/ADA4692-2  
Parameter  
Symbol  
Test Conditions/Comments  
−40°C ≤ TA ≤ +125°C  
Min  
Typ  
Max Unit  
4.80  
V
Output Voltage Low  
VOL  
RL = 2 kΩ  
−40°C ≤ TA ≤ +125°C  
RL = 600 Ω  
−40°C ≤ TA ≤ +125°C  
28  
35  
45  
110  
140  
mV  
mV  
mV  
mV  
mA  
Ω
90  
Short-Circuit Limit  
ISC  
ZOUT  
ZOUT  
VOUT = VSY or GND  
55  
364  
246  
1
Closed-Loop Output Impedance  
Closed-Loop Output Impedance  
Output Pin Leakage Current  
POWER SUPPLY  
ADA4691-2, f = 1 MHz, AV = −100  
ADA4691-2, f = 1 MHz, AV = −100  
−40°C < TA < +125°C, shutdown active, VSD = VSS  
Ω
nA  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 2.7 V to 5.5 V  
−40°C ≤ TA ≤ +125°C  
VOUT = VSY/2  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
All amplifiers shutdown, VShutDown = VSS  
−40°C ≤ TA ≤ +125°C  
80  
75  
90  
dB  
dB  
μA  
μA  
μA  
nA  
uA  
Supply Current per Amplifier  
ADA4691-2  
ADA4692-2  
180  
225  
275  
250  
Supply Current Shutdown Mode  
ISD  
10  
2
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time to 0.1%  
Gain Bandwidth Product  
Phase Margin  
Turn-on, Turn-off time  
NOISE PERFORMANCE  
Distortion  
SR  
tS  
GBP  
ΦM  
RL = 2 kΩ, 600 Ω, CL = 20 pF, AV = +1  
VIN = 2 V step, RL = 2 kΩ or 600 Ω  
RL = 1 MΩ, CL = 35 pF, AV = +1  
RL = 1 MΩ, CL = 35 pF, AV = +1  
RL = 600 Ω  
1.3  
1.5  
3.6  
52  
1
V/μs  
ꢀs  
MHz  
Degrees  
μs  
THD + N  
AV = −1, RL = 2 kΩ, f = 1 kHz, VIN rms = 0.8 V rms  
0.008  
%
AV = −1, RL = 600 Ω, f = 1 kHz, VIN rms = 0.8 V rms  
AV = +1, RL = 2 kΩ, f = 1 kHz, VIN rms = 0.8 V rms  
AV = +1, RL = 600 Ω, f = 1 kHz, VIN rms = 0.8 V rms  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
0.006  
0.003  
0.001  
3.2  
16  
13  
%
%
%
μV p-p  
nV/√Hz  
nV/√Hz  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
en  
Rev. A | Page 5 of 16  
ADA4691-2/ADA4692-2  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages and  
measured using a standard 4-layer board, unless otherwise  
specified.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
Input Current1  
6 V  
VSS − 0.3 V to VDD +0.3 V  
10 mA  
Shutdown Pin Rise/Fall times  
Differential Input Voltage2  
Output Short-Circuit Duration to GND  
Temperature  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
50 μs maximum  
VSY  
Indefinite  
Table 4. Thermal Resistance  
Package Type  
8-Lead SOIC_N (R-8)  
10-Lead LFCSP (CP-10-11)  
θJA  
155  
88  
θJC  
45  
32  
Unit  
°C/W  
°C/W  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
ESD CAUTION  
1 Input pins have clamp diodes to the supply pins. Limit the input current to  
10 mA or less whenever the input signal exceeds the power supply rail by 0.3 V.  
