ADA4940-1ACP-EBZ [ADI]

Ultralow Power, Low Distortion; 超低功耗,低失真
ADA4940-1ACP-EBZ
型号: ADA4940-1ACP-EBZ
厂家: ADI    ADI
描述:

Ultralow Power, Low Distortion
超低功耗,低失真

文件: 总32页 (文件大小:919K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Power, Low Distortion  
Fully Differential ADC Driver  
Data Sheet  
ADA4940-1/ADA4940-2  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
Small signal bandwidth: 260 MHz  
Ultralow power 1.25mA  
Extremely low harmonic distortion  
−122 dB THD at 50 kHz  
−96 dB THD at 1 MHz  
Low input voltage noise: 3.9 nV/√Hz  
0.35 mV maximum offset voltage  
Balanced outputs  
ADA4940-1  
–IN1 1  
+FB1 2  
18 +OUT1  
17 V  
12 DISABLE  
11 –OUT  
–FB  
1
OCM1  
16 –V  
+IN 2  
–IN 3  
+V  
+V  
3
4
S2  
S2  
S1  
ADA4940-2  
–V  
15  
14  
S1  
10 +OUT  
–FB2 5  
+IN2 6  
DISABLE2  
+FB  
4
9 V  
OCM  
13 –OUT2  
Settling time to 0.1%: 34 ns  
Rail-to-rail output: −VS + 0.1 V to +VS − 0.1 V  
Adjustable output common-mode voltage  
Flexible power supplies: 3 V to 7 V (LFCSP)  
Disable pin to reduce power consumption  
ADA4940-1 is available in LFCSP and SOIC packages  
Figure 1.  
0
C
F
+D  
IN  
2.5V  
IN+ REF VDD  
–20  
–40  
–60  
–80  
R3  
R4  
+
33Ω  
+IN  
–OUT  
2.7nF  
2.7nF  
V
AD7982  
APPLICATIONS  
OCM  
ADA4940-1  
+OUT  
33Ω  
IN–  
GND  
–IN  
Low power PulSAR®/SAR ADC drivers  
Single-ended-to-differential conversion  
Differential buffers  
R1  
R2  
–D  
IN  
C
F
–100  
–120  
–140  
–160  
Line drivers  
Medical imaging  
Industrial process controls  
Portable electronics  
GENERAL DESCRIPTION  
0
20k  
40k  
60k  
80k  
100k  
FREQUENCY (Hz)  
The ADA4940-1/ADA4940-2 are low noise, low distortion fully  
differential amplifiers with very low power consumption. They  
are an ideal choice for driving low power, high resolution, high  
performance SAR and sigma-delta (Σ-Δ) analog-to-digital  
converters (ADCs) with resolutions up to 16 bits from dc to  
1 MHz on only 1.25 mA of quiescent current. The adjustable  
level of the output common-mode voltage allows the ADA4940-1/  
ADA4940-2 to match the input common-mode voltage of  
multiple ADCs. The internal common-mode feedback loop  
provides exceptional output balance, as well as suppression of  
even-order harmonic distortion products.  
Figure 2. ADA4940-1 Driving the AD7982 ADC  
The ADA4940-1 is available in a Pb-free, 3 mm × 3 mm, 16-lead  
LFCSP, and an 8-lead SOIC. The ADA4940-2 is available in a Pb-  
free, 4 mm × 4 mm, 24-lead LFCSP. The pinout is optimized to  
facilitate printed circuit board (PCB) layout and minimize  
distortion. The ADA4940-1/ADA4940-2 are specified to  
operate over the −40°C to +125°C temperature range.  
Table 1. Similar Products to the ADA4940-1/ADA4940-2  
Isupply  
(mA)  
Bandwidth  
(MHz)  
Slew Rate  
(V/µs)  
Noise  
(nV/√Hz)  
Product  
AD8137  
ADA4932-x  
ADA4941-1  
3
9
2.2  
110  
560  
31  
450  
2800  
22  
8.25  
3.6  
5.1  
With the ADA4940-1/ADA4940-2, differential gain configurations  
are easily realized with a simple external feedback network of  
four resistors determining the closed-loop gain of the amplifier.  
The ADA4940-1/ADA4940-2 are fabricated using Analog Devices,  
Inc., SiGe complementary bipolar process, enabling them to  
achieve very low levels of distortion with an input voltage noise  
of only 3.9 nV/√Hz. The low dc offset and excellent dynamic  
performance of the ADA4940-1/ADA4940-2 make them well  
suited for a variety of data acquisition and signal processing  
applications.  
Table 2. Complementary Products to the ADA4940-1/ADA4940-2  
Power  
(mW)  
Throughput  
(MSPS)  
Resolution  
(Bits)  
SNR  
(dB)  
Product  
AD7982  
AD7984  
AD7621  
AD7623  
7.0  
10.5  
65  
1
18  
18  
16  
16  
98  
96.5  
88  
1.333  
3
1.333  
45  
88  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2011–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
ADA4940-1/ADA4940-2  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications Information.............................................................. 22  
Analyzing an Application Circuit ............................................ 22  
Setting the Closed-Loop Gain .................................................. 22  
Estimating the Output Noise Voltage...................................... 22  
Impact of Mismatches in the Feedback Networks................. 23  
Calculating the Input Impedance of an Application Circuit 23  
Input Common-Mode Voltage Range..................................... 24  
Input and Output Capacitive AC Coupling............................ 25  
Setting the Output Common-Mode Voltage.......................... 25  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
VS = 5 V.......................................................................................... 3  
VS = 3 V.......................................................................................... 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
Maximum Power Dissipation ..................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ........................................... 10  
Test Circuits..................................................................................... 19  
Terminology .................................................................................... 20  
Definition of Terms.................................................................... 20  
Theory of Operation ...................................................................... 21  
DISABLE  
Pin .............................................................................. 25  
Driving a Capacitive Load......................................................... 25  
Driving a High Precision ADC ................................................ 26  
Layout, Grounding, and Bypassing.............................................. 27  
ADA4940-1 LFCSP Example.................................................... 27  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 29  
REVISION HISTORY  
3/12—Rev. A to Rev. B  
Circuit Section ................................................................................ 23  
Changes to Figure 71...................................................................... 25  
Changes to Driving a High Precision ADC Section  
and Figure 73................................................................................... 26  
Changed ADA4940-1 Example Section to ADA4940-1 LFCSP  
Example Section ............................................................................. 27  
Changes to Ordering Guide.......................................................... 29  
Reorganized Layout............................................................Universal  
Added ADA4940-1 8-Lead SOIC Package......................Universal  
Changes to Features Section, Table 1, and Figure 1; Replaced  
Figure 2 .............................................................................................. 1  
Changed VS = 2 Vꢀor +5 V) Section to VS = +5 V  
Section................................................................................................ 3  
Changes to VS = +5 V Section and Table 3.................................... 3  
Changes to Table 4 and Table 5....................................................... 4  
Changes to VS = 3 V Section and Table 6...................................... 5  
Changes to Table 7 and Table 8....................................................... 6  
Added Figure 5 and Table 12, Renumbered Sequentially ........... 9  
Changes to Figure 7, Figure 8, and Figure 9................................ 10  
Added Figure 15 and Figure 18; Changes to Figure 13,  
12/11—Rev. 0 to Rev. A  
Changes to Features Section, General Description  
Section, Table 1 ..................................................................................1  
Replaced Figure 1 and Figure 2 .......................................................1  
Changes to VS = 2.5 V ꢀor +5 V) Section and Table 3................3  
Changes to Table 6.............................................................................5  
Replaced Figure 7, Figure 8, Figure 9, and Figure 10 ...................9  
Replaced Figure 14, Figure 15, and Figure 17............................. 10  
Replaced Figure 24 and Figure 27................................................ 12  
Changes to Figure 37...................................................................... 14  
Replaced Figure 43 and Figure 46................................................ 15  
Replaced Figure 53 ......................................................................... 18  
Changes to Estimating the Output Noise Voltage Section, Table  
14, Table 15, and Calculating the Input Impedance of an  
Application Circuit Section........................................................... 21  
Changes to Input Common-Mode Voltage Range Section....... 22  
Changes to Driving a High Precision ADC Section and  
Figure 65 .......................................................................................... 24  
Figure 14, and Figure 16 ................................................................ 11  
Changes to Figure 19 and Figure 20............................................. 12  
Changes to Figure 25, Figure 26, and Figure 27; Added  
Figure 28, Figure 29, and Figure 30.............................................. 13  
Changes to Figure 31, Figure 32, Figure 33, Figure 34, Figure 35,  
and Figure 36................................................................................... 14  
Changes to Figure 37, Figure38, Figure 39, and Figure 41........ 15  
Changes to Figure 49, Figure 50, and Figure 51 ......................... 17  
Added Figure 55 and Figure 57..................................................... 18  
Changes to Differential VOS, Differential CMRR, and VOCM  
CMRR Section ................................................................................ 20  
Changes to Calculating the Input Impedance of an Application  
10/11—Revision 0: Initial Version  
Rev. B | Page 2 of 32  
 
Data Sheet  
ADA4940-1/ADA4940-2  
SPECIFICATIONS  
VS = 5 V  
VOCM = Mid Supply, RF = RG = 1 kΩ, RL, dm = 1 kΩ, TA = 25°C, LFCSP package, unless otherwise noted. TMIN to TMAX = −40°C to +125°C.  
(See Figure 61 for the definition of terms.)  
+DIN or DIN to VOUT, dm Performance  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
VOUT, dm = 0.1 V p-p, G = 1  
VOUT, dm = 0.1 V p-p, G = 2  
VOUT, dm = 0.1 V p-p, G = 5  
VOUT, dm = 2 V p-p, G = 1  
VOUT, dm = 2 V p-p, G = 2  
VOUT, dm = 2 V p-p, G = 5  
VOUT, dm = 2 V p-p, G = 1 and G = 2  
VOUT, dm = 2 V step  
260  
220  
75  
25  
22  
19  
14.5  
95  
34  
86  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
−3 dB Large Signal Bandwidth  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
Overdrive Recovery Time  
NOISE/HARMONIC PERFORMANCE  
HD2/HD3  
VOUT, dm = 2 V step  
G = 2, VIN, dm = 6 V p-p, triangle wave  
ns  
VOUT, dm = 2 V p-p, fC = 10 kHz  
VOUT, dm = 2 V p-p, fC = 50 kHz  
VOUT, dm = 2 V p-p, fC = 50 kHz, G = 2  
VOUT, dm = 2 V p-p, fC = 1 MHz  
VOUT, dm = 2 V p-p, fC = 1 MHz, G = 2  
VOUT, dm = 2 V p-p, f1 = 1.9 MHz, f2 = 2.1 MHz  
f = 100 kHz  
−125/−118  
−123/−126  
−124/−117  
−102/−96  
−100/–92  
−99  
3.9  
0.81  
−110  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
dB  
IMD3  
Input Voltage Noise  
Input Current Noise  
Crosstalk  
f = 100 kHz  
VOUT, dm = 2 V p-p, fC = 1 MHz  
INPUT CHARACTERISTICS  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Offset Current  
Input Common-Mode Voltage Range  
VIP = VIN = VOCM = 0 V  
TMIN to TMAX  
−0.35  
−1.6  
0.06  
1.2  
−1.1  
−4.5  
50  
+0.35 mV  
µV/°C  
µA  
TMIN to TMAX  
nA/°C  
nA  
−500  
+500  
−VS − 0.2 to  
+VS − 1.2  
V
Input Resistance  
Differential  
Common mode  
33  
50  
1
kΩ  
MΩ  
pF  
Input Capacitance  
Common-Mode Rejection Ratio (CMRR) ΔVOS, dm/ΔVIN, cm, ∆VIN, cm = 1 V dc  
Open-Loop Gain  
86  
91  
119  
99  
dB  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Each single-ended output  
−VS + 0.1 to  
+VS − 0.1  
−VS + 0.07 to  
+VS − 0.07  
V
Linear Output Current  
Output Balance Error  
f = 1 MHz, RL, dm = 22 Ω, SFDR = −60 dBc  
f = 1 MHz, ΔVOUT, cm/ΔVOUT, dm  
46  
−65  
mA peak  
dB  
−60  
Rev. B | Page 3 of 32  
 
 
ADA4940-1/ADA4940-2  
Data Sheet  
VOCM to VOUT, cm Performance  
Table 4.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
VOCM DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
−3 dB Large Signal Bandwidth  
Slew Rate  
Input Voltage Noise  
Gain  
VOUT, cm = 0.1 V p-p  
VOUT, cm = 1 V p-p  
VOUT, cm = 1 V p-p  
f = 100 kHz  
ΔVOUT, cm/ΔVOCM, ΔVOCM = 1 V  
36  
29  
52  
83  
1
MHz  
MHz  
V/µs  
nV/√Hz  
V/V  
0.99  
−6  
1.01  
VOCM CHARACTERISTICS  
Input Common-Mode Voltage Range  
−VS + 0.8 to  
+VS − 0.7  
250  
1
20  
+4  
100  
V
Input Resistance  
Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
CMRR  
kΩ  
VOS, cm = VOUT, cm − VOCM; VIP = VIN = VOCM = 0 V  
TMIN to TMAX  
+6  
+7  
mV  
µV/°C  
µA  
−7  
86  
ΔVOS, dm/ΔVOCM, ΔVOCM = 1 V  
dB  
General Performance  
Table 5.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
POWER SUPPLY  
Operating Range  
LFCSP  
3
7
V
SOIC  
3
6
V
Quiescent Current per Amplifier  
Quiescent Current Drift  
Enabled  
TMIN to TMAX  
Disabled  
ΔVOS, dm/ΔVS, ΔVS = 1 V p-p  
ΔVOS, dm/ΔVS, ΔVS = 1 V p-p  
1.05  
1.25  
4.25  
13.5  
90  
1.38  
mA  
µA/°C  
µA  
dB  
dB  
28.5  
+PSRR  
−PSRR  
80  
80  
96  
DISABLE (DISABLE PIN)  
DISABLE Input Voltage  
Disabled  
Enabled  
≤(−VS + 1)  
≥(−VS + 1.8)  
10  
V
V
µs  
µs  
Turn-Off Time  
Turn-On Time  
0.6  
DISABLE Pin Bias Current per Amplifier  
Enabled  
Disabled  
DISABLE = +2.5 V  
DISABLE = −2.5 V  
2
5
µA  
µA  
°C  
−10  
−40  
−5  
OPERATING TEMPERATURE RANGE  
+125  
Rev. B | Page 4 of 32  
 
Data Sheet  
ADA4940-1/ADA4940-2  
VS = 3 V  
VOCM = Mid Supply, RF = RG = 1 kΩ, RL, dm = 1 kΩ, TA = 25°C, LFCSP package, unless otherwise noted. TMIN to TMAX = −40°C to +125°C.  
(See Figure 61 for the definition of terms.)  
+DIN or DIN to VOUT, dm Performance  
Table 6.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
VOUT, dm = 0.1 V p-p  
240  
200  
70  
24  
20  
17  
14  
90  
37  
85  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
VOUT, dm = 0.1 V p-p, G = 2  
VOUT, dm = 0.1 V p-p, G = 5  
VOUT, dm = 2 V p-p  
VOUT, dm = 2 V p-p, G = 2  
VOUT, dm = 2 V p-p, G = 5  
VOUT, dm = 0.1 V p-p  
VOUT, dm = 2 V step  
VOUT, dm = 2 V step  
G = 2, VIN, dm = 3.6 V p-p, triangle wave  
−3 dB Large Signal Bandwidth  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
Overdrive Recovery Time  
NOISE/HARMONIC PERFORMANCE  
HD2/HD3  
ns  
VOUT, dm = 2 V p-p, fC = 50 kHz (HD2/HD3)  
VOUT, dm = 2 V p-p, fC = 1 MHz (HD2/HD3)  
VOUT, dm = 2 V p-p, f1 = 1.9 MHz, f2 = 2.1 MHz  
f = 100 kHz  
f = 100 kHz  
VOUT, dm = 2 V p-p, fC = 1 MHz  
−115/−121  
−104/−96  
−98  
3.9  
0.84  
dBc  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
dB  
IMD3  
Input Voltage Noise  
Input Current Noise  
Crosstalk  
−110  
INPUT CHARACTERISTICS  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Offset Current  
Input Common-Mode Voltage Range  
VIP = VIN = VOCM = 1.5 V  
TMIN to TMAX  
−0.4  
−1.6  
−500  
0.06  
1.2  
−1.1  
−4.5  
50  
+0.4  
mV  
µV/°C  
µA  
TMIN to TMAX  
nA/°C  
+500 nA  
V
−VS − 0.2 to  
+VS − 1.2  
Input Resistance  
Differential  
Common mode  
33  
50  
1
kΩ  
MΩ  
pF  
Input Capacitance  
Common-Mode Rejection Ratio (CMRR) ΔVOS, dm/ΔVIN, cm, ∆VIN, cm = 0.25 V dc  
Open-Loop Gain  
86  
91  
114  
99  
dB  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Each single-ended output  
−VS + 0.08 to  
+VS − 0.08  
−VS + 0.04 to  
+VS − 0.04  
V
Linear Output Current  
Output Balance Error  
f = 1 MHz, RL, dm = 26 Ω, SFDR = −60 dBc  
f = 1 MHz, ΔVOUT, cm/ΔVOUT, dm  
38  
−65  
mA peak  
dB  
−60  
Rev. B | Page 5 of 32  
 
ADA4940-1/ADA4940-2  
Data Sheet  
VOCM to VOUT, cm Performance  
Table 7.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
VOCM DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
−3 dB Large Signal Bandwidth  
Slew Rate  
Input Voltage Noise  
Gain  
VOUT, cm = 0.1 V p-p  
VOUT, cm = 1 V p-p  
VOUT, cm = 1 V p-p  
f = 100 kHz  
ΔVOUT, cm/ΔVOCM, ΔVOCM = 0.25 V  
36  
26  
48  
92  
1
MHz  
MHz  
V/µs  
nV/√Hz  
V/V  
0.99  
−7  
1.01  
VOCM CHARACTERISTICS  
Input Common-Mode Voltage Range  
−VS + 0.8 to  
+VS − 0.7  
250  
1
20  
+1  
100  
V
Input Resistance  
Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
CMRR  
kΩ  
VOS, cm = VOUT, cm − VOCM; VIP = VIN = VOCM = 1.5 V  
TMIN to TMAX  
+7  
+5  
mV  
µV/°C  
µA  
−5  
80  
ΔVOS,dm/ΔVOCM, ΔVOCM = 0.25 V  
dB  
General Performance  
Table 8.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
POWER SUPPLY  
Operating Range  
LFCSP  
SOIC  
Enabled  
TMIN to TMAX  
Disabled  
ΔVOS, dm/ΔVS, ΔVS = 0.25 V p-p  
ΔVOS, dm/ΔVS, ΔVS = 0.25 V p-p  
3
3
1
7
6
1.33  
V
V
Quiescent Current per Amplifier  
1.18  
4.25  
7
90  
96  
mA  
µA/°C  
µA  
dB  
dB  
22  
+PSRR  
−PSRR  
80  
80  
DISABLE (DISABLE PIN)  
DISABLE Input Voltage  
Disabled  
Enabled  
≤(−VS + 1)  
≥(−VS + 1.8)  
16  
V
V
µs  
µs  
Turn-Off Time  
Turn-On Time  
0.6  
DISABLE Pin Bias Current per Amplifier  
Enabled  
Disabled  
DISABLE = +3 V  
DISABLE = 0 V  
0.3  
−3  
1
µA  
µA  
−6  
OPERATING TEMPERATURE RANGE  
−40  
+125 °C  
Rev. B | Page 6 of 32  
 
Data Sheet  
ADA4940-1/ADA4940-2  
ABSOLUTE MAXIMUM RATINGS  
Table 9.  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
package due to the load drive for all outputs. The quiescent  
power dissipation is the voltage between the supply pins ( VS)  
times the quiescent current (IS). The load current consists of the  
differential and common-mode currents flowing to the load, as  
well as currents flowing through the external feedback networks  
and internal common-mode feedback loop. The internal  
resistor tap used in the common-mode feedback loop places a  
negligible differential load on the output. RMS voltages and  
currents should be considered when dealing with ac signals.  
Parameter  
Rating  
Supply Voltage  
VOCM  
8 V  
VS  
1.2 V  
−40°C to +125°C  
−65°C to +150°C  
300°C  
Differential Input Voltage  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Junction Temperature  
ESD  
150°C  
Field Induced Charged Device Model (FICDM)  
Human Body Model (HBM)  
1250 V  
2000 V  
Airflow reduces θJA. In addition, more metal directly in contact  
with the package leads from metal traces, through holes, ground,  
and power planes reduces the θJA.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Figure 3 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the 8-lead SOIC (θJA =  
158°C/W, single)the 16-lead LFCSP (θJA = 91.3°C/W, single) and  
24-lead LFCSP (θJA = 65.1°C /W, dual) packages on a JEDEC  
standard 4-layer board. θJA values are approximations.  
3.5  
THERMAL RESISTANCE  
3.0  
θJA is specified for the worst-case conditions, that is, θJA is  
specified for the device soldered on a circuit board in still air.  
ADA4940-2 (LFCSP)  
2.5  
Table 10.  
Package Type  
ADA4940-1 (LFCSP)  
2.0  
θJA  
Unit  
°C/W  
°C/W  
°C/W  
8-Lead SOIC (Single)/4-Layer Board  
16-Lead LFCSP (Single)/4-Layer Board  
24-Lead LFCSP (Dual)/4-Layer Board  
158  
91.3  
65.1  
1.5  
1.0  
ADA4940-1 (SOIC)  
0.5  
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation in the ADA4940-1/  
ADA4940-2 packages is limited by the associated rise in  
junction temperature (TJ) on the die. At approximately 150°C,  
which is the glass transition temperature, the plastic changes its  
properties. Even temporarily exceeding this temperature limit  
can change the stresses that the package exerts on the die,  
permanently shifting the parametric performance of the  
ADA4940-1/ADA4940-2. Exceeding a junction temperature  
of 150°C for an extended period can result in changes in the  
silicon devices, potentially causing failure.  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
Figure 3. Maximum Safe Power Dissipation vs. Ambient Temperature  
ESD CAUTION  
Rev. B | Page 7 of 32  
 
 
 
 
 
ADA4940-1/ADA4940-2  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
–IN  
1
2
3
4
8
7
6
5
+IN  
DISABLE  
–V  
V
ADA4940-1  
OCM  
12 DISABLE  
11 –OUT  
–FB  
+IN  
–IN  
1
2
3
4
+V  
S
S
+OUT  
–OUT  
10 +OUT  
ADA4940-1  
+FB  
9 V  
OCM  
NOTES  
1. CONNECT THE EXPOSED PAD TO  
–V OR GROUND.  
S
Figure 4. ADA4940-1 Pin Configuration (16-Lead LFCSP)  
Figure 5.ADA4940-1 Pin Configuration (SOIC)  
Table 11. ADA4940-1 Pin Function Descriptions (16-Lead  
LFCSP)  
Table 12. ADA4940-1 Pin Function Descriptions (8-Lead  
SOIC)  
Pin No.  
Mnemonic  
Description  
Pin No.  
Mnemonic  
Description  
1
−FB  
Negative Output for Feedback  
Component Connection.  
Positive Input Summing Node.  
Negative Input Summing Node.  
Positive Output for Feedback  
Component Connection.  
Positive Supply Voltage.  
Output Common-Mode Voltage.  
Positive Output for Load  
Connection.  
Negative Output for Load  
Connection.  
1
2
3
4
−IN  
VOCM  
+VS  
+OUT  
Negative Input Summing Node.  
Output Common-Mode Voltage.  
Positive Supply Voltage.  
Positive Output for Load  
Connection.  
Negative Output for Load  
Connection.  
Negative Supply Voltage.  
Disable Pin.  
2
3
4
+IN  
−IN  
+FB  
5
−OUT  
5 to 8  
9
10  
+VS  
VOCM  
+OUT  
6
7
8
−VS  
DISABLE  
+IN  
Positive Input Summing Node.  
11  
−OUT  
12  
DISABLE  
−VS  
Exposed  
Disable Pin.  
13 to 16  
Negative Supply Voltage.  
Connect the exposed pad to −VS or  
paddle (EPAD) ground.  
Rev. B | Page 8 of 32  
 
Data Sheet  
ADA4940-1/ADA4940-2  
–IN1  
+FB1  
1
2
3
4
5
6
18 +OUT1  
17 V  
OCM1  
16 –V  
+V  
S2  
S2  
S1  
ADA4940-2  
–V  
15  
14  
+V  
S1  
–FB2  
+IN2  
DISABLE2  
13 –OUT2  
NOTES  
1. CONNECT THE EXPOSED PAD TO  
–V OR GROUND.  
S
Figure 6. ADA4940-2 Pin Configuration (24-Lead LFCSP)  
Table 13. ADA4940-2 Pin Function Descriptions (24-Lead LFCSP)  
Pin No.  
1
2
3, 4  
5
6
7
8
9, 10  
11  
12  
Mnemonic  
−IN1  
+FB1  
+VS1  
−FB2  
+IN2  
−IN2  
+FB2  
+VS2  
Description  
Negative Input Summing Node 1.  
Positive Output Feedback Pin 1.  
Positive Supply Voltage 1.  
Negative Output Feedback Pin 2.  
Positive Input Summing Node 2.  
Negative Input Summing Node 2.  
Positive Output Feedback Pin 2.  
Positive Supply Voltage 2.  
Output Common-Mode Voltage 2.  
Positive Output 2.  
VOCM2  
+OUT2  
−OUT2  
DISABLE2  
−VS2  
13  
14  
Negative Output 2.  
Disable Pin 2.  
15, 16  
17  
18  
19  
20  
Negative Supply Voltage 2.  
Output Common-Mode Voltage 1.  
Positive Output 1.  
Negative Output 1.  
Disable Pin 1.  
VOCM1  
+OUT1  
−OUT1  
DISABLE1  
−VS1  
−FB1  
+IN1  
21, 22  
23  
24  
Negative Supply Voltage 1.  
Negative Output Feedback Pin 1.  
Positive Input Summing Node 1.  
Connect the exposed pad to −VS or ground.  
Exposed paddle (EPAD)  
Rev. B | Page 9 of 32  
ADA4940-1/ADA4940-2  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = 2.5 V, G = 1, RF = RG = 1 kΩ, RT = 52.3 Ω (when used), RL = 1 kΩ, unless otherwise noted. See Figure 59 and Figure 60 for the  
test circuits.  
3
2
3
2
G = 1, R = 1kΩ  
L
1
1
G = 2, R = 1kΩ  
L
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
G = 1, R = 200Ω  
L
G = 2, R = 1kΩ  
L
G = 2, R = 200Ω  
L
G = 2, R = 200Ω  
L
G = 1, R = 200Ω  
L
G = 1, R = 1kΩ  
L
V
= 0.1V p-p  
1
OUT, dm  
V
= 2V p-p  
OUT  
–9  
0.1  
–9  
0.1  
1
10  
100  
1000  
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 10. Large Signal Frequency Response for Various Gains and Loads  
Figure 7. Small Signal Frequency Response for Various Gains and Loads  
(LFCSP)  
3
2
3
V
= ±3.5V  
S
2
1
1
0
V
= ±3.5V  
S
0
V
= ±2.5V  
S
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
V
= ±2.5V  
S
V
= ±1.5V  
S
V
= ±1.5V  
S
V
= 0.1V p-p  
1
V
= 2V p-p  
OUT, dm  
OUT  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
10  
FREQUENCY (MHz)  
100  
1000  
Figure 11. Large Signal Frequency Response for Various Supplies  
Figure 8. Small Signal Frequency Response for Various Supplies (LFCSP)  
3
2
1
3
2
–40°C  
1
0
0
–40°C  
–1  
–1  
+25°C  
+25°C  
–2  
–2  
+125°C  
–3  
–3  
+125°C  
–4  
–4  
–5  
–6  
–7  
–8  
–5  
–6  
–7  
–8  
V
= 2V p-p  
OUT, dm  
V
= 0.1V p-p  
OUT, dm  
–9  
–9  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. Small Signal Frequency Response for Various Temperatures (LFCSP)  
Figure 12. Large Signal Frequency Response for Various Temperatures  
Rev. B | Page 10 of 32  
 
Data Sheet  
ADA4940-1/ADA4940-2  
4
3
3
2
SOIC-1  
LFCSP-1  
LFCSP-1  
LFCSP-2: CH1  
LFCSP-2: CH2  
SOIC-1  
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
LFCSP-2: CH2  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
LFCSP-2:CH1  
–8  
V
= 0.1V p-p  
1
OUT, dm  
V
= 2V p-p  
OUT  
–9  
0.1  
–9  
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 13. Small Signal Frequency Response for Various Packages  
Figure 16. Large Signal Frequency Response for Various Packages  
3
3
V
V
V
= –1V  
= 0V  
= +1V  
OCM  
OCM  
OCM  
2
1
V
= 0V  
2
1
OCM  
V
0
0
= –1V  
OCM  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
V
= +1V  
OCM  
V
= 0.1V p-p  
1
V
= 2V p-p  
1
OUT, dm  
OUT, dm  
0.1  
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
10  
100  
1000  
FREQUENCY (MHz)  
Figure 14. Small Signal Frequency Response at Various VOCM Levels (LFCSP)  
Figure 17. Large Signal Frequency Response at Various VOCM Levels  
4
4
SOIC: R = 1kΩ  
V
= 0V  
L
OCM  
3
2
3
SOIC: R = 200Ω  
L
2
1
1
0
0
LFCSP: R = 1kΩ  
L
V
= –1V  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
OCM  
V
= +1V  
LFCSP: R = 200Ω  
OCM  
L
V
= 0.1V p-p  
1
V
= 0.1V p-p  
1
OUT, dm  
OUT, dm  
0.1  
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
10  
100  
1000  
FREQUENCY (MHz)  
Figure 15. Small Signal Frequency Response for Various VOCM (SOIC)  
Figure 18. Small Signal Frequency Response for Various Packages and Loads  
Rev. B | Page 11 of 32  
ADA4940-1/ADA4940-2  
Data Sheet  
4
4
3
C
= C  
= 2pF  
COM1  
COM2  
C
C
C
C
= C  
= C  
= C  
= C  
= 0pF  
= 0.5pF  
= 1pF  
= 2pF  
COM1  
COM1  
COM1  
COM1  
COM2  
COM2  
COM2  
COM2  
3
2
2
1
1
0
0
C
= C  
COM2  
= 1pF  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
COM1  
C
= C  
= 0.5pF  
= 0pF  
COM2  
COM1  
COM2  
C
= C  
COM1  
C
V
= 0pF  
C
V
= 0pF  
= 2V p-p  
DIFF  
DIFF  
= 0.1V p-p  
OUT  
OUT  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 19. Small Signal Frequency Response for Various Capacitive Loads  
(LFCSP)  
Figure 22. Large Signal Frequency Response for Various Capacitive Loads  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
G = 1, R = 1kΩ  
L
–0.05  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
G = 2, R = 200Ω  
L
G = 2, R = 200Ω  
L
–0.10  
–0.15  
–0.20  
–0.25  
G = 2, R = 1kΩ  
L
G = 2, R = 1kΩ  
L
G = 1, R = 200Ω  
L
G = 1, R = 200Ω  
L
G = 1, R = 1kΩ  
V
= 0.1V p-p  
1
L
V
= 2V p-p  
1
OUT, dm  
OUT, dm  
0.1  
10  
100  
1000  
0.1  
10  
FREQUENCY (MHz)  
100  
1000  
FREQUENCY (MHz)  
Figure 20. 0.1 dB Flatness Small Signal Frequency Response for  
Various Gains and Loads (LFCSP)  
Figure 23. 0.1 dB Flatness Large Signal Frequency Response for  
Various Gains and Loads  
3
2
1
0
3
2
1
0
V
= ±2.5V  
S
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
V = ±2.5V  
S
V
= ±1.5V  
S
V
= ±1.5V  
S
V
= 1V p-p  
V
= 0.1V p-p  
OUT, dm  
OUT, dm  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 24. VOCM Large Signal Frequency Response for Various Supplies  
Figure 21. VOCM Small Signal Frequency Response for Various Supplies  
Rev. B | Page 12 of 32  
Data Sheet  
ADA4940-1/ADA4940-2  
–20  
–20  
–30  
V
= 2V p-p  
OUT, dm  
V
= 2V p-p  
OUT, dm  
–30  
–40  
HD3, G = 2  
HD3, G = 1  
–40  
–50  
–50  
–60  
–60  
HD3, G = 2  
HD3, G = 1  
HD2, G = 2  
–70  
–70  
–80  
–80  
HD2, G = 2  
HD2, G = 1  
–90  
–90  
HD2, G = 1  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 25. Harmonic Distortion vs. Frequency for Various Gains (LFCSP)  
Figure 28. Harmonic Distortion vs. Frequency vs. Gain (SOIC)  
–20  
–20  
V
= 2V p-p  
V
= 2V p-p  
OUT, dm  
OUT, dm  
–30  
–40  
–30  
–40  
–50  
–50  
HD3, R = 200  
L
–60  
–60  
HD3, R = 200  
L
–70  
–70  
HD3, R = 1kΩ  
L
–80  
–80  
HD2, R = 200ꢀ  
L
–90  
–90  
HD2, R = 1kꢀ  
L
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
HD2, R = 1kΩ  
L
HD2, R = 200Ω  
L
HD3, R = 1kꢀ  
L
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 29. Harmonic Distortion vs. Frequency for Various Loads (SOIC)  
Figure 26. Harmonic Distortion vs. Frequency for Various Loads (LFCSP)  
–20  
–20  
V
= 2V p-p  
OUT, dm  
V
= 2V p-p  
OUT, dm  
–30  
–40  
–30  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
HD2, V = ±3.5V  
S
–90  
–90  
HD3, V = ±1.5V  
S
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
HD2, ±2.5V  
HD2, V = ±1.5V  
S
HD2, ±1.5V  
HD3, V = ±3.5V  
S
HD2, V = ±2.5V  
S
HD3, V = ±2.5V  
HD3, ±2.5V  
HD3, ±1.5V  
0.01  
S
0.01  
0.1  
1
10  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 27. Harmonic Distortion vs. Frequency for Various Supplies (LFCSP)  
Figure 30. Harmonic Distortion vs. Frequency for Various Supplies (SOIC)  
Rev. B | Page 13 of 32  
ADA4940-1/ADA4940-2  
Data Sheet  
–20  
–20  
–30  
f = 1MHz  
V
= ±1.5V HD2  
S
V
= 2V p-p  
OUT, dm  
–30  
–40  
V
= ±1.5V HD3  
S
–40  
–50  
–50  
V
= +3V, 0V HD3  
= +3V, 0V HD2  
–60  
S
–60  
–70  
V
S
–70  
–80  
V
= ±3.5V HD2  
S
V
= ±2.5V HD2  
–80  
S
–90  
SOIC: R = 200  
L
–90  
–100  
–110  
–120  
–130  
–140  
SOIC: R = 1kΩ  
V
= ±3.5V HD3  
= ±2.5V HD3  
L
S
–100  
–110  
–120  
–130  
V
S
LFCSP: R = 1kΩ  
L
LFCSP: R = 200Ω  
L
0
1
2
3
4
5
6
7
8
9
10  
0.01  
0.1  
1
10  
FREQUENCY (MHz)  
V
(V p-p)  
OUT, dm  
Figure 31. Spurious-Free Dynamic Range vs. Frequency at  
RL = 200 Ω and RL = 1kΩ  
Figure 34. Harmonic Distortion vs. VOUT, dm for Various Supplies, f = 1 MHz  
(LFCSP)  
–20  
–30  
–20  
+V = +3V, –V = 0V  
V
= 2V p-p  
S
S
OUT, dm  
–30  
–40  
V
= 2V p-p  
OUT, dm  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
HD3 AT 1MHz  
–80  
–80  
HD2 AT 1MHz  
–90  
HD2 AT 1MHz  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
HD3 AT 1MHz  
–100  
–110  
–120  
–130  
–140  
HD2 AT 100kHz  
HD3 AT 100kHz  
HD2 AT 100kHz  
HD3 AT 100kHz  
1.0 1.5 2.0  
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
V
(V)  
V
(V)  
OCM  
OCM  
Figure 32. Harmonic Distortion vs. VOCM for 100 kHz and 1 MHz,  
2.5 V Supplies (LFCSP)  
Figure 35. Harmonic Distortion vs. VOCM for 100 kHz and 1 MHz, 3 V Supply  
(LFCSP)  
–20  
–20  
V
= 2V p-p  
OUT, dm  
–30  
–40  
–30  
–40  
HD3 AT V  
HD2 AT V  
HD3 AT V  
= 8V p-p  
= 8V p-p  
= 4V p-p  
OUT, dm  
OUT, dm  
OUT, dm  
–50  
–50  
–60  
–60  
HD2 AT V  
OUT, dm  
= 4V p-p  
–70  
–70  
HD3, R = R = 499  
F
G
HD2 AT V  
OUT, dm  
= 2V p-p  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
HD2, R = R = 499Ω  
F G  
HD3 AT V  
OUT, dm  
= 2V p-p  
–100  
–110  
–120  
–130  
HD3, R = R = 1kΩ  
F
G
HD2, R = R = 1kΩ  
F
G
0.01  
0.1  
1
FREQUENCY (MHz)  
10  
0.01  
0.1  
1
10  
FREQUENCY (MHz)  
Figure 36. Harmonic Distortion vs. Frequency for Various RF and RG (LFCSP)  
Figure 33. Harmonic Distortion vs. Frequency for Various VOUT, dm (LFCSP)  
Rev. B | Page 14 of 32  
Data Sheet  
ADA4940-1/ADA4940-2  
10  
–60  
–70  
V
= 2V p-p  
OUT, dm  
(ENVELOPE)  
V
= 2V p-p  
OUT, dm  
0
–10  
–20  
–80  
–30  
CHANNEL 1 TO CHANNEL 2  
–40  
–90  
–50  
–60  
–100  
–110  
–120  
–130  
–70  
–80  
–90  
CHANNEL 2 TO CHANNEL 1  
–100  
–110  
–120  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 37. 2 MHz Intermodulation Distortion (LFCSP)  
Figure 40. Crosstalk vs. Frequency, ADA4940-2  
130  
120  
110  
100  
90  
120  
110  
100  
90  
LFCSP  
SOIC  
–PSRR  
+PSRR  
80  
70  
80  
60  
70  
50  
60  
40  
50  
30  
40  
0.1  
20  
0.1  
1
10  
100  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 38. CMRR vs. Frequency  
Figure 41. PSRR vs. Frequency  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
100  
0
V
= 2V p-p  
OUT, dm  
–15  
90  
80  
–30  
–45  
70  
–60  
60  
50  
–75  
40  
–90  
30  
–105  
–120  
–135  
–150  
–165  
–180  
–195  
–210  
20  
10  
0
–10  
–20  
–30  
–40  
0.1  
1
10  
100  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 39. Output Balance vs. Frequency  
Figure 42. Open-Loop Gain and Phase vs. Frequency  
Rev. B | Page 15 of 32  
ADA4940-1/ADA4940-2  
Data Sheet  
8
2.0  
1.6  
0.5  
G = +2  
0.4  
6
V
1.2  
0.3  
OUT, dm  
INPUT  
4
2
0.8  
0.2  
OUTPUT  
2 × V  
IN  
0.4  
0.1  
%ERROR  
0
0
0
–0.4  
–0.8  
–1.2  
–1.6  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–2  
–4  
–6  
V
= 2V p-p  
20  
OUT, dm  
10  
–8  
–2.0  
0
100 200 300 400 500 600 700 800 900 1000  
0
30  
40  
TIME (ns)  
50  
60  
70  
80  
TIME (ns)  
Figure 43. Output Overdrive Recovery, G = 2  
Figure 46. 0.1% Settling Time  
100  
100  
10  
10  
1
0.1  
1
10  
0.01  
100  
1k  
10k  
100k  
1M  
10M  
0.1  
1
10  
100  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 44. Voltage Noise Spectral Density, Referred to Input  
Figure 47. Closed-Loop Output Impedance Magnitude vs. Frequency, G = 1  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
0
0V  
+2.5V  
R1  
R2  
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
–1.50  
–1.75  
–2.00  
–2.25  
–2.50  
–2.75  
–2.5V  
–0.25  
DISABLE  
–OUT  
–FB  
–OUT, V  
= 1V  
ICM  
+IN  
DISABLE  
–0.50  
–0.75  
–1.00  
–1.25  
–1.50  
–1.75  
–2.00  
–2.25  
–2.50  
–2.75  
V
OCM  
0.1µF  
+OUT  
V
ICM  
0V  
+2.5V  
–IN  
R1  
R2  
+FB  
–2.5V  
DISABLE  
–OUT  
R1  
R2  
–FB  
VOCM  
+FB  
–2.5V  
+IN  
DISABLE  
0.1µF  
+OUT  
–2.5V  
VICM  
–IN  
–0.25  
–0.50  
–0.75  
–1.00  
–OUT, V  
= 1V  
ICM  
R1  
R2  
+OUT, V  
= 1V  
+OUT, V  
= 1V  
40  
ICM  
ICM  
–1.25  
–0.25  
0
10  
20  
30  
50  
60  
70  
80  
90  
100  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
TIME (µs)  
TIME (µs)  
DISABLE  
Figure 45.  
Pin Turn-Off Time  
DISABLE  
Figure 48.  
Pin Turn-On Time  
Rev. B | Page 16 of 32  
Data Sheet  
ADA4940-1/ADA4940-2  
100  
80  
1.5  
1.0  
G = 1, R = 200Ω  
L
G = 2, R = 200Ω  
L
60  
40  
0.5  
G = 2, R = 1kΩ  
L
20  
G = 1, R = 1kΩ  
L
0
0
–20  
–40  
–60  
–80  
–0.5  
–1.0  
–1.5  
G = 1, R = 1kΩ  
L
G = 1, R = 200Ω  
L
G = 2, R = 1kΩ  
L
G = 2, R = 200Ω  
L
V
= 0.1V p-p  
V
= 2V p-p  
OUT, dm  
OUT, dm  
–100  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
TIME (ns)  
0
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300  
TIME (ns)  
Figure 49. Small Signal Transient Response for Various Gains and Loads  
(LFCSP)  
Figure 52. Large Signal Transient Response for Various Gains and Loads  
100  
80  
1.5  
V
= ±1.5V  
S
V
= ±3.5V  
S
V
= ±1.5V  
S
1.0  
0.5  
60  
40  
V
= ±2.5V  
S
V
= ±2.5V  
S
20  
0
0
–20  
–40  
–60  
–80  
–100  
–0.5  
–1.0  
–1.5  
V
= ±3.5V  
S
V
= 0.1V  
V
= 2V p-p  
OUT, dm  
OUT, dm  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
TIME (ns)  
0
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300  
TIME (ns)  
Figure 50. Small Signal Transient Response for Various Supplies (LFCSP)  
Figure 53. Large Signal Transient Response for Various Supplies  
100  
80  
60  
40  
20  
0
1.5  
1.0  
0.5  
0
C
C
C
C
= C  
= C  
= C  
= C  
= 0pF  
= 0.5pF  
= 1pF  
= 2pF  
C
C
C
C
= C  
= C  
= C  
= C  
= 0pF  
= 0.5pF  
= 1pF  
= 2pF  
COM1  
COM1  
COM1  
COM1  
COM2  
COM2  
COM2  
COM2  
COM1  
COM1  
COM1  
COM1  
COM2  
COM2  
COM2  
COM2  
–20  
–40  
–0.5  
–1.0  
–1.5  
–60  
C
= 0pF  
= 0.1V p-p  
C
= 0pF  
DIFF  
–80  
DIFF  
V
V
= 2V p-p  
OUT, dm  
OUT, dm  
–100  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
TIME (ns)  
0
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300  
TIME (ns)  
Figure 51. Small Signal Transient Response for Various Capacitive Loads  
(LFCSP)  
Figure 54. Large Signal Transient Response for Various Capacitive Loads  
Rev. B | Page 17 of 32  
ADA4940-1/ADA4940-2  
Data Sheet  
100  
80  
100  
80  
LFCSP-1  
LFCSP-1  
LFCSP-2: CH1  
LFCSP-2: CH2  
SOIC-1  
LFCSP-2: CH1  
LFCSP-2: CH2  
SOIC-1  
60  
60  
40  
40  
20  
20  
0
0
–20  
–40  
–60  
–80  
–20  
–40  
–60  
–80  
–100  
V
= 0.1V p-p  
V
= 0.1V p-p  
OUT, dm  
OUT, dm  
–100  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
TIME (ns)  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
TIME (ns)  
Figure 55. Small Signal Transient Response for Various Packages, CL = 0 pF  
Figure 57. Small Signal Transient Response for Various Packages, CL = 2 pF  
100  
80  
1.00  
0.75  
0.50  
0.25  
0
V
= ±2.5V  
V
= ±2.5V  
S
S
60  
40  
V
= ±1.5V  
S
V
= ±1.5V  
20  
S
0
–20  
–40  
–60  
–80  
–100  
–0.25  
–0.50  
–0.75  
–1.00  
V
= 0.1V p-p  
V
= 1V p-p  
OUT, dm  
OUT, dm  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
TIME (ns)  
0
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300  
TIME (ns)  
Figure 56. VOCM Small Signal Transient Response  
Figure 58. VOCM Large Signal Transient Response  
Rev. B | Page 18 of 32  
Data Sheet  
ADA4940-1/ADA4940-2  
TEST CIRCUITS  
1kΩ  
+2.5V  
NETWORK  
ANALYZER  
OUTPUT  
NETWORK  
ANALYZER  
INPUT  
50Ω  
1kΩ  
475Ω  
54.9Ω  
54.9Ω  
475Ω  
50Ω  
52.3Ω  
25.5Ω  
V
ADA4940-1/  
ADA4940-2  
V
IN  
OCM  
1kΩ  
50Ω  
–2.5V  
1kΩ  
Figure 59. Equivalent Basic Test Circuit  
1kΩ  
DC-COUPLED  
GENERATOR  
+2.5V  
100Ω  
50Ω  
50Ω  
1kΩ  
475Ω  
475Ω  
HP  
2:1  
DUAL  
FILTER  
LOW-PASS  
FILTER  
LP  
54.9Ω  
54.9Ω  
CT  
ADA4940-1/  
ADA4940-2  
V
V
IN  
OCM  
52.3Ω  
1kΩ  
25.5Ω  
–2.5V  
1kΩ  
Figure 60. Test Circuit for Distortion Measurements  
Rev. B | Page 19 of 32  
 
 
 
ADA4940-1/ADA4940-2  
Data Sheet  
TERMINOLOGY  
DEFINITION OF TERMS  
–FB  
Common-Mode Offset Voltage  
The common-mode offset voltage is defined as the difference  
between the voltage applied to the VOCM terminal and the  
common mode of the output voltage.  
R
F
R
G
+IN  
+D  
IN  
VOS, cm = VOUT, cm VOCM  
–OUT  
+OUT  
+
R
Differential VOS, Differential CMRR, and VOCM CMRR  
ADA4840-1/  
ADA4940-2  
L, dm  
+V  
OCM  
V
OUT, dm  
The differential mode and common-mode voltages each have  
their own error sources. The differential offset (VOS, dm) is the  
voltage error between the +IN and −IN terminals of the amplifier.  
Differential CMRR reflects the change of VOS, dm in response to  
changes to the common-mode voltage at the input terminals  
+DIN and −DIN.  
R
G
–IN  
–D  
IN  
R
F
+FB  
Figure 61. Circuit Definitions  
Differential Voltage  
ΔVIN,cm  
CMRRDIFF  
=
Differential voltage refers to the difference between two node  
voltages. For example, the differential output voltage (or  
equivalently, output differential mode voltage) is defined as  
ΔVOS,dm  
V
OCM CMRR reflects the change of VOS, dm in response to  
changes to the common-mode voltage at the output terminals.  
VOUT, dm = (V+OUT V−OUT)  
ΔVOCM  
CMRRV  
=
where V+OUT and V−OUT refer to the voltages at the +OUT and  
−OUT terminals with respect to a common reference.  
OCM  
ΔVOS,dm  
Balance  
Similarly, the differential input voltage is defined as  
Balance is a measure of how well the differential signals are  
matched in amplitude; the differential signals are exactly 180°  
apart in phase. By this definition, the output balance is the  
magnitude of the output common-mode voltage divided by  
the magnitude of the output differential mode voltage.  
V
IN, dm = (+DIN − (−DIN))  
Common-Mode Voltage (CMV)  
CMV refers to the average of two node voltages. The output  
common-mode voltage is defined as  
V
OUT, cm = (V+OUT + V−OUT)/2  
Similarly, the input common-mode voltage is defined as  
IN, cm = (+DIN + (−DIN))/2  
VOUT, cm  
Output Balance Error =  
VOUT, dm  
V
Rev. B | Page 20 of 32  
 
 
 
Data Sheet  
ADA4940-1/ADA4940-2  
THEORY OF OPERATION  
The differential feedback loop forces the voltages at +IN and −IN  
to equal each other. This fact sets the following relationships:  
The ADA4940-1/ADA4940-2 are high speed, low power  
differential amplifiers fabricated on Analog Devices advanced  
dielectrically isolated SiGe bipolar process. They provide two  
closely balanced differential outputs in response to either  
differential or single-ended input signals. An external feedback  
network that is similar to a voltage feedback operational  
amplifier sets the differential gain. The output common-mode  
voltage is independent of the input common-mode voltage and  
is set by an external voltage at the VOCM terminal. The PNP  
input stage allows input common-mode voltages between the  
negative supply and 1.2 V below the positive supply. A rail-to-  
rail output stage supplies a wide output voltage range.  
VOUT  
RF  
+DIN  
RG  
= −  
= −  
V+OUT  
RF  
DIN  
RG  
Subtracting the previous equations gives the relationship that  
shows RF and RG setting the differential gain.  
RF  
RG  
(V+OUT V−OUT) = (+DIN – (−DIN)) ×  
DISABLE  
the amplifier to 13.5 µA.  
The  
pin can be used to reduce the supply current of  
The common-mode feedback loop drives the output common-  
mode voltage that is sampled at the midpoint of the output  
voltage divider to equal the voltage at VOCM. This results in the  
following relationships:  
Figure 62 shows the ADA4940-1/ADA4940-2 architecture.  
The differential feedback loop consists of the differential trans-  
conductance GDIFF working through the GO output buffers and  
the RF/RG feedback networks. The common-mode feedback  
loop is set up with a voltage divider across the two differential  
outputs to create an output voltage midpoint and a common-  
VOUT,dm  
V+OUT = VOCM  
+
2
VOUT,dm  
2
V−OUT = VOCM  
mode transconductance, GCM  
.
Note that the differential amplifiers summing junction input  
voltages, +IN and −IN, are set by both the output voltages and  
the input voltages.  
R
R
F
G
+D  
IN  
C
C
RF  
RF + RG  
RG  
RF + RG  
V+IN = +DIN  
VIN = −DIN  
+VOUT  
+V+OUT  
G
–OUT  
O
RF  
RF + RG  
RG  
RF + RG  
+IN  
–IN  
G
G
CM  
DIFF  
V
OCM  
V
REF  
G
+OUT  
O
R
C
G
C
–D  
IN  
R
F
Figure 62. ADA4940-1/ADA4940-2 Architectural Block  
Rev. B | Page 21 of 32  
 
 
ADA4940-1/ADA4940-2  
Data Sheet  
APPLICATIONS INFORMATION  
ANALYZING AN APPLICATION CIRCUIT  
V
V
nRF1  
nRG1  
R
R
F1  
G1  
The ADA4940-1/ADA4940-2 use open-loop gain and negative  
feedback to force their differential and common-mode output  
voltages in such a way as to minimize the differential and common-  
mode error voltages. The differential error voltage is defined as  
the voltage between the differential inputs labeled +IN and −IN (see  
Figure 61). For most purposes, this voltage can be assumed to be  
zero. Similarly, the difference between the actual output common-  
mode voltage and the voltage applied to VOCM can also be assumed  
to be zero. Starting from these two assumptions, any application  
circuit can be analyzed.  
inIN+  
+
V
ADA4940-1/  
ADA4940-2  
nIN  
V
nOD  
inIN–  
V
OCM  
V
nCM  
R
R
F2  
G2  
V
V
nRG2  
nRF2  
Figure 63. ADA4940-1/ADA4940-2 Noise Model  
As with conventional op amp, the output noise voltage densities  
can be estimated by multiplying the input-referred terms at +IN  
and −IN by the appropriate output factor,  
SETTING THE CLOSED-LOOP GAIN  
The differential mode gain of the circuit in Figure 61 can be  
determined by  
where:  
2
VOUT, dm  
RF  
RG  
=
GN =  
is the circuit noise gain.  
VIN, dm  
(
β1 + β2  
RG1  
)
RG2  
This assumes that the input resistors (RG) and feedback resistors  
(RF) on each side are equal.  
β1 =  
and β2 =  
are the feedback factors.  
RF1 + RG1  
RF2 + RG2  
When RF1/RG1 = RF2/RG2, then β1 = β2 = β, and the noise gain  
becomes  
ESTIMATING THE OUTPUT NOISE VOLTAGE  
The differential output noise of the ADA4940-1/ADA4940-2 can  
be estimated using the noise model in Figure 63. The input-referred  
noise voltage density, vnIN, is modeled as a differential input, and  
the noise currents, inIN− and inIN+, appear between each input and  
ground. The noise currents are assumed to be equal and produce  
a voltage across the parallel combination of the gain and feedback  
resistances. vnCM is the noise voltage density at the VOCM pin. Each  
of the four resistors contributes (4kTRx)1/2. Table 14 summarizes  
the input noise sources, the multiplication factors, and the  
output-referred noise density terms. For more noise calculation  
information, go to the Analog Devices Differential Amplifier  
Calculator (DiffAmpCalc™), click ADIDiffAmpCalculator.zip  
and follow the on-screen prompts.  
1
β
RF  
RG  
GN  
=
=1+  
Note that the output noise from VOCM goes to zero in this case.  
The total differential output noise density, vnOD, is the root-sum-  
square of the individual output noise terms.  
8
vnOD  
=
v2  
nOi  
i=1  
Table 14. Output Noise Voltage Density Calculations  
Input Noise  
Voltage Density  
Output  
Multiplication Factor  
Output-Referred Noise  
Voltage Density Term  
Input Noise Contribution  
Differential Input  
Inverting Input  
Noninverting Input  
VOCM Input  
Gain Resistor RG1  
Gain Resistor RG2  
Feedback Resistor RF1  
Feedback Resistor RF2  
Input Noise Term  
vnIN  
inIN−  
inIN+  
vnCM  
vnRG1  
vnRG2  
vnRF1  
vnRF2  
vnIN  
GN  
GN  
GN  
vnO1 = GN (vnIN)  
vnO2 = GN [inIN− × (RG2||RF2)]  
vnO3 = GN [inIN+ × (RG1||RF1)]  
inIN− × (RG2||RF2)  
inIN+ × (RG1||RF1)  
vnCM  
(4kTRG1)1/2  
(4kTRG2)1/2  
(4kTRF1)1/2  
(4kTRF2)1/2  
GN 1 − β2)  
GN (1 − β2)  
GN (1 − β1)  
1
1
vnO4 = GN 1 − β2)(vnCM)  
vnO5 = GN (1 − β2)(4kTRG1)1/2  
vnO6 = GN (1 − β1)(4kTRG2)1/2  
vnO7 = (4kTRF1)1/2  
vnO8 = (4kTRF2)1/2  
Rev. B | Page 22 of 32  
 
 
 
 
 
 
Data Sheet  
ADA4940-1/ADA4940-2  
Table 15 and Table 16 list several common gain settings, recommended resistor values, input impedances, and output noise density for both  
balanced and unbalanced input configurations.  
Table 15. Differential Ground-Referenced Input, DC-Coupled, RL = 1 kΩ (See Figure 64)  
Nominal Gain (dB)  
RF (Ω)  
1000  
1000  
1000  
1000  
RG (Ω) RIN, dm (Ω) Differential Output Noise Density (nV/√Hz)  
RTI (nV/√Hz)  
0
1000  
500  
318  
196  
2000  
1000  
636  
11.3  
15.4  
20.0  
27.7  
11.3  
7.7  
6
10  
14  
6.8  
392  
5.5  
Table 16. Single-Ended Ground-Referenced Input, DC-Coupled, RS = 50 Ω, RL = 1 kΩ (See Figure 65)  
Nominal Gain (dB) RF (Ω)  
RG (Ω) RT (Ω)  
RIN, se (Ω)  
1333  
750  
512  
337  
RG1 (Ω)1  
1025  
526  
344  
223  
Differential Output Noise Density (nV/√Hz)  
RTI (nV/√Hz)  
0
1000  
1000  
1000  
1000  
1000  
500  
318  
196  
52.3  
53.6  
54.9  
59.0  
11.2  
15.0  
19.0  
25.3  
11.2  
7.5  
6.3  
5
6
10  
14  
1 RG1 = RG + (RS||RT)  
For an unbalanced, single-ended input signal (see Figure 65),  
the input impedance is  
IMPACT OF MISMATCHES IN THE FEEDBACK  
NETWORKS  
Even if the external feedback networks (RF/RG) are mismatched,  
the internal common-mode feedback loop still forces the outputs  
to remain balanced. The amplitudes of the signals at each output  
remain equal and 180° out of phase. The input-to-output,  
differential mode gain varies proportionately to the feedback  
mismatch, but the output balance is unaffected.  
RG  
RF  
RG + RF  
RIN, se  
=
1−  
2×  
(
)
R
F
+V  
S
As well as causing a noise contribution from VOCM, ratio-matching  
errors in the external resistors result in a degradation of the ability  
of the circuit to reject input common-mode signals, much the  
same as for a four resistors difference amplifier made from a  
conventional op amp.  
R
R
G
+IN  
+D  
–D  
IN  
V
OCM  
ADA4940-1/  
ADA4940-2  
V
OUT, dm  
IN  
–IN  
G
R
F
In addition, if the dc levels of the input and output common-  
mode voltages are different, matching errors result in a small  
differential mode, output offset voltage. When G = 1, with a  
ground-referenced input signal and the output common-mode  
level set to 2.5 V, an output offset of as much as 25 mV (1% of  
the difference in common-mode levels) can result if 1% tolerance  
resistors are used. Resistors of 1% tolerance result in a worst-  
case input CMRR of about 40 dB, a worst-case differential mode  
output offset of 25 mV due to the 2.5 V level-shift, and no  
significant degradation in output balance error.  
Figure 64. ADA4940-1/ADA4940-2 Configured for Balanced (Differential) Inputs  
R
F
+V  
S
R
R
G
S
+IN  
R
V
OCM  
T
ADA4940-1/  
ADA4940-2  
V
OUT, dm  
R
G
–IN  
R
R
T
S
R
F
CALCULATING THE INPUT IMPEDANCE OF AN  
APPLICATION CIRCUIT  
Figure 65. ADA4940-1/ADA4940-2Configured for Unbalanced (Single-Ended) Input  
The input impedance of the circuit is effectively higher than it  
would be for a conventional op amp connected as an inverter  
because a fraction of the differential output voltage appears at  
the inputs as a common-mode signal, partially bootstrapping  
The effective input impedance of a circuit depends on whether  
the amplifier is being driven by a single-ended or differential  
signal source. For balanced differential input signals, as shown  
in Figure 64, the input impedance (RIN, dm) between the inputs  
(+DIN and −DIN) is simply RIN, dm = 2 × RG.  
the voltage across the input resistor RG1  
.
Rev. B | Page 23 of 32  
 
 
 
 
 
 
ADA4940-1/ADA4940-2  
Data Sheet  
R
R
S
TH  
Terminating a Single-Ended Input  
50Ω  
R
52.3Ω  
25.5Ω  
T
V
V
This section describes how to properly terminate a single-ended  
input to the ADA4940-1/ADA4940-2 with a gain of 1, RF = 1 kΩ  
and RG = 1 kΩ. An example using an input source with a terminated  
output voltage of 1 V p-p and source resistance of 50 Ω illustrates  
the three steps that must be followed. Because the terminated  
output voltage of the source is 1 V p-p, the open-circuit output  
voltage of the source is 2 V p-p. The source shown in Figure 66  
indicates this open-circuit voltage.  
S
TH  
1.02V p-p  
2V p-p  
Figure 68. Calculating the Thevenin Equivalent  
RTS = RTH = RS||RT = 25.5 Ω. Note that VTH is greater than  
1 V p-p, which was obtained with RT = 50 Ω. The modified  
circuit with the Thevenin equivalent (closest 1% value used for  
RTH) of the terminated source and RTS in the lower feedback  
loop is shown in Figure 69.  
R
F
1kΩ  
+V  
R
R
F
IN, se  
1.33kΩ  
S
1kΩ  
+V  
R
R
S
S
G
50Ω  
1kΩ  
R
R
TH  
G
V
S
ADA4940-1  
ADA4940-2  
V
OCM  
R
V
OUT, dm  
2V p-p  
25.5Ω  
1kΩ  
L
V
TH  
1.02V p-p  
ADA4940-1  
ADA4940-2  
R
G
V
OCM  
V
OUT, dm  
R
L
1kΩ  
R
G
1kΩ  
R
TS  
25.5Ω  
–V  
S
R
F
–V  
S
1kΩ  
R
F
Figure 66. Calculating Single-Ended Input Impedance, RIN  
1kΩ  
1. The input impedance is calculated by  
Figure 69. Thevenin Equivalent and Matched Gain Resistors  
Figure 69 presents a tractable circuit with matched feedback  
loops that can be easily evaluated.  
RG  
RF  
2×(RG + RF )  
1000  
1000  
RIN, se  
=
=
= 1.33 kΩ  
It is useful to point out two effects that occur with a terminated  
input. The first is that the value of RG is increased in both loops,  
lowering the overall closed-loop gain. The second is that VTH  
is a little larger than 1 V p-p, as it would be if RT = 50 Ω.  
These two effects have opposite impacts on the output voltage,  
and for large resistor values in the feedback loops (~1 kΩ), the  
effects essentially cancel each other out. For small RF and RG,  
or high gains, however, the diminished closed-loop gain is not  
cancelled completely by the increased VTH. This can be seen by  
evaluating Figure 69.  
1−  
1−  
2×( 1000 + 1000)  
2. To match the 50 Ω source resistance, calculate the  
termination resistor, RT, using RT||1.33 kΩ = 50 Ω.  
The closest standard 1% value for RT is 52.3 Ω.  
R
F
1kΩ  
+V  
R
IN, se  
50Ω  
S
R
R
S
G
50Ω  
1kΩ  
R
T
V
S
52.3Ω  
ADA4940-1  
ADA4940-2  
V
The desired differential output in this example is 1 V p-p  
because the terminated input signal was 1 V p-p and the  
closed-loop gain = 1. The actual differential output voltage,  
however, is equal to (1.02 V p-p)(1000/1025.5) = 0.996 V p-p.  
This is within the tolerance of the resistors, so no change to  
the feedback resistor, RF, is required.  
OCM  
R
V
OUT, dm  
2V p-p  
L
R
G
1kΩ  
–V  
S
R
F
1kΩ  
Figure 67. Adding Termination Resistor RT  
INPUT COMMON-MODE VOLTAGE RANGE  
3. Figure 67 shows that the effective RG in the upper feedback  
loop is now greater than the RG in the lower loop due to the  
addition of the termination resistors. To compensate for the  
imbalance of the gain resistors, add a correction resistor (RTS)  
in series with RG in the lower loop. RTS is the Thevenin  
equivalent of the source resistance, RS, and the termination  
resistance, RT, and is equal to RS||RT.  
The ADA4940-1/ADA4940-2 input common-mode range is  
shifted down by approximately 1 VBE, in contrast to other ADC  
drivers with centered input ranges, such as the ADA4939-x. The  
downward-shifted input common-mode range is especially  
suited to dc-coupled, single-ended-to-differential, and single-  
supply applications.  
For 2.5 V or +5 V supply operation, the input common-mode  
range at the summing nodes of the amplifier is specified as −2.7 V  
to +1.3 V or −0.2 V to 3.8 V, and is specified as −0.2 V to +1.8 V  
with a +3 V supply.  
Rev. B | Page 24 of 32  
 
 
 
 
 
 
Data Sheet  
ADA4940-1/ADA4940-2  
+V  
S
INPUT AND OUTPUT CAPACITIVE AC COUPLING  
Although the ADA4940-1/ADA4940-2 is best suited to dc-  
coupled applications, it is nonetheless possible to use it in ac-  
coupled circuits. Input ac coupling capacitors can be inserted  
between the source and RG. This ac coupling blocks the flow  
of the dc common-mode feedback current and causes the  
ADA4940-1/ADA4940-2 dc input common-mode voltage to  
equal the dc output common-mode voltage. These ac coupling  
capacitors must be placed in both loops to keep the feedback  
factors matched. Output ac coupling capacitors can be placed in  
series between each output and its respective load.  
AMPLIFIER  
BIAS CURRENT  
DISABLE  
–V  
S
DISABLE  
Figure 70.  
Pin Circuit  
DRIVING A CAPACITIVE LOAD  
SETTING THE OUTPUT COMMON-MODE VOLTAGE  
A purely capacitive load reacts with the bond wire and pin  
inductance of the ADA4940-1/ADA4940-2, resulting in high  
frequency ringing in the transient response and loss of phase  
margin. One way to minimize this effect is to place a resistor in  
series with each output to buffer the load capacitance. The resistor  
and load capacitance form a first-order, low-pass filter; therefore,  
the resistor value should be as small as possible. In some cases,  
the ADCs require small series resistors to be added on their inputs.  
The VOCM pin of the ADA4940-1/ADA4940-2 is internally  
biased at a voltage approximately equal to the midsupply point,  
[(+VS) + (−VS)]/2. Relying on this internal bias results in an  
output common-mode voltage that is within approximately  
100 mV of the expected value.  
In cases where more accurate control of the output common-mode  
level is required, it is recommended that an external source, or  
resistor divider (10 kΩ or greater resistors), be used. The output  
common-mode offset listed in the Specifications section assumes  
that the VOCM input is driven by a low impedance voltage source.  
Figure 71 illustrates the capacitive load vs. the series resistance  
required to maintain a minimum 45° of phase margin.  
120  
VIN  
+2.5V  
It is also possible to connect the VOCM input to a common-mode  
level (CML) output of an ADC. However, care must be taken to  
ensure that the output has sufficient drive capability. The input  
impedance of the VOCM pin is approximately 250 kΩ.  
R3  
R4  
–FB  
RS  
–OUT  
+OUT  
+IN  
100  
80  
60  
40  
20  
0
C
C
L
V
OCM  
L
0.1µF  
–IN  
R
S
+FB  
DISABLE PIN  
The ADA4940-1/ADA4940-2 feature a  
R1  
R2  
–2.5V  
DISABLE  
pin that can  
be used to minimize the quiescent current consumed when the  
DISABLE  
pin. The threshold between high and  
device is not being used.  
DISABLE  
is asserted by applying a low  
logic level to the  
low logic levels is nominally 1.4 V above the negative supply rail.  
See Table 5 and Table 8 for the threshold limits.  
5
10  
100  
LOAD CAPACITANCE (pF)  
1000  
DISABLE  
The  
enables the amplifier for normal operation. The ADA4940-1/  
DISABLE  
pin features an internal pull-up network that  
Figure 71. Capacitive Load vs. Series Resistance (LFSCP)  
ADA4940-2  
pin can be left floating (that is, no  
external connection is required) and does not require an  
external pull-up resistor to ensure normal on operation (see  
Figure 70). When the ADA4940-1/ADA4940-2 is disabled, the  
output is high impedance. Note that the outputs are tied to the  
inputs through the feedback resistors and to the source using the  
gain resistors. In addition, there are back-to-back diodes on the  
input pins that limit the differential voltage to 1.2 V.  
Rev. B | Page 25 of 32  
 
 
 
 
 
 
ADA4940-1/ADA4940-2  
Data Sheet  
mode voltage of 2.5 V, each ADA4940-1 output swings between 0  
V and 5 V, opposite in phase, providing a gain of 1 and a 10 V p-  
p differential signal to the ADC input. The differential RC section  
between the ADA4940-1 output and the ADC provides single-pole,  
low-pass filtering with a corner frequency of 1.79 MHz and extra  
buffering for the current spikes that are output from the ADC input  
when its sample-and-hold (SHA) capacitors are discharged.  
DRIVING A HIGH PRECISION ADC  
The ADA4940-1/ADA4940-2 are ideally suited for broadband  
dc-coupled applications. The circuit in Figure 73 shows a front-  
end connection for an ADA4940-1 driving an AD7982, which is  
an 18-bit, 1 MSPS successive approximation, analog-to-digital  
converter (ADC) that operates from a single power supply, 3 V  
to 5 V. It contains a low power, high speed, 18-bit sampling  
ADC and a versatile serial interface port. The reference voltage,  
REF, is applied externally and can be set independent of the  
supply voltage. As shown in Figure 73, the ADA4940-1 is dc-  
coupled on the input and the output, which eliminates the need  
for a transformer to drive the ADC. The amplifier performs a  
single-ended-to-differential conversion if needed and level  
shifts the input signal to match the input common mode of the  
ADC. The ADA4940-1 is configured with a dual 7 V supply  
(+6 V and −1 V) and a gain that is set by the ratio of the  
feedback resistor to the gain resistor. In addition, the circuit  
can be used in a single-ended-input-to-differential output or  
differential-input-to-differential output configuration. If needed,  
a termination resistor in parallel with the source input can be  
used. Whether the input is a single-ended input or differential,  
the input impedance of the amplifier can be calculated as shown in  
the Terminating a Single-Ended Input section. If R1 = R2 = R3 =  
R4 = 1 kΩ, the single-ended input impedance is approximately  
1.33 kΩ, which, in parallel with a 52.3 Ω termination resistor,  
provides a 50 Ω termination for the source. An additional 25.5 Ω  
(1025.5 Ω total) at the inverting input balances the parallel  
impedance of the 50 Ω source and the termination resistor driving  
the noninverting input. However, if a differential source input is  
used, the differential input impedance is 2 kΩ. In this case, two  
52.3 Ω termination resistors are used to terminate the inputs.  
The total system power in Figure 73 is under 35 mW. A large  
portion of that power is the current coming from supplies to the  
output, which is set at 2.5 V, going back to the input through the  
feedback and gain resistors. To reduce that power to 25 mW,  
increase the value of the feedback and gain resistor from 1 kΩ  
to 2 kΩ and set the value of the resistors R5 and R6 to 3 kΩ. The  
ADR435 is used to regulate the +6 V supply to +5 V, which ends  
up powering the ADC and setting the reference voltage for the  
V
OCM pin.  
Figure 72 shows the fft of a 20 kHz differential input tone  
sampled at 1 MSPS. The second and third harmonics are down  
at −118 dBc and −122 dBc.  
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
In this example, the signal generator has a 10 V p-p symmetric,  
ground-referenced bipolar output. The VOCM input is bypassed for  
noise reduction and set externally with 1% resistors to 2.5 V to  
maximize the output dynamic range. With an output common-  
0
20k  
40k  
60k  
80k  
100k  
FREQUENCY (Hz)  
Figure 72. Distortion Measurement of a 20 kHz Input Tone (CN-0237)  
+6V  
ADR435  
+5V  
+D  
IN  
10µF  
+6V  
R3  
R4  
–FB  
+2.5V  
+IN  
33Ω  
–OUT  
+OUT  
REF  
VDD  
R5  
R6  
IN+  
IN–  
V
2.7nF  
2.7nF  
OCM  
ADA4940-1  
AD7982  
0.1µF  
33Ω  
GND  
–IN  
SERIAL  
INTERFACE  
+FB  
R2  
R1  
–1V  
–D  
IN  
Figure 73. ADA4940-1 (LFCSP) Driving the AD7982 ADC  
Rev. B | Page 26 of 32  
 
 
 
Data Sheet  
ADA4940-1/ADA4940-2  
LAYOUT, GROUNDING, AND BYPASSING  
As a high speed device, the ADA4940-1/ADA4940-2 are  
sensitive to the PCB environment in which they operate.  
Realizing their superior performance requires attention to  
the details of high speed PCB design.  
Bypass the power supply pins as close to the device as possible  
and directly to a nearby ground plane. Use high frequency ceramic  
chip capacitors. Use two parallel bypass capacitors (1000 pF and  
0.1 µF) for each supply. Place the 1000 pF capacitor closer to the  
device. Further away, provide low frequency bypassing using  
10 µF tantalum capacitors from each supply to ground.  
ADA4940-1 LFCSP EXAMPLE  
The first requirement is a solid ground plane that covers as  
much of the board area around the ADA4940-1 as possible.  
However, clear the area near the feedback resistors (RF), gain  
resistors (RG), and the input summing nodes (Pin 2 and Pin 3)  
of all ground and power planes (see Figure 74). Clearing the  
ground and power planes minimizes any stray capacitance at  
these nodes and prevents peaking of the response of the  
amplifier at high frequencies.  
Ensure that signal routing is short and direct to avoid parasitic  
effects. Wherever complementary signals exist, provide a  
symmetrical layout to maximize balanced performance. When  
routing differential signals over a long distance, ensure that  
PCB traces are close together, and twist any differential wiring  
such that loop area is minimized. Doing this reduces radiated  
energy and makes the circuit less susceptible to interference.  
1.30  
The thermal resistance, θJA, is specified for the device, including  
the exposed pad, soldered to a high thermal conductivity 4-layer  
circuit board, as described in EIA/JESD 51-7.  
0.80  
1.30 0.80  
Figure 75. Recommended PCB Thermal Attach Pad Dimensions (mm)  
Figure 74. Ground and Power Plane Voiding in Vicinity of RF and RG  
1.30  
TOP METAL  
GROUND PLANE  
0.30  
PLATED  
VIA HOLE  
POWER PLANE  
BOTTOM METAL  
Figure 76. Cross-Section of 4-Layer PCB Showing Thermal Via Connection to Buried Ground Plane (Dimensions in mm)  
Rev. B | Page 27 of 32  
 
 
 
ADA4940-1/ADA4940-2  
OUTLINE DIMENSIONS  
Data Sheet  
0.50  
0.40  
0.30  
3.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
*
1.45  
1.30 SQ  
1.15  
13  
16  
1
0.45  
(BOTTOM VIEW)  
12  
PIN 1  
INDICATOR  
2.75  
BSC SQ  
TOP  
VIEW  
EXPOSED  
PAD  
4
9
0.50  
BSC  
8
5
0.25 MIN  
1.50 REF  
0.80 MAX  
12° MAX  
0.65 TYP  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2  
EXCEPT FOR EXPOSED PAD DIMENSION.  
Figure 77. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
3 mm × 3 mm Body, Very Thin Quad  
(CP-16-2)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 78. 8-Lead Standard Small Outline Package [SOIC_N]  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. B | Page 28 of 32  
 
Data Sheet  
ADA4940-1/ADA4940-2  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
1
24  
19  
18  
0.50  
BSC  
PIN 1  
INDICATOR  
2.65  
2.50 SQ  
2.35  
TOP  
VIEW  
3.75  
BSC SQ  
EXPOSED  
PA D  
(BOTTOMVIEW)  
0.50  
0.40  
0.30  
6
13  
12  
7
0.23 MIN  
0.80 MAX  
0.65 TYP  
2.50 REF  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8  
Figure 79. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-24-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
Evaluation Board  
8-Lead SOIC_N  
Package Option  
CP-16-2  
CP-16-2  
Ordering Quantity  
Branding  
H29  
H29  
ADA4940-1ACPZ-R2  
ADA4940-1ACPZ-RL  
ADA4940-1ACPZ-R7  
ADA4940-1ACP-EBZ  
ADA4940-1ARZ  
ADA4940-1ARZ-RL  
ADA4940-1ARZ-R7  
ADA4940-1AR-EBZ  
ADA4940-2ACPZ-R2  
ADA4940-2ACPZ-RL  
ADA4940-2ACPZ-R7  
ADA4940-2ACP-EBZ  
250  
5,000  
1,500  
CP-16-2  
H29  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
R-8  
R-8  
R-8  
98  
2,500  
1,000  
8-Lead SOIC_N  
8-Lead SOIC_N  
Evaluation Board  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
Evaluation Board  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
CP-24-3  
CP-24-3  
CP-24-3  
250  
5,000  
1,500  
1 Z = RoHS Compliant Part.  
Rev. B | Page 29 of 32  
 
 
ADA4940-1/ADA4940-2  
NOTES  
Data Sheet  
Rev. B | Page 30 of 32  
Data Sheet  
NOTES  
ADA4940-1/ADA4940-2  
Rev. B | Page 31 of 32  
ADA4940-1/ADA4940-2  
NOTES  
Data Sheet  
©2011–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08452-0-3/12(B)  
Rev. B | Page 32 of 32  

相关型号:

ADA4940-1ACPZ

OP-AMP, 350uV OFFSET-MAX, QCC16
ADI

ADA4940-1ACPZ-R2

Ultralow Power, Low Distortion
ADI

ADA4940-1ACPZ-R7

Ultralow Power, Low Distortion
ADI

ADA4940-1ACPZ-RL

Ultralow Power, Low Distortion
ADI

ADA4940-1AR-EBZ

Ultralow Power, Low Distortion
ADI

ADA4940-1ARDZ-RL

IC OP-AMP, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8, Operational Amplifier
ADI

ADA4940-1ARZ

Ultralow Power, Low Distortion
ADI

ADA4940-1ARZ-R7

Ultralow Power, Low Distortion
ADI

ADA4940-1ARZ-RL

Ultralow Power, Low Distortion
ADI

ADA4940-1_16

Ultralow Power, Low Distortion, Fully Differential ADC Drivers
ADI

ADA4940-2

Ultralow Power, Low Distortion
ADI

ADA4940-2ACP-EBZ

Ultralow Power, Low Distortion
ADI