ADA4891-2ARM-EBZ [ADI]

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers; 低成本CMOS ,高速,轨到轨放大器
ADA4891-2ARM-EBZ
型号: ADA4891-2ARM-EBZ
厂家: ADI    ADI
描述:

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
低成本CMOS ,高速,轨到轨放大器

放大器
文件: 总24页 (文件大小:655K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost CMOS, High Speed,  
Rail-to-Rail Amplifiers  
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
FEATURES  
CONNECTION DIAGRAMS  
ADA4891-1  
High speed and fast settling  
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
NC  
+V  
−3 dB bandwidth: 220 MHz (G = +1)  
Slew rate: 170 V/μs  
Settling time to 0.1%: 28 ns  
S
OUT  
NC  
–V  
S
Video specifications (G = +2, RL = 150 Ω)  
0.1 dB gain flatness: 25 MHz  
Differential gain error: 0.05%  
Differential phase error: 0.25°  
Single-supply operation  
Wide supply range: 2.7 V to 5.5 V  
Output swings to within 50 mV of supply rails  
Low distortion: 79 dBc SFDR at 1 MHz  
Linear output current: 125 mA at −40 dBc  
Low power: 4.4 mA per amplifier  
NC = NO CONNECT  
Figure 1. 8-Lead SOIC_N (R-8)  
ADA4891-1  
1
2
3
+V  
S
OUT  
–V  
5
4
S
+IN  
–IN  
Figure 2. 5-Lead SOT-23 (RJ-5)  
APPLICATIONS  
ADA4891-2  
Imaging  
Consumer video  
Active filters  
Coaxial cable drivers  
Clock buffers  
OUT1  
–IN1  
1
2
3
4
8
7
6
5
+V  
S
OUT2  
–IN2  
+IN2  
+IN1  
–V  
S
NC = NO CONNECT  
Photodiode preamp  
Contact image sensor and buffers  
Figure 3. 8-Lead SOIC_N (R-8) and 8-Lead MSOP (RM-8)  
ADA4891-3  
GENERAL DESCRIPTION  
PD1  
PD2  
PD3  
1
2
3
4
5
6
7
14 OUT2  
13 –IN2  
12 +IN2  
The ADA4891-1 (single), ADA4891-2 (dual), ADA4891-3 (triple),  
and ADA4891-4 (quad) are CMOS, high speed amplifiers that  
offer high performance at a low cost. The amplifiers feature true  
single-supply capability, with an input voltage range that extends  
300 mV below the negative rail.  
+V  
11 –V  
S
S
+IN1  
–IN1  
10 +IN3  
9
8
–IN3  
In spite of their low cost, the ADA4891 family provides high  
performance and versatility. The rail-to-rail output stage enables  
the output to swing to within 50 mV of each rail, enabling maxi-  
mum dynamic range.  
OUT1  
OUT3  
Figure 4. 14-Lead SOIC_N (R-14) and 14-Lead TSSOP (RU-14)  
ADA4891-4  
The ADA4891 family of amplifiers is ideal for imaging applica-  
tions, such as consumer video, CCD buffers, and contact image  
sensor and buffers. Low distortion and fast settling time also  
make them ideal for active filter applications.  
1
2
3
4
5
6
7
14  
13  
OUT4  
–IN4  
OUT1  
–IN1  
12 +IN4  
+IN1  
11  
–V  
S
+V  
S
10  
9
+IN3  
–IN3  
The ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4 are avail-  
able in a wide variety of packages. The ADA4891-1 is available  
in 8-lead SOIC and 5-lead SOT-23 packages. The ADA4891-2  
is available in 8-lead SOIC and 8-lead MSOP packages. The  
ADA4891-3 and ADA4891-4 are available in 14-lead SOIC and  
14-lead TSSOP packages. The amplifiers are specified to operate  
over the extended temperature range of −40°C to +125°C.  
+IN2  
–IN2  
8
OUT3  
OUT2  
Figure 5. 14-Lead SOIC_N (R-14) and 14-Lead TSSOP (RU-14)  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Recommended Values ............................................................... 15  
Effect of RF on 0.1 dB Gain Flatness ........................................ 16  
Driving Capacitive Loads.......................................................... 17  
Terminating Unused Amplifiers .............................................. 18  
Disable Feature (ADA4891-3 Only) ........................................ 18  
Single-Supply Operation ........................................................... 18  
Video Reconstruction Filter...................................................... 19  
Multiplexer.................................................................................. 19  
Layout, Grounding, and Bypassing.............................................. 20  
Power Supply Bypassing............................................................ 20  
Grounding................................................................................... 20  
Input and Output Capacitance ................................................. 20  
Input-to-Output Coupling........................................................ 20  
Leakage Currents........................................................................ 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Connection Diagrams...................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
5 V Operation ............................................................................... 3  
3 V Operation ............................................................................... 4  
Absolute Maximum Ratings............................................................ 6  
Maximum Power Dissipation ..................................................... 6  
ESD Caution.................................................................................. 6  
Typical Performance Characteristics ............................................. 7  
Applications Information .............................................................. 15  
Using the ADA4891 ................................................................... 15  
Wideband, Noninverting Gain Operation.............................. 15  
Wideband, Inverting Gain Operation ..................................... 15  
REVISION HISTORY  
7/10—Rev. A to Rev. B  
Changes to Figure 52...................................................................... 16  
Added Figure 53 ............................................................................. 16  
Changed Layout of Driving Capacitive Loads Section.............. 17  
Added Disable Feature (ADA4891-3 Only) Section  
and Single-Supply Operation Section.......................................... 18  
Added Multiplexer Section ........................................................... 19  
Updated Outline Dimensions....................................................... 21  
Changes to Ordering Guide.......................................................... 23  
Added ADA4891-3 and ADA4891-4...............................Universal  
Added 14-Lead SOIC and 14-Lead TSSOP Packages....Universal  
Deleted Figure 4; Renumbered Figures Sequentially................... 1  
Changes to Features Section and General Description Section. 1  
Added Figure 4 and Figure 5........................................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to Maximum Power Dissipation Section  
and Figure 6....................................................................................... 6  
Added Table 4; Renumbered Tables Sequentially ........................ 6  
Deleted Figure 11.............................................................................. 6  
Changes to Typical Performance Characteristics Section........... 7  
Deleted Figure 12.............................................................................. 7  
Changes to Wideband, Noninverting Gain Operation Section,  
Wideband, Inverting Gain Operation Section, and Table 5 ..... 15  
Added Table 6.................................................................................. 16  
6/10—Rev. 0 to Rev. A  
Changes to Figure 26.........................................................................9  
Changes to Figure 33 and Figure 34............................................. 10  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide.......................................................... 18  
2/10—Revision 0: Initial Version  
Rev. B | Page 2 of 24  
 
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
SPECIFICATIONS  
5 V OPERATION  
TA = 25°C, VS = 5 V, RL = 1 kΩ to 2.5 V, unless otherwise noted. All specifications are for the ADA4891-1, ADA4891-2, ADA4891-3, and  
ADA4891-4, unless otherwise noted. For the ADA4891-1 and ADA4891-2, RF = 604 ꢀ; for the ADA4891-3 and ADA4891-4, RF = 453 ꢀ,  
unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Small-Signal Bandwidth  
ADA4891-1/ADA4891-2, G = +1, VO = 0.2 V p-p  
ADA4891-3/ADA4891-4, G = +1, VO = 0.2 V p-p  
ADA4891-1/ADA4891-2, G = +2, VO = 0.2 V p-p,  
RL = 150 Ω to 2.5 V  
240  
220  
90  
MHz  
MHz  
MHz  
ADA4891-3/ADA4891-4, G = +2, VO = 0.2 V p-p,  
RL = 150 Ω to 2.5 V  
ADA4891-1/ADA4891-2, G = +2, VO = 2 V p-p,  
RL = 150 Ω to 2.5 V, RF = 604 Ω  
ADA4891-3/ADA4891-4, G = +2, VO = 2 V p-p,  
RL = 150 Ω to 2.5 V, RF = 374 Ω  
96  
25  
25  
MHz  
MHz  
MHz  
Bandwidth for 0.1 dB Gain Flatness  
Slew Rate, tR/tF  
−3 dB Large-Signal Frequency Response  
Settling Time to 0.1%  
G = +2, VO = 2 V step, 10% to 90%  
G = +2, VO = 2 V p-p, RL = 150 Ω  
G = +2, VO = 2 V step  
170/210  
40  
28  
V/μs  
MHz  
ns  
NOISE/DISTORTION PERFORMANCE  
Harmonic Distortion, HD2/HD3  
fC = 1 MHz, VO = 2 V p-p, G = +1  
fC = 1 MHz, VO = 2 V p-p, G = −1  
f = 1 MHz  
G = +2, RL = 150 Ω to 2.5 V  
G = +2, RL = 150 Ω to 2.5 V  
f = 5 MHz, G = +2, VO = 2 V p-p  
−79/−93  
−75/−91  
9
0.05  
0.25  
dBc  
dBc  
nV/√Hz  
%
Degrees  
dB  
Input Voltage Noise  
Differential Gain Error (NTSC)  
Differential Phase Error (NTSC)  
All-Hostile Crosstalk  
−80  
DC PERFORMANCE  
Input Offset Voltage  
2.5  
3.1  
6
+2  
83  
71  
10  
mV  
mV  
μV/°C  
pA  
dB  
dB  
TMIN to TMAX  
Offset Drift  
Input Bias Current  
Open-Loop Gain  
−50  
77  
+50  
RL = 1 kΩ to 2.5 V  
RL = 150 Ω to 2.5 V  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
5
3.2  
−VS − 0.3 to  
+VS − 0.8  
GΩ  
pF  
V
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio (CMRR) VCM = 0 V to 3.0 V  
OUTPUT CHARACTERISTICS  
88  
dB  
Output Voltage Swing  
RL = 1 kΩ to 2.5 V  
RL = 150 Ω to 2.5 V  
1% THD with 1 MHz, VO = 2 V p-p  
0.01 to 4.98  
0.08 to 4.90  
125  
V
V
mA  
Output Current  
Short-Circuit Current  
Sourcing  
205  
307  
mA  
mA  
Sinking  
POWER-DOWN PINS (PD1, PD2, PD3)  
Threshold Voltage, VTH  
Bias Current  
ADA4891-3 only  
2.4  
65  
−22  
V
nA  
μA  
Part enabled  
Part powered down  
Rev. B | Page 3 of 24  
 
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
Parameter  
Test Conditions/Comments  
Min  
Typ  
166  
49  
Max  
Unit  
ns  
ns  
Turn-On Time  
Turn-Off Time  
Part enabled, output rises to 90% of final value  
Part powered down, output falls to 10% of final  
value  
POWER SUPPLY  
Operating Range  
2.7  
5.5  
V
Quiescent Current per Amplifier  
Supply Current When Powered Down  
Power Supply Rejection Ratio (PSRR)  
Positive PSRR  
4.4  
0.8  
mA  
mA  
ADA4891-3 only  
+VS = 5 V to 5.25 V, −VS = 0 V  
+VS = 5 V, −VS = −0.25 V to 0 V  
65  
63  
dB  
dB  
°C  
Negative PSRR  
OPERATING TEMPERATURE RANGE  
−40  
+125  
3 V OPERATION  
TA = 25°C, VS = 3 V, RL = 1 kΩ to 1.5 V, unless otherwise noted. All specifications are for the ADA4891-1, ADA4891-2, ADA4891-3, and  
ADA4891-4, unless otherwise noted. For the ADA4891-1 and ADA4891-2, RF = 604 ꢀ; for the ADA4891-3 and ADA4891-4, RF = 453 ꢀ,  
unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Small-Signal Bandwidth  
ADA4891-1/ADA4891-2, G = +1, VO = 0.2 V p-p  
ADA4891-3/ADA4891-4, G = +1, VO = 0.2 V p-p  
ADA4891-1/ADA4891-2, G = +2, VO = 0.2 V p-p,  
RL = 150 Ω to 1.5 V  
190  
175  
75  
MHz  
MHz  
MHz  
ADA4891-3/ADA4891-4, G = +2, VO = 0.2 V p-p,  
RL = 150 Ω to 1.5 V  
ADA4891-1/ADA4891-2, G = +2, VO = 2 V p-p,  
RL = 150 Ω to 1.5 V, RF = 604 Ω  
ADA4891-3/ADA4891-4, G = +2, VO = 2 V p-p,  
RL = 150 Ω to 1.5 V, RF = 374 Ω  
G = +2, VO = 2 V step, 10% to 90%  
80  
18  
18  
MHz  
MHz  
MHz  
Bandwidth for 0.1 dB Gain Flatness  
Slew Rate, tR/tF  
140/230  
40  
30  
V/μs  
MHz  
ns  
−3 dB Large-Signal Frequency Response G = +2, VO = 2 V p-p, RL = 150 Ω  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Harmonic Distortion, HD2/HD3  
Input Voltage Noise  
Differential Gain Error (NTSC)  
Differential Phase Error (NTSC)  
All-Hostile Crosstalk  
G = +2, VO = 2 V step  
fC = 1 MHz, VO = 2 V p-p, G = −1  
f = 1 MHz  
G = +2, RL = 150 Ω to 0.5 V, +VS = 2 V, −VS = −1 V  
G = +2, RL = 150 Ω to 0.5 V, +VS = 2 V, −VS = −1 V  
f = 5 MHz, G = +2  
−70/−89  
9
0.23  
0.77  
−80  
dBc  
nV/√Hz  
%
Degrees  
dB  
DC PERFORMANCE  
Input Offset Voltage  
2.5  
3.1  
6
+2  
76  
65  
10  
mV  
mV  
μV/°C  
pA  
dB  
dB  
TMIN to TMAX  
Offset Drift  
Input Bias Current  
Open-Loop Gain  
−50  
72  
+50  
RL = 1 kΩ to 1.5 V  
RL = 150 Ω to 1.5 V  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
5
3.2  
−VS − 0.3 to  
+VS − 0.8  
GΩ  
pF  
V
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio (CMRR) VCM = 0 V to 1.5 V  
87  
dB  
Rev. B | Page 4 of 24  
 
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 1 kΩ to 1.5 V  
RL = 150 Ω to 1.5 V  
1% THD with 1 MHz, VO = 2 V p-p  
0.01 to 2.98  
0.07 to 2.87  
37  
V
V
mA  
Output Current  
Short-Circuit Current  
Sourcing  
80  
163  
mA  
mA  
Sinking  
POWER-DOWN PINS (PD1, PD2, PD3)  
Threshold Voltage, VTH  
Bias Current  
ADA4891-3 only  
1.3  
48  
−13  
185  
58  
V
Part enabled  
nA  
μA  
ns  
ns  
Part powered down  
Turn-On Time  
Turn-Off Time  
Part enabled, output rises to 90% of final value  
Part powered down, output falls to 10% of final  
value  
POWER SUPPLY  
Operating Range  
2.7  
5.5  
V
Quiescent Current per Amplifier  
Supply Current When Powered Down  
Power Supply Rejection Ratio (PSRR)  
Positive PSRR  
3.5  
0.73  
mA  
mA  
ADA4891-3 only  
+VS = 3 V to 3.15 V, −VS = 0 V  
+VS = 3 V, −VS = −0.15 V to 0 V  
76  
72  
dB  
dB  
°C  
Negative PSRR  
OPERATING TEMPERATURE RANGE  
−40  
+125  
Rev. B | Page 5 of 24  
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
ABSOLUTE MAXIMUM RATINGS  
To ensure proper operation, it is necessary to observe the maxi-  
mum power derating curves shown in Figure 6. These curves  
are derived by setting TJ = 150°C in Equation 1. Figure 6 shows  
the maximum safe power dissipation in the package vs. the  
ambient temperature on a JEDEC standard 4-layer board.  
2.0  
Table 3.  
Parameter  
Rating  
Supply Voltage  
6 V  
Input Voltage (Common Mode)  
Differential Input Voltage  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec)  
−VS − 0.5 V to +VS  
VS  
−65°C to +125°C  
−40°C to +125°C  
300°C  
T
= 150°C  
J
14-LEAD TSSOP  
1.5  
1.0  
0.5  
0
8-LEAD SOIC_N  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
8-LEAD MSOP  
5-LEAD SOT-23  
14-LEAD SOIC_N  
MAXIMUM POWER DISSIPATION  
–55 –35 –15  
5
25  
45  
65  
85  
105  
125  
The maximum power that can be safely dissipated by the  
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4 is limited  
by the associated rise in junction temperature. The maximum  
safe junction temperature for plastic encapsulated devices is  
determined by the glass transition temperature of the plastic,  
approximately 150°C. Temporarily exceeding this limit can  
cause a shift in parametric performance due to a change in the  
stresses exerted on the die by the package. Exceeding a junction  
temperature of 175°C for an extended period can result in  
device failure.  
AMBIENT TEMPERATURE (°C)  
Figure 6. Maximum Power Dissipation vs. Ambient Temperature  
Table 4 lists the thermal resistance (θJA) for each ADA4891-1/  
ADA4891-2/ADA4891-3/ADA4891-4 package.  
Table 4.  
Package Type  
5-Lead SOT-23  
8-Lead SOIC_N  
8-Lead MSOP  
14-Lead SOIC_N  
14-Lead TSSOP  
θJA  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
146  
115  
133  
162  
108  
The still-air thermal properties of the package (θJA), the ambient  
temperature (TA), and the total power dissipated in the package  
(PD) can be used to determine the junction temperature of the die.  
The junction temperature can be calculated as  
ESD CAUTION  
TJ = TA + (PD × θJA)  
(1)  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
package due to the load drive for all outputs. It can be calculated by  
PD = (VT × IS) + (VS VOUT) × (VOUT/RL) (2)  
where:  
VT is the total supply rail.  
IS is the quiescent current.  
VS is the positive supply rail.  
V
OUT is the output of the amplifier.  
RL is the output load of the amplifier.  
Rev. B | Page 6 of 24  
 
 
 
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
TYPICAL PERFORMANCE CHARACTERISTICS  
Unless otherwise noted, all plots are characterized for the ADA4891-1, ADA4891-2, ADA4891-3, and ADA4891-4. For the ADA4891-1  
and ADA4891-2, the typical RF value is 604 ꢀ. For the ADA4891-3 and ADA4891-4, the typical RF value is 453 ꢀ.  
4
3
5
4
3
G = –1 OR +2  
2
2
G = +1  
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
G = +1  
G = –1  
OR +2  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
G = +10  
G = +5  
G = +5  
G = +10  
V
V
= 5V  
S
V
V
R
R
= 5V  
S
= 200mV p-p  
OUT  
= 200mV p-p  
OUT  
–8  
–9  
R
R
= 453  
= 1kꢀ  
F
L
= 604  
= 1kΩ  
F
L
–10  
0.1  
0.1  
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. Small-Signal Frequency Response vs. Gain, VS = 5 V,  
ADA4891-1/ADA4891-2  
Figure 10. Small-Signal Frequency Response vs. Gain, VS = 5 V,  
ADA4891-3/ADA4891-4  
6
6
V
= 2.7V  
S
V = 3V  
S
V
= 2.7V  
S
3
0
V
= 3V  
= 5V  
S
3
0
–3  
–6  
V
S
V
= 5V  
S
–3  
–6  
–9  
–9  
–12  
–15  
G = +1  
= 200mV p-p  
–12  
–15  
V
R
G = +1  
= 200mV p-p  
L
OUT  
= 1kꢀ  
V
R
OUT  
= 1k  
L
0.1  
1
10  
FREQUENCY (MHz)  
100  
1k  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1k  
Figure 8. Small-Signal Frequency Response vs. Supply Voltage,  
ADA4891-1/ADA4891-2  
Figure 11. Small-Signal Frequency Response vs. Supply Voltage,  
ADA4891-3/ADA4891-4  
5
4
5
+125°C  
+85°C  
+25°C  
4
0°C  
–40°C  
+25°C  
3
3
2
+85°C  
0°C  
2
+125°C  
1
1
–40°C  
0
–1  
–2  
–3  
–4  
0
–1  
–2  
–3  
–4  
V
= 5V  
S
V
= 5V  
S
G = +1  
= 200mV p-p  
G = +1  
= 200mV p-p  
V
R
OUT  
= 1kꢀ  
V
R
OUT  
= 1k  
L
L
0.1  
1
10  
100  
1k  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1k  
FREQUENCY (MHz)  
Figure 9. Small-Signal Frequency Response vs. Temperature, VS = 5 V,  
ADA4891-1/ADA4891-2  
Figure 12. Small-Signal Frequency Response vs. Temperature, VS = 5 V,  
ADA4891-3/ADA4891-4  
Rev. B | Page 7 of 24  
 
 
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
7
7
6
+25°C  
+85°C  
6
+85°C  
–40°C  
+125°C  
+25°C  
0°C  
5
4
5
0°C  
+125°C  
4
3
3
2
2
1
1
0
0
–40°C  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
V
= 3V  
V = 3V  
S
S
G = +1  
= 200mV p-p  
G = +1  
V = 200mV p-p  
V
R
OUT  
= 1k  
OUT  
R = 1kꢀ  
L
L
–6  
0.1  
–6  
0.1  
1
10  
100  
1k  
1
10  
FREQUENCY (MHz)  
100  
1k  
FREQUENCY (MHz)  
Figure 13. Small-Signal Frequency Response vs. Temperature, VS = 3 V,  
ADA4891-1/ADA4891-2  
Figure 16. Small-Signal Frequency Response vs. Temperature, VS = 3 V,  
ADA4891-3/ADA4891-4  
0.1  
0
0.1  
0
V
= 3V  
S
V
V
= 5V  
S
V
= 2V p-p  
OUT  
= 1.4V p-p  
OUT  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
V
= 5V  
S
V
= 1.4V p-p  
OUT  
V
V
= 3V  
S
= 2V p-p  
OUT  
V
= 5V  
S
V
= 5V  
V
= 2V p-p  
S
OUT  
V
= 2V p-p  
OUT  
–0.4  
–0.5  
G = +2  
G = +2  
V
= 3V  
S
R
R
= 374ꢀ  
= 150ꢀ  
R
R
= 604ꢀ  
F
L
V
= 3V  
F
L
V
= 1.4V p-p  
S
OUT  
= 150ꢀ  
V
= 1.4V p-p  
OUT  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 14. 0.1 dB Gain Flatness vs. Supply Voltage, G = +2,  
ADA4891-1/ADA4891-2  
Figure 17. 0.1 dB Gain Flatness vs. Supply Voltage, G = +2,  
ADA4891-3/ADA4891-4  
1
1
0
0
G = –1  
R
= 453ꢀ  
F
G = +1  
F
–1  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
R
= 0ꢀ  
G = +2  
F
R
= 604ꢀ  
–2  
–3  
–4  
–5  
–6  
–7  
G = +5  
= 453ꢀ  
G = +1  
R
F
R = 0ꢀ  
F
G = +5  
F
R
= 604ꢀ  
G = –1  
F
R
= 604ꢀ  
V
R
V
= 5V  
= 150ꢀ  
–8  
–9  
S
V
= 5V  
L
S
L
G = +2  
= 453ꢀ  
R
V
= 150ꢀ  
= 2V p-p  
OUT  
R
= 2V p-p  
F
OUT  
–10  
0.1  
0.1  
1
10  
100  
1k  
1
10  
FREQUENCY (MHz)  
100  
1k  
FREQUENCY (MHz)  
Figure 15. Large-Signal Frequency Response vs. Gain, VS = 5 V,  
ADA4891-1/ADA4891-2  
Figure 18. Large-Signal Frequency Response vs. Gain, VS = 5 V,  
ADA4891-3/ADA4891-4  
Rev. B | Page 8 of 24  
 
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
1
0
1
0
G = –1  
= 2V p-p  
G = –1  
V = 2V p-p  
OUT  
–1  
–1  
V
OUT  
G = +2  
V = 2V p-p  
–2  
–3  
–4  
–5  
–6  
–7  
–2  
–3  
–4  
–5  
–6  
–7  
OUT  
G = +2  
= 2V p-p  
G = +1  
V = 1V p-p  
OUT  
G = +1  
= 1V p-p  
V
OUT  
V
OUT  
G = +5  
= 2V p-p  
V
OUT  
G = +5  
= 2V p-p  
V
OUT  
V
R
R
= 3V  
= 604ꢀ  
= 150ꢀ  
V
R
R
= 3V  
S
–8  
–9  
–8  
–9  
S
= 453ꢀ  
F
L
F
L
= 150ꢀ  
–10  
0.1  
–10  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1k  
1
10  
FREQUENCY (MHz)  
100  
1k  
Figure 19. Large-Signal Frequency Response vs. Gain, VS = 3 V,  
ADA4891-1/ADA4891-2  
Figure 22. Large-Signal Frequency Response vs. Gain, VS = 3 V,  
ADA4891-3/ADA4891-4  
–40  
–30  
V
= 5V  
V
= 3V  
S
L
S
L
R
V
= 1kꢀ  
R
V
= 1kꢀ  
G = +2  
G = +1  
THIRD HARMONIC  
= 2V p-p  
–50  
–60  
= 2V p-p  
OUT  
OUT  
SECOND HARMONIC  
–40  
–50  
–60  
–70  
–80  
–90  
G = +1  
SECOND HARMONIC  
–70  
G = +1  
G = +2  
SECOND HARMONIC  
SECOND HARMONIC  
–80  
+V = +1.9V  
S
–90  
OUT  
–100  
–110  
–120  
G = +2  
THIRD HARMONIC  
IN  
50ꢀ  
1kꢀ  
G = +2  
THIRD HARMONIC  
–V = –1.1V  
S
G = +1  
THIRD HARMONIC  
G = +1 CONFIGURATION  
0.1  
1
10  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 20. Harmonic Distortion (HD2, HD3) vs. Frequency, VS = 5 V  
Figure 23. Harmonic Distortion (HD2, HD3) vs. Frequency, VS = 3 V  
–40  
–40  
V
= 5V  
= 604ꢀ  
= 1kꢀ  
G = +1  
SECOND HARMONIC  
G = –1  
+V = +1.9V  
S
S
SECOND HARMONIC  
R
R
F
G = +1  
–50  
–60  
–50  
–60  
fCL= 1MHz  
CONFIGURATION  
OUT  
IN  
50  
1kꢀ  
G = –1  
SECOND HARMONIC  
–70  
–70  
–V = –1.1V  
S
–80  
–80  
G = –1  
–90  
–90  
THIRD HARMONIC  
G = +1  
SECOND HARMONIC  
G = –1  
–100  
–110  
–120  
–100  
–110  
–120  
G = +1  
THIRD HARMONIC  
THIRD HARMONIC  
G = +1  
V
= 3V  
fCS= 1MHz  
THIRD HARMONIC  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.5  
1.0  
1.5  
2.0  
2.5 3.0  
OUTPUT VOLTAGE (V p-p)  
OUTPUT VOLTAGE (V p-p)  
Figure 24. Harmonic Distortion (HD2, HD3) vs. Output Voltage, VS = 3 V  
Figure 21. Harmonic Distortion (HD2, HD3) vs. Output Voltage, VS = 5 V  
Rev. B | Page 9 of 24  
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
–40  
1k  
100  
10  
G = +2  
V
= 3V  
S
R
R
= 604ꢀ  
= 150ꢀ  
SECOND HARMONIC  
F
fCL= 1MHz  
V
= 3V  
S
–50  
–60  
THIRD HARMONIC  
–70  
V
= 5V  
S
V
= 5V  
S
THIRD HARMONIC  
SECOND HARMONIC  
–80  
–90  
V
= 5V  
S
G = +1  
–100  
1
10  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
100  
1k  
10k  
100k  
1M  
10M  
OUTPUT VOLTAGE (V p-p)  
FREQUENCY (Hz)  
Figure 25. Harmonic Distortion (HD2, HD3) vs. Output Voltage, G = +2  
Figure 28. Input Voltage Noise vs. Frequency  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
0.06  
0.04  
0.02  
0
V
= 5V  
= 1k  
S
L
R
–18  
–36  
–54  
–72  
–90  
–108  
–126  
–144  
–162  
–180  
GAIN  
–0.02  
–0.04  
–0.06  
V
R
= 5V, G = +2  
= 604, R = 150ꢀ  
L
S
F
PHASE  
ST  
1
ND  
RD  
TH  
TH  
TH  
TH  
TH  
TH  
TH  
10  
2
3
4
5
6
7
8
9
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
V
= 5V, G = +2  
= 604, R = 150ꢀ  
L
S
R
F
–0.3  
ST  
ND  
RD  
TH  
TH  
TH  
TH  
TH  
TH  
TH  
10  
–10  
0.001  
1
2
3
4
5
6
7
8
9
0.01  
0.1  
1
10  
100  
1k  
MODULATING RAMP LEVEL (IRE)  
FREQUENCY (MHz)  
Figure 29. Differential Gain and Phase Errors  
Figure 26. Open-Loop Gain and Phase vs. Frequency  
7
6
5
4
3
2
7
6
5
4
3
2
C
= 47pF  
C
= 47pF  
L
L
C
= 22pF  
= 10pF  
L
C
= 22pF  
= 10pF  
L
C
L
C
L
1
0
1
0
C
= 0pF  
L
C
L
= 0pF  
–1  
–2  
–1  
V
= 5V  
V
= 5V  
S
S
–2  
–3  
–4  
G = +2  
R
V
G = +2  
R
V
= 150ꢀ  
= 150ꢀ  
–3  
–4  
L
L
= 200mV p-p  
1
= 200mV p-p  
OUT  
OUT  
0.1  
10  
100  
1k  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1k  
FREQUENCY (MHz)  
Figure 27. Small-Signal Frequency Response vs. CL,  
ADA4891-1/ADA4891-2  
Figure 30. Small-Signal Frequency Response vs. CL,  
ADA4891-3/ADA4891-4  
Rev. B | Page 10 of 24  
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
100  
10  
100k  
10k  
1k  
V
= 5V  
S
G = +1  
1
100  
10  
0.1  
V
= 5V  
S
G = +1  
1
0.01  
0.01  
0.01  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 31. Closed-Loop Output Impedance vs. Frequency, Part Enabled  
Figure 34. Closed-Loop Output Impedance vs. Frequency, Part Disabled  
(ADA4891-3 Only)  
1.5  
G = +1  
G = +2  
= 2V p-p  
V
L
= 5V  
S
V
= 200mV p-p  
OUT  
R = 1kꢀ  
L
V
R
= 1k  
OUT  
V
= 3V  
S
1.0  
0.5  
100  
0
V
= 5V  
V
= 3V  
= 150ꢀ  
S
S
L
R
= 150ꢀ  
R
L
V
= 5V  
S
V
= 3V  
= 1kꢀ  
S
L
R
0
–0.5  
–1.0  
–1.5  
–100  
50mV/DIV  
5ns/DIV  
10  
20  
30  
40  
50  
60  
70  
80  
90  
TIME (ns)  
Figure 32. Small-Signal Step Response, G = +1  
Figure 35. Large-Signal Step Response, G = +2  
V
= 5V  
V = 3V  
S
S
R
= 1kꢀ  
R
= 1kꢀ  
G = +1  
= 1V p-p  
L
G = +1  
L
V
OUT  
V
= 2V p-p  
OUT  
0.5  
1
0
R
= 150ꢀ  
L
R
= 150ꢀ  
L
0
–1  
–0.5  
5ns/DIV  
5ns/DIV  
0.5V/DIV  
0.5V/DIV  
Figure 36. Large-Signal Step Response, VS = 3 V, G = +1  
Figure 33. Large-Signal Step Response, VS = 5 V, G = +1  
Rev. B | Page 11 of 24  
 
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
200  
190  
180  
170  
160  
150  
140  
0.30  
V
= 5V  
S
G = +2  
R
V
= 5V  
S
G = +2  
= 150ꢀ  
= 150ꢀ  
L
0.20  
0.10  
0
R
L
V
= 2V p-p  
OUT  
FALLING EDGE  
–0.10  
–0.20  
–0.30  
RISING EDGE  
0
25  
30  
35  
40  
45  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
TIME (ns)  
OUTPUT STEP (V)  
Figure 37. Short-Term Settling Time to 0.1%  
Figure 40. Slew Rate vs. Output Step  
1
0
3
2
V
= ±2.5V  
V
= ±2.5V  
S
S
G = +1  
= 1kꢀ  
G = +1  
INPUT  
R
R
= 1kꢀ  
L
L
INPUT  
OUTPUT  
1
–1  
–2  
–3  
OUTPUT  
0
1V/DIV  
5ns/DIV  
1V/DIV  
5ns/DIV  
–1  
Figure 38. Input Overdrive Recovery from Positive Rail  
Figure 41. Input Overdrive Recovery from Negative Rail  
3
2
3
V
= ±2.5V  
V
= ±2.5V  
S
S
OUTPUT  
INPUT  
G = –2  
= 1kꢀ  
G = –2  
= 1kꢀ  
R
R
L
L
2
1
1
INPUT  
0
0
–1  
–2  
–3  
–1  
–2  
–3  
OUTPUT  
1V/DIV  
1V/DIV  
5ns/DIV  
5ns/DIV  
Figure 39. Output Overdrive Recovery from Positive Rail  
Figure 42. Output Overdrive Recovery from Negative Rail  
Rev. B | Page 12 of 24  
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
–10  
–20  
–30  
–40  
0
V
= 5V  
V
= 5V  
S
S
–10  
–20  
–30  
–40  
–50  
–60  
–70  
G = +2  
= 150ꢀ  
R
L
TSSOP  
–50  
–60  
SOIC  
–70  
–80  
–80  
–90  
–100  
–90  
0.01  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1k  
0.1  
1
10  
100  
FREQUENCY (MHz)  
Figure 46. Forward Isolation vs. Frequency (ADA4891-3 Only)  
Figure 43. CMRR vs. Frequency  
1.0  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
Vs = 5V  
G = +1  
V = 5V  
S
G = –2  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
R
= 604  
F
V
, +125°C  
OH  
V
V
, +25°C  
, –40°C  
OH  
OH  
V
V
V
, +125°C  
OL  
OL  
OL  
, +25°C  
, –40°C  
+PSRR  
–PSRR  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0.01  
0.1  
1
10  
100  
I
(mA)  
FREQUENCY (MHz)  
LOAD  
Figure 44. PSRR vs. Frequency  
Figure 47. Output Saturation Voltage vs. Load Current and Temperature  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
6.0  
Vs = 5V  
G = +2  
V
= 5V  
S
R
= 1 kꢀ  
L
OUT  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
V
= 2V p-p  
0.1  
1
10  
100  
1k  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (MHz)  
TEMPERATURE (ºC)  
Figure 45. All-Hostile Crosstalk (Output-to-Output) vs. Frequency  
Figure 48. Supply Current per Amplifier vs. Temperature  
Rev. B | Page 13 of 24  
 
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
SUPPLY VOLTAGE (V)  
Figure 49. Supply Current per Amplifier vs. Supply Voltage  
Rev. B | Page 14 of 24  
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
APPLICATIONS INFORMATION  
USING THE ADA4891  
WIDEBAND, INVERTING GAIN OPERATION  
+V  
S
Understanding the subtleties of the ADA4891 family of amplifiers  
provides insight into how to extract the peak performance from  
the device. The following sections describe the effect of gain,  
component values, and parasitics on the performance of the  
ADA4891. The wideband, noninverting gain configuration of  
the ADA4891 is shown in Figure 50; the wideband, inverting  
gain configuration of the ADA4891 is shown in Figure 51.  
0.1µF  
10µF  
V
O
ADA4891  
R
L
50ꢀ  
SOURCE  
R
T
R
F
G
V
I
WIDEBAND, NONINVERTING GAIN OPERATION  
R
+V  
S
0.1µF  
10µF  
0.1µF  
10µF  
50ꢀ  
SOURCE  
–V  
S
Figure 51. Inverting Gain Configuration  
V
I
V
O
R
ADA4891  
T
Figure 51 shows the inverting gain configuration. For the  
inverting gain configuration, set the parallel combination of  
RT and RG to match the input source impedance.  
R
L
R
F
R
G
Note that a bias current cancellation resistor is not required in  
the noninverting input of the amplifier because the input bias  
current of the ADA4891 is very low (less than 2 pA). Therefore,  
the dc errors caused by the bias current are negligible.  
0.1µF  
10µF  
–V  
S
Figure 50. Noninverting Gain Configuration  
For both noninverting and inverting gain configurations, it is  
often useful to increase the RF value to decrease the load on the  
output. Increasing the RF value improves harmonic distortion at  
the expense of reducing the 0.1 dB bandwidth of the amplifier.  
This effect is discussed further in the Effect of RF on 0.1 dB Gain  
Flatness section.  
In Figure 50, RF and RG denote the feedback and gain resistors,  
respectively. Together, RF and RG determine the noise gain of the  
amplifier. The value of RF defines the 0.1 dB bandwidth (for  
more information, see the Effect of RF on 0.1 dB Gain Flatness  
section). Typical RF values range from 549 ꢀ to 698 ꢀ for the  
ADA4891-1/ADA4891-2. Typical RF values range from 301 ꢀ  
to 453 ꢀ for the ADA4891-3/ADA4891-4.  
RECOMMENDED VALUES  
Table 5 and Table 6 provide a quick reference for various configu-  
rations and show the effect of gain on the −3 dB small-signal  
bandwidth, slew rate, and peaking of the ADA4891-1/ADA4891-2/  
ADA4891-3/ADA4891-4. Note that as the gain increases, the  
small-signal bandwidth decreases, as is expected from the gain  
bandwidth product relationship. In addition, the phase margin  
improves with higher gains, and the amplifier becomes more  
stable. As a result, the peaking in the frequency response is  
reduced (see Figure 7 and Figure 10).  
In a controlled impedance signal path, RT is used as the input  
termination resistor designed to match the input source imped-  
ance. Note that RT is not required for normal operation. RT is  
generally set to match the input source impedance.  
Table 5. Recommended Component Values and Effect of Gain on ADA4891-1/ADA4891-2 Performance (RL = 1 kΩ)  
Feedback Network Values  
−3 dB Small-Signal Bandwidth (MHz)  
Slew Rate (V/μs)  
Gain  
−1  
+1  
+2  
+5  
RF (Ω)  
RG (Ω)  
604  
Open  
604  
151  
67.1  
VOUT = 200 mV p-p  
tR  
tF  
Peaking (dB)  
604  
0
604  
604  
604  
118  
240  
120  
32.5  
12.7  
188  
154  
170  
149  
71  
192  
263  
210  
154  
72  
1.3  
2.6  
1.4  
0
+10  
0
Rev. B | Page 15 of 24  
 
 
 
 
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
Table 6. Recommended Component Values and Effect of Gain on ADA4891-3/ADA4891-4 Performance (RL = 1 kΩ)  
Feedback Network Values  
−3 dB Small-Signal Bandwidth (MHz)  
Slew Rate (V/μs)  
Gain  
−1  
+1  
+2  
+5  
RF (Ω)  
RG (Ω)  
453  
Open  
453  
90.6  
45.3  
VOUT = 200 mV p-p  
tR  
tF  
Peaking (dB)  
453  
0
453  
453  
453  
97  
220  
97  
31  
13  
186  
151  
181  
112  
68  
194  
262  
223  
120  
67  
0.9  
4.1  
0.9  
0
+10  
0
0.3  
EFFECT OF RF ON 0.1 dB GAIN FLATNESS  
R
= R = 453ꢀ  
F
G
0.2  
0.1  
R = R = 402ꢀ  
G F  
Gain flatness is an important specification in video applications.  
It represents the maximum allowable deviation in the signal  
amplitude within the pass band. Tests have revealed that the  
human eye is unable to distinguish brightness variations of  
less than 1%, which translates into a 0.1 dB signal drop within  
the pass band or, put simply, 0.1 dB gain flatness.  
R
= R = 357ꢀ  
F
G
0
R
= R = 301ꢀ  
–0.1  
G
F
–0.2  
The PCB layout configuration and bond pads of the chip often  
contribute to stray capacitance. The stray capacitance at the  
inverting input forms a pole with the feedback and gain resistors.  
This additional pole adds phase shift and reduces phase margin  
in the closed-loop phase response, causing instability in the  
amplifier and peaking in the frequency response.  
–0.3  
–0.4  
V
= 5V  
S
G = +2  
V
R
= 2V p-p  
OUT  
= 150ꢀ  
L
–0.5  
0.1  
1
10  
100  
FREQUENCY (MHz)  
Figure 53. 0.1 dB Gain Flatness, Noninverting Gain Configuration,  
ADA4891-3/ADA4891-4  
Figure 52 and Figure 53 show the effect of using various values  
for Feedback Resistor RF on the 0.1 dB gain flatness of the parts.  
Figure 52 shows the effect for the ADA4891-1/ADA4891-2.  
Figure 53 show the effect for the ADA4891-3/ADA4891-4.  
Note that a larger RF value causes more peaking because the  
additional pole formed by RF and the input stray capacitance  
shifts down in frequency and interacts significantly with the  
internal poles of the amplifier.  
To obtain the desired 0.1 dB bandwidth, adjust the feedback  
resistor, RF, as shown in Figure 52 and Figure 53. If RF cannot  
be adjusted, a small capacitor can be placed in parallel with RF  
to reduce peaking.  
The feedback capacitor, CF, forms a zero with the feedback  
resistor, which cancels out the pole formed by the input stray  
capacitance and the gain and feedback resistors. For a first pass  
in determining the CF value, use the following equation:  
0.2  
R
R
= R = 698ꢀ  
F
G
R
= R = 649ꢀ  
F
G
= R = 604ꢀ  
G
F
0.1  
0
RG × CS = RF × CF  
where:  
R
= R = 549ꢀ  
G
F
RG is the gain resistor.  
CS is the input stray capacitance.  
RF is the feedback resistor.  
CF is the feedback capacitor.  
–0.1  
–0.2  
–0.3  
–0.4  
Using this equation, the original closed-loop frequency response of  
the amplifier is restored, as if there is no stray input capacitance.  
Most often, however, the value of CF is determined empirically.  
V
= 5V  
S
G = +2  
V
R
= 2V p-p  
OUT  
= 150ꢀ  
L
0.1  
1
10  
100  
Figure 54 shows the effect of using various values for the feedback  
capacitor to reduce peaking. In this case, the ADA4891-1/  
ADA4891-2 are used for demonstration purposes and RF = RG =  
604 ꢀ. The input stray capacitance, together with the board  
parasitics, is approximately 2 pF.  
FREQUENCY (MHz)  
Figure 52. 0.1 dB Gain Flatness, Noninverting Gain Configuration,  
ADA4891-1/ADA4891-2  
Rev. B | Page 16 of 24  
 
 
 
 
 
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
0.2  
0.1  
These four methods minimize the output capacitive loading effect.  
C
= 0pF  
Reducing the output resistive load. This pushes the pole  
further away and, therefore, improves the phase margin.  
Increasing the phase margin with higher noise gains. As  
the closed-loop gain is increased, the larger phase margin  
allows for large capacitive loads with less peaking.  
Adding a parallel capacitor (CF) with RF, from −IN to the  
output. This adds a zero in the closed-loop frequency  
response, which tends to cancel out the pole formed by the  
capacitive load and the output impedance of the amplifier.  
See the Effect of RF on 0.1 dB Gain Flatness section for  
more information.  
F
C
= 1pF  
F
0
C
= 3.3pF  
F
–0.1  
–0.2  
–0.3  
V
= 5V  
S
G = +2  
R
R
= 604ꢀ  
= 150ꢀ  
= 2V p-p  
F
L
V
OUT  
0.1  
1
10  
FREQUENCY (MHz)  
100  
Placing a small value resistor (RS) in series with the output  
to isolate the load capacitor from the output stage of the  
amplifier.  
Figure 54. 0.1 dB Gain Flatness vs. CF, VS = 5 V,  
ADA4891-1/ADA4891-2  
Figure 57 shows the effect of using a snub resistor (RS) on reducing  
the peaking in the worst-case frequency response (gain of +1).  
Using RS = 100 Ω reduces the peaking by 3 dB, with the trade-off  
that the closed-loop gain is reduced by 0.9 dB due to attenuation  
at the output. RS can be adjusted from 0 Ω to 100 Ω to maintain  
an acceptable level of peaking and closed-loop gain, as shown in  
Figure 57.  
DRIVING CAPACITIVE LOADS  
A highly capacitive load reacts with the output impedance of  
the amplifiers, causing a loss of phase margin and subsequent  
peaking or even oscillation. The ADA4891-1/ADA4891-2 are  
used to demonstrate this effect (see Figure 55 and Figure 56).  
8
6
4
8
V
V
= 5V  
OUT  
G = +1  
S
= 200mV p-p  
6
4
R
C
= 1k  
= 6.8pF  
L
L
2
0
2
R
= 0ꢀ  
S
–2  
–4  
0
R
= 100ꢀ  
S
–2  
–4  
–6  
–8  
–10  
–6  
–8  
V
V
= 5V  
S
= 200mV p-p  
OUT  
R
S
G = +1  
V
OUT  
IN  
R
C
= 1kꢀ  
L
L
200mV  
STEP  
= 6.8pF  
R
C
L
L
–10  
0.1  
50ꢀ  
1
10  
100  
FREQUENCY (MHz)  
0.1  
1
10  
FREQUENCY (MHz)  
100  
Figure 55. Closed-Loop Frequency Response, CL = 6.8 pF,  
ADA4891-1/ADA4891-2  
Figure 57. Closed-Loop Frequency Response with Snub Resistor, CL = 6.8 pF  
Figure 58 shows that the transient response is also much improved  
by the snub resistor (RS = 100 Ω) compared to that of Figure 56.  
V
= 5V  
S
G = +1  
R
C
= 1kꢀ  
= 6.8pF  
L
L
V
= 5V  
S
G = +1  
100  
R
C
R
= 1kꢀ  
= 6.8pF  
= 100ꢀ  
L
L
S
100  
0
0
–100  
–100  
50mV/DIV  
50ns/DIV  
Figure 56. 200 mV Step Response, CL = 6.8 pF,  
ADA4891-1/ADA4891-2  
50mV/DIV  
50ns/DIV  
Figure 58. 200 mV Step Response, CL = 6.8 pF, RS = 100 Ω  
Rev. B | Page 17 of 24  
 
 
 
 
 
 
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
TERMINATING UNUSED AMPLIFIERS  
SINGLE-SUPPLY OPERATION  
Terminating unused amplifiers in a multiamplifier package is  
an important step in ensuring proper operation of the functional  
amplifier. Unterminated amplifiers can oscillate and draw  
excessive power. The recommended procedure for terminating  
unused amplifiers is to connect any unused amplifiers in a  
unity-gain configuration and to connect the noninverting input  
to midsupply voltage. With symmetrical bipolar power supplies,  
this means connecting the noninverting input to ground, as  
shown in Figure 59.  
The ADA4891 can also be operated from a single power supply.  
Figure 61 shows the ADA4891-3 configured as a single 5 V  
supply video driver.  
The input signal is ac-coupled into the amplifier via  
Capacitor C1.  
Resistor R2 and Resistor R4 establish the input midsupply  
reference for the amplifier.  
Capacitor C5 prevents constant current from being drawn  
through the gain set resistor (RG) and enables the ADA4891-3  
at dc to provide unity gain to the input midsupply voltage,  
thereby establishing the output voltage at midsupply.  
Capacitor C6 is the output coupling capacitor.  
+V  
S
ADA4891  
The large-signal frequency response obtained with single-  
supply operation is identical to the bipolar supply operation  
(Figure 18 shows the large-signal frequency response).  
–V  
S
Figure 59. Terminating Unused Amplifier with  
Symmetrical Bipolar Power Supplies  
Four pairs of low frequency poles are formed by R2/2 and C2,  
R3 and C1, RG and C5, and RL and C6. With this configuration,  
the −3 dB cutoff frequency at low frequency is 12 Hz. The  
values of C1, C2, C5, and C6 can be adjusted to change the low  
frequency −3 dB cutoff point to suit individual design needs.  
In single power supply applications, a synthetic midsupply  
source must be created. This can be accomplished with a simple  
resistive voltage divider. Figure 60 shows the proper connection  
for terminating an unused amplifier in a single-supply  
configuration.  
For more information about single-supply operation of op amps,  
see the Analog Dialogue article Avoiding Op Amp Instability  
Problems in Single-Supply Applications” (Volume 35, Number 2)  
at www.analog.com.  
+V  
S
2.5k  
2.5kꢀ  
+5V  
C2  
1µF  
C3  
10µF  
ADA4891  
R4  
50kꢀ  
R2  
50kꢀ  
C4  
0.01µF  
+5V  
R1  
Figure 60. Terminating Unused Amplifier with Single Power Supply  
R3  
100kꢀ  
DISABLE FEATURE (ADA4891-3 ONLY)  
C6  
V
22µF  
IN  
The ADA4891-3 includes a power-down feature that can be  
used to save power when an amplifier is not in use. When an  
amplifier is powered down, its output goes to a high impedance  
state. The output impedance decreases as frequency increases;  
this effect can be observed in Figure 34. With the power-down  
function, a forward isolation of −40 dB can be achieved at  
50 MHz. Figure 46 shows the forward isolation vs. frequency  
C1  
22µF  
V
OUT  
50ꢀ  
R
150ꢀ  
L
R
453ꢀ  
F
R
453ꢀ  
G
ADA4891-3  
C5  
22µF  
–V  
S
Figure 61. Single-Supply Video Driver Schematic  
PD1  
data. The power-down feature is asserted by pulling the  
PD2 PD3  
,
, or  
pin low.  
Table 7 summarizes the operation of the power-down feature.  
Table 7. Disable Function  
Power-Down Pin Connection (PDx)  
Amplifier Status  
Enabled  
Disabled  
>VTH or floating  
<VTH  
Rev. B | Page 18 of 24  
 
 
 
 
 
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
VIDEO RECONSTRUCTION FILTER  
MULTIPLEXER  
A common application for active filters is at the output of video  
digital-to-analog converters (DACs)/encoders. The filter, or more  
appropriately, the video reconstruction filter, is used at the output  
of a video DAC/encoder to eliminate the multiple images that  
are created during the sampling process within the DAC. For  
portable video applications, the ADA4891 is an ideal choice due  
to its lower power requirements and high performance.  
The ADA4891-3 has a disable pin used to power down the  
amplifier to save power or to create a mux circuit. If two or  
more ADA4891-3 outputs are connected together and only one  
output is enabled, then only the signal of the enabled amplifier  
appears at the output. This configuration is used to select from  
various input signal sources. Additionally, the same input signal  
is applied to different gain stages, or differently tuned filters, to  
make a gain-step amplifier or a selectable frequency amplifier.  
For active filters, a good rule of thumb is that the −3 dB band-  
width of the amplifiers be at least 10 times higher than the corner  
frequency of the filter. This ensures that no initial roll-off is  
introduced by the amplifier and that the pass band is flat until  
the cutoff frequency.  
Figure 64 shows a schematic of two ADA4891-3 devices used  
to create a mux that selects between two inputs. One input is a  
1 V p-p, 3 MHz sine wave; the other input is a 2 V p-p, 1 MHz  
sine wave.  
+2.5V  
An example of a 15 MHz, 3-pole, Sallen-Key, low-pass video  
reconstruction filter is shown in Figure 62. This circuit features  
a gain of +2, a 0.1 dB bandwidth of 7.3 MHz, and over 17 dB  
attenuation at 29.7 MHz (see Figure 63). The filter has three  
poles: two poles are active, with a third passive pole (R6 and C4)  
placed at the output. C3 improves the filter roll-off. R6, R7, and  
R8 make up the video load of 150 Ω. Components R6, C4, R7,  
R8, and the input termination of the network analyzer form a  
6 dB attenuator; therefore, the reference level is roughly 0 dB,  
as shown in Figure 63.  
0.1µF  
10µF  
10µF  
49.9  
ADA4891-3  
1V p-p  
3MHz  
0.1µF  
49.9ꢀ  
49.9ꢀ  
–2.5V  
+2.5V  
453ꢀ  
V
OUT  
453ꢀ  
49.9ꢀ  
C2  
51pF  
0.1µF  
10µF  
10µF  
R2  
R3  
+5V  
47125ꢀ  
49.9ꢀ  
R6  
6.8ꢀ  
R7  
2V p-p  
1MHz  
ADA4891-3  
–2.5V  
68.1ꢀ  
V
OUT  
V
C1  
51pF  
IN  
R8  
75ꢀ  
R1  
C4  
1nF  
0.1µF  
R4  
1kꢀ  
453ꢀ  
453ꢀ  
C3  
15pF  
R5  
1kꢀ  
HCO4  
SELECT  
Figure 62. 15 MHz Video Reconstruction Filter Schematic  
Figure 64. Two-to-One Multiplexer Using Two ADA4861-3 Devices  
The select signal and the output waveforms for this circuit are  
shown in Figure 65.  
0
–3  
–6  
1V/DIV  
1µs/DIV  
–9  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
–39  
OUTPUT  
SELECT  
5V/DIV  
1µs/DIV  
0.03  
0.1  
1
10  
100  
FREQUENCY (MHz)  
Figure 65. ADA4861-3 Mux Output  
Figure 63. Video Reconstruction Filter Frequency Performance  
Rev. B | Page 19 of 24  
 
 
 
 
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
LAYOUT, GROUNDING, AND BYPASSING  
POWER SUPPLY BYPASSING  
INPUT-TO-OUTPUT COUPLING  
To minimize capacitive coupling between the inputs and outputs  
and to avoid any positive feedback, the input and output signal  
traces should not be parallel. In addition, the input traces should  
not be close to each other. A minimum of 7 mils between the  
two inputs is recommended.  
Power supply pins are additional op amp inputs, and care must  
be taken so that a noise-free, stable dc voltage is applied. The  
purpose of bypass capacitors is to create a low impedance path  
from the supply to ground over a range of frequencies, thereby  
shunting or filtering the majority of the noise to ground. Bypassing  
is also critical for stability, frequency response, distortion, and  
PSRR performance.  
LEAKAGE CURRENTS  
In extremely low input bias current amplifier applications, stray  
leakage current paths must be kept to a minimum. Any voltage  
differential between the amplifier inputs and nearby traces sets  
up a leakage path through the PCB. Consider a 1 V signal and  
100 GΩ to ground present at the input of the amplifier. The  
resultant leakage current is 10 pA; this is 5× the typical input  
bias current of the amplifier. Poor PCB layout, contamination,  
and the board material can create large leakage currents. Common  
contaminants on boards are skin oils, moisture, solder flux, and  
cleaning agents. Therefore, it is imperative that the board be  
thoroughly cleaned and that the board surface be free of  
contaminants to take full advantage of the low input bias  
currents of the ADA4891.  
If traces are used between components and the package, chip  
capacitors of 0.1 μF (X7R or NPO) are critical and should be  
placed as close as possible to the amplifier package. The 0508  
case size for such a capacitor is recommended because it offers  
low series inductance and excellent high frequency performance.  
Larger chip capacitors, such as 0.1 μF capacitors, can be shared  
among a few closely spaced active components in the same  
signal path. A 10 μF tantalum capacitor is less critical for high  
frequency bypassing, but it provides additional bypassing for  
lower frequencies.  
GROUNDING  
When possible, ground and power planes should be used. Ground  
and power planes reduce the resistance and inductance of the  
power supply feeds and ground returns. If multiple planes are  
used, they should be stitched together with multiple vias. The  
returns for the input, output terminations, bypass capacitors,  
and RG should all be kept as close to the ADA4891 as possible.  
Ground vias should be placed at the side or at the very end of  
the component mounting pads to provide a solid ground return.  
The output load ground and the bypass capacitor grounds should  
be returned to a common point on the ground plane to minimize  
parasitic inductance and to help improve distortion performance.  
To significantly reduce leakage paths, a guard ring/shield should  
be used around the inputs. The guard ring circles the input pins  
and is driven to the same potential as the input signal, thereby  
reducing the potential difference between pins. For the guard ring  
to be completely effective, it must be driven by a relatively low  
impedance source and should completely surround the input  
leads on all sides, above and below, using a multilayer board  
(see Figure 66).  
GUARD RING  
INPUT AND OUTPUT CAPACITANCE  
GUARD RING  
NONINVERTING  
Parasitic capacitance can cause peaking and instability and,  
therefore, should be minimized to ensure stable operation.  
INVERTING  
Figure 66. Guard Ring Configurations  
High speed amplifiers are sensitive to parasitic capacitance between  
the inputs and ground. A few picofarads of capacitance reduce  
the input impedance at high frequencies, in turn increasing the  
gain of the amplifier and causing peaking of the frequency  
response or even oscillations, if severe enough. It is recommended  
that the external passive components that are connected to the  
input pins be placed as close as possible to the inputs to avoid  
parasitic capacitance.  
The 5-lead SOT-23 package for the ADA4891-1 presents a  
challenge in keeping the leakage paths to a minimum. The  
pin spacing is very tight, so extra care must be used when  
constructing the guard ring (see Figure 67 for the recom-  
mended guard ring construction).  
+V  
+V  
OUT  
S
OUT  
S
ADA4891-1  
ADA4891-1  
–V  
S
–V  
S
In addition, the ground and power planes under the pins of  
the ADA4891 should be cleared of copper to prevent parasitic  
capacitance between the input and output pins to ground. This  
is because a single mounting pad on a SOIC footprint can add  
as much as 0.2 pF of capacitance to ground if the ground or  
power plane is not cleared under the ADA4891 pins. In fact, the  
ground and power planes should be kept at a distance of at least  
0.05 mm from the input pins on all layers of the board.  
+IN  
–IN  
+IN  
–IN  
NONINVERTING  
INVERTING  
Figure 67. Guard Ring Layout, 5-Lead SOT-23  
Rev. B | Page 20 of 24  
 
 
 
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
45°  
1.27 (0.0500)  
BSC  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0099)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 68. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
3.00  
2.90  
2.80  
5
1
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
2
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.55  
0.45  
0.35  
0.15 MAX  
0.05 MIN  
10°  
5°  
0°  
SEATING  
PLANE  
0.20  
BSC  
0.50 MAX  
0.35 MIN  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 69. 5-Lead Small Outline Transistor Package [SOT-23]  
(RJ-5)  
Dimensions shown in millimeters  
Rev. B | Page 21 of 24  
 
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 70. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 71. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
0.60  
0.45  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 72. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
Rev. B | Page 22 of 24  
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
ORDERING GUIDE  
Model1  
ADA4891-1ARZ  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
R-8  
R-8  
R-8  
RJ-5  
Branding  
8-Lead SOIC_N  
ADA4891-1ARZ-RL  
ADA4891-1ARZ-R7  
ADA4891-1ARJZ-R7  
ADA4891-1ARJZ-RL  
ADA4891-2ARZ  
ADA4891-2ARZ-RL  
ADA4891-2ARZ-R7  
ADA4891-2ARMZ  
ADA4891-2ARMZ-RL  
ADA4891-2ARMZ-R7  
ADA4891-3ARUZ  
ADA4891-3ARUZ-R7  
ADA4891-3ARUZ-RL  
ADA4891-3ARZ  
ADA4891-3ARZ-R7  
ADA4891-3ARZ-RL  
ADA4891-4ARUZ  
ADA4891-4ARUZ-R7  
ADA4891-4ARUZ-RL  
ADA4891-4ARZ  
ADA4891-4ARZ-R7  
ADA4891-4ARZ-RL  
ADA4891-1AR-EBZ  
ADA4891-1ARJ-EBZ  
ADA4891-2AR-EBZ  
ADA4891-2ARM-EBZ  
ADA4891-3AR-EBZ  
ADA4891-3ARU-EBZ  
ADA4891-4AR-EBZ  
ADA4891-4ARU-EBZ  
8-Lead SOIC_N, 13”Tape and Reel  
8-Lead SOIC_N, 7”Tape and Reel  
5-Lead SOT-23, 7Tape and Reel  
5-Lead SOT-23, 13Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13”Tape and Reel  
8-Lead SOIC_N, 7”Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
14-Lead TSSOP  
14-Lead TSSOP, 7Tape and Reel  
14-Lead TSSOP, 13”Tape and Reel  
14-Lead SOIC_N  
14-Lead SOIC_N, 7”Tape and Reel  
14-Lead SOIC_N, 13”Tape and Reel  
14-Lead TSSOP  
14-Lead TSSOP, 7Tape and Reel  
14-Lead TSSOP, 13”Tape and Reel  
14-Lead SOIC_N  
14-Lead SOIC_N, 7”Tape and Reel  
14-Lead SOIC_N, 13”Tape and Reel  
Evaluation Board for 8-Lead SOIC_N  
Evaluation Board for 5-Lead SOT-23  
Evaluation Board for 8-Lead SOIC_N  
Evaluation Board for 8-Lead MSOP  
Evaluation Board for 14-Lead SOIC_N  
Evaluation Board for 14-Lead TSSOP  
Evaluation Board for 14-Lead SOIC_N  
Evaluation Board for 14-Lead TSSOP  
H1W  
H1W  
RJ-5  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RU-14  
RU-14  
RU-14  
R-14  
H1U  
H1U  
H1U  
R-14  
R-14  
RU-14  
RU-14  
RU-14  
R-14  
R-14  
R-14  
1 Z = RoHS Compliant Part.  
Rev. B | Page 23 of 24  
 
 
ADA4891-1/ADA4891-2/ADA4891-3/ADA4891-4  
NOTES  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08054-0-7/10(B)  
Rev. B | Page 24 of 24  

相关型号:

ADA4891-2ARMZ

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-2ARMZ-R7

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-2ARMZ-RL

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-2ARZ

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-2ARZ-R7

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-2ARZ-RL

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-2WARMZ-R7

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers (Dual)
ADI

ADA4891-3

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-3AR-EBZ

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-3ARU-EBZ

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-3ARUZ

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-3ARUZ-R7

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI