ADA4851-1YRJ-EBZ [ADI]

Low Cost, High Speed, Rail-to-Rail, Output Op Amps; 低成本,高速,轨到轨输出运算放大器
ADA4851-1YRJ-EBZ
型号: ADA4851-1YRJ-EBZ
厂家: ADI    ADI
描述:

Low Cost, High Speed, Rail-to-Rail, Output Op Amps
低成本,高速,轨到轨输出运算放大器

运算放大器
文件: 总24页 (文件大小:432K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, High Speed, Rail-to-Rail,  
Output Op Amps  
ADA4851-1/ADA4851-2/ADA4851-4  
FEATURES  
PIN CONFIGURATIONS  
Qualified for automotive applications  
High speed  
130 MHz, −3 dB bandwidth  
375 V/μs slew rate  
ADA4851-1  
V
1
2
3
6
5
4
+V  
S
OUT  
–V  
POWER DOWN  
–IN  
S
+IN  
55 ns settling time to 0.1%  
Excellent video specifications  
0.1 dB flatness: 11 MHz  
Differential gain: 0.08%  
Differential phase: 0.09°  
TOP VIEW (Not to Scale)  
Figure 1. ADA4851-1, 6-Lead SOT-23 (RJ-6)  
ADA4851-2  
OUT1  
–IN1  
+IN1  
1
2
3
4
8
7
6
5
+V  
S
OUT  
–IN2  
+IN2  
Fully specified at +3 V, +5 V, and 5 V supplies  
Rail-to-rail output  
–V  
S
Output swings to within 60 mV of either rail  
Low voltage offset: 0.6 mV  
Wide supply range: 2.7 V to 12 V  
Low power: 2.5 mA per amplifier  
Power-down mode  
TOP VIEW  
(Not to Scale)  
Figure 2. ADA4851-2, 8-Lead MSOP (RM-8)  
1
2
3
4
5
6
7
14  
13  
12  
11  
V
1
V
4
OUT  
OUT  
–IN 4  
+IN 4  
–IN 1  
+IN 1  
Available in space-saving packages  
6-lead SOT-23, 8-lead MSOP, and 14-lead TSSOP  
ADA4851-4  
TOP VIEW  
(Not to Scale)  
–V  
S
+V  
S
APPLICATIONS  
10 +IN 3  
+IN 2  
–IN 2  
Automotive infotainment systems  
Automotive driver assistance systems  
Consumer video  
9
8
–IN 3  
V
3
V
2
OUT  
OUT  
Professional video  
Video switchers  
Figure 3. ADA4851-4, 14-Lead TSSOP (RU-14)  
Active filters  
Clock buffers  
GENERAL DESCRIPTION  
The ADA4851-1 (single), ADA4851-2 (dual), and ADA4851-4  
(quad) are low cost, high speed, voltage feedback rail-to-rail  
output op amps. Despite their low price, these parts provide  
excellent overall performance and versatility. The 130 MHz,  
−3 dB bandwidth and high slew rate make these amplifiers well  
suited for many general-purpose, high speed applications.  
See the Automotive Products section for more details. The  
ADA4851 family is designed to work over the extended  
temperature range (−40°C to +125°C).  
4
G = +1  
V
R
C
= 5V  
= 1kΩ  
= 5pF  
3
2
S
L
L
The ADA4851 family is designed to operate at supply voltages  
as low as +3 V and up to 5 V. These parts provide true single-  
supply capability, allowing input signals to extend 200 mV  
below the negative rail and to within 2.2 V of the positive rail.  
On the output, the amplifiers can swing within 60 mV of either  
supply rail.  
1
0
–1  
–2  
–3  
–4  
–5  
–6  
With their combination of low price, excellent differential gain  
(0.08%), differential phase (0.09º), and 0.1 dB flatness out to  
11 MHz, these amplifiers are ideal for consumer video applications.  
1
10  
100  
1k  
FREQUENCY (MHz)  
The ADA4851-1W, ADA4851-2W, and ADA4851-4W are  
automotive grade versions, qualified for automotive applications.  
Figure 4. Small-Signal Frequency Response  
Rev. J  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2004–2010 Analog Devices, Inc. All rights reserved.  
 
ADA4851-1/ADA4851-2/ADA4851-4  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution................................................................................ 10  
Typical Performance Characteristics ........................................... 11  
Circuit Description......................................................................... 17  
Headroom Considerations........................................................ 17  
Overload Behavior and Recovery ............................................ 18  
Single-Supply Video Amplifier................................................. 19  
Video Reconstruction Filter...................................................... 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 21  
Automotive Products................................................................. 21  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 4  
Specifications with +3 V Supply................................................. 4  
Specifications with +5 V Supply................................................. 6  
Specifications with 5 V Supply................................................. 8  
Absolute Maximum Ratings.......................................................... 10  
Thermal Resistance .................................................................... 10  
REVISION HISTORY  
10/10—Rev. I to Rev. J  
8/07—Rev. D to Rev. E  
Added Output Characteristics, Linear Output Current  
Parameter, Table 2............................................................................. 7  
Added Output Characteristics, Linear Output Current  
Parameter, Table 3............................................................................. 9  
Changes to Applications...................................................................1  
Changes to Common-Mode Rejection Ratio, Conditions...........5  
Changes to Headroom Considerations Section ......................... 13  
4/06—Rev. C to Rev. D  
5/10—Rev. H to Rev. I  
Added Video Reconstruction Filter Section............................... 15  
Changes to Power-Down Bias Current Parameter, Table 1 ........ 3  
Moved Automotive Products Section.......................................... 20  
5/05—Rev. B to Rev. C  
Changes to General Description .....................................................1  
4/10—Rev. G. to Rev. H  
Changes to Input Section .............................................................. 14  
Added Automotive Product Information................... Throughout  
Changes to Table 1 Through Table 3.............................................. 3  
Updated Outline Dimensions....................................................... 19  
Changes to Ordering Guide .......................................................... 20  
4/05—Rev. A to Rev. B  
Added ADA4851-2, Added 8-Lead MSOP.....................Universal  
Changes to Features ..........................................................................1  
Changes to General Description .....................................................1  
Changes to Table 1.............................................................................3  
Changes to Table 2.............................................................................4  
Changes to Table 3.............................................................................5  
Changes to Table 4 and Figure 5......................................................6  
Changes to Figure 12, Figure 15, and Figure 17............................8  
Changes to Figure 18.........................................................................9  
Changes to Figure 28 Caption ...................................................... 10  
Changes to Figure 33...................................................................... 11  
Changes to Figure 36 and Figure 38, Added Figure 39 ............. 12  
Changes to Circuit Description Section...................................... 13  
Changes to Headroom Considerations Section ......................... 13  
Changes to Overload Behavior and Recovery Section.............. 14  
Added Single-Supply Video Amplifier Section.......................... 15  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide.......................................................... 17  
9/09—Rev. F. to Rev. G  
Moved Automotive Products Section.......................................... 18  
Updated Outline Dimensions....................................................... 19  
5/09—Rev. E. to Rev. F  
Changes to Features, Applications, and General Description  
Sections .............................................................................................. 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 5  
Changes to Table 3............................................................................ 7  
Changes to Figure 27 and Figure 28............................................. 13  
Changes to Figure 47, Added Automotive Products Section ... 18  
Updated Outline Dimensions....................................................... 19  
Changes to Ordering Guide .......................................................... 20  
Rev. J | Page 2 of 24  
 
ADA4851-1/ADA4851-2/ADA4851-4  
1/05—Rev. 0 to Rev. A  
Changes to Figure 22 ........................................................................9  
Changes to Figure 23, Figure 24, and Figure 25..........................10  
Changes to Figure 27 and Figure 28 .............................................10  
Changes to Figure 29, Figure 30, and Figure 31..........................11  
Changes to Figure 34 ......................................................................11  
Added Figure 37..............................................................................12  
Changes to Ordering Guide...........................................................15  
Updated Outline Dimensions........................................................15  
Added ADA4851-4 ............................................................ Universal  
Added 14-Lead TSSOP...................................................... Universal  
Changes to Features ..........................................................................1  
Changes to General Description .....................................................1  
Changes to Figure 3...........................................................................1  
Changes to Specifications.................................................................3  
Changes to Figure 4...........................................................................6  
Changes to Figure 8...........................................................................7  
Changes to Figure 11 ........................................................................8  
10/04—Revision 0: Initial Version  
Rev. J | Page 3 of 24  
ADA4851-1/ADA4851-2/ADA4851-4  
SPECIFICATIONS  
SPECIFICATIONS WITH +3 V SUPPLY  
TA = 25°C, RF = 0 Ω for G = +1, RF = 1 kΩ for G > +1, RL = 1 kΩ, unless otherwise noted.  
Table 1.  
Parameter  
Conditions/Comments  
Min  
Typ  
130  
105  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VOUT = 0.1 V p-p  
ADA4851-1W/2W/4W only: TMIN to TMAX  
G = +1, VOUT = 0.5 V p-p  
ADA4851-1W/2W/4W only: TMIN to TMAX  
G = +2, VOUT = 1 V p-p, RL = 150 Ω  
G = +2, VOUT = 1 V p-p, RL = 150 Ω  
G = +2, VOUT = 1 V step  
104  
95  
80  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
V/μs  
ns  
72  
40  
15  
100  
50  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
G = +2, VOUT = 1 V step, RL = 150 Ω  
NOISE/DISTORTION PERFORMANCE  
Harmonic Distortion, HD2/HD3  
Input Voltage Noise  
fC = 1 MHz, VOUT = 1 V p-p, G = −1  
f = 100 kHz  
−73/−79  
10  
dBc  
nV/√Hz  
Input Current Noise  
Differential Gain  
Differential Phase  
Crosstalk (RTI)—ADA4851-2/ADA4851-4  
DC PERFORMANCE  
f = 100 kHz  
2.5  
0.44  
0.41  
−70/−60  
pA/√Hz  
%
Degrees  
dB  
G = +3, NTSC, RL = 150 Ω, VOUT = 2 V p-p  
G = +3, NTSC, RL = 150 Ω, VOUT = 2 V p-p  
f = 5 MHz, G = +2, VOUT = 1.0 V p-p  
Input Offset Voltage  
0.6  
3.3  
7.3  
mV  
mV  
μV/°C  
μA  
ADA4851-1W/2W/4W only: TMIN to TMAX  
ADA4851-1W/2W/4W only: TMIN to TMAX  
Input Offset Voltage Drift  
Input Bias Current  
4
2.3  
4.0  
5.0  
μA  
Input Bias Current Drift  
Input Bias Offset Current  
Open-Loop Gain  
6
20  
105  
nA/°C  
nA  
dB  
VOUT = 0.25 V to 0.75 V  
ADA4851-1W/2W/4W only: TMIN to TMAX  
ADA4851-1W only: TMIN to TMAX  
80  
78  
75  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Input Overdrive Recovery Time (Rise/Fall)  
Common-Mode Rejection Ratio  
Differential/common-mode  
0.5/5.0  
1.2  
−0.2 to +0.8  
60/60  
MΩ  
pF  
V
ns  
dB  
dB  
VIN = +3.5 V, −0.5 V, G = +1  
VCM = 0 V to 0.5 V  
ADA4851-1W/2W/4W only: TMIN to TMAX  
−81  
−65  
−103  
POWER-DOWN—ADA4851-1 ONLY  
Power-Down Input Voltage  
Power-down  
Power-up  
<1.1  
>1.6  
0.7  
V
V
μs  
ns  
Turn-Off Time  
Turn-On Time  
60  
Power-Down Bias Current  
Enabled  
POWER DOWN = 3 V  
4
10  
μA  
μA  
μA  
μA  
ADA4851-1W only: TMIN to TMAX  
POWER DOWN = 0 V  
10  
−20  
−20  
Power-Down  
−14  
ADA4851-1W only: TMIN to TMAX  
Rev. J | Page 4 of 24  
 
ADA4851-1/ADA4851-2/ADA4851-4  
Parameter  
Conditions/Comments  
Min  
Typ  
Max Unit  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time (Rise/Fall)  
Output Voltage Swing  
VIN = +0.7 V, −0.1 V, G = +5  
70/100  
0.05 to 2.91 0.03 to 2.94  
0.06 to 2.89  
ns  
V
V
ADA4851-1W/2W/4W only: TMIN to TMAX  
Sinking/sourcing  
Short-Circuit Current  
POWER SUPPLY  
90/70  
mA  
Operating Range  
2.7  
12  
V
Quiescent Current per Amplifier  
2.4  
2.7  
2.7  
0.3  
0.3  
mA  
mA  
mA  
mA  
dB  
dB  
dB  
dB  
ADA4851-1W/2W/4W only: TMIN to TMAX  
POWER DOWN = low  
Quiescent Current (Power-Down)  
Positive Power Supply Rejection  
Negative Power Supply Rejection  
0.2  
ADA4851-1W only: TMIN to TMAX  
+VS = +2.5 V to +3.5 V, −VS = −0.5 V  
ADA4851-1W/2W/4W only: TMIN to TMAX  
+VS = +2.5 V, −VS = −0.5 V to –1.5 V  
ADA4851-1W/2W/4W only: TMIN to TMAX  
−81  
−81  
−80  
−80  
−100  
−100  
Rev. J | Page 5 of 24  
ADA4851-1/ADA4851-2/ADA4851-4  
SPECIFICATIONS WITH +5 V SUPPLY  
TA = 25°C, RF = 0 Ω for G = +1, RF = 1 kΩ for G > +1, RL = 1 kΩ, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
125  
96  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VOUT = 0.1 V p-p  
ADA4851-1W/2W/4W only: TMIN to TMAX  
G = +1, VOUT = 0.5 V p-p  
ADA4851-1W/2W/4W only: TMIN to TMAX  
G = +2, VOUT = 1.4 V p-p, RL = 150 Ω  
G = +2, VOUT = 1.4 V p-p, RL = 150 Ω  
G = +2, VOUT = 2 V step  
96  
90  
72  
64  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
V/μs  
ns  
35  
11  
200  
55  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
G = +2, VOUT = 2 V step, RL = 150 Ω  
NOISE/DISTORTION PERFORMANCE  
Harmonic Distortion, HD2/HD3  
Input Voltage Noise  
fC = 1 MHz, VOUT = 2 V p-p, G = +1  
f = 100 kHz  
−80/−100  
10  
dBc  
nV/√Hz  
Input Current Noise  
Differential Gain  
Differential Phase  
Crosstalk (RTI)—ADA4851-2/ADA4851-4  
DC PERFORMANCE  
f = 100 kHz  
2.5  
0.08  
0.11  
−70/−60  
pA/√Hz  
%
Degrees  
dB  
G = +2, NTSC, RL = 150 Ω, VOUT = 2 V p-p  
G = +2, NTSC, RL = 150 Ω, VOUT = 2 V p-p  
f = 5 MHz, G = +2, VOUT = 2.0 V p-p  
Input Offset Voltage  
0.6  
3.4  
7.4  
mV  
mV  
μV/°C  
μA  
ADA4851-1W/2W/4W only: TMIN to TMAX  
ADA4851-1W/2W/4W only: TMIN to TMAX  
Input Offset Voltage Drift  
Input Bias Current  
4
2.2  
3.9  
4.9  
μA  
Input Bias Current Drift  
Input Bias Offset Current  
Open-Loop Gain  
6
20  
107  
nA/°C  
nA  
dB  
VOUT = 1 V to 4 V  
ADA4851-1W/2W/4W only: TMIN to TMAX  
97  
90  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Input Overdrive Recovery Time (Rise/Fall)  
Common-Mode Rejection Ratio  
Differential/common-mode  
0.5/5.0  
1.2  
−0.2 to +2.8  
50/45  
MΩ  
pF  
V
ns  
dB  
dB  
VIN = +5.5 V, −0.5 V, G = +1  
VCM = 0 V to 2 V  
ADA4851-1W/2W/4W only: TMIN to TMAX  
−86  
−80  
−105  
POWER-DOWN—ADA4851-1 ONLY  
Power-Down Input Voltage  
Power-down  
Power-up  
<1.1  
>1.6  
0.7  
V
V
μs  
ns  
Turn-Off Time  
Turn-On Time  
50  
Power-Down Bias Current  
Enabled  
POWER DOWN = 5 V  
33  
40  
μA  
μA  
μA  
μA  
ADA4851-1W only: TMIN to TMAX  
POWER DOWN = 0 V  
40  
−30  
−30  
Power-Down  
−22  
ADA4851-1W only: TMIN to TMAX  
Rev. J | Page 6 of 24  
 
ADA4851-1/ADA4851-2/ADA4851-4  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time (Rise/Fall)  
Output Voltage Swing  
VIN = +1.1 V, −0.1 V, G = +5  
60/70  
ns  
V
0.09 to 4.91 0.06 to 4.94  
ADA4851-1W/2W/4W only: TMIN to TMAX  
1% THD with 1 MHz, VOUT = 2 V p-p  
Sinking/sourcing  
0.11 to 4.89  
66  
V
mA  
mA  
Linear Output Current  
Short-Circuit Current  
POWER SUPPLY  
110/90  
Operating Range  
2.7  
12  
V
Quiescent Current per Amplifier  
2.5  
2.8  
2.8  
0.3  
0.3  
mA  
mA  
mA  
mA  
dB  
dB  
dB  
dB  
ADA4851-1W/2W/4W only: TMIN to TMAX  
POWER DOWN = low  
Quiescent Current (Power-Down)  
Positive Power Supply Rejection  
Negative Power Supply Rejection  
0.2  
ADA4851-1W only: TMIN to TMAX  
+VS = +5 V to +6 V, −VS = 0 V  
ADA4851-1W/2W/4W only: TMIN to TMAX  
+VS = +5 V, −VS = −0 V to −1 V  
ADA4851-1W/2W/4W only: TMIN to TMAX  
−82  
−82  
−81  
−81  
−101  
−101  
Rev. J | Page 7 of 24  
ADA4851-1/ADA4851-2/ADA4851-4  
SPECIFICATIONS WITH 5 V SUPPLY  
TA = 25°C, RF = 0 Ω for G = +1, RF = 1 kΩ for G > +1, RL = 1 kΩ, unless otherwise noted.  
Table 3.  
Parameter  
Conditions  
Min  
Typ  
105  
74  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VOUT = 0.1 V p-p  
ADA4851-1W/2W/4W only: TMIN to TMAX  
G = +1, VOUT = 1 V p-p  
ADA4851-1W/2W/4W only: TMIN to TMAX  
G = +2, VOUT = 2 V p-p, RL = 150 Ω  
G = +2, VOUT = 2 V p-p, RL = 150 Ω  
G = +2, VOUT = 7 V step  
83  
75  
52  
42  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
V/μs  
V/μs  
ns  
40  
11  
375  
190  
55  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
G = +2, VOUT = 2 V step  
G = +2, VOUT = 2 V step, RL = 150 Ω  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Harmonic Distortion, HD2/HD3  
Input Voltage Noise  
Input Current Noise  
Differential Gain  
Differential Phase  
Crosstalk (RTI)—ADA4851-2/ADA4851-4  
DC PERFORMANCE  
fC = 1 MHz, VOUT = 2 V p-p, G = +1  
f = 100 kHz  
f = 100 kHz  
G = +2, NTSC, RL = 150 Ω, VOUT = 2 V p-p  
G = +2, NTSC, RL = 150 Ω, VOUT = 2 V p-p  
f = 5 MHz, G = +2, VOUT = 2.0 V p-p  
−83/−107  
10  
2.5  
0.08  
0.09  
dBc  
nV/√Hz  
pA/√Hz  
%
Degrees  
dB  
−70/−60  
Input Offset Voltage  
0.6  
3.5  
7.5  
mV  
mV  
μV/°C  
μA  
ADA4851-1W/2W/4W only: TMIN to TMAX  
ADA4851-1W/2W/4W only: TMIN to TMAX  
Input Offset Voltage Drift  
Input Bias Current  
4
2.2  
4.0  
4.5  
μA  
Input Bias Current Drift  
Input Bias Offset Current  
Open-Loop Gain  
6
20  
106  
nA/°C  
nA  
dB  
VOUT = 2.5 V  
ADA4851-1W/2W/4W only: TMIN to TMAX  
99  
90  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Input Overdrive Recovery Time (Rise/Fall)  
Common-Mode Rejection Ratio  
Differential/common-mode  
0.5/5.0  
1.2  
−5.2 to +2.8  
50/25  
MΩ  
pF  
V
ns  
dB  
dB  
VIN = 6 V, G = +1  
VCM = 0 V to −4 V  
ADA4851-1W/2W/4W only: TMIN to TMAX  
−90  
−86  
−105  
POWER-DOWN—ADA4851-1 ONLY  
Power-Down Input Voltage  
Power-down  
Power-up  
< −3.9  
> −3.4  
0.7  
V
V
μs  
ns  
Turn-Off Time  
Turn-On Time  
30  
Power-Down Bias Current  
Enabled  
POWER DOWN = +5 V  
100  
−50  
130  
130  
−60  
−60  
μA  
μA  
μA  
μA  
ADA4851-1W only: TMIN to TMAX  
POWER DOWN = −5 V  
Power-Down  
ADA4851-1W only: TMIN to TMAX  
Rev. J | Page 8 of 24  
 
ADA4851-1/ADA4851-2/ADA4851-4  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time (Rise/Fall) VIN = 1.2 V, G = +5  
Output Voltage Swing  
80/50  
ns  
V
−4.87 to +4.88 −4.92 to +4.92  
ADA4851-1W/2W/4W only: TMIN to TMAX  
1% THD with 1 MHz, VOUT = 2 V p-p  
Sinking/sourcing  
−4.85 to +4.85  
83  
V
mA  
mA  
Linear Output Current  
Short-Circuit Current  
POWER SUPPLY  
125/110  
Operating Range  
2.7  
12  
V
Quiescent Current per Amplifier  
2.9  
3.2  
3.2  
mA  
mA  
ADA4851-1W/2W/4W only: TMIN to TMAX  
POWER DOWN = low  
Quiescent Current (Power-Down)  
Positive Power Supply Rejection  
Negative Power Supply Rejection  
0.2  
0.325 mA  
ADA4851-1W only: TMIN to TMAX  
+VS = +5 V to +6 V, −VS = −5 V  
ADA4851-1W/2W/4W only: TMIN to TMAX  
+VS = +5 V, −VS = −5 V to −6 V  
ADA4851-1W/2W/4W only: TMIN to TMAX  
0.325 mA  
−82  
−82  
−81  
−81  
−101  
−102  
dB  
dB  
dB  
dB  
Rev. J | Page 9 of 24  
ADA4851-1/ADA4851-2/ADA4851-4  
ABSOLUTE MAXIMUM RATINGS  
PD = Quiescent Power + (Total Drive Power Load Power)  
Table 4.  
2
Parameter  
Rating  
V
2
VOUT  
RL  
VOUT  
RL  
S
PD =  
(VS ×IS  
)
+
×
Supply Voltage  
12.6 V  
Power Dissipation  
See Figure 5  
−VS − 0.5 V to +VS + 0.5 V  
+VS to −VS  
−65°C to +125°C  
−40°C to +125°C  
JEDEC J-STD-20  
150°C  
RMS output voltages should be considered. If RL is referenced  
to −VS, as in single-supply operation, the total drive power is  
VS × IOUT. If the rms signal levels are indeterminate, consider the  
worst case, when VOUT = VS/4 for RL to midsupply.  
Common-Mode Input Voltage  
Differential Input Voltage  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature  
2
(
VS/4  
RL  
)
PD = VS × IS +  
( )  
Junction Temperature  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
In single-supply operation with RL referenced to −VS, the worst  
case is VOUT = VS/2.  
Airflow increases heat dissipation, effectively reducing θJA.  
In addition, more metal directly in contact with the package  
leads and through holes under the device reduces θJA.  
Figure 5 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the 6-lead SOT-23  
(170°C/W), the 8-lead MSOP (150°C/W), and the 14-lead  
TSSOP (120°C/W) on a JEDEC standard 4-layer board. θJA  
values are approximations.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions; that is, θJA is specified  
for device soldered in circuit board for surface-mount packages.  
2.0  
Table 5. Thermal Resistance  
Package Type  
6-lead SOT-23  
8-lead MSOP  
14-lead TSSOP  
θJA  
Unit  
°C/W  
°C/W  
°C/W  
TSSOP  
170  
150  
120  
1.5  
MSOP  
1.0  
Maximum Power Dissipation  
The maximum safe power dissipation for the ADA4851-1/  
ADA4851-2/ADA4851-4 is limited by the associated rise in  
junction temperature (TJ) on the die. At approximately 150°C,  
which is the glass transition temperature, the plastic changes its  
properties. Even temporarily exceeding this temperature limit  
may change the stresses that the package exerts on the die,  
permanently shifting the parametric performance of the  
amplifiers. Exceeding a junction temperature of 150°C for an  
extended period can result in changes in silicon devices,  
potentially causing degradation or loss of functionality.  
SOT-23-6  
0.5  
0
–55 –45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
AMBIENT TEMPERATURE (°C)  
Figure 5. Maximum Power Dissipation vs. Temperature for a 4-Layer Board  
ESD CAUTION  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the die  
due to the drive of the amplifier at the output. The quiescent  
power is the voltage between the supply pins (VS) times the  
quiescent current (IS).  
Rev. J | Page 10 of 24  
 
 
ADA4851-1/ADA4851-2/ADA4851-4  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, RF = 0 Ω for G = +1, RF = 1 kΩ for G > +1, RL = 1 kΩ, unless otherwise noted.  
1
4
V
R
= ±5V  
= 150Ω  
= 0.1V p-p  
S
10pF  
G = +1  
= 5V  
L
V
3
S
0
V
OUT  
R
V
= 1kΩ  
L
= 0.1V p-p  
2
OUT  
G = –1  
–1  
–2  
–3  
–4  
–5  
1
0
5pF  
0pF  
–1  
–2  
–3  
–4  
–5  
–6  
G = +10  
G = +2  
–6  
–7  
1
10  
FREQUENCY (MHz)  
100  
1
10  
FREQUENCY (MHz)  
100  
300  
Figure 6. Small-Signal Frequency Response for Various Gains  
Figure 9. Small-Signal Frequency Response for Various Capacitive Loads  
1
1
+125°C  
R
= 150Ω  
L
0
–1  
–2  
–3  
–4  
–5  
–6  
0
+85°C  
V
= ±5V  
S
V
= ±5V  
–40°C  
+25°C  
S
–1  
–2  
–3  
–4  
–5  
–6  
G = +1  
= 0.1V p-p  
R
= 1kΩ  
L
G = +1  
V
V
OUT  
= 0.1V p-p  
OUT  
1
10  
FREQUENCY (MHz)  
100  
300  
1
10  
FREQUENCY (MHz)  
100  
300  
Figure 7. Small-Signal Frequency Response for Various Loads  
Figure 10. Small-Signal Frequency Response for Various Temperatures  
1
2
V
R
V
= ±5V  
= 150Ω  
S
G = +1  
= 150Ω  
V
= +5V  
S
L
R
V
L
0
–1  
–2  
–3  
–4  
–5  
1
0
= 1V p-p  
OUT  
= 0.1V p-p  
OUT  
–1  
–2  
–3  
–4  
–5  
–6  
V
= ±5V  
S
G = +2  
G = +10  
G = –1  
–6  
–7  
1
10  
FREQUENCY (MHz)  
100  
300  
1
10  
FREQUENCY (MHz)  
100  
Figure 8. Small-Signal Frequency Response for Various Supplies  
Figure 11. Large-Signal Frequency Response for Various Gains  
Rev. J | Page 11 of 24  
 
ADA4851-1/ADA4851-2/ADA4851-4  
–40  
–50  
6.2  
V
= ±5V  
S
G = 1  
G = +2  
R
R
V
= 3V  
S
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
= 150Ω  
= 1kΩ  
L
F
R
= 150  
L
V
= 2V  
OUT  
HD2  
–60  
V
= 100mV p-p  
OUT  
–70  
V
= 1V p-p  
OUT  
–80  
V
= 2V p-p  
OUT  
HD3  
–90  
–100  
–110  
0.1  
1
10  
0.1  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 15. Harmonic Distortion vs. Frequency  
Figure 12. 0.1 dB Flatness Response for Various Output Amplitudes  
–50  
–60  
1
G = +2  
V
= ±5V  
S
G = +1  
= 1V p-p  
V
= ±5V  
R = 1kΩ  
L
S
V
0
–1  
–2  
–3  
–4  
–5  
–6  
OUT  
f = 2MHz  
HD2  
–70  
R
= 1kΩ  
L
–80  
HD3  
R
= 150Ω  
L
–90  
–100  
–110  
–120  
0
1
2
3
4
5
6
7
8
9
10  
1
10  
FREQUENCY (MHz)  
100  
300  
OUTPUT AMPLITUDE (V p-p)  
Figure 13. Large Frequency Response for Various Loads  
Figure 16. Harmonic Distortion vs. Output Amplitude  
140  
120  
100  
80  
0
–40  
–50  
V
= ±5V  
G = +1  
S
V
V
= 2V p-p  
= ±5V  
OUT  
–30  
S
–60  
–60  
PHASE  
R
= 1kHD2  
L
–90  
–70  
60  
–120  
–150  
–180  
–210  
–240  
R
= 150HD2  
–80  
L
40  
GAIN  
R
= 150HD3  
L
–90  
20  
R
= 1kHD3  
L
–100  
0
–20  
10  
–110  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
0.1  
1
FREQUENCY (MHz)  
10  
FREQUENCY (Hz)  
Figure 14. Open-Loop Gain and Phase vs. Frequency  
Figure 17. Harmonic Distortion vs. Frequency for Various Loads  
Rev. J | Page 12 of 24  
 
ADA4851-1/ADA4851-2/ADA4851-4  
–40  
–50  
0.075  
0.050  
0.025  
0
2.575  
G = +1 OR +2  
L
G = +1  
R
= 1kΩ  
V
V
= 2V p-p  
= 5V  
OUT  
S
2.550  
2.525  
2.500  
2.475  
2.450  
2.425  
–60  
R
= 1kHD2  
L
–70  
–80  
R
= 150HD2  
L
R
= 150HD3  
L
–0.025  
–0.050  
–0.075  
V
= ±5V  
–90  
S
V
= +5V  
S
–100  
–110  
R
= 1kHD3  
L
0.1  
1
10  
0
50  
100  
150  
200  
FREQUENCY (MHz)  
TIME (ns)  
Figure 18. Harmonic Distortion vs. Frequency for Various Loads  
Figure 21. Small-Signal Transient Response for Various Supplies  
2.575  
6
10pF  
0pF  
G = +5  
G = +1  
OUTPUT  
5
4
V
R
= ±5V  
= 150Ω  
S
V
= 5V  
S
L
R
= 150Ω  
L
2.550  
2.525  
2.500  
2.475  
2.450  
2.425  
f = 1MHz  
5 × INPUT  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
–6  
0
20  
40  
60  
80  
100 120 140 160 180 200  
TIME (ns)  
0
100 200 300 400 500 600 700 800 900  
TIME (ns)  
1k  
Figure 19. Output Overdrive Recovery  
Figure 22. Small-Signal Transient Response for Various Capacitive Loads  
6
5
1.5  
1.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
G = +1  
G = +2  
L
V
R
= ±5V  
= 150Ω  
INPUT  
S
R
= 150Ω  
L
4
f = 1MHz  
3
V
= ±5V  
V
= +5V  
S
S
OUTPUT  
2
0.5  
1
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–0.5  
–1.0  
–1.5  
0
100 200 300 400 500 600 700 800 900  
TIME (ns)  
1k  
0
50  
100  
150  
200  
TIME (ns)  
Figure 20. Input Overdrive Recovery  
Figure 23. Large-Signal Transient Response for Various Supplies  
Rev. J | Page 13 of 24  
ADA4851-1/ADA4851-2/ADA4851-4  
6
5
1.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
G = +2  
V
POWER DOWN  
G = +1  
L
V
= 5V  
S
R
= 150Ω  
f
= 400kHz  
IN  
1.0  
0.5  
V
= ±5V  
V
= +5V  
S
S
4
3
0
2
–0.5  
–1.0  
–1.5  
1
0
V
OUT  
–1  
0
15  
30  
45  
0
50  
100  
TIME (ns)  
150  
200  
TIME (µs)  
Figure 27. ADA4851-1, Power-Up/Power-Down Time  
Figure 24. Large-Signal Transient Response for Various Supplies  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.5  
+V – V  
S
OUT  
V
= ±5V  
S
0.4  
0.3  
0.2  
0.1  
0
V
= +5V  
S
V
= ±5V  
V
= +3V  
S
S
V
= +3V  
S
–V – V  
S
OUT  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
0
5
10  
15  
20  
25  
30  
35  
POWER DOWN VOLTAGE (V)  
LOAD CURRENT (mA)  
Figure 28. ADA4851-1, Supply Current vs.  
Pin Voltage  
POWER DOWN  
Figure 25. Output Saturation Voltage vs. Load Current  
600  
300  
200  
G = +2  
V
= ±5V  
S
R
= 1k  
L
500  
400  
300  
200  
100  
0
25% TO 75% OF V  
OUT  
V
= +3V  
S
100  
NEGATIVE SLEW RATE  
V
= ±5V  
S
0
–100  
–200  
–300  
–400  
V
= +5V  
S
POSITIVE SLEW RATE  
0
1
2
3
4
5
6
7
8
9
10  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
OUTPUT VOLTAGE STEP (V p-p)  
TEMPERATURE (°C)  
Figure 29. Input Offset Voltage vs. Temperature for Various Supplies  
Figure 26. Slew Rate vs. Output Voltage Step  
Rev. J | Page 14 of 24  
ADA4851-1/ADA4851-2/ADA4851-4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1000  
100  
10  
G = +1  
I
+, V = ±5V  
S
B
I
–, V = ±5V  
S
B
I
+, V = +5V  
S
B
I
–, V = +5V  
S
B
1
10  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
100  
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 30. Input Bias Current vs. Temperature for Various Supplies  
Figure 33. Voltage Noise vs. Frequency  
0.09  
100  
10  
1
G = +2  
V
= ±5V  
S
0.08  
0.07  
0.06  
0.05  
0.04  
+V – V  
S
OUT  
V
= +5V  
S
+V – V  
S
OUT  
–V – V  
S
OUT  
–V – V  
S
OUT  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 31. Output Saturation vs. Temperature for Various Supplies  
Figure 34. Current Noise vs. Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.2  
V
= ±5V  
S
V
= ±5V  
S
N = 420  
x = –260µV  
σ = 780µV  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
V
= +5V  
S
V
= +3V  
S
–4  
–3  
–2  
–1  
0
1
2
3
4
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
V
(mV)  
TEMPERATURE (°C)  
OS  
Figure 32. Supply Current vs. Temperature for Various Supplies  
Figure 35. Input Offset Voltage Distribution  
Rev. J | Page 15 of 24  
ADA4851-1/ADA4851-2/ADA4851-4  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
G = +2  
V
= ±5V  
S
V
= 5V  
–40  
–50  
S
L
R
V
= 1kΩ  
= 1V p-p  
IN  
DRIVE AMPS 1, 2, AND 4  
LISTEN AMP 3  
–60  
–70  
–80  
DRIVE AMP 1  
LISTEN AMP 2  
–90  
–100  
–110  
–120  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 38. ADA4851-4, RTI Crosstalk vs. Frequency  
Figure 36. Common-Mode Rejection Ratio (CMRR) vs. Frequency  
0
0
G = +2  
V
= ±5V  
S
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
= 5V  
S
R
V
= 1kΩ  
= 1V p-p  
L
IN  
+PSR  
–PSR  
DRIVE AMP 1  
LISTEN AMP 2  
DRIVE AMP 2  
LISTEN AMP 1  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
0.1  
1
10  
100  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 39. ADA4851-2, RTI Crosstalk vs. Frequency  
Figure 37. Power Supply Rejection (PSR) vs. Frequency  
Rev. J | Page 16 of 24  
ADA4851-1/ADA4851-2/ADA4851-4  
CIRCUIT DESCRIPTION  
440  
460  
480  
500  
520  
540  
560  
580  
600  
The ADA4851-1/ADA4851-2/ADA4851-4 feature a high slew  
rate input stage that is a true single-supply topology, capable of  
sensing signals at or below the negative supply rail. The rail-to-  
rail output stage can pull within 60 mV of either supply rail when  
driving light loads and within 0.17 V when driving 150 Ω. High  
speed performance is maintained at supply voltages as low as 2.7 V.  
HEADROOM CONSIDERATIONS  
These amplifiers are designed for use in low voltage systems.  
To obtain optimum performance, it is useful to understand the  
behavior of the amplifiers as input and output signals approach  
the headroom limits of the amplifiers. The input common-mode  
voltage range of the amplifiers extends from the negative supply  
voltage (actually 200 mV below the negative supply), or from  
ground for single-supply operation, to within 2.2 V of the positive  
supply voltage. Therefore, at a gain of 3, the amplifiers can  
provide full rail-to-rail output swing for supply voltages as low  
as 3.3 V and down to 3 V for a gain of 4.  
–6  
–5  
–4  
–3  
–2  
–1  
(V)  
0
1
2
3
4
V
CM  
Figure 40. VOS vs. Common-Mode Voltage, VS = 5 V  
2
G = +1  
= 1kΩ  
= 5V  
R
V
L
S
1
0
V
V
= 3.0V  
= 3.1V  
CM  
Exceeding the headroom limit is not a concern for any inverting  
gain on any supply voltage as long as the reference voltage at the  
positive input of the amplifier lies within the input common- mode  
range of the amplifier.  
CM  
–1  
–2  
–3  
–4  
–5  
–6  
V
= 3.2V  
= 3.3V  
CM  
The input stage is the headroom limit for signals approaching  
the positive rail. Figure 40 shows a typical offset voltage vs. the  
input common-mode voltage for the ADA4851-1/ADA4851-2/  
ADA4851-4 amplifiers on a ±5 V supply. Accurate dc performance  
is maintained from approximately 200 mV below the negative  
supply to within 2.2 V of the positive supply. For high speed  
signals, however, there are other considerations. Figure 41  
shows −3 dB bandwidth vs. input common-mode voltage for a  
unity-gain follower. As the common-mode voltage approaches  
2 V of positive supply, the amplifier responds well but the  
bandwidth begins to drop as the common-mode voltage  
approaches the positive supply. This can manifest itself in  
increased distortion or settling time. Higher frequency signals  
require more headroom than the lower frequencies to maintain  
distortion performance.  
V
CM  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 41. Unity-Gain Follower Bandwidth vs. Input Common-Mode  
Rev. J | Page 17 of 24  
 
 
 
 
ADA4851-1/ADA4851-2/ADA4851-4  
Figure 42 illustrates how the rising edge settling time for the  
amplifier is configured as a unity-gain follower, stretching out  
as the top of a 1 V step input that approaches and exceeds the  
specified input common-mode voltage limit.  
The amplifiers do not exhibit phase reversal, even for input  
voltages beyond the voltage supply rails. Going more than 0.6 V  
beyond the power supplies turns on protection diodes at the input  
stage, which greatly increases the current draw of the devices.  
3.50  
For signals approaching the negative supply and inverting gain  
and high positive gain configurations, the headroom limit is the  
output stage. The ADA4851-1/ADA4851-2/ADA4851-4 amplifiers  
use a common emitter output stage. This output stage maximizes  
the available output range, limited by the saturation voltage of  
the output transistors. The saturation voltage increases with the  
drive current that the output transistor is required to supply due  
to the collector resistance of the output transistor.  
G = +1  
R
V
= 1kΩ  
= 5V  
L
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
S
V
= 2.25V TO 3.25V  
STEP  
V
= 2.25V TO  
STEP  
3.5V, 4V, AND 5V  
3.6  
G = +1  
R
V
= 1kΩ  
= 5V  
3.4  
3.2  
3.0  
2.8  
2.6  
L
S
0
100 200 300 400 500 600 700 800 900  
TIME (ns)  
1k  
V
= 2V TO 3V  
STEP  
Figure 43. Pulse Response of G = +1 Follower, Input Step Overloading  
the Input Stage  
V
= 2.1V TO 3.1V  
STEP  
V
V
V
= 2.2V TO 3.2V  
= 2.3V TO 3.3V  
= 2.4V TO 3.4V  
STEP  
STEP  
STEP  
2.4  
2.2  
2.0  
1.8  
Output  
Output overload recovery is typically within 35 ns after the  
input of the amplifier is brought to a nonoverloading value.  
Figure 44 shows output recovery transients for the amplifier  
configured in an inverting gain of 1 recovering from a saturated  
output from the top and bottom supplies to a point at midsupply.  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TIME (ns)  
Figure 42. Output Rising Edge for 1 V Step at Input Headroom Limits  
7
G = –1  
R
V
= 1kΩ  
As the saturation point of the output stage is approached, the  
output signal shows increasing amounts of compression and  
clipping. As in the input headroom case, higher frequency  
signals require slightly more headroom than the lower fre-  
quency signals. Figure 16 illustrates this point by plotting the  
typical harmonic distortion vs. the output amplitude.  
6
5
4
3
2
V
= 5V TO 2.5V  
L
S
OUT  
= 5V  
V
= 0V TO 2.5V  
OUT  
INPUT  
VOLTAGE  
EDGES  
OVERLOAD BEHAVIOR AND RECOVERY  
Input  
1
0
The specified input common-mode voltage of the ADA4851-1/  
ADA4851-2/ADA4851-4 is 200 mV below the negative supply  
to within 2.2 V of the positive supply. Exceeding the top limit  
results in lower bandwidth and increased rise time, as shown in  
Figure 41 and Figure 42. Pushing the input voltage of a unity-  
gain follower to less than 2 V from the positive supply leads to  
the behavior shown in Figure 43—an increasing amount of output  
error as well as a much increased settling time. The recovery time  
from input voltages of 2.2 V or closer to the positive supply is  
approximately 55 ns, which is limited by the settling artifacts  
caused by transistors in the input stage coming out of saturation.  
–1  
–2  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TIME (ns)  
Figure 44. Overload Recovery  
Rev. J | Page 18 of 24  
 
 
 
 
ADA4851-1/ADA4851-2/ADA4851-4  
An example of an 8 MHz, three-pole, Sallen-Key, low-pass,  
video reconstruction filter is shown in Figure 46. This circuit  
features a gain of 3, has a 0.1 dB bandwidth of 8.2 MHz, and  
over 17 dB attenuation at 27 MHz (see Figure 47). The filter has  
three poles; two are active with a third passive pole (R6 and C4)  
placed at the output. C3 improves the filter roll-off. R6, R7, and  
R8 comprise the video load of 150 Ω. Components R6, C4, R7,  
R8, and the input termination of the network analyzer form a  
12.8 dB attenuator; therefore, the reference level is roughly  
−3.3 dB, as shown in Figure 47.  
SINGLE-SUPPLY VIDEO AMPLIFIER  
The ADA4851 family of amplifiers is well suited for portable  
video applications. When operating in low voltage single-supply  
applications, the input signal is limited by the input stage  
headroom. For additional information, see the Headroom  
Considerations section. Table 6 shows the recommended values  
for voltage, input signal, various gains, and output signal swing  
for the typical video amplifier shown in Figure 45.  
R
F
C1  
2.2μF  
+V  
C2  
51pF  
S
+
R2  
R3  
I
+3V  
OUT  
47125Ω  
R6  
6.8Ω  
R7  
P
D
68.1Ω  
C2  
0.01μF  
R
G
VIDEO DAC  
V
OUT  
R1  
37.4Ω  
C1  
51pF  
75Ω CABLE  
V
75Ω  
OUT  
R8  
75Ω  
C4  
1nF  
U1  
R4  
2kΩ  
V′  
V
75Ω  
IN  
C3  
6.8pF  
Figure 45. Video Amplifier  
R5  
1kΩ  
Table 6. Recommended Values  
Figure 46. 8 MHz Video Reconstruction Filter Schematic  
Supply  
Voltage  
(V)  
Input  
Range  
(V)  
5dB/REF –15dB 1: –3.3931dB 8.239626MHz  
RG  
(kΩ)  
RF  
(kΩ)  
Gain  
(V/V)  
V’  
VOUT  
(V)  
(V)  
1.6  
2.4  
4.9  
3
3
5
0 to 0.8  
0 to 0.8  
0 to 2.8  
1
1
1
1
2
3
2
0.8  
1.2  
2.45  
1
0.499  
1
VIDEO RECONSTRUCTION FILTER  
At higher frequencies, active filters require wider bandwidths to  
work properly. Excessive phase shift introduced by lower frequency  
op amps can significantly affect the filter performance.  
A common application for active filters is at the output of video  
DACs/encoders. The filter, or more appropriately, the video  
reconstruction filter, is used at the output of a video DAC/  
encoder to eliminate the multiple images that are created during  
the sampling process within the DAC. For portable video appli-  
cations, the ADA4851 family of amplifiers is an ideal choice due  
to its lower power requirements and high performance.  
0.03  
0.1  
1
10  
100  
FREQUENCY (MHz)  
Figure 47. Video Reconstruction Filter Frequency Performance  
Rev. J | Page 19 of 24  
 
 
 
 
 
ADA4851-1/ADA4851-2/ADA4851-4  
OUTLINE DIMENSIONS  
3.00  
2.90  
2.80  
6
1
5
2
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
PIN 1  
INDICATOR  
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.55  
0.45  
0.35  
0.15 MAX  
0.05 MIN  
10°  
4°  
0°  
SEATING  
PLANE  
0.60  
BSC  
0.50 MAX  
0.30 MIN  
COMPLIANT TO JEDEC STANDARDS MO-178-AB  
Figure 48. 6-Lead Small Outline Transistor Package [SOT-23]  
(RJ-6)  
Dimensions shown in millimeters  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 49. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. J | Page 20 of 24  
 
ADA4851-1/ADA4851-2/ADA4851-4  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 50. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model 1, 2  
Temperature Range Package Description  
Package Option Branding  
ADA4851-1YRJZ-R2  
ADA4851-1YRJZ-RL  
ADA4851-1YRJZ-RL7  
ADA4851-1WYRJZ-R7  
ADA4851-2YRMZ  
ADA4851-2YRMZ-RL  
ADA4851-2YRMZ-RL7  
ADA4851-2WYRMZ-R7  
ADA4851-4YRUZ  
ADA4851-4YRUZ-RL  
ADA4851-4YRUZ-RL7  
ADA4851-4WYRUZ-R7  
ADA4851-1YRJ-EBZ  
ADA4851-2YRM-EBZ  
ADA4851-4YRU-EBZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
6-Lead Small Outline Transistor Package (SOT-23)  
6-Lead Small Outline Transistor Package (SOT-23)  
6-Lead Small Outline Transistor Package (SOT-23)  
6-Lead Small Outline Transistor Package (SOT-23)  
8-Lead Mini Small Outline Package (MSOP)  
8-Lead Mini Small Outline Package (MSOP)  
8-Lead Mini Small Outline Package (MSOP)  
8-Lead Mini Small Outline Package (MSOP)  
14-Lead Thin Shrink Small Outline Package (TSSOP)  
14-Lead Thin Shrink Small Outline Package (TSSOP)  
14-Lead Thin Shrink Small Outline Package (TSSOP)  
14-Lead Thin Shrink Small Outline Package (TSSOP)  
6-Lead SOT-23 Evaluation Board  
RJ-6  
RJ-6  
RJ-6  
RJ-6  
HHB  
HHB  
HHB  
H1Z  
HSB  
HSB  
HSB  
H1Y  
RM-8  
RM-8  
RM-8  
RM-8  
RU-14  
RU-14  
RU-14  
RU-14  
8-Lead MSOP Evaluation Board  
14-Lead TSSOP Evaluation Board  
1 Z = RoHS Compliant Part.  
2 W = qualified for automotive applications.  
AUTOMOTIVE PRODUCTS  
The ADA4851-1W/ADA4851-2W/ADA4851-4W models are available with controlled manufacturing to support the quality and  
reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the  
commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade  
products shown are available for use in automotive applications. Contact your local Analog Devices, Inc., account representative for  
specific product ordering information and to obtain the specific Automotive Reliability reports for these models.  
Rev. J | Page 21 of 24  
 
 
ADA4851-1/ADA4851-2/ADA4851-4  
NOTES  
Rev. J | Page 22 of 24  
ADA4851-1/ADA4851-2/ADA4851-4  
NOTES  
Rev. J | Page 23 of 24  
ADA4851-1/ADA4851-2/ADA4851-4  
NOTES  
©2004–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05143-0-10/10(J)  
Rev. J | Page 24 of 24  
 

相关型号:

ADA4851-1YRJZ-R2

Low Cost, High Speed, Rail-to-Rail Output Op Amps
ADI

ADA4851-1YRJZ-RL

Low Cost, High Speed, Rail-to-Rail Output Op Amps
ADI

ADA4851-1YRJZ-RL

1 CHANNEL, VIDEO AMPLIFIER, PDSO6, ROHS COMPLIANT, MO-178AB, SOT-23, 6 PIN
ROCHESTER

ADA4851-1YRJZ-RL7

Low Cost, High Speed, Rail-to-Rail Output Op Amps
ADI

ADA4851-1_06

Low Cost, High Speed, Rail-to-Rail, Output Op Amps
ADI

ADA4851-1_07

Low Cost, High Speed, Rail-to-Rail, Output Op Amps
ADI

ADA4851-1_15

Low Cost, High Speed, Rail-to-Rail, Output Op Amps
ADI

ADA4851-2

Low Cost, High Speed, Rail-to-Rail, Output Op Amps
ADI

ADA4851-2ARM

IC DUAL OP-AMP, 5000 uV OFFSET-MAX, PDSO8, MO-187AA, MICRO SOIC-8, Operational Amplifier
ADI

ADA4851-2ARM-REEL

IC DUAL OP-AMP, 5000 uV OFFSET-MAX, PDSO8, MO-187AA, MICRO SOIC-8, Operational Amplifier
ADI

ADA4851-2ARM-REEL7

IC DUAL OP-AMP, 5000 uV OFFSET-MAX, PDSO8, MO-187AA, MICRO SOIC-8, Operational Amplifier
ADI

ADA4851-2WYRMZ-R7

Low Cost, High Speed, Rail-to-Rail, Output Op Amps
ADI