2 Differential input voltage is limited to 5 V or the supply voltage, whichever  
is less.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 6 of 16  
 
 
ADA4691-2/ADA4692-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
350  
700  
600  
500  
400  
300  
200  
100  
0
ADA4692-2  
ADA4692-2  
V
T
= 2.7V  
V
T
= 5V  
SY  
= 25°C  
SY  
= 25°C  
300  
250  
200  
150  
100  
50  
A
A
–0.3V V  
+1.6V  
–0.3V V  
+3.9V  
CM  
CM  
SIGNIFIES CENTER  
OF BIN  
SIGNIFIES CENTER  
OF BIN  
–2.0 –1.6 –1.2 –0.8 –0.4  
0
0.4  
0.8  
1.2  
1.6  
2.0  
V
(mV)  
OS  
Figure 3. Input Offset Voltage Distribution  
Figure 6. Input Offset Voltage Distribution  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
ADA4692-2  
ADA4692-2  
V
= ±1.35V  
V
= ±2.5V  
SY  
SY  
–40°C < T < +125°C  
–40°C < T < +125°C  
A
A
SIGNIFIES CENTER  
OF BIN  
SIGNIFIES CENTER  
OF BIN  
0
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
TCV (µV/°C)  
OS  
TCV (µV/°C)  
OS  
Figure 4. Input Offset Voltage Drift Distribution  
Figure 7. Input Offset Voltage Drift Distribution  
2.0  
1.5  
2.0  
1.5  
ADA4692-2  
ADA4692-2  
V
= 2.7V  
V
= 5V  
SY  
= 25°C  
SY  
T = 25°C  
A
T
A
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
0
0.5  
1.0  
(V)  
1.5  
2.0  
2.5  
–0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
(V)  
V
V
CM  
CM  
Figure 5. Input Offset Voltage vs. Common-Mode Voltage  
Figure 8. Input Offset Voltage vs. Common-Mode Voltage  
Rev. A | Page 7 of 16  
 
ADA4691-2/ADA4692-2  
1k  
1k  
100  
10  
ADA4692-2  
ADA4692-2  
V = ±2.5V  
V
= ±1.35V  
SY  
= 25°C  
SY  
T = 25°C  
A
T
A
AVERAGE 20 CHANNELS  
AVERAGE 20 CHANNELS  
100  
10  
1
1
0.1  
0.1  
0.01  
0.01  
25  
35  
45  
55  
65  
75  
85  
95  
105 115 125  
25  
35  
45  
55  
65  
75  
85  
95  
105 115 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. Input Bias Current vs. Temperature  
Figure 12. Input Bias Current vs. Temperature  
1k  
100  
10  
1k  
100  
10  
T
= 125°C  
A
T
= 125°C  
A
ADA4692-2  
= 5V  
V
SY  
AVERAGE 20 CHANNELS  
T
T
= 85°C  
= 25°C  
A
T
T
= 85°C  
= 25°C  
A
1
1
A
0.1  
0.1  
0.01  
A
0.01  
0.001  
ADA4692-2  
= 2.7V  
V
SY  
AVERAGE 20 CHANNELS  
0
0.3  
0.6 0.9 1.2 1.5  
(V)  
1.8  
2.1  
2.4  
2.7  
0
0.5  
1.0  
1.5  
2.0  
2.5  
V (V)  
CM  
3.0  
3.5  
4.0  
4.5  
5.0  
V
CM  
Figure 10. Input Bias Current vs. Common-Mode Voltage  
Figure 13. Input Bias Current vs. Common-Mode Voltage  
10k  
10k  
ADA4692-2  
ADA4692-2  
V
V
= ±1.35V  
= (V+) – V  
V
V
= ±2.5V  
= (V+) – V  
SY  
SY  
OH  
OUT  
OH  
OUT  
1k  
100  
10  
1k  
100  
10  
(SOURCING)  
(SOURCING)  
T
= +125°C  
T
= +125°C  
A
A
T
= +85°C  
A
T
= +85°C  
A
T
= +25°C  
A
T
= +25°C  
A
T
= –40°C  
1
1
A
T
= –40°C  
A
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.01  
0.1  
I
1
10  
100  
0.01  
0.1  
I
1
10  
100  
(mA)  
(mA)  
LOAD  
LOAD  
Figure 11. Output Voltage (VOH) to Supply Rail vs. Load Current  
Figure 14. Output Voltage (VOH) to Supply Rail vs. Load Current  
Rev. A | Page 8 of 16  
ADA4691-2/ADA4692-2  
10k  
1k  
10k  
1k  
ADA4692-2  
ADA4692-2  
V
V
= ±1.35V  
V
V
= ±2.5V  
SY  
SY  
= V  
– (V–)  
= V – (V–)  
OL  
OUT  
OL  
OUT  
(SINKING)  
(SINKING)  
T
= +125°C  
T
= +125°C  
A
A
100  
10  
100  
10  
T
= +85°C  
A
T
= +85°C  
A
T
= +25°C  
A
T
= +25°C  
A
1
1
T
= –40°C  
A
T
= –40°C  
A
0.1  
0.01  
0.1  
0.01  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
I
(mA)  
I
(mA)  
LOAD  
LOAD  
Figure 15. Output Voltage (VOL) to Supply Rail vs. Load Current  
Figure 18. Output Voltage (VOL) to Supply Rail vs. Load Current  
120  
100  
80  
120  
100  
80  
120  
100  
80  
120  
100  
80  
60  
60  
60  
60  
C
= 20pF  
C = 20pF  
L
L
40  
40  
40  
40  
20  
20  
20  
20  
0
0
0
0
–20  
–40  
–60  
–20  
–40  
–60  
–20  
–40  
–60  
–20  
–40  
–60  
C
= 200pF  
C = 200pF  
L
L
ADA4692-2  
= ±1.35V  
ADA4692-2  
V = ±2.5V  
SY  
V
SY  
T
= 25°C  
= –1  
T
= 25°C  
A = –1  
V
A
A
A
V
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 16. Open-Loop Gain and Phase vs. Frequency  
Figure 19. Open-Loop Gain and Phase vs. Frequency  
50  
40  
50  
40  
A
A
A
= +100  
= +10  
= +1  
A
A
A
= +100  
= +10  
= +1  
V
V
V
V
V
V
30  
30  
20  
20  
10  
10  
0
0
–10  
–20  
–30  
–10  
–20  
–30  
ADA4692-2  
= ±1.35V  
ADA4692-2  
V = ±2.5V  
SY  
V
SY  
T
= 25°C  
T
= 25°C  
A
A
R
= 600Ω  
R
= 600Ω  
L
L
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Closed-Loop Gain vs. Frequency  
Figure 20. Closed-Loop Gain vs. Frequency  
Rev. A | Page 9 of 16  
ADA4691-2/ADA4692-2  
1k  
1k  
100  
10  
100  
A
= –100  
A
= –100  
V
V
10  
1
A
= –10  
= –1  
V
A
= –10  
V
1
A
V
A
= –1  
V
0.1  
0.1  
ADA4692-2  
= ±1.35V  
ADA4692-2  
V = ±2.5V  
V
SY  
= 25°C  
SY  
T = 25°C  
A
T
A
0.01  
100  
0.01  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. Output Impedance vs. Frequency  
Figure 24. Output Impedance vs. Frequency  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
ADA4692-2  
= ±1.35V  
ADA4692-2  
V = ±2.5V  
V
SY  
= 25°C  
SY  
T = 25°C  
A
T
A
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. CMRR vs. Frequency  
Figure 25. CMRR vs. Frequency  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
PSRR–  
PSRR+  
PSRR–  
PSRR+  
ADA4692-2  
= ±1.35V  
ADA4692-2  
V = ±2.5V  
V
SY  
= 25°C  
SY  
T = 25°C  
A
T
A
–20  
100  
–20  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. PSRR vs. Frequency  
Figure 26. PSRR vs. Frequency  
Rev. A | Page 10 of 16  
ADA4691-2/ADA4692-2  
1k  
100  
10  
1k  
100  
10  
ADA4692-2  
= ±1.35V  
ADA4692-2  
V = ±2.5V  
V
SY  
= 25°C  
SY  
T = 25°C  
A
T
A
0.1  
1
10  
100  
1k  
10k  
0.1  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 27. Voltage Noise Density vs. Frequency  
Figure 30. Voltage Noise Density vs. Frequency  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
ADA4692-2  
ADA4692-2  
V
V
A
R
= ±1.35V  
= 100mV p-p  
= +1  
V
V
A
R
= ±2.5V  
= 100mV p-p  
= +1  
SY  
SY  
IN  
IN  
V
L
V
L
= 2k  
= 2kΩ  
T
= 25°C  
T
= 25°C  
A
A
OVERSHOOT+  
OVERSHOOT+  
OVERSHOOT–  
OVERSHOOT–  
0
10  
0
10  
100  
1k  
100  
1k  
CAPACITANCE (pF)  
CAPACITANCE (pF)  
Figure 28. Small Signal Overshoot vs. Load Capacitance  
Figure 31. Small Signal Overshoot vs. Load Capacitance  
ADA4692-2  
ADA4692-2  
V
= ±1.35V  
V
= ±2.5V  
SY  
GAIN = +1  
SY  
GAIN = +1  
R
C
T
= 2k  
= 300pF  
= 25°C  
R
C
T
= 2k,  
= 300pF  
= 25°C  
L
L
L
L
A
A
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 29. Large Signal Transient Response  
Figure 32. Large Signal Transient Response  
Rev. A | Page 11 of 16  
ADA4691-2/ADA4692-2  
T
ADA4692-2  
ADA4692-2  
V = ±2.5V  
V
= ±1.35V  
SY  
SY  
GAIN = +1  
GAIN = +1  
R
C
= 2k  
= 200pF  
= 25°C  
R
C
= 2kΩ  
= 200pF  
= 25°C  
L
L
L
L
T
T
A
A
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 36. Small Signal Transient Response  
Figure 33. Small Signal Transient Response  
ADA4692-2  
= ±2.5V  
ADA4692-2  
= ±1.35V  
V
V
SY  
GAIN = +1M  
= 25°C  
SY  
GAIN = +1M  
= 25°C  
T
T
A
A
TIME (1s/DIV)  
TIME (1s/DIV)  
Figure 37. 0.1 Hz to 10 Hz Noise  
Figure 34. 0.1 Hz to 10 Hz Noise  
250  
225  
200  
175  
150  
125  
250  
200  
150  
100  
50  
ADA4692-2  
ADA4692-2  
T
= +125°C  
A
T
= +85°C  
A
T
T
= +25°C  
= –40°C  
A
V
= ±2.5V  
SY  
A
V
= ±1.35V  
SY  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
0
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
TEMPERATURE (°C)  
V
SY  
Figure 38. Supply Current per Channel vs. Temperature  
Figure 35. Supply Current per Amplifier vs. Supply Voltage  
Rev. A | Page 12 of 16  
ADA4691-2/ADA4692-2  
1
1
ADA4692-2  
= ±1.35V  
ADA4692-2  
V = ±2.5V  
SY  
V
SY  
A
= –1  
A
= –1  
V
A
V
A
T
= 25°C  
T
= 25°C  
0.1  
0.1  
R
= 600Ω  
R = 600Ω  
L
L
R
= 2kΩ  
R = 2kΩ  
L
L
0.01  
0.001  
0.01  
0.001  
10  
100  
1k  
10k 20k  
10  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
FREQUENCY (Hz)  
Figure 39. THD + Noise vs. Frequency  
Figure 42. THD + Noise vs. Frequency  
50mV/DIV  
50mV/DIV  
1V/DIV  
1V/DIV  
ADA4692-2  
= ±2.5V  
ADA4692-2  
= ±1.35V  
V
SY  
V
A
T
= –100  
= 25°C  
SY  
= 25°C  
V
A
T
A
TIME (4µs/DIV)  
TIME (4µs/DIV)  
Figure 40. Positive Overload Recovery  
Figure 43. Positive Overload Recovery  
50mV/DIV  
1V/DIV  
50mV/DIV  
1V/DIV  
ADA4692-2  
ADA4692-2  
V
A
= ±2.5V  
= –100  
SY  
V
T
= ±1.35V  
SY  
= 25°C  
V
T
= 25°C  
A
A
TIME (4µs/DIV)  
TIME (4µs/DIV)  
Figure 41. Negative Overload Recovery  
Figure 44. Negative Overload Recovery  
Rev. A | Page 13 of 16  
ADA4691-2/ADA4692-2  
1V/DIV  
200mV/DIV  
20mV/DIV  
10mV/DIV  
ADA4692-2  
ADA4692-2  
V
= ±1.35V  
= 2kΩ  
= 25°C  
V
= ±2.5V  
= 2k  
= 25°C  
SY  
SY  
ERROR BAND  
R
T
R
T
L
L
ERROR BAND  
A
A
TIME (1µs/DIV)  
TIME (1µs/DIV)  
Figure 45. Positive Settling Time to 0.1%  
Figure 48. Positive Settling Time to 0.1%  
200mV/DIV  
1V/DIV  
ERROR BAND  
ERROR BAND  
20mV/DIV  
10mV/DIV  
ADA4692-2  
ADA4692-2  
V
R
= ±1.35V  
= 2kΩ  
V
R
= ±2.5V  
= 2kΩ  
SY  
SY  
L
L
T
= 25°C  
T
= 25°C  
A
A
TIME (1µs/DIV)  
TIME (1µs/DIV)  
Figure 46. Negative Settling Time to 0.1%  
Figure 49. Negative Settling Time to 0.1%  
–80  
–90  
R1  
CS (dB) = 20 log (VOUT/100 = VIN  
V+  
)
100k  
V–  
R2  
1kΩ  
3
U2  
6
7
U1  
5
V+  
V–  
+
V–  
V+  
VIN  
2
R3  
600Ω  
0
–100  
–110  
–120  
–130  
–140  
0
0
V–  
V+  
0
ADA4692-2  
V
V
= ±2.5V  
= 2.8V p-p  
= +1  
SY  
IN  
A
V
A
T
= 25°C  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
Figure 47. Channel Separation vs. Frequency  
Rev. A | Page 14 of 16  
ADA4691-2/ADA4692-2  
SHUTDOWN OPERATION  
INPUT PIN CHARACTERISTICS  
The ADA4691-2 has a classic CMOS logic inverter input for  
each shutdown pin, as shown in Figure 50.  
SDA, B  
V
DD  
P-CHANNEL  
OUTPUT  
N-CHANNEL  
INPUT  
I
= 724mV/1k = 724µA  
SY  
Figure 50. CMOS Inverter  
DUT OUTPUT  
TIME (400µs/DIV)  
With slowly changing inputs, the top transistor and bottom  
transistor may be slightly on at the same time, increasing the  
supply current. This can be avoided by driving the input with a  
digital logic output having fast rise and fall times. Figure 51  
through Figure 53 show the supply current for both sections  
switching simultaneously with rise times of 1 μs, 10 μs, and  
1 ms. Clearly, the rise and fall times should be faster than 10 us.  
Using an RC time constant to enable/disable shutdown is not  
recommended.  
Figure 53. Shutdown Pin Rise Time = 1 ms  
INPUT THRESHOLD  
The input threshold is approximately 1.2 V above the V− pin  
when operating on ground and +5 V, and 0.9 V when operating  
on 2.7 V (see Figure 54 and Figure 55). The threshold is rela-  
tively stable over temperature. For operation on split supplies,  
the logic swing may have to be level shifted.  
500  
ADA4691-2  
T
V
= 25°C  
450  
400  
350  
300  
250  
200  
150  
100  
50  
A
= 5V  
SY  
I
= 196mV/1k = 196µA  
SY  
T
= +125°C  
A
T
= +85°C  
A
SDA, B  
DUT OUTPUT  
T
= +25°C  
A
T
= –40°C  
A
TIME (400µs/DIV)  
0
Figure 51. Shutdown Pin Rise Time = 1 μs  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
SD VOLTAGE (V)  
Figure 54. Supply Current vs. Temperature, VSY = 5 V  
300  
250  
200  
150  
100  
50  
ADA4691-2  
V
= 2.7V  
SY  
I
= 192mV/1k = 196µA  
SY  
T
= +125°C  
A
T
= +85°C  
A
SDA, B  
DUT OUTPUT  
T
= +25°C  
A
T
= –40°C  
A
TIME (400µs/DIV)  
Figure 52. Shutdown Pin Rise Time = 10 μs  
0
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
SD VOLTAGE (V)  
Figure 55. Supply Current vs. Temperature, VSY = 2.7 V  
Rev. A | Page 15 of 16  
 
 
 
 
 
 
ADA4691-2/ADA4692-2  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 56. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
0.50  
0.45  
0.40  
2.00  
BSC SQ  
PIN 1 INDEX  
AREA  
PIN 1  
INDICATOR  
9
10  
8
6
1
3
0.30  
0.25  
0.18  
5
BOTTOM VIEW  
4
TOP VIEW  
0.60  
0.55  
0.50  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.05  
SEATING  
PLANE  
0.50  
BSC  
0.20 REF  
Figure 57. 10-Lead Lead Frame Chip Scale Package [LFCSP_UQ]  
2 mm × 2 mm Body, Ultra Thin Quad  
(CP-10-11)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADA4691-2ACPZ-R71  
ADA4691-2ACPZ-RL1  
ADA4691-2ACPZ-R21  
ADA4692-2ARZ1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
10-Lead_LFCSP_UQ  
10-Lead_LFCSP_UQ  
10-Lead_LFCSP_UQ  
8-Lead SOIC_N  
Package Option  
CP-10-11  
CP-10-11  
CP-10-11  
R-8  
Branding Code  
A2  
A2  
A2  
ADA4692-2ARZ-R71  
ADA4692-2ARZ-RL1  
8-Lead SOIC_N  
8-Lead SOIC_N  
R-8  
R-8  
1 Z = RoHS Compliant Part.  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07950-0-6/09(A)  
Rev. A | Page 16 of 16  
 
 
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY