ADATE318BCPZ [ADI]

600 MHz Dual Integrated DCL with PPMU, VHH Drive Capability, Level Setting DACs, and On-Chip; 600 MHz双通道集成DCL与PPMU , VHH驱动功能,电平设置DAC和片
ADATE318BCPZ
型号: ADATE318BCPZ
厂家: ADI    ADI
描述:

600 MHz Dual Integrated DCL with PPMU, VHH Drive Capability, Level Setting DACs, and On-Chip
600 MHz双通道集成DCL与PPMU , VHH驱动功能,电平设置DAC和片

模拟IC 信号电路 驱动
文件: 总80页 (文件大小:1351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
600 MHz Dual Integrated DCL with PPMU, VHH Drive  
Capability, Level Setting DACs, and On-Chip Calibration  
Engine  
ADATE318  
FEATURES  
GENERAL DESCRIPTION  
600 MHz/1200 Mbps data rate  
The ADATE318 is a complete, single-chip ATE solution that  
performs the pin electronics functions of driver, comparator,  
and active load (DCL), four quadrant, per pin, parametric  
measurement unit (PPMU). It has VHH drive capability per  
chip to support flash memory testing applications and integ-  
rated 16-bit DACs with an on-chip calibration engine to  
3-level driver with high-Z and reflection clamps  
Window and differential comparators  
±25 mA active load  
Per pin PPMU with −2.0 V to +6.5 V range  
Low leakage mode (typically 4 nA)  
Integrated 16-bit DACs with offset and gain correction  
High speed operating voltage range: –1.5 V to +6.5 V  
Dedicated VHH output pin range: 0.0 V to 13.5 V  
1.1 W power dissipation per channel  
Driver  
3-level voltage range: –1.5 V to +6.5 V  
Precision trimmed output resistance  
Unterminated swing: 200 mV minimum to 8 V maximum  
725 ps minimum pulse width, VIH − VIL = 2.0 V  
Comparator  
Differential and single-ended window modes  
>1.2 GHz input equivalent bandwidth  
Load  
±25 mA current range  
Per pin PPMU (PPMU)  
provide all necessary dc levels for operation of the part.  
The driver features three active states: data high, data low, and  
terminate mode, as well as a high impedance inhibit state. The  
inhibit state, in conjunction with the integrated dynamic  
clamps, facilitates the implementation of a high speed active  
termination. The output voltage capability is −1.5 V to +6.5 V  
to accommodate a wide range of ATE and instrumentation  
applications.  
The ADATE318 can be used as a dual, single-ended drive/  
receive channel or as a single differential drive/receive channel.  
Each channel of the ADATE318 features a high speed window  
comparator as well as a programmable threshold differential  
comparator for differential ATE applications. A four quadrant  
PPMU is also provided per channel.  
Force voltage/compliance range: –2.0 V to +6.5 V  
5 current ranges: 40 mA, 1 mA, 100 μA, 10 ꢀA, 2 ꢀA  
External sense input for system PMU  
Go/no-go comparators  
All dc levels for DCL and PPMU functions are generated by 24  
on-chip 16-bit DACs. To facilitate accurate levels programming,  
the ADATE318 contains an integrated calibration function to  
correct gain and offset errors for each functional block.  
Correction coefficients can be stored on chip, and any values  
written to the DACs are automatically adjusted using the  
appropriate correction factors.  
Levels  
Fully integrated 16-bit DACs  
On-chip gain and offset calibration registers and  
add/multiply engine  
The ADATE318 uses a serial programmable interface (SPI) bus  
to program all functional blocks, DACs, and on-chip calibration  
constants. It also has an on-chip temperature sensor and  
over/undervoltage fault clamps for monitoring and reporting  
the device temperature and any output pin or PPMU voltage  
faults that may occur during operation.  
Package  
84-lead 10 mm × 10 mm LFCSP (0.4 mm pitch)  
APPLICATIONS  
Automatic test equipment  
Semiconductor test systems  
Board test systems  
Instrumentation and characterization equipment  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
ADATE318  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Level Setting DACs......................................................................... 63  
DAC Update Modes................................................................... 63  
DAC Transfer Functions ........................................................... 67  
Gain and Offset Correction ...................................................... 68  
X2 Registers.................................................................................. 68  
Sample Calculations of m and c ............................................... 68  
Power Supply, Grounding, and Decoupling Strategy ................ 70  
User Information and Truth Tables ............................................. 71  
Alarm Functions......................................................................... 72  
PPMU External Capacitors....................................................... 72  
Temperature Sensor ................................................................... 72  
Default Test Conditions............................................................. 73  
Detailed Functional Block Diagrams........................................... 74  
Outline Dimensions....................................................................... 80  
Ordering Guide .......................................................................... 80  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
SPI Timing Details ..................................................................... 22  
Absolute Maximum Ratings.......................................................... 27  
Thermal Resistance .................................................................... 27  
ESD Caution................................................................................ 27  
Pin Configuration and Function Descriptions........................... 28  
Typical Performance Characteristics ........................................... 31  
SPI Interconnect Details ................................................................ 49  
BUSY  
Use of the SPI  
Pin................................................................ 50  
RST  
Reset Sequence and the  
Pin .................................................. 51  
SPI Register Definitions and Memory Map................................ 52  
Control Register Details................................................................. 55  
REVISION HISTORY  
4/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 80  
 
ADATE318  
FUNCTIONAL BLOCK DIAGRAM  
ADATE318  
VOH  
OVDH  
OVDL  
0
PPMU  
GO/NO-GO  
TO ALARM  
(HIGH/LOW  
VOLTAGE FAULT)  
PPMU_CMPH0  
PPMU_CMPL0  
TO ALARM  
OVER-  
VOLTAGE  
(PPMU HIGH/LOW  
CLAMP FAULT)  
VOL  
0
THERM  
PPMU_VIN0  
MUX  
PPMU_MEAS0  
PPMU_S0  
OUT  
VCH0  
VCL0  
PPMU  
MUX  
S
F
VIH0  
VIT/VCOM0  
VIL0  
VCH0  
VCL0  
PMU_S0  
DUT0  
DAT0  
100  
50Ω  
DRIVER  
DAT0  
RCV0  
IOL0  
100Ω  
+
ACTIVE  
LOAD  
RCV0  
VCOM  
0
IOH0  
VTTC0  
50Ω  
50Ω  
CMPH0  
CMPH0  
VOH0  
VOL0  
NWC  
COMPARATOR  
DIFF  
CH0 ONLY  
CMPL0  
CMPL0  
NWC  
CHANNEL 0  
VHH  
VIH0  
VIL0  
TEMP  
SENSOR  
DAT  
RCV  
0
THERM  
ALARM  
HVOUT  
ALARM  
0
VHH  
DRIVER  
VPLUS  
VDD  
SDI  
SCLK  
CS  
VCC  
GAIN/OFFSET  
CORRECTION  
SPI  
2 × 12  
16-BIT DACs  
PGND  
DGND  
VSS  
SDO  
MUX  
BUSY  
RST  
COMMON  
CHANNEL 1  
(SAME AS CHANNEL 0 EXCEPT WHERE NOTED)  
Figure 1.  
Rev. 0 | Page 3 of 80  
 
ADATE318  
SPECIFICATIONS  
VDD = +10.0 V, VCC = +2.5 V, VSS= 6.0 V, VPLUS= +16.75 V, VTTCx = +1.2 V, VREF = 5.000 V, VREFGND = 0.000 V. All test  
conditions are as defined in Table 32. All specified values are at TJ = 50°C, where TJ corresponds to the internal temperature sensor  
reading (THERM pin), unless otherwise noted. Temperature coefficients are measured around TJ = 50° 20°C, unless otherwise noted.  
Typical values are based on statistical mean of design, simulation analyses, and/or limited bench evaluation data. Typical values are  
neither tested nor guaranteed. See Table 16 for an explanation of test levels.  
Table 1. Detailed Electrical Specifications  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions  
TOTAL FUNCTION  
Output Leakage Current, DCL Disable  
PPMU Range E  
−10.0  
4.0  
4.0  
+10.0 nA  
nA  
P
−2.0 V < VDUTx < +6.5 V, PPMU and DCL disabled, PPMU  
Range E, VCL = −2.5 V, VCH = +7.5 V  
PPMU Range A, Range B, Range C, and  
Range D  
CT  
−2.0 V < VDUTx < +6.5 V, PPMU and DCL disabled, PPMU  
Range A, Range B, Range C, Range D, VCL = −2.5 V,  
VCH = +7.5 V  
Output Leakage Current,  
Driver High-Z Mode  
−2  
+2  
μA  
P
−2.0 V < VDUTx < +7.0 V, PPMU disabled and DCL enabled,  
RCVx active, VCL = −2.5 V, VCH = +7.5 V  
DUTx Pin Capacitance  
DUTx Pin Voltage Range  
POWER SUPPLIES  
1.2  
pF  
V
S
Drive VIT = 0.0 V  
−2.0  
+7.0  
D
Total Supply Range,  
VPLUS to VSS  
22.75 23.55  
16.75 17.60  
V
D
VPLUS Supply, VPLUS  
15.90  
9.5  
V
D
D
D
D
D
P
Defines dc PSR conditions  
Defines dc PSR conditions  
Defines dc PSR conditions  
Defines dc PSR conditions  
Positive Supply, VDD  
10.0  
−6.0  
2.5  
10.5  
−5.7  
3.5  
V
Negative Supply, VSS  
−6.3  
2.3  
V
Logic Supply, VCC  
V
Comparator Output Termination, VTTCx  
VPLUS Supply Current, VPLUS  
0.5  
1.2  
3.3  
V
1.1  
2.5  
mA  
mA  
VHH pin disabled  
4.75  
13.28 16.25  
P
VHH pin enabled, RCVx active, no load,  
VHH programmed level = 13.0 V  
Logic Supply Current, VCC  
−125  
1
+125  
μA  
P
S
Quiescent (SPI is static); VCC = 2.5 V  
7.5  
mA  
Current drawn during clocked portion of device reset  
sequence  
Termination Supply Current, VTTCx  
Positive Supply Current, VDD  
Negative Supply Current, VSS  
Total Power Dissipation  
30  
45  
50  
mA  
mA  
mA  
W
P
90  
99  
115  
185  
2.3  
P
Load power-down (IOH = IOL = 0 mA)  
Load power-down (IOH = IOL = 0 mA)  
Load power-down (IOH = IOL = 0 mA)  
Load active off (IOH = IOL = 25 mA)  
Load active off (IOH = IOL = 25 mA)  
Load active off (IOH = IOL = 25 mA)  
Load active off (IOH = IOL = 25 mA), calibrated  
Load active off (IOH = IOL = 25 mA), calibrated  
Load active off (IOH = IOL = 25 mA), calibrated  
Load power-down, PPMU standby  
155  
1.9  
145  
210  
3.0  
172  
2.1  
P
P
Positive Supply Current, VDD  
Negative Supply Current, VSS  
Total Power Dissipation  
174  
246  
3.3  
210  
280  
3.6  
mA  
mA  
W
P
P
P
Positive Supply Current, VDD  
Negative Supply Current, VSS  
Total Power Dissipation  
167  
238  
3.2  
mA  
mA  
W
CT  
CT  
CT  
CT  
CT  
CT  
Positive Supply Current, VDD  
Negative Supply Current, VSS  
Total Power Dissipation  
109  
183  
2.3  
mA  
mA  
W
Load power-down, PPMU standby  
Load power-down, PPMU standby  
Rev. 0 | Page 4 of 80  
 
ADATE318  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions  
TEMPERATURE MONITOR  
Temperature Sensor Gain  
10  
6
mV/K  
K
D
Temperature Sensor Accuracy over  
Temperature Range  
CT  
VREF INPUT REFERENCE  
DAC Reference Input Voltage Range  
(VREF Pin)  
4.950  
5.000 5.050  
100  
V
D
P
Provided externally:  
VREF pin = +5.000 V  
VREFGND pin = 0.000 V (not referenced to VDUTGND  
)
Input Bias Current  
DUTGND INPUT  
μA  
Tested with 5.000 V applied  
Input Voltage Range,  
Referenced to AGND  
−0.1  
V
D
P
+0.1  
Input Bias Current  
−100  
μA  
+100  
Tested at −100 mV and +100 mV  
Table 2. Driver (VIH − VIL ≥ 100 mV to Meet DC and AC Performance Specifications)  
Test  
Level  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
DC SPECIFICATIONS  
High-Speed Differential Input  
Characteristics  
High Speed Input Termination  
Resistance: DATx, RCVx  
92  
100  
0.4  
108  
Ω
P
Impedance between each pair of DATx and RCVx pins;  
push 4 mA into positive pin, force 0.8 V on negative pin,  
measure voltage between pins; calculate resistance (ΔV/ΔI)  
Input Voltage Differential: DATx, RCVx  
Input Voltage Range: DATx, RCVx  
Output Characteristics  
0.2  
0.0  
1.0  
3.3  
V
V
D
D
0.2 V < VDM < 1.0 V  
0.0 V < (VCM VDM/2) < 3.3 V  
Output High Range, VIH  
−1.4  
−1.5  
−1.5  
0.0  
+6.5  
+6.4  
+6.5  
V
V
V
V
D
D
D
D
Output Low Range, VIL  
Output Term Range, VIT  
Functional Amplitude  
(VIH – VIL)  
8.0  
DC Output Current Limit Source  
DC Output Current Limit Sink  
Output Resistance, 40 mA  
75  
130  
−75  
51  
mA  
mA  
Ω
P
P
P
Drive high, VIH = +6.5 V, short DUTx pin to 1.5 V, measure  
current  
−130  
46  
Drive low, VIL = 1.5 V, short DUTx pin to +6.5 V, measure  
current  
48.6  
ΔVDUT/ΔIDUT; source: VIH = 3.0 V, IDUT = +1 mA, +40 mA;  
sink: VIL = 0.0 V, IDUT = 1 mA, 40 mA  
DC ACCURACY  
VIH tests with VIL = 2.5 V, VIT = 2.5 V  
VIL tests with VIH = +7.5 V, VIT = +7.5 V  
VIT tests with VIL = 2.5 V, VIH = +7.5 V, unless otherwise  
specified  
VIH, VIL, VIT Offset Error  
VIH, VIL, VIT Offset Tempco  
VIH, VIL, VIT Gain  
−500  
1.0  
+500  
1.1  
mV  
P
Measured at DAC Code 0x4000 (0 V), uncalibrated  
625  
μV/°C  
V/V  
CT  
P
Gain derived from measurements at DAC Code 0x4000  
(0 V) and DAC Code 0xC000 (5 V); based on ideal DAC  
transfer functions (see Table 21)  
VIH, VIL, VIT Gain Tempco  
VIH, VIL, VIT DNL  
40  
1
ppm/°C CT  
mV  
CT  
After two point gain/offset calibration; calibration points at  
0x4000 (0 V) output; 0xC000 (+5 V) output; measured over  
full specified output range  
VIH, VIL, VIT INL  
−7  
mV  
P
After two point gain/offset calibration; applies to nominal  
VDD = +10.0 V supply case only  
+7  
Rev. 0 | Page 5 of 80  
ADATE318  
Test  
Level  
Parameter  
Min  
Typ  
153  
2
Max  
Unit  
ꢀV  
Conditions  
VIH, VIL, VIT Resolution  
DUTGND Voltage Accuracy  
D
P
−7  
mV  
Over 0.1 V range; measured at end points of VIH, VIL, and  
VIT functional range  
+7  
DC Levels Interaction  
VIH vs. VIL  
DC interaction on VIL, VIH, and VIT output level while other  
driver DAC levels are varied  
0.2  
1
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV/V  
CT  
CT  
CT  
CT  
CT  
CT  
CT  
CT  
Monitor interaction on VIH = +6.5 V; sweep VIL = −1.5 V to  
+6.4 V, VIT = +1.0 V  
VIH vs. VIT  
Monitor interaction on VIH = +6.5 V; sweep VIT = −1.5 V to  
+6.5 V, VIL = 0.0 V  
VIL vs. VIH  
0.2  
1
Monitor interaction on VIL = −1.5 V; sweep VIH = −1.4 V to  
+6.5 V, VIT = +1.0 V  
VIL vs. VIT  
Monitor interaction on VIL = −1.5 V; sweep VIT = −1.5 V to  
+6.5 V, VIH = +2.0 V  
VIT vs. VIH  
1
Monitor interaction on VIT = +1.0 V; sweep VIH = −1.4 V to  
+6.5 V, VIL = −1.5 V  
VIT vs. VIL  
1
Monitor interaction on VIT = +1.0 V; sweep VIL = −1.5 V to  
+6.4 V, VIH = +6.5 V  
Overall Voltage Accuracy  
8
VIH − VIL ≥ 100 mV; sum of INL, dc interaction, DUTGND,  
and tempco errors over 5ºC, after calibration  
VIH, VIL, VIT DC PSRR  
10  
Measured at calibration points  
AC SPECIFICATIONS  
All ac specifications performed after calibration  
Toggle DATx  
Rise/Fall Times  
0.2 V Programmed Swing, TRISE  
0.2 V Programmed Swing, TFALL  
0.5 V Programmed Swing, TRISE  
0.5 V Programmed Swing, TFALL  
1.0 V Programmed Swing, TRISE  
1.0 V Programmed Swing, TFALL  
2.0 V Programmed Swing, TRISE  
2.0 V Programmed Swing, TFALL  
3.0 V Programmed Swing, TRISE  
3.0 V Programmed Swing, TFALL  
5.0 V Programmed Swing, TRISE  
5.0 V Programmed Swing, TFALL  
Rise to Fall Matching  
215  
277  
218  
274  
222  
283  
297  
322  
447  
397  
1117  
798  
−25  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
CB  
CB  
CB  
CB  
P
20% to 80%, VIH = 0.2 V, VIL = 0.0 V, terminated  
20% to 80%, VIH = 0.2 V, VIL = 0.0 V, terminated  
20% to 80%, VIH = 0.5 V, VIL = 0.0 V, terminated  
20% to 80%, VIH = 0.5 V, VIL = 0.0 V, terminated  
20% to 80%, VIH = 1.0 V, VIL = 0.0 V, terminated  
20% to 80%, VIH = 1.0 V, VIL = 0.0 V, terminated  
20% to 80%, VIH = 2.0 V, VIL = 0.0 V, terminated  
20% to 80%, VIH = 2.0 V, VIL = 0.0 V, terminated  
20% to 80%, VIH = 3.0 V, VIL = 0.0 V, terminated  
20% to 80%, VIH = 3.0 V, VIL = 0.0 V, terminated  
10% to 90%, VIH = 5.0 V, VIL = 0.0 V, unterminated  
10% to 90%, VIH = 5.0 V, VIL = 0.0 V, unterminated  
150  
150  
320  
320  
P
CB  
CB  
CB  
CB  
CB  
CB  
CB  
Rise to fall within one channel, VIH = 2.0 V, VIL = 0.0 V,  
terminated  
−61  
ps  
CB  
Rise to fall within one channel; VIH = 1.0 V, VIL = 0.0 V,  
terminated  
Minimum Pulse Width  
Toggle DATx  
0.5 V Programmed Swing  
725  
725  
2040  
725  
725  
ps  
CB  
CB  
CB  
CB  
CB  
VIH = 0.5 V, VIL = 0.0 V, terminated, timing error less than  
+69/−33 ps  
ps  
VIH = 0.5 V, VIL = 0.0 V, terminated, less than 10%  
amplitude loss  
Maximum Toggle Rate  
Mbps  
ps  
VIH = 0.5 V, VIL = 0.0 V, terminated, less than 10% loss at  
50% duty  
1.0 V Programmed Swing  
VIH = 1.0 V, VIL = 0.0 V, terminated, timing error less than  
+58/−35 ps  
ps  
VIH = 1.0 V, VIL = 0.0 V, terminated, less than 10%  
amplitude loss  
Rev. 0 | Page 6 of 80  
ADATE318  
Test  
Level  
Parameter  
Maximum Toggle Rate  
Min  
Typ  
Max  
Unit  
Conditions  
2040  
Mbps  
CB  
CB  
CB  
CB  
CB  
CB  
CB  
VIH = 1.0 V, VIL = 0.0 V, terminated, less than 10% loss at  
50% duty  
2.0 V Programmed Swing  
725  
ps  
VIH = 2.0 V, VIL = 0.0 V, terminated, timing error less than  
+80/−48 ps  
725  
ps  
VIH = 2.0 V, VIL = 0.0 V, terminated, less than 10%  
amplitude loss  
Maximum Toggle Rate  
1400  
900  
Mbps  
ps  
VIH = 2.0 V, VIL = 0.0 V, terminated, less than 10% loss at  
50% duty  
3.0 V Programmed Swing  
VIH = 3.0 V, VIL = 0.0 V, terminated, timing error less than  
+50/−83 ps  
900  
ps  
VIH = 3.0 V, VIL = 0.0 V, terminated, less than 10%  
amplitude loss  
Maximum Toggle Rate  
1100  
Mbps  
VIH = 3.0 V, VIL = 0.0 V, terminated, less than 10%  
amplitude loss at 50% duty cycle  
Dynamic Performance,  
Drive (VIH to VIL)  
Toggle DATx  
Propagation Delay Time  
1.26  
1.4  
43  
ns  
CB  
CB  
CB  
CB  
VIH = 2.0 V, VIL = 0.0 V, terminated  
Propagation Delay Tempco  
Delay Matching, Edge to Edge  
Delay Matching, Channel to Channel  
ps/ºC  
ps  
VIH = 2.0 V, VIL = 0.0 V, terminated  
VIH = 2.0 V, VIL = 0.0 V, terminated, rising vs. falling  
32  
ps  
VIH = 2.0 V, VIL = 0.0 V, terminated, rising vs. rising, falling  
vs. falling  
Delay Change vs. Duty Cycle  
Overshoot and Undershoot  
Settling Time (VIH to VIL)  
−28  
ps  
CB  
CB  
VIH = 2.0 V, VIL = 0.0 V, terminated, 5% to 95% duty cycle  
VIH = 2.0 V, VIL = 0.0 V, terminated, driver CLC set to 0  
Toggle DATx  
−116  
mV  
To Within 3% of Final Value  
To Within 1% of Final Value  
1.7  
45  
ns  
ns  
CB  
CB  
VIH = 2.0 V, VIL= 0.0 V, terminated  
VIH = 2.0 V, VIL= 0.0 V, terminated  
Toggle RCVx  
Dynamic Performance,  
VTerm (VIH or VIL to/from VIT)  
Propagation Delay Time  
1.39  
2.3  
ns  
CB  
CB  
CB  
CB  
VIH = 2.0 V, VIT = 1.0 V, VIL = 0.0 V, terminated  
VIH = 2.0 V, VIT = 1.0 V, VIL = 0.0 V, terminated  
20% to 80%, VIH = 2.0 V, VIT = 1.0 V, VIL = 0.0 V, terminated  
20% to 80%, VIH = 2.0 V, VIT = 1.0 V, VIL = 0.0 V, terminated  
Toggle RCVx  
Propagation Delay Tempco  
Transition Time, Active to VIT  
Transition Time, VIT to Active  
ps/ºC  
ps  
310  
329  
ps  
Dynamic Performance,  
Inhibit (VIH or VIL to/from Inhibit)  
Transition Time, Inhibit to Active  
Transition Time, Active to Inhibit  
Prop Delay, Inhibit to VIH  
357  
1.34  
2.6  
ps  
ns  
ns  
CB  
CB  
CB  
20% to 80%, VIH = +1.0 V, VIL = −1.0 V, terminated  
20% to 80%, VIH = +1.0 V, VIL = −1.0 V, terminated  
VIH = +1.0 V, VIL = −1.0 V, terminated; measured from RCVx  
input crossing to DUTx pin output 50%  
Prop Delay, Inhibit to VIL  
2.8  
52  
ns  
ps  
CB  
CB  
VIH = +1.0 V, VIL = −1.0 V, terminated  
VIH = +1.0 V, VIL = −1.0 V, terminated  
Prop Delay Matching,  
Inhibit to VIL vs. Inhibit to VIH  
Prop Delay, VIH to Inhibit  
2.29  
ns  
CB  
VIH = +1.0 V, VIL = −1.0 V, terminated, measured from RCVx  
input crossing to DUTx pin output 50%  
Prop Delay, VIL to Inhibit  
I/O Spike  
2.02  
24  
ns  
CB  
CB  
VIH = +1.0 V, VIL = −1.0 V, terminated  
VIH = 0.0 V, VIL = 0.0 V, terminated  
mV pk-  
pk  
Driver Pre-Emphasis (CLC)  
Pre-Emphasis Amplitude Rising  
35  
14  
24  
16  
%
%
%
%
CB  
CB  
CB  
CB  
VIH = 2.0 V, VIL = 0.0 V, terminated, DRV_CLC_x[15:13] = 7  
VIH = 2.0 V, VIL = 0.0 V, terminated, DRV_CLC_x[15:13] = 0  
VIH = 2.0 V, VIL = 0.0 V, terminated, DRV_CLC_x[15:13] = 7  
VIH = 2.0 V, VIL = 0.0 V, terminated, DRV_CLC_x[15:13] = 0  
Pre-Emphasis Amplitude Falling  
Rev. 0 | Page 7 of 80  
ADATE318  
Test  
Level  
Parameter  
Min  
Typ  
2
Max  
Unit  
%
Conditions  
Pre-Emphasis Resolution  
Pre-Emphasis Time Constant  
D
0.8  
ns  
CB  
VIH = 2.0 V, VIL = 0.0 V, terminated  
Table 3. Reflection Clamp (Clamp Accuracy Specifications Apply Only When VCH − VCL > 0.8 V)  
Test  
Level  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
VCH/VCL PROGRAMMABLE RANGE  
−2.5  
+7.5  
V
D
DC specifications apply over full functional range unless  
noted.  
VCH  
VCH Functional Range  
VCH Offset Error  
−1.2  
+7.0  
V
D
P
−300  
+300  
mV  
Driver high-Z, sinking 1 mA, measured at DAC Code 0x4000,  
uncalibrated.  
VCH Offset Tempco  
VCH Gain  
0.5  
mV/ºC  
V/V  
CT  
P
1.0  
1.1  
Driver high-Z, sinking 1 mA, gain derived from  
measurements at DAC Code 0x4000 (0 V) and DAC Code  
0xC000 (5 V), based on ideal DAC transfer function (see  
Table 21).  
VCH Gain Tempco  
VCH Resolution  
VCH DNL  
30  
153  
1
ppm/°C  
ꢀV  
CT  
D
mV  
CT  
Driver high-Z, sinking 1 mA, after two point gain/offset  
calibration; calibration points at DAC Code 0x4000 (0 V) and  
DAC Code 0xC000 (5 V), measured over functional clamp  
range.  
VCH INL  
−20  
+20  
mV  
P
Driver high-Z, sinking 1 mA, after two point gain/offset  
calibration; calibration points at 0x4000 (0 V) and 0xC000  
(5 V), measured over functional clamp range.  
VCL  
VCL Functional Range  
VCL Offset Error  
−2  
+6.2  
V
D
P
−300  
+300  
mV  
Driver high-Z, sourcing 1 mA, measured at DAC Code  
0x4000, uncalibrated.  
VCL Offset Tempco  
VCL Gain  
0.5  
mV/°C  
V/V  
CT  
P
1.0  
1.1  
Drive high-Z, sourcing 1 mA, gain derived from  
measurements at DAC Code 0x4000 (0 V) and DAC Code  
0xC000 (5 V), based on ideal DAC transfer function (see  
Table 21).  
VCL Gain Tempco  
VCL Resolution  
VCL DNL  
30  
153  
1
ppm/°C  
ꢀV  
CT  
D
mV  
CT  
Driver high-Z, sourcing 1 mA, after two point gain/offset  
calibration; calibration points at 0x4000 (0 V) and 0xC000  
(+5 V), measured over functional clamp range.  
VCL INL  
−20  
+20  
mV  
P
Driver high-Z, sourcing 1 mA, after two point gain/offset  
calibration; calibration points at 0x4000 (0 V) and 0xC000  
(+5 V), measured over functional clamp range.  
DC Clamp Current Limit, VCH  
DC Clamp Current Limit, VCL  
DUTGND Voltage Accuracy  
−120  
+75  
−7  
−75  
+120  
+7  
mA  
mA  
mV  
P
P
P
Driver high-Z, VCH = 0 V, VCL = −2.0 V, VDUTx = +5.0 V.  
Driver high-Z, VCH = +6.0 V, VCL = +5.0 V, VDUTx = 0.0 V.  
2
Over 0.1 V range, measured at end points of VCH and VCL  
functional range.  
Rev. 0 | Page 8 of 80  
ADATE318  
Table 4. Normal Window Comparator (NWC) (Unless Otherwise Specified: VOH Tests at VOL = 1.5 V, VOL Tests at  
VOH = +6.5 V, Specifications Apply to Both Comparators)  
Test  
Level  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
DC SPECIFICATIONS  
Input Voltage Range  
Differential Voltage Range  
Comparator Input Offset Voltage  
−1.5  
0.1  
V
D
D
P
+6.5  
8.0  
V
−250  
mV  
Measured at DAC Code 0x4000 (0V), uncalibrated  
+250  
Input Offset Voltage Tempco  
Gain  
100  
ꢀV/ºC  
V/V  
CT  
P
1.0  
1.1  
Gain derived from measurements at DAC Code  
0x4000 (0 V) and DAC Code 0xC000 (5 V); based on  
ideal DAC transfer function (see Table 21)  
Gain Tempco  
25  
153  
1
ppm/°C CT  
Threshold Resolution  
Threshold DNL  
ꢀV  
D
mV  
CT  
Measured over 1.5 V to +6.5 V functional range  
after two point gain/offset calibration; calibration  
points at 0x4000 (0 V) and 0xC000 (5 V)  
Threshold INL  
−7  
−7  
mV  
P
+7  
+7  
Measured over 1.5 V to +6.5 V functional range  
after two point gain/offset calibration; calibration  
points at 0x4000 (0 V) and 0xC000 (5 V)  
DUTGND Voltage Accuracy  
Uncertainty Band  
2
5
mV  
mV  
P
Over 0.1 V range; measured at end points of VOH  
and VOL functional range  
CB  
VDUTx = 0 V, sweep comparator threshold to  
determine the uncertainty band  
Maximum Programmable Hysteresis  
Hysteresis Resolution  
96  
5
mV  
CB  
D
mV  
Calculated over hystersis control Code 10 to Code 31  
Measured at calibration points  
DC PSRR  
5
mV/V  
CT  
Digital Output Characteristics  
Internal Pull-Up Resistance to  
Comparator, VTTC  
46  
50  
54  
Ω
V
P
Pull 1 mA and 10 mA from Logic 1 leg and measure  
∆V to calculate resistance; measured ∆V/9 mA; done  
for both comparator logic states  
Comparator Termination Voltage,  
VTTC  
0.5  
1.2  
3.3  
D
Common Mode Voltage  
V
V
CT  
P
Measured with 100 Ω differential termination  
Measured with no external termination  
VTTC 0.3  
VTTC −  
0.5  
VTTC  
550  
Differential Voltage  
250  
500  
166  
mV  
mV  
ps  
CT  
P
Measured with 100 Ω differential termination  
Measured with no external termination  
450  
Rise/Fall Times, 20% to 80%  
AC SPECIFICATIONS  
CB  
Measured with 50 Ω to external termination voltage  
(VTTC)  
All ac specifications performed after dc level  
calibration, input transition time of ~200 ps, 20% to  
80%, measured with 50 Ω to external termination  
voltage (VTTC); peaking set to CLC = 2, unless  
otherwise specified  
Propagation Delay, Input to Output  
Propagation Delay Tempco  
0.93  
1.6  
7
ns  
CB  
CB  
CB  
CB  
VDUTx: 0 V to 1.0 V swing, driver term mode,  
VIT = 0.0 V, comparator threshold = 0.5 V  
ps/ºC  
ps  
VDUTx: 0 V to 1.0 V swing, driver term mode,  
VIT = 0.0 V, comparator threshold = 0.5 V  
Propagation Delay Matching  
High Transition to Low Transition  
VDUTx: 0 V to 1.0 V swing, driver term mode,  
VIT = 0.0 V, comparator threshold = 0.5 V  
Propagation Delay Matching  
High to Low Comparator  
7
ps  
VDUTx: 0 V to 1.0 V swing, driver term mode,  
VIT = 0.0 V, comparator threshold = 0.5 V  
Rev. 0 | Page 9 of 80  
ADATE318  
Test  
Level  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
Propagation Delay Dispersion  
Slew Rate  
400 ps vs. 1 ns (20% to 80%)  
19  
40  
ps  
ps  
CB  
CB  
VDUTx: 0 V to 0.5 V swing, driver term mode,  
VIT = 0.0 V, comparator threshold = 0.25 V  
Overdrive  
250 mV vs. 1.0 V  
For 250 mV, VDUTx: 0 V to 0.5 V swing; for 1.0 V,  
VDUTx: 0 V to 1.25 V swing, driver term mode,  
VIT = 0.0 V, comparator threshold = 0.25 V  
1 V Pulse Width  
0.7 ns, 1 ns, 5 ns, 10 ns  
+2/− 17  
+3/− 24  
21  
ps  
ps  
ps  
ns  
CB  
CB  
CB  
CB  
VDUTx: 0 V to 1.0 V swing at~32.0 MHz; driver term  
mode, VIT = 0.0 V, comparator threshold = 0.5 V  
0.5 V Pulse Width  
0.6 ns, 1 ns, 5 ns, 10 ns  
VDUTx: 0 V to 0.5 V swing at~32.0 MHz, driver term  
mode, VIT = 0.0 V; comparator threshold = 0.25 V  
Duty Cycle  
5% to 95%  
VDUTx: 0 V to 1.0 V swing at~32.0 MHz; driver term  
mode, VIT =0.0 V, comparator threshold = 0.5 V  
Minimum Detectable Pulse Width  
0.5  
VDUTx: 0 V to 1.0 V swing at 32.0 MHz, driver term  
mode, VIT = 0.0 V; greater than 50% output  
differential amplitude  
Input Equivalent Bandwidth,  
Terminated  
1520  
721  
MHz  
ps  
CB  
CB  
VDUTx: 0 V to 1.0 V swing; driver term mode,  
VIT = 0.0 V, CLC = 2; as measured by shmoo plot;  
2
fEQUIV = 0.22/(tMEAS2 − tDUT  
)
ERT High-Z Mode, 3 V, 20% to 80%  
VDUTx: 0 V to 3.0 V swing, driver high-Z as measured  
2
by shmoo plot; fEQUIV = 0.22/(tMEAS2 – tDUT  
)
Comparator Pre-Emphasis (CLC)  
CLC Amplitude Range  
16  
%
CB  
VDUTx: 0 V to 1.0 V swing, driver term mode,  
VIT = 0.0 V, comparator pre-emphasis set to  
maximum  
CLC Resolution  
2.3  
4.3  
% per  
bit  
CB  
CB  
3-bit amplitude control  
Pre-Emphasis Time Constant  
ns  
VDUTx: 0 V to 1.0 V swing, driver term mode,  
VIT = 0.0 V, comparator pre-emphasis set to  
maximum  
Table 5. Differential Mode Comparator (DMC) (Unless Otherwise Specified: VOH Tests at VOL = 1.1 V, VOL Tests at  
VOH = +1.1 V)  
Test  
Level  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
DC SPECIFICATIONS  
Input Voltage Range  
Functional Differential Range  
Maximum Differential Input  
Input Offset Voltage  
−1.5  
V
D
D
D
P
+6.5  
1.1  
0.05  
V
8
V
−250  
1.0  
mV  
Offset extrapolated from measurements at DAC Code  
0x2666 (1 V) and DAC Code 0x599A (+1 V), with VCM = 0 V  
+250  
Offset Voltage Tempco  
Gain  
150  
ꢀV/ºC  
V/V  
CT  
P
1.1  
Gain derived from measurements at DAC Code 0x2666  
(−1 V) and DAC Code 0x599A (+1 V), based on ideal DAC  
transfer function (see Table 21)  
Gain Tempco  
25  
153  
1
ppm/°C  
ꢀV  
CT  
D
VOH, VOL Resolution  
VOH, VOL DNL  
mV  
CT  
After two point gain/offset calibration, VCM = 0.0 V,  
calibration points at 0x2666 (1 V) and 0x599A (+1 V)  
VOH, VOL INL  
−7  
mV  
mV  
P
After two point gain/offset calibration, measured over  
VOH/VOL range of 1.1 V to +1.1 V, VCM = 0.0 V; calibration  
points at 0x2666 (1 V) and 0x599A (+1 V)  
+7  
Uncertainty Band  
7
CB  
VDUTx = 0 V; sweep comparator threshold to determine  
the uncertainty band  
Rev. 0 | Page 10 of 80  
ADATE318  
Test  
Level  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
Maximum Programmable  
Hysteresis  
117  
mV  
CB  
Hysteresis Resolution  
CMRR  
5.6  
5
mV  
D
P
Calculated over hystersis control Code 10 to Code 31  
−1  
+1  
mV/V  
Offset measured at VCM = 1.5 V and +6.5 V with VDM = 0.0 V,  
offset error change  
DC PSRR  
mV/V  
CT  
Measured at calibration points  
AC SPECIFICATIONS  
All ac specifications performed after dc level calibration,  
unless noted; input transition time ~200 ps, 20% to 80%,  
measured with 50 Ω to external termination voltage (VTTC),  
peaking set to CLC = 2, unless otherwise specified  
Propagation Delay,  
Input to Output  
0.83  
2.6  
15  
ns  
CB  
CB  
CB  
CB  
VDUT0 = 0 V, VDUT1: 0.5 V to +0.5 V swing, driver term  
mode, VIT = 0.0 V, comparator threshold = 0.0 V, repeat for  
other channel  
Propagation Delay Tempco  
ps/ºC  
ps  
VDUT0 = 0 V, VDUT1: 0.5 V to +0.5 V swing, driver term  
mode, VIT = 0.0 V, comparator threshold = 0.0 V, repeat for  
other channel  
Propagation Delay Matching,  
High Transition to Low  
Transition  
VDUT0 = 0 V, VDUT1: 0.5 V to +0.5 V swing, driver term  
mode, VIT = 0.0 V, comparator threshold = 0.0 V, repeat for  
other channel  
Propagation Delay Matching,  
High to Low Comparator  
17  
ps  
VDUT0 = 0 V, VDUT1: 0.5 V to +0.5 V swing, driver term  
mode, VIT = 0.0 V, comparator threshold = 0.0 V, repeat for  
other channel  
Propagation Delay Change  
(Dispersion) With Respect To  
Slew Rate:  
400 ps and 1 ns  
(20% to 80%)  
31  
32  
ps  
ps  
CB  
CB  
VDUT0 = 0.0 V; VDUT1: 0.5 V to +0.5 V swing; driver term  
mode, VIT = 0.0 V; comparator threshold = 0.0 V, repeat for  
other channel  
Overdrive:  
250 mV and 750 mV  
VDUT0 = 0.0 V; for 250 mV: VDUT1: 0 V to 0.5 V swing; for  
750 mV: VDUT1: 0 V to 1.0 V swing; driver term mode,  
VIT = 0.0 V; comparator threshold = 0.25 V; repeat for  
other channel with comparator threshold = +0.25 V  
1 V Pulse Width:  
0.7 ns, 1 ns, 5 ns, 10 ns  
+1/−  
21  
ps  
ps  
ps  
ns  
CB  
CB  
CB  
CB  
VDUT0 = 0.0 V; VDUT1: 0.5 V to +0.5 V swing at 32 MHz;  
driver term mode, VIT = 0.0 V; comparator threshold = 0.0 V;  
repeat for other channel  
0.5 V Pulse Width:  
0.6 ns, 1 ns, 5 ns, 10 ns  
+1/−  
31  
VDUT0 = 0.0 V; VDUT1: 0.25 V to +0.25 V swing at 32 MHz;  
driver term mode, VIT = 0.0 V; comparator threshold = 0.0 V;  
repeat for other channel  
Duty Cycle:  
5% to 95%  
18  
VDUT0 = 0.0 V; VDUT1: 0.5 V to +0.5 V swing at 32 MHz;  
driver term mode, VIT = 0.0 V; comparator threshold = 0.0 V;  
repeat for other channel  
Minimum Detectable  
Pulse Width  
0.5  
VDUT0 = 0.0 V; VDUT1: 0.5 V to +0.5 V swing at 32 MHz;  
driver term mode, VIT = 0.0 V; comparator threshold = 0.0 V;  
greater than 50% output differential amplitude; repeat for  
other channel  
Input Equivalent Bandwidth,  
Terminated  
1038  
11  
MHz  
%
CB  
CB  
VDUT0 = 0.0 V; VDUT1: 0.5 V to +0.5 V swing; driver term  
mode, VIT = 0.0 V; comparator threshold = 0.0 V, CLC = 2 as  
measured by shmoo; repeat for other channel  
Comparator Pre-Emphasis (CLC)  
CLC Amplitude Range  
VDUT0 = 0.0 V; VDUT1: 0.8 V to +0.8 V swing, driver term  
mode, VIT = 0.0 V; comparator threshold = 0.0 V;  
comparator CLC set to maximum; repeat for other channel  
CLC Resolution  
1.6  
4.8  
% per bit  
ns  
CB  
CB  
3-bit amplitude control  
Pre-Emphasis Time Constant  
VDUT0 = 0.0 V; VDUT1: 0.8 V to +0.8 V swing, driver term  
mode, VIT = 0.0 V; comparator threshold = 0.0 V;  
comparator CLC set to maximum; repeat for other channel  
Rev. 0 | Page 11 of 80  
ADATE318  
Table 6. Active Load  
Test  
Level  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
DC SPECIFICATIONS  
Input Characteristics  
Load active on, RCVx active, unless otherwise noted  
VCOM Voltage Range  
−1.5  
V
V
D
D
| IOL and IOH | ≤ 1 mA  
+6.5  
−1.0  
| IOL and IOH | ≤ 25 mA  
+5.5  
VCOM Offset  
−200  
mV  
P
Measured at DAC Code 0x4000, uncalibrated  
+200  
VCOM Offset Tempco  
VCOM Gain  
25  
ꢀV/°C  
V/V  
CT  
P
1.0  
1.1  
Gain derived from measurements at DAC Code 0x4000 (0 V) and  
DAC Code 0xC000 (+5 V), based on ideal DAC transfer function (see  
Table 21)  
VCOM Gain Tempco  
VCOM Resolution  
VCOM DNL  
25  
153  
1
ppm/°C  
ꢀV  
CT  
D
mV  
CT  
IOH = IOL = 12.5 mA; after two point gain/offset calibration;  
measured over VCOM range of 1.5 V to +6.5 V; calibration points  
at 0x4000 (0 V) and 0xC000 (+5 V)  
VCOM INL  
−7  
−7  
mV  
mV  
P
P
IOH = IOL = 12.5 mA; after two point gain/offset calibration;  
measured at end points of VCOM functional range  
+7  
+7  
DUTGND Voltage  
Accuracy  
2
Over 0.1 V range  
Output Characteristics  
Maximum Source  
Current  
25  
mA  
ꢀA  
D
P
1.5 V to +5.5 V DUT range  
IOL Offset  
−600  
IOH = −2.5 mA, VCOM = 1.5 V, VDUTx = 0.0 V; offset extrapolated  
from measurements at DAC Code 0x451F (1 mA) and DAC Code  
0xA666 (20 mA)  
+600  
IOL Offset Tempco  
IOL Gain Error  
1
ꢀA/°C  
%
CT  
P
0
25  
IOH = −2.5 mA, VCOM = 1.5 V, VDUTx = 0.0 V; gain derived from  
measurements at DAC Code 0x451F (1 mA) and DAC Code 0xA666  
(20 mA); based on ideal DAC transfer function (see Table 21 and  
Table 22)  
IOL Gain Tempco  
IOL Resolution  
IOL DNL  
25  
763  
4
ppm/°C  
nA  
CT  
D
ꢀA  
CT  
IOH = −2.5 mA, VCOM = 1.5 V, VDUTx = 0.0 V; after two point  
gain/offset calibration; measured over IOL range, 0 mA to 25 mA;  
calibrated at Code 0x451F (1 mA) and Code 0xA666 (20 mA)  
IOL INL  
−100  
20  
ꢀA  
V
P
P
IOH = −2.5 mA, VCOM = 1.5 V, VDUTx = 0.0 V; after two point  
gain/offset calibration  
+100  
IOL 90% Commutation  
Voltage  
0.25  
0.4  
IOH = IOL = 25 mA, VCOM = 2.0 V; measure IOL reference at  
VDUTx = −1.0 V; measure IOL current at VDUTx = 1.6 V; check  
>90% of reference current  
IOL 90% Commutation  
Voltage  
0.1  
V
CT  
IOH = IOL = 1 mA, VCOM = 2.0 V; measure IOL reference at  
VDUTx = −1.0 V; measure IOL current at VDUTx = 1.9 V; check  
>90% of reference current  
Maximum Sink Current  
IOH Offset  
25  
mA  
ꢀA  
D
P
1.0 V to +6.5 V output range  
−600  
IOL = −2.5 mA, VCOM = 1.5 V, VDUTx = 3.0 V; offset extrapolated  
from measurements at DAC Code 0x451F (1 mA) and DAC Code  
0xA666 (20 mA)  
+600  
IOH Offset Tempco  
IOH Gain Error  
1
ꢀA/°C  
%
CT  
P
0
25  
IOL = −2.5 mA, VCOM = 1.5 V, VDUTx = 3.0 V; gain derived from  
measurements at DAC Code 0x451F (1 mA) and DAC Code 0xA666  
(20 mA); based on ideal DAC transfer function (see Table 21 and  
Table 22)  
Rev. 0 | Page 12 of 80  
ADATE318  
Test  
Level  
Parameter  
IOH Gain Tempco  
Min  
Typ  
25  
Max  
Unit  
ppm/°C  
nA  
Conditions  
CT  
D
IOH Resolution  
IOH DNL  
763  
4
ꢀA  
CT  
IOL = −2.5 mA, VCOM = 1.5 V, VDUTx = 3.0 V; after two point  
gain/offset calibration; measured over IOH range, 0 mA to 25 mA;  
calibrated at Code 0x451F (1 mA) and Code 0xA666 (20 mA)  
IOH INL  
−100  
25  
ꢀA  
V
P
P
IOL = −2.5 mA, VCOM = 1.5 V, VDUTx = 3.0 V; after two point  
gain/offset calibration  
+100  
IOH 90% Commutation  
Voltage  
0.25  
0.4  
IOH = IOL = 25 mA, VCOM = 2.0 V; measure IOH reference at  
VDUTx = 5.0 V; measure IOH current at VDUTx = 2.4 V; ensure >90%  
of reference current  
0.1  
V
CT  
IOH = IOL = 1 mA, VCOM = 2.0 V; measure IOH reference at  
VDUTx = 5.0 V; measure IOH current at VDUTx = 2.1 V; ensure >90%  
of reference current  
AC SPECIFICATIONS  
All ac specifications performed after dc level calibration unless  
noted; load active on  
Dynamic Performance  
Propagation Delay, Load  
Active On to Load  
Active Off; 50%, 90%  
3.1  
4.1  
ns  
ns  
ns  
CB  
CB  
Toggle RCVx; DUTx terminated 50 Ω to GND; IOL = IOH = 20 mA,  
VIH = VIL = 0 V; VCOM = +1.5 V for IOL and 1.5 V for IOH;  
RCVx  
measured from 50% point of RCVx −  
to 90% point of final  
output; repeat for drive low and drive high  
Propagation Delay, Load  
Active Off to Load  
Active On; 50%, 90%  
Toggle RCVx; DUTx terminated 50 Ω to GND; IOL = IOH = 20 mA,  
VIH = VIL = 0 V; VCOM = +1.5 V for IOL and 1.5 V for IOH;  
RCVx  
measured from 50% point of RCVx −  
to 90% point of final  
output; repeat for drive low and drive high  
Propagation Delay  
Matching  
1.0  
106  
1.6  
CB  
CB  
CB  
Toggle RCVx; DUTx terminated 50 Ω to GND; IOL = IOH = 20 mA,  
VIH = VIL = 0 V; VCOM = +1.5 V for IOL and 1.5 V for IOH;  
active on vs. active off; repeat for drive low and drive high  
Load Spike  
mV pk-  
pk  
Toggle RCVx; DUTx terminated 50 Ω to GND; IOL = IOH = 0 mA,  
VIH = VIL = 0 V; VCOM = +1.5 V for IOL and 1.5 V for IOH; repeat  
for drive low and drive high  
Settling Time to 90%  
ns  
Toggle RCVx; DUTx terminated 50 Ω to GND; IOL = IOH = 20 mA,  
VIH = VIL = 0 V; VCOM = +1.5 V for IOL and 1.5 V for IOH;  
measured at 90% of final value  
Table 7. PPMU (PPMU Enabled in FV, DCL Disabled)  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions  
FORCE VOLTAGE  
Current Range A  
Current Range B  
Current Range C  
Current Range D  
Current Range E  
Voltage Range at Output  
Range A  
−40  
−1  
mA  
mA  
ꢀA  
ꢀA  
ꢀA  
D
D
D
D
D
+40  
+1  
−100  
−10  
−2  
+100  
+10  
+2  
−2.0  
−2.0  
−2.0  
V
V
V
D
D
D
Output range for full-scale source and sink.  
+5.75  
+6  
Output range for 25 mA.  
Range B, Range C, Range D, and  
Range E  
Output range for full-scale source and sink.  
+6.5  
Offset  
Range C  
−100  
mV  
P
Measured at DAC Code 0x4000 (0 V).  
Measured at DAC Code 0x4000 (0 V).  
+100  
All Ranges  
10  
25  
mV  
CT  
CT  
Offset Tempco, All Ranges  
ꢀV/°C  
Rev. 0 | Page 13 of 80  
ADATE318  
Test  
Parameter  
Gain  
Min  
Typ  
Max  
Unit  
Level Conditions  
Range C  
1.0  
1.1  
V/V  
P
Gain derived from measurements at DAC  
Code 0x4000 (0 V) and DAC Code 0xC000  
(5 V); based on ideal DAC transfer function  
(see Table 21 and Table 23).  
All Ranges  
1.05  
25  
V/V  
CT  
CT  
Gain derived from measurements at DAC  
Code 0x4000 (0 V) and DAC Code 0xC000  
(5 V); based on ideal DAC transfer function  
(see Table 21 and Table 23).  
Gain Tempco, All Ranges  
ppm/°C  
Gain derived from measurements at DAC  
Code 0x4000 (0V) and DAC Code 0xC000  
(5 V); calibration point 0x4000 (0 V) and  
0xC000 (+5 V) output.  
INL  
Range A  
1
mV  
CT  
After two point gain/offset calibration, output  
range of 2.0 V to +5.75 V, PPMU Current  
Range A only.  
Range C  
−1.7  
mV  
mV  
P
After two point gain/offset calibration;  
output range of 2.0 V to +6.5 V.  
+1.7  
Range B, Range D, and Range E  
1
CT  
After two point gain/offset calibration, output  
range of 2.0 V to +6.5 V.  
Compliance vs. Current Load  
Range A  
40  
mV  
mV  
mV  
%FS  
CT  
CT  
CT  
P
Force 2.0 V; measure voltage while sinking  
zero and full-scale current; measure ΔV; force  
+5.75 V; measure voltage while sourcing zero  
and full-scale current; measure ΔV.  
25  
1
Force 2.0 V; measure voltage while sinking  
zero and 25 mA current; measure ΔV; force  
+6 V; measure voltage while sourcing zero  
and 25 mA current; measure ΔV.  
Range B, Range C, Range D, and  
Range E  
Force 2.0 V; measure voltage while sinking  
zero and full-scale current; measure ΔV; force  
+6.5 V; measure voltage while sourcing zero  
and full-scale current; measure ΔV.  
Current Limit, Source and Sink  
All Ranges  
120  
140  
180  
Sink: force 2.0 V, short DUTx to +6.5 V;  
source: force +6.5 V, short DUTx to 2.0 V;  
repeat for each current range; example:  
Range A  
FS = 40 mA,  
120% FS = 48 mA  
180% FS = 72 mA  
DUTGND Voltage Accuracy  
−7  
2
mV  
P
Over 0.1 V range; measured at endpoints  
of PPMU_VINFV functional range (see  
Figure 136).  
+7  
MEASURE CURRENT  
PPMU enabled in FIMI, DCL disabled.  
DUTx Pin Voltage Range at Full Current  
Range A  
−2.0  
−2.0  
+5.75  
+6.5  
V
V
D
D
Range B, Range C, Range D, and  
Range E  
Zero-Current Offset, Range B  
−2  
2
%FSR  
P
Interpolated from measurements sourcing  
and sinking 80% FSR current each range;  
FSR = 80 mA for Range A, 2 mA for Range B,  
200 ꢀA for Range C, 20 ꢀA for Range D, 4 ꢀA  
for Range E (see Table 21and Table 23).  
All Ranges  
0.5  
%FSR  
CT  
CT  
See Table 21and Table 23.  
See Table 21 and Table 23.  
Zero-Current Offset Tempco, Range A  
0.001  
%FSR/°C  
Rev. 0 | Page 14 of 80  
ADATE318  
Test  
Parameter  
Range B, Range C, and Range D  
Min  
Typ  
0.001  
Max  
Unit  
Level Conditions  
%FSR/°C  
CT  
CT  
Range E  
0.002  
%FSR/°C  
Gain Error  
Range B  
−30  
%
%
P
Based on measurements sourcing and  
sinking, 80% FSR current.  
+5  
All Ranges  
−10  
CT  
Based on measurements sourcing and  
sinking, 80% FSR current.  
Gain Tempco  
Range A  
50  
25  
ppm/°C  
ppm/°C  
CT  
CT  
Range B, Range C, Range D, and  
Range E  
INL  
Range A  
0.0125  
0.01  
2
%FSR  
%FSR  
%FSR  
ꢀA  
CT  
P
Range A, after two point gain/offset  
calibration at 80% FSR current; measured  
over FSR output of 40 mA to +40 mA.  
Range B  
−0.03  
+0.03  
After two point gain/offset calibration at  
80% FSR current; measured over FSR output  
of 1 mA to +1 mA.  
Range C, Range D, and Range E  
DUTx Pin Voltage Rejection  
DUTGND Voltage Accuracy  
CT  
P
After two point gain/offset calibration at  
80% FSR current; measured over each FSR  
output for Range C, Range D, and Range E.  
−1.2  
−7  
Range B, FVMI, force −1 V and 5 V into load of  
0.5 mA, measure ΔI reported at PPMU_MEASx  
pin.  
+1.2  
+7  
mV  
P
Over 0.1 V range (see Figure 136).  
FORCE CURRENT  
PPMU enabled in FIMI, DCL disabled.  
At full-scale source and sink current.  
At 25 mA source and sink current.  
DUTx Pin Voltage Range in Range A  
−2.0  
−2.0  
−2.0  
V
V
V
D
D
D
+5.75  
+6  
DUTx Pin Voltage Range at Full Current,  
Range B, Range C, Range D, and  
Range E  
+6.5  
Zero-Current Offset, All Ranges  
−14.5  
−5  
%FSR  
P
Extrapolated from measurements at Code  
0x4CCC and Code 0xB333 for each range (see  
Table 21and Table 23).  
+14.5  
+25  
Zero-Current Offset Tempco  
Gain Error, All Ranges  
0.002  
%FSR/°C  
%
CT  
P
Derived from measurements at Code 0x4CCC  
and Code 0xB333 for each range (see  
Table 21 and Table 23).  
Gain Tempco  
Range A  
50  
25  
ppm/°C  
ppm/°C  
CT  
CT  
Significant PPMU self-heating effects in  
Range A can influence gain drift/tempco  
measurements.  
Range B, Range C, Range D, and  
Range E  
INL  
Range A  
−0.12  
−0.03  
0.02  
+0.12  
+0.03  
%FSR  
%FSR  
P
P
After two point gain/offset calibration;  
measured over FSR output of 40 mA to  
+40 mA.  
Range B, Range C, and Range D  
After two point gain/offset calibration;  
measured over FSR output; repeat for  
Range B, Range C, and Range D.  
Rev. 0 | Page 15 of 80  
ADATE318  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions  
Range E  
−0.045  
+0.045  
%FSR  
P
After two point gain/offset calibration;  
measured over FSR output.  
Force Current Compliance vs. Voltage  
Load  
Range A  
−0.3  
+0.3  
%FSR  
P
Force positive full-scale current driving  
−2.0 V and +5.75 V; measure ΔI at DUTx pin;  
force negative full-scale current driving  
−2.0 V and +5.75 V; measure ΔI at DUTx pin.  
−0.3  
+0.3  
%FSR  
%FSR  
P
P
Force +25 mA driving −2.0 V and +6.0 V;  
measure ΔI at DUTx pin; force −25 mA driving  
−2.0 V and +6.0 V; measure ΔI at DUTx pin.  
−0.06  
+0.06  
Force positive full-scale current driving  
0.0 V and +4.0 V; measure ΔI at DUTx pin;  
force negative full-scale current driving  
0.0 V and +4.0 V; measure ΔI at DUTx pin.  
Range B and Range C  
−0.3  
−0.06  
−0.3  
+0.3  
+0.06  
+0.3  
%FSR  
%FSR  
%FSR  
P
P
P
Force positive full-scale current driving  
−2.0 V and +6.5 V; measure ΔI at DUTx pin;  
force negative full-scale current driving  
−2.0 V and +6.5 V; measure ΔI at DUTx pin.  
Force positive full-scale current driving  
0.0 V and +4.0 V; measure ΔI at DUTx pin;  
force negative full-scale current driving  
0.0 V and +4.0 V; measure ΔI at DUTx pin.  
Range D  
Range E  
Force positive full-scale current driving  
2.0 V and +6.5 V; measure ΔI at DUTx pin;  
force negative full-scale current driving  
2.0 V and +6.5 V; measure ΔI at DUTx pin;  
allows for 10 nA of DUTx pin leakage.  
−0.85  
+0.85  
%FSR  
P
Force positive full-scale current driving  
2.0 V and +6.5 V; measure ΔI at DUTx pin;  
force negative full-scale current driving 2.0 V  
and +6.5 V; measure ΔI at DUTx pin; allows for  
10 nA of DUTx pin leakage.  
MEASURE VOLTAGE  
Voltage Range  
Offset  
PPMU enabled, FVMV, DCL disabled.  
−2.0  
−25  
+6.5  
+25  
V
D
P
mV  
Range B, VDUTx = 0 V; offset = (PPMU_MEAS  
VDUTx).  
Offset Tempco  
Gain  
10  
1
ꢀV/°C  
V/V  
CT  
P
0.98  
1.02  
Range B, gain derived from measurements at  
VDUTx = 0.0 V and +5.0 V.  
Gain Tempco  
ppm/°C  
mV  
CT  
P
INL  
−1.7  
−2.0  
+1.7  
Range B, measured over 2.0 V to +6.5 V.  
Measure Pin DC Characteristics  
Output Range  
V
D
D
P
+6.5  
4
DC Output Current  
Output Impedance  
mA  
Ω
200  
PPMU enabled in FVMV, DCL disabled;  
Source resistance:  
PPMU force +6.5 V with 0 mA, +4 mA load  
Sink resistance:  
PPMU force 2.0 V with 0 mA, 4 mA load  
Resistance = ΔV/ΔI at PPMU_MEAS pin.  
Output Leakage Current When  
Tristated  
−1  
ꢀA  
P
+1  
Tested at 2.0 V and +6.5 V.  
Rev. 0 | Page 16 of 80  
ADATE318  
Test  
Parameter  
Output Short-Circuit Current  
Min  
Typ  
Max  
Unit  
Level Conditions  
−25  
mA  
P
PPMU enabled in FVMV, DCL disabled;  
Source:  
PPMU force +6.5 V, PPMU_MEAS to 2.0 V  
Sink:  
+25  
PPMU force 2.0 V, PPMU_MEAS to +6.5 V  
PPMU_MEASx Pin, Output  
Capacitance  
2
pF  
pF  
S
S
PPMU_MEASx Pin, Load Capacitance  
100  
Maximum load capacitance.  
VOLTAGE CLAMPS  
PPMU enabled in FIMI, DCL disabled, PPMU  
clamps enabled; clamp accuracy specifica-  
tions apply only when VCH > VCL.  
Low Clamp Range (VCL)  
−2.0  
0.0  
V
D
D
P
+4.0  
+6.5  
+300  
High Clamp Range (VCH)  
Positive Clamp Voltage Droop  
V
−300  
1
1
mV  
ΔV seen at DUTx pin, Range A, VCH = +5.0 V,  
VCL = 1 V; PPMU force 5 mA and 40 mA into  
open.  
Negative Clamp Voltage Droop  
Offset, PPMU Clamp VCH/VCL  
−300  
−300  
mV  
mV  
P
P
+300  
+300  
ΔV seen at DUTx pin, Range A, VCH = +5.0 V,  
VCL = 1 V, PPMU force −5 mA and 40 mA  
into open.  
Range B, PPMU force 0.5 mA into open; VCH  
measured at DAC Code 0x4000 (0 V) with VCL  
at Code 0x0000 (2.5 V); VCL measured at  
DAC Code 0x4000 (0 V) with VCH at 0xFFFF  
(+7.5 V).  
Offset Tempco, PPMU Clamp VCH/VCL  
Gain, PPMU Clamp VCH/VCL  
0.5  
mV/°C  
V/V  
CT  
P
1.0  
1.2  
Range B, PPMU force 0.5 mA into open; VCH  
gain derived from measurements at DAC  
Code 0x4000 (0 V) and DAC Code 0xC000  
(+5.0 V) with VCL at Code 0x0000 (2.5 V); VCL  
gain derived from measurements at DAC  
Code 0x4000 (0 V) and DAC Code 0xA666  
(+4.0 V) with VCH at 0xFFFF (+7.5 V).  
Gain Tempco, PPMU Clamp VCH/VCL  
INL, PPMU Clamp VCH/VCL  
25  
2
ppm/°C  
mV  
CT  
P
−20  
−7  
Range B, PPMU force 0.5 mA into open,  
after two point gain/offset calibration;  
measured over PPMU clamp functional range.  
+20  
+7  
DUTGND Voltage Accuracy  
SETTLING/SWITCHING TIMES  
mV  
P
Over 0.1 V range; measured at end points of  
clamp functional range.  
Force Voltage Settling Time to 0.1% of  
Final Value  
Range A,  
200 pF and 2000 pF Load  
10  
12  
32  
ꢀs  
ꢀs  
ꢀs  
S
S
S
PPMU enabled in FV, Range A, DCL disabled;  
program VIN steps from 0 V to 0.5 V and 5.0 V.  
Range B,  
200 pF and 2000 pF Load  
PPMU enabled in FV, Range B, DCL disabled;  
program VIN steps from 0 V to 0.5 V and 5.0 V.  
Range C,  
200 pF and 2000 pF Load  
PPMU enabled in FV, Range C, DCL disabled;  
program VIN steps from 0 V to 0.5 V and 5.0 V.  
Force Voltage Settling Time to 1.0% of  
Final Value  
Range A,  
200 pF & 2000 pf Load  
8.1  
8.1  
8.1  
ꢀs  
ꢀs  
ꢀs  
CB  
CB  
CB  
PPMU enabled in FV, Range A, DCL disabled;  
program VIN steps from 0 V to 5.0 V.  
Range B,  
200 pF and 2000 pf Load  
PPMU enabled in FV, Range B, DCL disabled;  
program VIN steps from 0 V to 5.0 V.  
Range C,  
200 pF and 2000 pf Load  
PPMU enabled in FV, Range C, DCL disabled;  
program VIN steps from 0 V to 5.0 V.  
Rev. 0 | Page 17 of 80  
ADATE318  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Conditions  
Range A,  
200 pF and 2000 pf Load  
2.5  
ꢀs  
CB  
CB  
CB  
PPMU enabled in FV, Range A, DCL disabled;  
program VIN steps from 0 V to 0.5 V.  
Range B,  
6.3  
8.1  
ꢀs  
ꢀs  
PPMU enabled in FV, Range B, DCL disabled;  
program VIN steps from 0 V to 0.5 V.  
200 pF and 2000 pf Load  
Range C,  
PPMU enabled in FV, Range C, DCL disabled;  
program VIN steps from 0 V to 0.5 V.  
200 pF and 2000 pf Load  
Force Current Settling Time to 0.1% of  
Final Value  
Range A,  
200 pF in Parallel with 120 Ω  
16  
10  
40  
ꢀs  
ꢀs  
ꢀs  
S
S
S
PPMU enabled in FI, Range A, DCL disabled;  
program VIN step of 0 mA to 40 mA.  
Range B,  
200 pF in Parallel with 1.5 KΩ  
PPMU enabled in FI, Range B, DCL disabled;  
program VIN step of 0 mA to 1 mA.  
Range C,  
200 pF in Parallel with 15.0 KΩ  
PPMU enabled in FI, Range C, DCL disabled;  
program VIN step of 0 mA to 100 μA.  
Force Current Settling Time to 1.0% of  
Final Value  
Range A,  
200 pF in Parallel with 120 Ω  
8.1  
7.5  
8.1  
ꢀs  
ꢀs  
ꢀs  
CB  
CB  
CB  
PPMU enabled in FI, Range A, DCL disabled;  
program VIN step of 0 mA to 40 mA.  
Range B,  
200 pF in Parallel with 1.5 KΩ  
PPMU enabled in FI, Range B, DCL disabled;  
program VIN step of 0 mA to 1 mA.  
Range C,  
200 pF in Parallel with 15.0 KΩ  
PPMU enabled in FI, Range C, DCL disabled;  
program VIN step of 0 mA to 100 μA.  
INTERACTION and CROSSTALK  
Measure Voltage Channel-to-Channel  
Crosstalk  
0.01  
%FSR  
%FSR  
CT  
0.01% × 8.5 V = 0.85 mV, PPMU enabled in  
FIMV, DCL disabled; CHx under test: Range B,  
forcing 0 mA into 0 V load; other channel:  
Range A, sweep 0 mA to 40 mA into 0 V load;  
report ΔV of PPMU_MEASx pin under test.  
Measure Current Channel-to-Channel  
Crosstalk  
0.01  
CT  
0.01% × 5.0 V = 0.5 mV, PPMU enabled in  
FVMI, DCL disabled; CHx under test: Range E,  
forcing 0 V into 0 mA current load; other  
channel: Range E, sweep 2.0 V to +6.5 V into  
0 mA current load; report ΔV of PPMU_MEASx  
pin under test.  
Table 8. PPMU_Go/No-Go Comparators  
Test  
Level  
Parameter  
Min  
Typ  
Max  
+6.5  
+250  
Unit  
V
Conditions  
Compare Voltage Range  
Input Offset Voltage  
Input Offset Voltage Tempco  
Gain  
−2.0  
D
P
−250  
mV  
Measured at DAC Code 0x4000 (0 V)  
50  
μV/ºC  
V/V  
CT  
P
1.0  
1.1  
Gain derived from measurements at DAC  
Code 0x4000 (0 V) and DAC Code 0xC000  
(+5.0 V)  
Gain Tempco  
25  
153  
1
ppm/ºC  
ꢀV  
CT  
D
Applies at m = 1.0 and c = 0.0  
Comparator Threshold Resolution  
Comparator Threshold DNL  
mV  
CT  
After two point gain/offset calibration;  
measured over VOH/VOL range − 2.0 V to  
+6.5 V; calibration points at 0x4000 (0 V) and  
0xC000 (+5 V)  
Comparator Threshold INL  
DUTGND Voltage Accuracy  
−7  
−7  
mV  
mV  
P
P
After two point gain/offset calibration;  
measured at end points of VOH and VOL  
functional range  
+7  
+7  
2
Over 0.1 V range  
Rev. 0 | Page 18 of 80  
ADATE318  
Test  
Level  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
Comparator Uncertainty Band  
1.6  
mV  
CB  
Sweep comparator threshold to determine  
uncertainty (oscillation) band  
DC Hysteresis  
<1  
mV  
CB  
Sweep comparator threshold  
COMPARATOR OUTPUTS  
Output Logic High  
PPMU_CMPHx, PPMU_CMPLx  
VDD/4  
− 0.5  
VDD/4  
+ 0.5  
V
V
PF  
PF  
Sourcing 100 μA  
Output Logic Low  
0
0.5  
Sinking 100 μA  
Table 9. PPMU_Sense Pin  
Test  
Level  
Parameter  
Min  
Typ  
Max  
Unit  
Condition  
PMU_Sx (SYSTEM PMU)  
SENSE PIN CHARACTERISTICS  
Voltage Range  
−2.0  
+7.0  
2.5  
V
D
P
DCL high-Z compliance range is −2.0 V to  
+7.0 V  
Ext Sense Switch RON  
kΩ  
Push 0.5 mA into PMU_Sx with switch closed  
and DUTx pin at 0 V; calculate R = V/0.0005  
Leakage  
−2  
+2  
nA  
pF  
P
S
Tested at −2.0 V and +7.0 V, switch open  
Switch open  
Pin Capacitance (PMU_Sx)  
0.5  
PPMU_Sx (INTERNAL PPMU)  
SENSE PIN CHARACTERISTICS  
Voltage Range  
Leakage  
−2.0  
−2  
V
D
P
S
PPMU input select in all states  
+6.5  
+2  
nA  
nF  
Tested at −2.0 V and +6.5 V  
Max Load Capacitance  
2
RST CS  
BUSY  
)
Table 10. Serial Programmable Interface (SPI) (SDI,  
,
, SCLK, SDO,  
Test  
Level  
Parameter  
Min  
Typ  
Max  
Unit  
Condition  
Input Logic High  
1.8  
VCC  
V
PF  
RST CS  
SDI, , , SCLK.  
Input Logic Low  
0
0.7  
V
PF  
Input Bias Current  
−10  
0.5  
1
ꢀA  
P
Tested at 0.0 V and VCC volts.  
+10  
SCLK Clock Rate  
50  
MHz  
ns  
D
SCLK Pulse Width, Minimum  
SCLK Crosstalk on DUTx Pin  
9
CT  
CB  
30  
mV  
DCL disabled; PPMU FV enabled and forcing  
0.0 V.  
Serial Output Logic High  
Serial Output Logic Low  
VCC − 0.5  
VCC  
0.5  
V
V
V
PF  
PF  
D
SDO; sourcing 2 mA.  
Sinking 2 mA.  
0
BUSY  
2.3  
2.5  
0.2  
3.5  
BUSY  
Pull-Up Voltage  
is an open drain output that pulls low  
when the SPI requires additional SCLK cycles.  
BUSY  
0.8  
V
PF  
BUSY  
active, sinking 2 mA.  
Active Voltage  
Rev. 0 | Page 19 of 80  
ADATE318  
Table 11. VHH Driver (VHH Mode Enabled, RCV Active)  
Test  
Level  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
VHH BUFFER  
Voltage Range  
Output High  
Output Low  
VHH mode enabled, RCVx active  
0.0  
13.5  
V
D
P
P
P
13.5  
V
VHH level = full scale, sourcing 15 mA  
VHH level = zero-scale, sinking 15 mA  
5.9  
V
Extrapolated Offset  
−500  
mV  
Extrapolated from measurements at DAC  
Code 0x8000 (+7 V) and DAC Code 0xC000  
(+12 V)  
+500  
Extrapolated Offset Tempco  
Gain  
0.5  
mV/ºC  
V/V  
CT  
P
2
2.2  
Gain derived from measurements at DAC  
Code 0x8000 (+7 V) and DAC Code 0xC000  
(+12 V); based on ideal DAC transfer function  
(see Table 21)  
Gain Tempco  
Resolution  
INL  
25  
ppm/ºC  
ꢀV  
CT  
D
P
305  
−25  
mV  
VHH mode enabled, RCVx active; after two  
point gain/offset calibration; measured over  
+5.9 V to +13.5 V; calibrate at Code 0x8000  
(+7 V) and Code 0xC000 (+12 V)  
+25  
DUTGND Voltage Accuracy  
Output Resistance  
4
mV  
Ω
CT  
P
Over 0.1 V range; measured at end points of  
VHH functional range  
10  
ΔV/ΔI; VHH mode enabled, RCVx active;  
Source: VHH = +10.0 V, I = 0 mA, +15 mA  
Sink: VHH = +6.5 V, I = 0 mA, −15 mA  
DC Output Current Limit Source  
DC Output Current Limit Sink  
mA  
mA  
ns  
P
VHH mode enabled, RCVx active; VHH = +13.5 V,  
short HVOUT pin to +5.9 V, measure current  
+60  
+100  
−100  
−60  
P
VHH mode enabled, RCVx active, VHH = 5.9 V,  
short HVOUT pin to 13.5 V, measure current  
VHH Rise Time  
(from VIL or VIH to VHH)  
163  
30  
CB  
20% to 80%, VHH mode enabled, toggle RCVx:  
VHH = 13.5 V, VIL = 0.0 V, VIH = 3.0 V, DATx =  
high; VHH = 13.5 V, VIL = 3.0 V, VIH = 4.0 V,  
DATx = low  
VHH Fall Time  
(from VHH to VIL or VIH)  
ns  
CB  
CB  
20% to 80%, VHH mode enabled, toggle RCVx;  
VHH = 13.5 V, VIL = 0.0 V, VIH = 3.0 V, DATx =  
high; VHH = 13.5 V, VIL = 3.0 V, VIH = 4.0 V,  
DATx = low  
Preshoot, Overshoot, and Undershoot  
40.0  
mV  
VHH mode enabled, toggle RCVx; VHH =  
13.5 V, VIL = 0.0 V, VIH = 3.0 V, DATx = high;  
VHH = 13.5 V, VIL = 3.0 V, VIH = 4.0 V, DATx =  
low  
VIL/VIH DRIVE FUNCTION  
Voltage Range  
VHH mode enabled, RCVx inactive  
−0.1  
V
D
P
+6.5  
Offset Voltage  
−500  
mV  
Measured at DAC Code 0x4000 (0 V), for DATx  
= high and DATx = low  
+500  
Offset Voltage Tempco  
Gain  
1
mV/ºC  
V/V  
CT  
P
1.0  
1.1  
Gain derived from measurements at DAC  
Code 0x4000 (0 V) and DAC Code 0xC000 (5 V);  
based on ideal DAC transfer function (see  
Table 21)  
Gain Tempco  
Resolution  
INL  
75  
153  
ppm/ºC  
ꢀV  
CT  
D
P
−20  
mV  
VHH mode enabled, RCVx inactive; after two  
point gain/offset calibration; measured over  
−0.1 V to +6.0 V; calibrate at Code 0x4000 (0 V)  
and Code 0xC000 (+5.0 V)  
+20  
Rev. 0 | Page 20 of 80  
ADATE318  
Test  
Level  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
DUTGND Voltage Accuracy  
2
mV  
CT  
Over 0.1 V range; measured at end points of  
VIH and VIL functional range  
Output Resistance  
46  
48  
50  
Ω
P
ΔV/ΔI; VHH mode enabled, RCVx inactive;  
Source: VIH = +3.0 V, I = +1 mA, +50 mA;  
Sink: VIL = +2.0 V; I = −1 mA, −50 mA  
DC Output Current Limit Source  
DC Output Current Limit Sink  
Rise Time, VIL to VIH  
60  
100  
−60  
mA  
mA  
ns  
P
VHH mode enabled, RCVx inactive,  
VIH = +6.0 V, short HVOUT pin to 0.1 V,  
DATx high, measure current  
−100  
P
VHH mode enabled, RCVx inactive,  
VIL = −0.1 V, short HVOUT pin to +6.0 V,  
DATx low, measure current  
6.4  
7.3  
30  
CB  
CB  
CB  
20% to 80%, VHH mode enabled, RCVx  
inactive, VIL = 0.0 V, VIH = 3.0 V, RLOAD > 500 Ω,  
toggle DATx  
Fall Time, VIH to VIL  
ns  
20% to 80%, VHH mode enabled, RCVx  
inactive, VIL = 0.0 V, VIH = 3.0 V, RLOAD > 500 Ω,  
toggle DATx  
Preshoot, Overshoot, and Undershoot  
mV  
VHH mode enabled, RCVx inactive,  
VIL = 0.0 V, VIH = 3.0 V, RLOAD > 500 Ω,  
toggle DATx  
Table 12. Alarm Functions  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level  
Condition  
DC CHARACTERISTICS  
Overvoltage Detect (OVD)  
Programmable Voltage Range  
See Figure 137  
V
D
P
2.5  
+7.5  
mV  
Uncalibrated Error at 2.0 V  
200  
+200  
Measured at DAC Code 0x0CCC (2.0 V); OVD comparators not  
guaranteed to function as specified if VDUTx is outside  
absolute maximum voltage range  
mV  
P
Uncalibrated Error at +7.0 V  
450  
+450  
Measured at DAC Code 0xF333 (+7.0 V)  
Offset Voltage Tempco  
0.5  
mV/°C CT  
Gain derived from measurements at DAC Code 0x4000 and  
DAC Code 0xC000  
Gain  
1.045  
125  
V/V  
mV  
CT  
CT  
Hysteresis  
Thermal Alarm  
Setpoint Error  
Thermal Hysteresis  
PPMU Clamp Alarm  
See Figure 137  
10  
°C  
°C  
CT  
CT  
Relative to default value, 100°C  
−15  
See Figure 137 and Table 29 for electrical characteristics  
ALARM  
Output Characteristics  
Off State Leakage  
10  
500  
0.7  
nA  
V
P
ALARM  
Disable alarm, apply 2.5 V to  
current  
pin, measure leakage  
Max On Voltage at100 ꢀA  
Propagation Delay  
0.1  
1.5  
P
ALARM  
Activate alarm, force 100 ꢀA into  
alarm voltage  
pin, measure active  
ꢀs  
CB  
For OVD_HI:  
VDUTx: 0 V to 6 V swing,  
OVDH = +3.0 V, OVDL = 1.0 V  
For OVD_LO:  
VDUTx: 0 V to 6 V swing,  
OVDH = +7.0 V, OVDL= +3.0 V  
Rev. 0 | Page 21 of 80  
ADATE318  
SPI TIMING DETAILS  
SCLK  
tCH  
tCSAM  
0
1
2
3
4
5
6
7
8
9
10  
11  
tCL  
24  
25  
0
1
2
3
4
5
6
7
tCSRS  
tCSAS  
CS  
tCSAH  
tCSRH  
tDS  
SDI  
C1 C0 A6 A5 A4 A3 A2 A1 A0  
D15 D14  
D1 D0  
C1 C0 A6 A5 A4 A3 A2 A1  
R/W  
tCSZ  
tCSO  
tDH  
tDO  
NOTE 1  
SDO  
NOTE 1  
C1 C0 A6 A5 A4 A3 A2 A1 A0  
D15 D14  
D1  
D0  
C1 C0 A6 A4 A3 A2 A1 A0  
R/W  
tBUSA  
tBUSR  
BUSY  
SEE TABLE 18  
tBUSW  
NOTES  
1. IF THE SPI_SDO_HIZ CONTROL BIT (ADDR 0x12 [1]) IS HIGH, THE SDO PIN BECOMES ACTIVE  
FOLLOWING THE ASSERTION OF CS. IT BECOMES HIGH-Z FOLLOWING RELEASE OF CS. IF THE  
SPI_SDO_HIZ CONTROL BIT IS LOW, THE SDO PIN REMAINS ACTIVE INDEPENDENT OF CS.  
Figure 2. SPI Detailed Read/Write Timing Diagram  
SCLK  
CS  
CH[1:0]  
ADDR[6:0]  
DATA[15:0]  
SDI  
W
NOTE 1  
NOTE 1  
ACTIVE – OUTPUT IS THE PREVIOUS SPI WORD SHIFTED INTO SDI  
FROM PREVIOUS SPI INSTRUCTIONS (SEE TABLE 18)  
SDO  
SEE TABLE 18  
BUSY  
NOTES  
1. IF THE SPI_SDO_HIZ CONTROL BIT (ADDR 0x12 [1]) IS HIGH, THE SDO PIN BECOMES ACTIVE  
FOLLOWING THE ASSERTION OF CS. IT BECOMES HIGH-Z FOLLOWING RELEASE OF CS. IF THE  
SPI_SDO_HIZ CONTROL BIT IS LOW, THE SDO PIN REMAINS ACTIVE INDEPENDENT OF CS.  
Figure 3. SPI Write Instruction  
Rev. 0 | Page 22 of 80  
 
 
ADATE318  
tCH  
SCLK  
tCL  
tRMIN  
tRS  
RST  
ASYNCHRONOUS  
ASSERT  
tBUSA  
tBUSR  
BUSY  
tBUSW  
3µs  
SEE TABLE 18  
(DAC DEGLITCH)  
V
DAC  
0
PREVIOUS CODE  
PREVIOUS CODE  
DEFAULT DAC CODE  
DUTGND  
0
V
DAC  
1
DEFAULT DAC CODE  
1
DUTGND  
DAC  
23  
V
DEFAULT DAC CODE  
23  
PREVIOUS CODE  
DUTGND  
RESET  
CONDITION  
INITIALIZED  
CONDITION  
Figure 4. SPI Detailed Hardware Reset Timing Diagram  
Rev. 0 | Page 23 of 80  
 
ADATE318  
tCH  
SCLK  
tCL  
CS  
SDI  
SPI RESET  
tBUSA  
tBUSR  
BUSY  
tBUSW  
SEE TABLE 18  
3µs  
(DAC DEGLITCH)  
V
V
DEFAULT DAC CODE  
0
PREVIOUS CODE  
PREVIOUS CODE  
DAC  
DAC  
DUTGND  
0
1
DEFAULT DAC CODE  
1
DUTGND  
DEFAULT DAC CODE  
23  
V
DAC  
PREVIOUS CODE  
DUTGND  
23  
RESET  
CONDITION  
INITIALIZED  
CONDITION  
Figure 5. SPI Detailed Software Reset Timing Diagram  
SCLK  
CS  
CH[1:0]  
ADDR[6:0]  
DATA[15:0] = DON’T CARE  
SDI  
R
NOTE 1  
NOTE 1  
ACTIVE – OUTPUT IS THE PREVIOUS SPI WORD SHIFTED INTO SDI  
FROM PREVIOUS SPI INSTRUCTIONS (SEE TABLE 18)  
SDO  
BUSY  
NOTES  
1. IF THE SPI_SDO_HIZ CONTROL BIT (ADDR 0x12 [1]) IS HIGH, THE SDO PIN BECOMES ACTIVE FOLLOWING THEASSERTION  
OF CS. IT BECOMES HIGH-Z FOLLOWING RELEASE OF CS. IF THE SPI_SDO_HIZ CONTROL BIT IS LOW, THE SDO PIN ALWAYS  
REMAINS ACTIVE INDEPENDENT OF CS.  
Figure 6. SPI Read Request Instruction (Prior to Readout)  
Rev. 0 | Page 24 of 80  
 
ADATE318  
SCLK  
CS  
SDI  
CH[1:0] ADDR[6:0] (COULD BE NOP) R/W  
NOTE 2  
DATA[15:0] = (IF NOP, THEN DON’T CARE)  
READ OUT DATA[15:0]  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
0
SDO  
NOTE 1  
CH[1:0]  
ADDR[6:0]  
0
NOTE 1  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
BUSY  
SEE TABLE 18  
NOTES  
1. IF THE SPI_SDO_HIZ CONTROL BIT (ADDR 0x12 [1]) IS HIGH, THE SDO PIN BECOMES ACTIVE FOLLOWING THE ASSERTION  
OF CS. IT BECOMES HIGH-Z FOLLOWING RELEASE OF CS. IF THE SPI_SDO_HIZ CONTROL BIT IS LOW, THE SDO PIN REMAINS  
ACTIVE INDEPENDENT OF CS.  
2. THE FIRST 10 BITS OF SDO FOLLOWING A READ REQUEST ECHO ADDRESS AND CHANNEL BITS OF THE PRECEDING REQUEST.  
THE R/W BIT POSITION IS SET LOW. THE FOLLOWING 16 BITS CONTAIN DATA FROM THE REQUESTED ADDRESS AND CHANNEL.  
Figure 7. SPI Readout Instruction (Subsequent to Read Request)  
Rev. 0 | Page 25 of 80  
 
ADATE318  
Table 13. SPI Detailed Timing Requirements  
Test  
Level  
Parameter Min  
Max  
Unit  
MHz  
ns  
ns  
ns  
Description  
fCLK  
tCH  
0.5  
9
50  
CT  
CT  
CT  
CT  
CT  
CT  
CT  
CT  
SCLK operating frequency.  
SCLK high time.  
SCLK low time.  
Setup of CS to rising SCLK at assert.  
Hold of CS to rising SCLK at assert.  
Setup of CS to rising SCLK at release.  
Hold of CS to rising SCLK at release.  
tCL  
9
tCSAS  
tCSAH  
tCSRS  
tCSRH  
3
3
ns  
3
ns  
3
ns  
4
ns  
Hold of CS release prior to rising SCLK. This parameter is critical only if the number  
of SCLK cycles from the previous release of CS is the minimum specified by the  
tCSAM parameter.  
tCSO  
tCSZ  
6
ns  
ns  
CT  
CT  
Delay from CS assert to SDO active.  
10  
Delay from CS release to SDO high-Z, depends greatly on external pin loading.  
tCSAM  
3
Cycles CT  
Width of CS release between consecutive assertions of CS. This parameter is  
specified in units of SCLK cycles, more specifically in terms of rising edges of the  
SCLK input.  
tDS  
tDH  
tDO  
tBUSA  
3
4
ns  
ns  
ns  
ns  
CT  
CT  
CT  
CT  
Setup of SDI data prior to rising SCLK.  
Hold of SDI data following rising SCLK.  
Delay of SDO data from rising SCLK.  
Delay of BUSY assert from first rising SCLK following a valid CS release or an  
asynchronous RSTb release.  
12  
12  
tBUSW  
3
26  
Cycles CT  
Width of BUSY assert. To ensure proper SPI operation, the SCLK must be provided  
for as long as BUSY remains asserted. Note that the number of SCLK cycles within  
any BUSY period is variable but deterministic and is based on the previous SPI  
write instruction type. See the Use of the SPI BUSY Pin section and Figure 3,  
Figure 6, Figure 8, and Table 18 for more information.  
tBUSR  
12  
ns  
CT  
Delay of BUSY release from first rising SCLK, satisfying the requirements detailed in  
the Use of the SPI BUSY Pin section.  
tRMIN  
tRS  
10  
3
ns  
ns  
CT  
CT  
Width of asynchronous RST assert.  
Setup of RST to rising SCLK at release.  
tSPI  
29  
Cycles CT  
Number of SCLK rising edge cycles per SPI word write plus the additional tCSAM  
requirement.  
tDAC  
5
10  
μs  
S
Settling time of analog DAC levels to ±0.5 LSB relative to the beginning of the DAC  
deglitch period, which begins x SCLK cycles following the release of CS and four  
SCLK cycles prior to the release of the BUSY pin. The number of SCLK cycles, x, is  
defined by Table 18. Also see Figure 124 for more information.  
Rev. 0 | Page 26 of 80  
 
ADATE318  
ABSOLUTE MAXIMUM RATINGS  
Table 14. Absolute Maximum Ratings  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltages  
Positive Supply Voltage (VDD to PGND) −0.5 V to +11.0 V  
Positive VCC Supply Voltage (VCC to  
DGND)  
−0.5 V to +4.0 V  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Negative Supply Voltage (VSS to PGND) −6.5 V to +0.5 V  
Supply Voltage Difference (VDD to VSS) −1.0 V to +17.0 V  
Reference Ground (DUTGND to AGND)  
−0.5 V to +0.5 V  
Table 15. Thermal Resistance  
VPLUS Supply Voltage (VPLUS to PGND) −0.5 V to +19.0 V  
Package Type  
θJA  
θJC  
Unit  
m/s  
Supply Sequence or Dropout  
Condition1  
Input/Output Voltages  
Airflow  
0
1
2
LFCSP  
45  
40  
37  
1
°C/W  
Analog Input Common-Mode  
Voltage  
VSS to VDD  
Table 16. Explanation of Test Levels  
Test Level  
Description  
DUTx Output Short Circuit Voltage2  
3.0 V to +8.0 V  
−0.5 V to VTTC + 0.5 V  
D
S
P
Definition  
Design verification simulation  
100% production tested  
High Speed Input Voltage Absolute  
Range3  
High Speed Differential Input  
Voltage3  
DUTx I/O Pin Current  
DCL Maximum Short-Circuit Current4  
−1.0 V to +1.0 V  
140 mA  
PF  
CT  
CB  
Functionally checked during production test  
Characterized on tester  
Characterized on bench  
Temperature  
Operating Temperature, Junction  
Storage Temperature Range  
1 No supply should exceed the given ratings.  
125°C  
ESD CAUTION  
−65°C to +150°C  
2 RLOAD = 0 Ω, VDUTx continuous short-circuit condition (VIH, VIL, VIT),  
high-Z, VCOM, and clamp modes).  
3
DAT  
RCV  
DAT,  
, RCV,  
, RSOURCE = 0 Ω.  
4 RLOAD = 0 Ω, VDUTx = −3 V to +8 V; DCL current limit. Continuous short-circuit  
condition. ADATE318 current limits and survives a continuous short-circuit  
fault.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
Rev. 0 | Page 27 of 80  
 
 
ADATE318  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
VDD_THERM  
PPMU_S1  
THERM  
1
2
3
4
5
6
7
8
9
63 VPLUS  
62 PPMU_S0  
61 HVOUT  
60 DAT0  
59 DAT0  
58 NC  
PIN 1  
IDENTIFIER  
DAT1  
DAT1  
NC  
RCV1  
RCV1  
RCV0  
RCV0  
57  
56  
ADATE318  
SCAP1  
55 SCAP0  
54 FFCAPB0  
53 FFCAPA0  
TOP VIEW  
FFCAPB1 10  
FFCAPA1 11  
CMPL1 12  
CMPL1  
VTTC1  
(Not to Scale)  
84-LEAD 10mm × 10mm LFCSP  
(HEATSINK FACE UP,  
DIE FACE DOWN)  
CMPL0  
CMPL0  
52  
51  
13  
14  
15  
50 VTTC0  
49  
CMPH1  
CMPH0  
CMPH1 16  
PGND 17  
48 CMPH0  
47 PGND  
VDD 18  
46 VDD  
VSS 19  
45 VSS  
PPMU_CMPH1 20  
AGND 21  
44 PPMU_CMPH0  
43 AGND  
NOTES  
1. EXPOSED PADDLE IS INTERNALLY CONNECTED VIA HIGH IMPEDANCE TO VSS (SUBSTRATE).  
2. NC = THIS PIN IS OPEN. NO INTERNAL CONNECTION.  
Figure 8. LFCSP Pin Configuration  
Table 17. Pin Function Descriptions  
Pin  
EP  
1
2
3
Mnemonic  
Exposed Paddle  
VDD_THERM  
PPMU_S1  
THERM  
DAT1  
Description  
Exposed paddle is internally connected via high impedance to VSS (substrate).  
Temperature Sensor VDD Supply.  
PPMU External Sense Connect, Channel 1.  
Temperature Sensor Analog Output.  
4
High Speed Data Input, Channel 1.  
5
DAT1  
High Speed Data Input Complement, Channel 1.  
This pin is open. No internal connection.  
High Speed Receive Input, Channel 1.  
High Speed Receive Input Complement, Channel 1.  
PPMU External Compensation Capacitor, Channel 1.  
PPMU External Feed Forward Capacitor Pin B, Channel 1.  
PPMU External Feed Forward Capacitor Pin A, Channel 1.  
High Speed Comparator Low Output, Channel 1.  
High Speed Comparator Low Output Complement, Channel 1.  
Comparator Supply Termination, Channel 1.  
High Speed Comparator High Output Complement, Channel 1.  
High Speed Comparator High Output, Channel 1.  
Power Ground.  
6
7
8
NC  
RCV1  
RCV  
9
SCAP1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
FFCAPB1  
FFCAPA1  
CMPL1  
CMPL1  
VTTC1  
CMPH1  
CMPH1  
PGND  
VDD  
VSS  
PPMU_CMPH1  
AGND  
AGND  
VDD Supply.  
VSS Supply.  
PPMU Go/No-Go Comparator High Output, Channel 1.  
Analog Ground.  
Analog Ground.  
PPMU_CMPL1  
PPMU Go/No-Go Comparator Low Output, Channel 1.  
Rev. 0 | Page 28 of 80  
 
 
ADATE318  
Pin  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
Mnemonic  
PPMU_MEAS1  
DGND  
DUTGND  
ALARM  
VSS  
Description  
PPMU Analog Measure Output, Channel 1.  
Digital Logic Ground.  
DUT Ground Sense Input.  
Fault Alarm Open Drain Output.  
VSS Supply.  
Digital Logic Ground.  
Serial Programmable Interface (SPI) Chip Select Input (Active Low).  
Serial Programmable Interface (SPI) Busy Output (Active Low).  
Serial Programmable Interface (SPI) Serial Data Output.  
Serial Programmable Interface (SPI) Clock Input.  
Serial Programmable Interface (SPI) Serial Data Input.  
VCC Supply.  
DGND  
CS  
BUSY  
SDO  
SCLK  
SDI  
VCC  
VDD  
RST  
VDD Supply.  
Reset Input (Active Low).  
VREF  
DAC Precision +5.0 V Reference Input.  
DAC Precision +0.0 V Reference Input.  
PPMU Analog Measure Output, Channel 0.  
PPMU Go/No-Go Comparator Low Output, Channel 0.  
Analog Ground.  
Analog Ground.  
PPMU Go/No-go Comparator High Output, Channel 0.  
VSS Supply.  
VREFGND  
PPMU_MEAS0  
PPMU_CMPL0  
AGND  
AGND  
PPMU_CMPH0  
VSS  
VDD  
PGND  
VDD Supply.  
Power Ground.  
CMPH0  
CMPH0  
VTTC0  
CMPL0  
CMPL0  
FFCAPA0  
FFCAPB0  
SCAP0  
RCV0  
High Speed Comparator High Output, Channel 0.  
High Speed Comparator High Output Complement, Channel 0.  
Comparator Supply Termination, Channel 0.  
High Speed Comparator Low Output Complement, Channel 0.  
High Speed Comparator Low Output, Channel 0.  
PPMU External Feed Forward Capacitor Pin A, Channel 0.  
PPMU External Feed Forward Capacitor Pin B, Channel 0.  
PPMU External Compensation Capacitor, Channel 0.  
High Speed Receive Input Complement, Channel 0.  
High Speed Receive Input, Channel 0.  
This pin is open. No internal connection.  
High Speed Data Input Complement, Channel 0.  
High Speed Data Input, Channel 0.  
VHH Output Pin.  
PPMU External Sense Connect, Channel 0.  
VPLUS Supply.  
VSS Supply.  
System PMU Sense Input, Channel 0.  
VDD Supply.  
VDD Supply, Driver Output Stage, Channel 0.  
DUT Pin, Channel 0.  
RCV0  
NC  
DAT0  
DAT0  
HVOUT  
PPMU_S0  
VPLUS  
VSS  
PMU_S0  
VDD  
VDDO0  
DUT0  
VSSO0  
VSS  
VSS Supply, Driver Output Stage, Channel 0.  
VSS Supply.  
Power Ground.  
VDD Supply.  
VSS Supply.  
PGND  
VDD  
VSS  
AGND  
Analog Ground.  
Rev. 0 | Page 29 of 80  
ADATE318  
Pin  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
Mnemonic  
VSS  
VDD  
PGND  
VSS  
VSSO1  
DUT1  
VDDO1  
VDD  
Description  
VSS Supply.  
VDD Supply.  
Power Ground.  
VSS Supply.  
VSS Supply, Driver Output Stage, Channel 1.  
DUT Pin, Channel 1.  
VDD Supply, Driver Output Stage, Channel 1.  
VDD Supply.  
System PMU Sense Input, Channel 1.  
VSS Supply.  
PMU_S1  
VSS  
Rev. 0 | Page 30 of 80  
ADATE318  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.35  
0.30  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1V  
2V  
3V  
500mV  
0.25  
0.20  
0.15  
200mV  
0.10  
0.05  
0
–0.05  
–0.10  
–0.2  
–0.4  
0
2
4
6
8
10  
TIME (ns)  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (ns)  
Figure 12. 100 MHz Driver Response, VIH = 1. 0 V, 2.0 V, 3.0 V; VIL = 0.0 V,  
50 Ω Termination  
Figure 9. Driver Small Signal Response, VIH = 0.2 V, 0.5 V, VIL = 0.0 V,  
50 Ω Termination  
1.8  
1.8  
1.6  
1V  
2V  
1.6  
3V  
3V  
1.4  
1.2  
1.4  
1.2  
2V  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.8  
1V  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
0
–0.2  
0
2
4
6
8
10  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (ns)  
TIME (ns)  
Figure 13. 300 MHz Driver Response, VIH = 1.0 V, 2.0 V, 3.0 V; VIL = 0.0 V,  
50 Ω Termination  
Figure 10. Driver Large Signal Response, VIH = 1.0 V, 2.0 V, 3.0 V;  
VIL = 0.0 V, 50 Ω Termination  
1.8  
6
0.5V  
1V  
2V  
3V  
1.6  
1.4  
1.2  
5V  
5
4
3V  
1.0  
0.8  
0.6  
0.4  
0.2  
3
2
1V  
1
0
0
–0.2  
–1  
0
2
4
6
8
10  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (ns)  
TIME (ns)  
Figure 11. Driver Large Signal Response, VIH = 1.0 V, 3.0 V, 5.0 V;  
VIL = 0.0 V, 50 Ω Unterminated  
Figure 14. 400 MHz Driver Response, VIH = 0.5 V, 1.0 V, 2.0 V, 3.0 V;  
VIL = 0.0 V, 50 Ω Termination  
Rev. 0 | Page 31 of 80  
 
 
ADATE318  
1.6  
1.4  
1.2  
1.0  
0.8  
1.2  
0.5V  
1V  
2V  
1.0  
VIH TO/FROM VIT  
0.8  
0.6  
0.6  
0.4  
0.2  
0.4  
0.2  
VIL TO/FROM VIT  
0
0
–0.2  
–0.2  
0
0
5
10  
15  
20  
1
2
3
4
5
TIME (ns)  
TIME (ns)  
Figure 15. 600 MHz Driver Response, VIH = 0.5 V, 1.0 V, 2.0 V; VIL = 0.0 V,  
50 Ω Termination  
Figure 18. Driver Active (VIH/VIL) to/from VTERM Transition; VIH =3.0 V,  
VIT = 1.5 V; VIL = 0.0 V, 50 Ω Termination  
0.6  
POSITIVE PULSE  
90  
NEGATIVE PULSE  
0.5  
70  
VIH TO/FROM VIT  
0.4  
50  
30  
10  
0.3  
0.2  
0.1  
–10  
–30  
–50  
VIL TO/FROM VIT  
0
–0.1  
0
2
4
6
8
10  
0
5
10  
15  
20  
PULSE WIDTH (ns)  
TIME (ns)  
Figure 19. Driver Trailing Edge Timing Error Pulse Width, VIH = 0.2 V;  
VIL = 0.0 V, 50 Ω Termination  
Figure 16. Driver Active (VIH/VIL) to/from VTERM Transition; VIH = 1.0 V,  
VIT = 0.5 V; VIL = 0.0 V, 50 Ω Termination  
1.2  
POSITIVE PULSE  
90  
NEGATIVE PULSE  
1.0  
70  
VIH TO/FROM VIT  
0.8  
0.6  
0.4  
0.2  
50  
30  
10  
–10  
–30  
–50  
VIL TO/FROM VIT  
0
–0.2  
0
2
4
6
8
10  
0
5
10  
15  
20  
PULSE WIDTH (ns)  
TIME (ns)  
Figure 17. Driver Active (VIH/VIL) to/from VTERM Transition; VIH = 2.0 V,  
VIT = 1.0 V; VIL = 0.0 V, 50 Ω Termination  
Figure 20. Driver Trailing Edge Timing Error vs. Pulse Width, VIH = 0.5 V;  
VIL = 0.0 V, 50 Ω Termination  
Rev. 0 | Page 32 of 80  
ADATE318  
70  
1.5  
POSITIVE PULSE  
NEGATIVE PULSE  
50  
30  
1.0  
0.5  
0
10  
0
–10  
–0.5  
–30  
–50  
–1.0  
0
2
4
6
8
10  
–2  
–1  
0
1
2
3
4
5
6
7
DRIVER OUTPUT VOLTAGE (V)  
PULSE WIDTH (ns)  
Figure 21. Driver Trailing Edge Timing Error vs. Pulse Width, VIH = 1.0 V;  
VIL = 0.0 V, 50 Ω Termination  
Figure 24. Driver VIH Linearity Error  
1.5  
POSITIVE PULSE  
90  
NEGATIVE PULSE  
70  
1.0  
0.5  
0
50  
30  
10  
–10  
–30  
–50  
–0.5  
–1.0  
0
2
4
6
8
10  
–2  
–1  
0
1
2
3
4
5
6
7
PULSE WIDTH (ns)  
DRIVER OUTPUT VOLTAGE (V)  
Figure 22. Driver Trailing Edge Timing Error vs. Pulse Width, VIH = 2.0 V;  
VIL = 0.0 V, 50 Ω Termination  
Figure 25. Driver VIL Linearity Error  
1.5  
100  
POSITIVE PULSE  
NEGATIVE PULSE  
80  
1.0  
0.5  
0
60  
40  
20  
0
–20  
–40  
–60  
–0.5  
–80  
–1.0  
–100  
–2  
–1  
0
1
2
3
4
5
6
7
0
2
4
6
8
10  
DRIVER OUTPUT VOLTAGE (V)  
PULSE WIDTH (ns)  
Figure 26. Driver VIT Linearity Error  
Figure 23. Driver Trailing Edge Timing Error vs. Pulse Width, VIH = 3.0 V;  
VIL = 0.0 V, 50 Ω Termination  
Rev. 0 | Page 33 of 80  
ADATE318  
0.25  
0.20  
0.15  
50.0  
49.5  
49.0  
48.5  
48.0  
47.5  
0.10  
0.05  
0
–0.05  
–0.10  
–2  
–1  
0
1
2
3
4
5
6
7
–60  
–40  
–20  
0
20  
40  
60  
VIL PROGRAMMED DAC VOLTAGE (V)  
DRIVER OUTPUT CURRENT (mA)  
Figure 27. Driver Interaction Error VIH vs. VIL, VIH = +6.5 V,  
VIL Swept from −1.5 V to +6.5 V  
Figure 30. Driver Output Resistance vs. Output Current  
0.08  
120  
0.06  
0.04  
100  
80  
60  
40  
20  
0
0.02  
0
–0.02  
–0.04  
–0.06  
–2  
–1  
0
1
2
3
4
5
6
7
–2  
–1  
0
1
2
3
4
5
6
7
VIH PROGRAMMED DAC VOLTAGE (V)  
V
(V)  
DUT  
Figure 28. Driver Interaction Error VIL vs. VIH; VIL = −1.5 V, VIH  
Swept from −1.5 V to +6.5 V  
Figure 31. Driver Output Current Limit; Driver Programmed to −1.5 V,  
VDUT Swept −1.5 V to +6.5 V  
0.8  
0.7  
0
–20  
0.6  
0.5  
0.4  
–40  
–60  
0.3  
0.2  
–80  
0.1  
–100  
0
–0.1  
–120  
–2  
–1  
0
1
2
3
4
5
6
7
–2  
–1  
0
1
2
3
4
5
6
7
VIH PROGRAMMED DAC VOLTAGE (V)  
V
(V)  
DUT  
Figure 29. Driver Interaction Error VIT vs. VIH, VIT = +1.0 V, VIH Swept  
from −1.5 V to +6.5 V  
Figure 32. Driver Output Current Limit. Driver Programmed to 6.5 V,  
VDUT Swept −1.5 V to +6.5 V  
Rev. 0 | Page 34 of 80  
ADATE318  
16  
14  
12  
10  
10  
5
VHH OUTPUT  
0
8
–5  
–10  
–15  
6
4
2
0
0
0.5  
1.0  
TIME (µs)  
1.5  
2.0  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
HVOUT OUTPUT VOLTAGE (V)  
Figure 36. HVOUT VHH Linearity Error  
Figure 33. HVOUT Transient Response, VHH = 13.5 V  
100  
90  
3
2
1
80  
0
–1  
–2  
70  
60  
50  
40  
–3  
–4  
–5  
–6  
–7  
30  
20  
10  
0
–1  
0
1
2
3
4
5
6
7
5
6
7
8
9
10  
11  
(V)  
12  
13  
14  
15  
V
HVOUT OUTPUT VOLTAGE (V)  
HVOUT  
Figure 37. HVOUT VHH Output Current Limit; VHH = 5.9 V, HVOUT  
Swept 5.9 V to 13.5 V  
Figure 34. HVOUT VIH Linearity Error  
3
20  
10  
0
2
1
–10  
–20  
0
–1  
–2  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–3  
–4  
–5  
–6  
–7  
–1  
0
1
2
3
4
5
6
7
5
6
7
8
9
10  
11  
(V)  
12  
13  
14  
15  
HVOUT OUTPUT VOLTAGE (V)  
V
HVOUT  
Figure 35. HVOUT VIL Linearity Error  
Figure 38. HVOUT VHH Output Current Limit; VHH = 13.5 V, HVOUT  
Swept 5.9 V to 13.5 V  
Rev. 0 | Page 35 of 80  
ADATE318  
80  
1.2  
70  
1.0  
0.8  
60  
50  
40  
0.6  
0.4  
0.2  
0
30  
20  
10  
INPUT  
EDGE  
SHMOO  
0
–10  
–1  
–0.2  
0
1
2
3
4
5
6
7
0
2
4
6
8
10  
V
(V)  
TIME (ns)  
HVOUT  
Figure 39. HVOUT VIL Output Current Limit; VIL = −0.1 V, HVOUT  
Swept −0.1 V to 6.0 V  
Figure 42. Normal Window Comparator Shmoo; 1.0 V Swing, 50 Ω  
Termination, 200 ps (20% to 80%)  
10  
0
5
0
–10  
–20  
–30  
–5  
–10  
POSITIVE PULSE  
NEGATIVE PULSE  
–40  
–50  
–60  
–70  
–80  
–90  
–15  
–20  
–25  
–30  
–1  
0
1
2
3
4
5
6
7
0
2
4
6
8
10  
V
(V)  
PULSE WIDTH (ns)  
HVOUT  
Figure 40. HVOUT VIH Output Current Limit; VIH = 6.0 V, HVOUT  
Swept −0.1 V to 6.0 V  
Figure 43. Normal Window Comparator Trailing Edge Timing Error vs. Input  
Pulse Width; 50 Ω Termination, 1.0 V Swing, 200 ps (20% to 80%)  
1.2  
0
INPUT VOLTAGE SWING = 1V  
COMPARATOR THRESHOLD = 0.5V  
–2  
1.0  
0.8  
–4  
–6  
0.6  
0.4  
–8  
–10  
INPUT  
SHMOO  
EDGE  
INPUT RISING EDGE  
–12  
INPUT FALLING EDGE  
0.2  
0
–14  
–16  
–18  
–0.2  
0
2
4
6
8
10  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
TIME (ns)  
INPUT TRANSITION TIME (20%/80%) (ns)  
Figure 44. Normal Window Comparator Input Transition Time (20%/80%),  
50 Ω Termination  
Figure 41. Normal Window Comparator Shmoo 1.0 V Swing; 50 Ω  
Termination, 200 ps (20% to 80%)  
Rev. 0 | Page 36 of 80  
ADATE318  
0.8  
0.7  
0.6  
0.5  
0.20  
0.15  
0.10  
0.05  
0
0.4  
0.3  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
0.2  
0.1  
0
0
5
10  
15  
20  
–3  
–2  
–1  
0
1
2
3
4
5
6
7
TIME (ns)  
THRESHOLD VOLTAGE (V)  
Figure 48. PPMU Go/No-Go Comparator Linearity Error  
Figure 45. Comparator Output Waveform  
0
2.5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
2.0  
1.5  
1.0  
0.5  
0
–1.4  
–1.6  
–1.8  
–2.0  
–2  
–1  
0
1
2
3
4
5
6
7
–2  
–1  
0
1
2
3
4
5
6
7
INPUT COMMON-MODE VOLTAGE (V)  
THRESHOLD VOLTAGE (V)  
Figure 49. Differential Comparator CMR Error  
Figure 46. Normal Window Comparator Threshold Linearity Error  
30  
25  
2.0  
CURRENT VIL TO LOAD  
CURRENT LOAD TO VIL  
1.5  
1.0  
0.5  
0
20  
15  
10  
5
–0.5  
–1.0  
0
–1.5  
–2.0  
–5  
0
5
10  
15  
15  
20  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
TIME (ns)  
THRESHOLD VOLTAGE (V)  
Figure 50. Active Load Response to/from Drive VIL = 0 V, 50 Ω Termination,  
IOL = 25 mA, VCOM = 2 V  
Figure 47. Differential Comparator Threshold Linearity Error  
Rev. 0 | Page 37 of 80  
ADATE318  
30  
10  
8
20  
6
10  
0
4
2
0
–10  
–2  
–20  
–30  
–4  
–6  
–3  
–2  
–1  
0
1
2
3
4
5
6
7
0
5
10  
15  
20  
25  
ACTIVE LOAD CURRENT (mA)  
V
(V)  
DUT  
Figure 51. Active Load Commutation Response, VCOM = 2.0 V,  
IOH = IOL = 25 mA  
Figure 54. Active Load IOL Linearity Error  
20  
15  
10  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
5
0
–5  
–10  
–15  
0
5
10  
15  
20  
25  
–3  
–2  
–1  
0
1
2
3
4
5
6
7
V
(V)  
ACTIVE LOAD CURRENT (mA)  
DUT  
Figure 52. Active Load IOH Linearity Error  
Figure 55. DUTx Pin Leakage in Low Leakage Mode  
0
–0.2  
–0.4  
–0.6  
–0.8  
250  
200  
150  
100  
50  
–1.0  
–1.2  
0
–50  
–3  
–2  
–1  
0
1
2
3
4
5
6
7
–2  
–1  
0
1
2
3
4
5
6
7
8
VCOM VOLTAGE (V)  
V
(V)  
DUT  
Figure 53. Active Load VCOM Linearity Error  
Figure 56. DUTx Pin Leakage in High-Z Mode  
Rev. 0 | Page 38 of 80  
ADATE318  
3.0  
2.5  
0.15  
0.10  
0.05  
0
2.0  
1.5  
1.0  
–0.05  
–0.10  
–0.15  
0.5  
0
–0.15  
–0.10  
–0.05  
0
0.05  
0.10  
0.15  
–1.0  
–0.5  
0
0.5  
1.0  
DUTGND VOLTAGE (V)  
PMU OUTPUT CURRENT (mA)  
Figure 57. Typical DUTGND Transfer Function Voltage Error,  
Drive Low VIL = 0 V  
Figure 60. PPMU Range B Force Current Linearity Error  
0.018  
0.016  
0.014  
0.2  
0.1  
0
0.012  
0.010  
0.008  
–0.1  
–0.2  
–0.3  
0.006  
0.004  
0.002  
0
–0.4  
–0.5  
–0.10  
–0.05  
0
0.05  
0.10  
–2  
–1  
0
1
2
3
4
5
6
7
PMU OUTPUT CURRENT (mA)  
PMU OUTPUT VOLTAGE (V)  
Figure 61. PPMU Range C Force Current Linearity Error  
Figure 58. PPMU Force Voltage Linearity Error, All Ranges  
15  
0.0015  
0.0010  
10  
5
0.0005  
0
0
–0.0005  
–0.0010  
–5  
–10  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
–0.010  
–0.005  
0
0.005  
0.010  
PMU OUTPUT CURRENT (mA)  
PMU OUTPUT CURRENT (mA)  
Figure 59. PPMU Range A Force Current Linearity Error  
Figure 62. PPMU Range D Force Current Linearity Error  
Rev. 0 | Page 39 of 80  
ADATE318  
0.0004  
0.0003  
0.5  
0.4  
0.0002  
0.3  
0.2  
0.0001  
0
0.1  
0
–0.0001  
–0.1  
–0.2  
–0.3  
–0.0002  
–0.0003  
–0.0004  
–0.0005  
–0.0006  
–0.4  
–0.5  
–1.0  
–0.5  
0
0.5  
1.0  
–0.0020 –0.0015 –0.0010 –0.0005  
0
0.0005 0.0010 0.0015 0.0020  
I
(mA)  
DUT  
PMU OUTPUT CURRENT (mA)  
Figure 63. PPMU Range E Force Current Linearity Error  
Figure 66. PPMU Force Voltage Range B Compliance Error at −2.0 V vs.  
Output Current, Internal Sense  
25  
20  
0.3  
0.2  
15  
0.1  
0
10  
5
0
–0.1  
–0.2  
–5  
–10  
–15  
–20  
–25  
–0.3  
–0.4  
–1.0  
–0.5  
0
0.5  
1.0  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
I
(mA)  
I
(mA)  
DUT  
DUT  
Figure 64. PPMU Force Voltage Range A Compliance Error at −2.0 V vs.  
Output Current, Internal Sense  
Figure 67. PPMU Force Voltage Range B Compliance Error at +6.5 V vs.  
Output Current, Internal Sense  
20  
15  
10  
5
25  
20  
15  
10  
5
0
–5  
–10  
–15  
–20  
–25  
0
–5  
–2  
–1  
0
1
2
3
4
5
6
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
V
(V)  
I
(mA)  
DUT  
DUT  
Figure 68. PPMU Force Current Range A Compliance Error at −40 mA vs.  
Output Voltage  
Figure 65. PPMU Force Voltage Range A Compliance Error at +5.75 V vs.  
Output Current, Internal Sense  
Rev. 0 | Page 40 of 80  
ADATE318  
35  
30  
25  
20  
15  
0.0020  
0.0015  
0.0010  
0.0005  
0
10  
5
–0.0005  
0
–5  
–0.0010  
–2  
–1  
0
1
2
3
4
5
6
–2  
–1  
0
1
2
3
4
5
6
7
V
(V)  
V
(V)  
DUT  
DUT  
Figure 69. PPMU Force Current Range A Compliance Error at +40 mA vs.  
Output Voltage  
Figure 72. PPMU Force Current Range E Compliance Error at −2 μA vs.  
Output Voltage  
0.30  
0.25  
0.20  
0.0020  
0.0015  
0.0010  
0.0005  
0.15  
0.10  
0.05  
0
0
–0.05  
–0.0005  
–2  
–1  
0
1
2
3
4
5
6
7
–2  
–1  
0
1
2
3
4
5
6
7
V
(V)  
V
(V)  
DUT  
DUT  
Figure 73. PPMU Force Current Range E Compliance Error at +2 μA vs.  
Output Voltage  
Figure 70. PPMU Force Current Range B Compliance Error at −1 mA vs.  
Output Voltage  
60  
0.5  
50  
0.4  
40  
30  
20  
0.3  
0.2  
0.1  
0
10  
0
–0.1  
–3  
–2  
–1  
0
1
2
3
4
5
6
7
–2  
–1  
0
1
2
3
4
5
6
7
V
(V)  
V
(V)  
DUT  
DUT  
Figure 74. PPMU Force Voltage Output Current Limit Range A, FV = −2.0 V,  
VDUT Swept −2.0 V to +6.5 V  
Figure 71. PPMU Force Current Range B Compliance Error at +1 mA vs.  
Output Voltage  
Rev. 0 | Page 41 of 80  
ADATE318  
10  
0.04  
0.03  
0
0.02  
0.01  
0
–10  
–20  
–30  
–40  
–50  
–60  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–3  
–2  
–1  
0
1
2
3
4
5
6
7
–2  
–1  
0
1
2
3
4
5
6
7
V
(V)  
V
(V)  
DUT  
DUT  
Figure 75. PPMU Force Voltage Output Current Limit Range A, FV = +6.5 V,  
VDUT Swept −2.0 V to +6.5 V  
Figure 78. PPMU Range B Measure Voltage Linearity Error  
2.90  
2.85  
2.80  
2.75  
2.70  
2.65  
2.60  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
–0.02  
–0.04  
–0.06  
–3  
–2  
–1  
0
1
2
3
4
5
6
7
–1.0  
–0.5  
0
0.5  
1.0  
V
(V)  
DUT  
I
(mA)  
DUT  
Figure 76. PPMU Force Voltage Output Current Limit Range E, FV = −2.0 V,  
VDUT Swept −2.0 V to +6.5 V  
Figure 79. PPMU Range B Measure Current Linearity Error  
0.10  
0.05  
3
2
0
–0.05  
–0.10  
–0.15  
1
0
–0.20  
–0.25  
–0.30  
–0.35  
–0.40  
–0.45  
–1  
–2  
–3  
–4  
–2  
–1  
0
1
2
3
4
5
6
–3  
–2  
–1  
0
1
2
3
4
5
6
7
V
(V)  
V
(V)  
DUT  
DUT  
Figure 80. PPMU Measure Current CMR Error, (FVMI), Sourcing 0.5 mA  
Figure 77. PPMU Force Voltage Output Current Limit Range E, FV = 6.5 V,  
VDUT Swept −2.0 V to +6.5 V  
Rev. 0 | Page 42 of 80  
ADATE318  
2.0  
1.5  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.5  
0
–0.5  
–1.0  
–0.2  
–0.4  
–0.6  
–1.5  
–2.0  
0
1
2
3
4
5
6
7
–3  
–2  
–1  
0
1
2
3
4
5
6
7
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 84. PPMU Voltage Clamp VCH Linearity Error  
Figure 81. Reflection Clamp VCL Linearity Error  
0
0.5  
0.4  
–10  
–20  
–30  
0.3  
0.2  
–40  
0.1  
–50  
–60  
0
–0.1  
–0.2  
–0.3  
–70  
–80  
–90  
–0.4  
–0.5  
–100  
–3  
–2  
–1  
0
1
2
3
4
5
6
–2  
–1  
0
1
2
3
4
5
6
7
8
V
(V)  
OUTPUT VOLTAGE (V)  
DUT  
Figure 85. VCL Reflection Clamp Current Limit; VCH = 6 V, VCL = 5 V,  
VDUT Swept −2.0 V to +5.0 V  
Figure 82. Reflection Clamp VCH Linearity Error  
2
1
90  
80  
70  
60  
50  
40  
0
–1  
–2  
–3  
30  
20  
10  
0
–4  
–5  
–3  
–2  
–1  
0
1
2
3
4
5
0
1
2
3
4
5
6
7
8
OUTPUT VOLTAGE (V)  
V
(V)  
DUT  
Figure 83. PPMU Voltage Clamp VCL Linearity Error  
Figure 86. VCH Reflection Clamp Current Limit; VCH = 0 V, VCL = −2 V,  
VDUT Swept −2.0 V to +5.0 V  
Rev. 0 | Page 43 of 80  
ADATE318  
0
100  
90  
RESOLUTION (0 TO 31) = ~ 3.0mV/BIT  
RESOLUTION (10 TO 31) = ~ 4.6mV/BIT  
–20  
80  
70  
60  
–40  
–60  
–80  
50  
40  
30  
20  
10  
0
–100  
–120  
–140  
–160  
VOL_HYSTERESIS  
VOH_HYSTERESIS  
–180  
0
1
2
3
4
5
6
7
0
5
10  
15  
20  
25  
30  
35  
DRIVER CLC SETTING 3-BIT VALUE  
HYSTERESIS CODE  
Figure 87. Driver Offset Error vs. Driver CLC Setting  
Figure 90. Normal Window Comparator Hysteresis Transfer Function  
20  
15  
140  
RESOLUTION (0 TO 31) = ~ 3.6mV/BIT  
RESOLUTION (10 TO 31) = ~ 5.6mV/BIT  
120  
10  
5
100  
80  
60  
40  
0
–5  
–10  
–15  
–20  
20  
VOL_HYSTERESIS  
VOH_HYSTERESIS  
0
0
1
2
3
4
5
6
7
0
5
10  
15  
20  
25 30 35  
COMPARATOR CLC SETTING 3-BIT VALUE  
HYSTERESIS CODE  
Figure 91. Differential Comparator Hysteresis Transfer Function  
Figure 88. Normal Window Comparator Offset Error vs. CLC Setting  
20  
15  
10  
5
0
–5  
–10  
–15  
–20  
C1  
1ns/DIV  
0
1
2
3
4
5
6
7
DIFFERENTIAL COMPARATOR CLC SETTING 3-BIT VALUE  
Figure 92. Driver Eye Diagram, 400 Mbps, PRBS31; VIH = 1 V, VIL = 0 V  
Figure 89. Differential Comparator Offset error vs. CLC Setting  
Rev. 0 | Page 44 of 80  
ADATE318  
C1  
C1  
500ps/DIV  
200ps/DIV  
Figure 93. Driver Eye Diagram, 800 Mbps, PRBS31; VIH = 1 V, VIL = 0 V  
Figure 96. Driver Eye Diagram, 1600 Mbps, PRBS31; VIH = 2 V, VIL = 0 V  
C1  
C1  
500ps/DIV  
200ps/DIV  
Figure 94. Driver Eye Diagram, 800 Mbps, PRBS31; VIH = 2 V, VIL = 0 V  
Figure 97. Driver Eye Diagram, 2000 Mbps, PRBS31; VIH = 1 V, VIL = 0 V  
C1  
C1  
200ps/DIV  
200ps/DIV  
Figure 95. Driver Eye Diagram, 1600 Mbps, PRBS31; VIH = 1 V, VIL = 0 V  
Figure 98. Driver Eye Diagram, 2000 Mbps, PRBS31; VIH = 2 V, VIL = 0 V  
Rev. 0 | Page 45 of 80  
ADATE318  
0.8  
0.6  
0.4  
0.2  
0.16  
0.14  
0.12  
0.10  
CLC0  
CLC3  
CLC7  
0.08  
0.06  
0.04  
0
–0.2  
0.02  
0
–0.4  
–0.6  
VIH TO HIGH-Z  
VIL TO HIGH-Z  
–0.02  
–0.04  
–0.8  
0
5
10  
15  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (µs)  
TIME (ns)  
Figure 99. Drive to/from High-Z Transition, VIH = 1 V, VIL = −1 V,  
50 Ω Termination  
Figure 102. Driver 0.2 V Response vs. CLC Settings  
0.8  
0.7  
0.6  
0.5  
100  
CLC0  
CLC3  
CLC7  
VIL TO IOL  
VIL TO IOH  
VIH TO IOL  
VIH TO IOH  
IOL TO VIL  
IOL TO VIH  
80  
60  
40  
IOH TO VIL  
IOH TO VIH  
20  
0
0.4  
0.3  
0.2  
–20  
–40  
0.1  
0
–60  
–0.1  
–0.2  
–80  
–100  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
5
10  
15  
20  
TIME (µs)  
TIME (ns)  
Figure 100. Drive to/from Active Load Transient, VIL = VIH = 0 V,  
IOH = IOL = 0 V  
Figure 103. Driver 1 V Response vs. CLC Settings  
50  
2.0  
1.5  
CLC0  
CLC3  
CLC7  
VIL TO HIZ  
VIH TO HIZ  
HIZ TO VIL  
HIZ TO VIH  
40  
30  
20  
10  
0
1.0  
–10  
–20  
–30  
–40  
–50  
0.5  
0
–0.5  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (ns)  
TIME (ns)  
Figure 101. Drive to/from High-Z Transient, VIL = VIH = 0 V, 50 Ω Termination  
Figure 104. Driver 3 V Response vs. CLC Settings  
Rev. 0 | Page 46 of 80  
ADATE318  
6
5
4
3
2
6
5
4
3
2
1
0
RISE  
FALL  
RISE  
FALL  
1
0
–1  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
TIME (µs)  
TIME (µs)  
Figure 105. PPMU Transient Response, FI Range A, Full -Scale Transition,  
Uncalibrated, CLOAD = 200 pF, RLOAD = 120 Ω  
Figure 108. PPMU Transient Response, FV Range A, 0 V to 5 V, Uncalibrated,  
CLOAD = 200 pF  
2.0  
1.5  
1.0  
0.6  
0.5  
0.4  
0.3  
RISE  
FALL  
RISE  
FALL  
0.5  
0
0.2  
0.1  
0
–0.5  
0
5
10  
15  
20  
25  
30  
0
2
4
6
8
10  
TIME (µs)  
TIME (µs)  
Figure 106. PPMU Transient Response, FI Range B, Full-Scale Transition,  
Uncalibrated, CLOAD = 200 pF, RLOAD = 1.5 kΩ  
Figure 109. PPMU Transient Response, FV Range A, 0 V to 0.5 V, Uncalibrated,  
CLOAD = 200 pF  
2.0  
1.5  
1.0  
0.7  
0.6  
0.5  
0.4  
RISE  
FALL  
0.3  
RISE  
FALL  
0.5  
0
0.2  
0.1  
0
–0.5  
–0.1  
0
10  
20  
30  
40  
50  
60  
0
5
10  
15  
20  
TIME (µs)  
TIME (µs)  
Figure 107. PPMU Transient Response, FI Range C, Full-Scale Transition,  
Uncalibrated, CLOAD = 200 pF, RLOAD = 15 kΩ  
Figure 110. PPMU Transient Response, FV Range C, 0 V to 0.5 V, Uncalibrated,  
CLOAD = 200 pF  
Rev. 0 | Page 47 of 80  
ADATE318  
0.7  
0.6  
0.6  
0.5  
0.4  
0.3  
0.2  
0.5  
0.4  
0.3  
0.2  
RISE  
FALL  
RISE  
FALL  
0.1  
0
0.1  
–0.1  
0
0
0
10  
20  
30  
40  
2
4
6
8
10  
TIME (µs)  
TIME (µs)  
Figure 111. PPMU Transient Response, FV Range A, 0 V to 0.5 V, Uncalibrated,  
CLOAD = 2000 pF  
Figure 112. PPMU Transient Response, FV Range C, 0 V to 0.5 V, Uncalibrated,  
CLOAD = 2000 pF  
Rev. 0 | Page 48 of 80  
ADATE318  
SPI INTERCONNECT DETAILS  
ADATE318  
ADATE318  
ADATE318  
(CHIP 0)  
(CHIP 1)  
(CHIP x)  
. . . . . . . . . . . .  
SCLK  
SDI  
SCLK  
SCLK  
SDI  
SDI  
SDO  
BUSY  
CS  
SDO  
BUSY  
CS  
SDO  
BUSY  
CS  
SCLK  
SDI  
SDO  
BUSY  
CS[3:0]  
x
NOTES  
1. x 4.  
Figure 113. Multiple SPI with Shared SDO Line  
Rev. 0 | Page 49 of 80  
 
ADATE318  
USE OF THE SPI  
PIN  
BUSY  
After any valid SPI instruction is written to the ADATE318, the  
pin electronics functions. In every case (with no exception for  
reset recovery), it is the purpose of the pin to notify the  
pin becomes asserted to indicate a busy status of the DAC  
BUSY  
BUSY  
update and calibration engines. The  
pin is an open drain  
external test processor that it is again safe to stop the SCLK  
signal to the ADATE318. Running the SCLK for extra periods  
BUSY  
type output capable of sinking a minimum of 5 mA from the  
VCC supply. Because it is an open drain type output, it can be  
wire-ored in common with many other similar open drain  
devices. In such cases, it is the users responsibility either to  
determine which device is indicating the busy state or, alter-  
natively, to wait until all devices on the shared line become not  
when  
is not active is never a problem except for the  
BUSY  
possibility of adding unwanted digital switching noise to the  
analog pin electronics circuitry as already noted.  
While the length of the  
period (tBUSW) is variable depending  
BUSY  
on the particular preceding SPI instruction, it is nevertheless  
deterministic. The parameter tBUSW depends only on factors  
such as whether the previous instruction involved a write to one  
or more DAC addresses and, if so, then how many channels  
were involved and whether or not the calibration function was  
enabled. Table 18 describes the precise length of the tBUSW period  
in units of rising edge SCLK cycles for each possible SPI  
busy. It is recommended that the  
pin be tied to VCC with  
BUSY  
an external 1 kΩ pull-up.  
It is not a requirement to wait for release of  
prior to a  
BUSY  
subsequent assertion of the  
pin. This is not the purpose of  
CS  
the  
pin. As long as the minimum number of SCLK cycles  
BUSY  
following the previous release of  
is met according to the  
CS  
instruction scenario as well as recovery from a hard  
reset.  
RST  
tCSAM parameter, the  
pin can be asserted again for a  
CS  
subsequent SPI operation. With the one exception of recovery  
from a reset request (either by hardware assertion of the  
Because tBUSW is deterministic, it is therefore possible to predict  
in advance the minimum number of rising edge SCLK cycles  
required to complete any given SPI instruction. This makes it  
possible to operate the ADATE318 without a need to monitor  
RST  
pin or a sofware setting of the internal SPI_RESET control bit),  
there is no scenario in normal operation of the ADATE318 in  
which the user must wait for release of  
the state of the  
pin. For applications in which it is neither  
BUSY  
prior to asserting  
BUSY  
possible nor desireable to monitor the pin, it is acceptable to use  
the information in Table 18 to guarantee that the minimum  
the  
for another SPI operation. The only requirement on the  
CS  
assertion of  
is that the tCSAM parameter be defined as in  
CS  
number of cycles is provided in lieu of monitoring  
BUSY  
Figure 4 and Table 13.  
following release of  
or reset. All DAC addresses have been  
CS  
It is very important, however, that the SCLK continue to operate  
assigned to the contiguous address block from 0x00 through  
0x0F; therefore, it is possible to decode this information within  
the external test processor to provide a software indication that  
extra SCLK cycles may be required according to the scenarios  
listed in Table 18. All other operations not involving these  
addresses require only the standard number of clock cycles  
determined by tCSAM. As stated above, however, it is extremely  
important to honor the minimum number of required rising  
for as long as the  
pin state remains active. This minimum  
BUSY  
period of time is defined by the tBUSW parameter (see Figure 4,  
Figure 6, Figure 7, and Table 18). If the SCLK does not remain  
active for at least the time specified by the tBUSW parameter, oper-  
ations pending to the internal processor may not fully complete  
or, worse, they may complete in an incorrect fashion. In either  
case, a temporary malfunction of the ADATE318 may occur.  
After the ADATE318 releases the  
pin, the SCLK may  
edge SCLK cycles as defined by tBUSW following the release of  
BUSY  
CS  
again be stopped to prevent unwanted digital noise from  
coupling into the analog levels during normal operation of the  
for each of the SPI instruction scenarios listed in Table 18 to  
ensure proper operation of the ADATE318.  
Table 18.  
SPI Instruction Type  
Minimum SCLK Cycle Requirements  
BUSY  
Calibration Engine1  
Maximum tBUSW (SCLK Cycles)  
Following the Release of the Asynchronous Reset Pin (Hardware Reset)  
Following Assertion of the SPI_RESET Control Bit (Software Reset)  
No Operation (NOP) Instruction  
X
X
X
64  
64  
3
Read Request to Any Valid ADATE318 Address and/or Channel (0x00 – 0x7F)  
Single/Double Channel Write Request to Any Valid ADATE318 Address 0x10  
Single Channel Write Request to Any DAC (ADDR 0x01 – ADDR 0x0E)  
Double Channel Write Request to Any DAC (ADDR 0x01 – ADDR 0x0E)  
Single Channel Write Request to Any DAC (ADDR 0x01 – ADDR 0x0E)  
Double Channel Write Request to Any DAC (ADDR 0x01 – ADDR 0x0E)  
X
X
3
3
Disabled  
Disabled  
Enabled  
Enabled  
10  
16  
20  
26  
1 X = don’t care.  
Rev. 0 | Page 50 of 80  
 
 
 
ADATE318  
RESET SEQUENCE AND THE  
PIN  
RST  
The internal state of the ADATE318 is indeterminate following  
power-up. For this reason, it is necessary to perform a complete  
reset sequence once the power supplies have stabilized. Further,  
The part remains in this static reset state indefinitely until the  
clocked portion of the sequence begins with either the first  
rising edge of SCLK following the release of  
(asynch-  
RST  
ronous reset) or the second rising edge of SCLK following the  
release of (soft reset). No matter how the reset sequence is  
the  
pin must be held in the asserted state before and during  
RST  
the power-up sequence and released only after all power supplies  
are known to be stable.  
CS  
initiated, the clocked portion of the reset sequence requires 64  
SCLK cycles to run to completion, and the pin remains  
BUSY  
The ADATE318 has an active low pin (  
) that asynchron-  
RST  
asserted until these clock cycles have been received. The  
following actions take place during the clocked portion of the  
reset sequence:  
ously starts a reset sequence. A soft reset sequence can also be  
initiated under SPI software control by writing to the  
SPI_RESET bit in the SPI Control Register (SPI 0x12[0] (see  
Figure 13)). In the case of a soft reset, the sequence begins on  
Complete internal SPI controller initialization  
Write the appropriate values to specific DAC X2 registers  
(see Table 19)  
the first rising edge of SCLK following the release of , subject  
CS  
to the normal setup and hold times. Certain actions take place  
immediately upon initiation of the reset request, whereas other  
actions require SCLK.  
Enable the thermal alarm with a 100C threshold; disable  
PPMU and the overvoltage detect (OVD) alarms  
The following asynchronous actions take place as soon as a  
reset request is detected, whether or not SCLK is active:  
The 64th rising edge of SCLK releases  
and starts a self-  
BUSY  
timed DAC deglitch period of approximately 3 μs. DAC voltages  
begin to change once the deglitch circuits have timed out, and  
they then require an additional 10 ꢀs to settle to their final  
values. Thus, a full reset sequence requires approximately 15 ꢀs,  
comprising 1.28 ꢀs (64 cycles × 20 ns) for the reset state  
machine, 3 ꢀs for DAC deglitch, and another 10 ꢀs for settling.  
Assert  
pin  
BUSY  
Force all control registers to the default reset state as  
defined by control register definitions  
Clear all calibration registers to the default reset state as  
defined by calibration register definitions  
Override all DAC output voltages and force analog levels to  
VDUTGND  
Disable DCLs and PPMUs; open system PMU switches  
Soft connect the DUT0 and DUT1 pins to VDUTGND (see  
Figure 114)  
CLAMPS  
TO PPMU  
DRIVER  
LOAD  
50  
DUTx  
10kΩ  
DUT PULLDOWNx  
ADDR 0x19[7]  
DUT PULL-DOWN SWITCH DEFAULTS TO A  
CLOSED STATE IMMEDIATELY FOLLOWING  
AN ASSERT OF RST (FOR HARD RESET)  
OR AT THE FIRST RISING EDGE OF SCLK  
FOLLOWING THE SPI CS (FOR SOFT RESET).  
SEE DCL CONTROL REGISTER 0x19[7].  
DUTGND  
COMPARATORS  
Figure 114. DUTx to VDUTGND Soft Connect Detail  
Rev. 0 | Page 51 of 80  
 
 
ADATE318  
SPI REGISTER DEFINITIONS AND MEMORY MAP  
SPI CLOCK INDEX  
SPI WORD INDEX  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
21 22 23  
24 25  
C
C
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
0
R/W  
1
0
6
5
4
3
2
1
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
CH[1:0]  
CHANNEL SELECT  
00 = NOP  
01 = READ/WRITE CHANNEL 0  
10 = READ/WRITE CHANNEL 1  
11 = READ NOP  
11 = WRITE CHANNEL 0 AND 1  
ADDR[6:0]  
ADDRESS FIELD  
R/W  
READ/WRITE SELECT  
0 = READ:  
THE CONTENTS OF REGISTER SPECIFIED BY ADDR[6:0]  
AND CH[1:0] ARE SHIFTED OUT ON THE SDO PIN  
DURING THE NEXT SPI INSTRUCTION CYCLE.  
1 = WRITE: DATA[15:0] IS WRITTEN TO THE REGISTER  
SPECIFIED BY ADDR[6:0] AND CH[1:0].  
DATA[15:0]  
DATA FIELD  
Figure 115. SPI Word Definition  
Table 19. SPI Register Memory Map  
1
CH[1:0]1, 2  
XX  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
01  
ADDR[6:0]  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
DATA[15:0]1, 3  
XXXX  
Register Description  
Reset Value1  
XXXX  
R
/W  
X
No operation (NOP)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
XXXX  
VIH DAC level (reset value = 0.0 V)  
0x4000  
0x4000  
0x4000  
0x4CCC  
0x3333  
0xFFFF  
0x0000  
0x4040  
0x4040  
0x4000  
0x2666  
0xFFFF  
0x0000  
0x4000  
XXXX  
VIT/VCOM DAC level (reset value = 0.0 V)  
VIL DAC level (reset value = 0.0 V)  
VOH DAC level (reset value = +0.5 V))  
VOL DAC level (reset value = −0.5 V)  
VCH DAC level (reset value = +7.5 V)  
VCL DAC level (reset value = −2.5 V)  
VIOH DAC level (reset value = 50 μA)  
VIOL DAC level (reset value = 50 μA)  
PPMU DAC level (reset value = 0.0 V)  
VHH DAC level (reset value = 0.0 V)  
OVDH DAC level (reset value = +7.5 V)  
OVDL DAC level (reset value = −2.5 V)  
Spare DAC level (reset value = 0.0 V)  
Reserved  
01  
01  
01  
XX  
XX  
CC  
01  
0x0F  
0x10  
0x11  
0x12  
0x13 to 0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
X
XXXX  
No operation (NOP)  
XXXX  
R/W  
R/W  
X
DDDD  
DDDD  
XXXX  
DAC control register  
0x0000  
0x0000  
XXXX  
SPI control register  
XX  
01  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
XXXX  
VHH control register  
0x0000  
0x0080  
0x0000  
0x0000  
0x07FE  
0x0045  
0x0000  
0x0000  
XXXX  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
XX  
CC  
CC  
CC  
CC  
DCL control register  
PPMU control register  
PPMU MEAS control register  
CMP control register  
ALARM mask register  
ALARM state register  
0x1F  
R/W  
X
CLC control register  
0x20  
0x21  
0x22  
0x23  
0x24  
No operation (NOP)  
R/W  
R/W  
R/W  
R/W  
DDDD  
DDDD  
DDDD  
DDDD  
VIH (driver) m-coefficient  
VIT (driver) m-coefficient  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
VIL (driver) m-coefficient  
VOH (normal window comparator) m-coefficient  
Rev. 0 | Page 52 of 80  
 
 
 
 
ADATE318  
1
CH[1:0]1, 2  
CC  
CC  
CC  
CC  
CC  
CC  
01  
ADDR[6:0]  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
DATA[15:0]1, 3  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
XXXX  
Register Description  
Reset Value1  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
XXXX  
R
/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
VOL (normal window comparator) m-coefficient  
VCH (reflection clamp) m-coefficient  
VCL (reflection clamp) m-coefficient  
VIOH (active load) m-coefficient  
VIOL (active load) m-coefficient  
PPMU (PPMU force-voltage) m-coefficient  
VHH (HVOUT) m-coefficient  
01  
OVDH (overvoltage) m-coefficient  
OVDL (overvoltage) m-coefficient  
Spare DAC m-coefficient  
01  
01  
XX  
XX  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
01  
Reserved  
X
XXXX  
No operation (NOP)  
XXXX  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
XXXX  
VIH (driver) c-coefficient  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
XXXX  
VIT (driver) c-coefficient  
VIL (driver) c-coefficient  
VOH (normal window comparator) c-coefficient  
VOL (normal window comparator) c-coefficient  
VCH (reflection clamp) c-coefficient  
VCL (reflection clamp) c-coefficient  
VIOH (active load) c-coefficient  
VIOL (active load) c-coefficient  
PPMU (PPMU force voltage) c-coefficient  
VHH (HVOUT) c-coefficient  
01  
OVDH (overvoltage) c-coefficient  
OVDL (overvoltage) c-coefficient  
01  
01  
Spare DAC c-coefficient  
XX  
XX  
01  
Reserved  
X
XXXX  
No operation (NOP)  
XXXX  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
DDDD  
VIH (HVOUT) m-coefficient  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
CC  
01  
VCOM (active load) m-coefficient  
VIL (HVOUT) m-coefficient  
01  
VOH (differential comparator) m-coefficient  
VOH (PPMU measure voltage) m-coefficient  
VOH (PPMU measure current, Range A) m-coefficient  
VOH (PPMU measure current Range B) m-coefficient  
VOH (PPMU measure current, Range C) m-coefficient  
VOH (PPMU measure current, Range D) m-coefficient  
VOH (PPMU measure current, Range E) m-coefficient  
VOL (differential comparator) m-coefficient  
VOL (PPMU measure voltage) m-coefficient  
VOL (PPMU measure current, Range A) m-coefficient  
VOL (PPMU measure current, Range B) m-coefficient  
VOL (PPMU measure current, Range C) m-coefficient  
VOL (PPMU measure current, Range D) m-coefficient  
VOL (PPMU measure current, Range E) m-coefficient  
VCH (PPMU) m-coefficient  
CC  
CC  
CC  
CC  
CC  
CC  
01  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
01  
VCL (PPMU) m-coefficient  
PPMU force current, Range A m-coefficient  
PPMU force current, Range B m-coefficient  
PPMU force current, Range C m-coefficient  
PPMU force current Range D m-coefficient  
PPMU force current, Range E m-coefficient  
VIH (HVOUT) c-coefficient  
CC  
01  
VCOM (active load) c-coefficient  
VIL (HVOUT) c-coefficient  
01  
VOH (differential comparator) c-coefficient  
VOH (PPMU measure voltage) c-coefficient  
CC  
Rev. 0 | Page 53 of 80  
ADATE318  
1
CH[1:0]1, 2  
ADDR[6:0]  
DATA[15:0]1, 3  
DDDD  
XXXX  
Register Description  
Reset Value1  
0x8000  
XXXX  
R
/W  
CC  
XX  
01  
0x5E  
R/W  
X
VOH (PPMU measure current) c-coefficient  
Reserved  
0x5F to 0x62  
0x63  
R/W  
R/W  
R/W  
X
DDDD  
DDDD  
DDDD  
XXXX  
VOL (differential comparator) c-coefficient  
VOL (PPMU measure voltage) c-coefficient  
VOL (PPMU measure current) c-coefficient  
Reserved  
0x8000  
0x8000  
0x8000  
XXXX  
CC  
CC  
XX  
CC  
CC  
CC  
XX  
0x64  
0x65  
0x66 to 0x69  
0x6A  
R/W  
R/W  
R/W  
X
DDDD  
DDDD  
DDDD  
XXXX  
VCH (PPMU) c-coefficient  
VCL (PPMU) c-coefficient  
0x8000  
0x8000  
0x8000  
XXXX  
0x6B  
0x6C  
PPMU force current c-coefficient  
Reserved  
0x6D to 0x70  
1 X = don’t care.  
2 CC corresponds to the channel address bits and indicates that there is dedicated register space for each channel.  
3 DDDD stands for data.  
Rev. 0 | Page 54 of 80  
ADATE318  
CONTROL REGISTER DETAILS  
Reserved bits in any register are undefined. In some cases, a  
physical (but unused) memory bit may be present, in other  
cases not. Write operations have no effect. Read operations  
result in meaningless but deterministic data.  
Any SPI write operation to a control bit or control register  
defined only on Channel 0 must be addressed to at least  
Channel 0. Any such write that is addressed only to Channel 1  
is ignored. Further, any such write that is addressed to both  
Channel 0 and Channel 1 (as a multichannel write) proceeds as  
if the write were addressed only to Channel 0. The data  
addressed to the undefined Channel 1 control bit or control  
register is ignored.  
Any SPI read operation from any reserved bit or register results  
in an unknown but deterministic readback value.  
SPI CLOCK INDEX  
DATA-WORD INDEX  
10 11 12 13 14 15 16 17 18 19 20  
21 22 23  
24 25  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
RESERVED[15:3]  
RESERVED  
DAC_LOAD[2]  
DAC LOAD SOFT PIN, SELF-RESETTING, CHANNEL 0/CHANNEL 1  
[0] = DEFAULT STATE OF THE DAC_LOAD SOFT PIN  
1
= BEGIN DAC LOAD OPERATION (PULSE, SELF-CLEAR TO ZERO)  
A WRITE TO THIS BIT PARALLEL UPDATES ALL DACs OF CHANNEL x  
WITH PREVIOUSLY BUFFERED DATA ASSUMING THAT THE  
DAC_LOAD_MODE CONTROL BIT OF CHANNEL x IS NOT SET TO  
WRITE DAC IMMEDIATE MODE. THIS BIT AUTOMATICALLY SELF-CLEARS.  
DAC_LOAD_MODE[1]  
DAC LOAD MODE, CHANNEL 0/CHANNEL 1  
[0] = WRITE DAC IMMEDIATE MODE.  
1
= WRITE DAC DEFERRED MODE.  
IN WRITE DAC IMMEDIATE MODE, EACH RESPECTIVE DAC IS UPDATED  
IMMEDIATELY SUBSEQUENT TO A VALID SPI WRITE INSTRUCTION TO  
THAT DAC ADDRESS. IN WRITE DAC DEFERRED MODE, EACH VALID  
SPI WRITE TO A DAC ADDRESS IS BUFFERED, AND DACs ARE ONLY  
UPDATED FOLLOWING ASSERTION OF THE DAC_LOAD SOFT PIN.  
IN THIS MODE, ALL ANALOG DAC DATA FOR EITHER OR BOTH  
CHANNELS CAN BE UPDATED IN PARALLEL.  
DAC_CAL_ENABLE[0]  
DAC CALIBRATION ENGINE ENABLE, CHANNEL 0 ONLY  
[0] = CALIBRATION ENGINE IS DISABLED  
1
= CALIBRATION ENGINE IS ENABLED  
WHEN DAC CALIBRATION IS ENABLED, EACH WRITE TO A VALID DAC  
ADDRESS RESULTS IN A SUBSEQUENT MULTIPLY AND ACCUMULATE  
(MAC) OPERATION TO THE DATA FOR THE RESPECTIVE DAC USING  
CALIBRATION DATA CONTAINED IN THE APPROPRIATE m- AND c-  
COEFFICIENT REGISTERS. WHEN THE CALIBRATION ENGINE IS  
DISABLED, DATA WRITTEN TO A VALID DAC ADDRESS IS NOT  
MODIFIED BY THE ON-CHIP CALIBRATION COEFFICIENTS.  
Figure 116. DAC Control Register (ADDR = 0x11)  
Rev. 0 | Page 55 of 80  
 
 
ADATE318  
SPI CLOCK INDEX  
DATA-WORD INDEX  
10 11 12 13 14 15 16 17 18 19 20  
21 22 23  
24 25  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
RESERVED[15:2]  
RESERVED  
SPI_SDO_HIZ[1]  
SPI SERIAL DATA OUTPUT PIN, HIGH-Z CONTROL, CHANNEL 0 ONLY  
[0] = SDO PIN IS ALWAYS ACTIVE, INDEPENDENT OF THE CS INPUT.  
1 = SDO PIN IS ACTIVE ONLY WHEN CS IS ACTIVE, OTHERWISE HIGH-Z.  
SPI_RESET[0]  
SPI SOFTWARE RESET, CHANNEL 0 ONLY  
[0] = DEFAULT SETTING, NO ACTION IS TAKEN UNTIL A 1 IS WRITTEN.  
1 = RESET (PULSE, SELF-CLEAR TO ZERO).  
FOLLOWING A WRITE TO SET THIS BIT, THE ADATE318 BEGINS  
A FULL RESET SEQUENCE JUST AS IF THE RST PIN HAD BEEN  
ASSERTED ASYNCHRONOUSLY. FOLLOWING RESET THIS BIT  
SELF-CLEARS TO THE DEFAULT 0 CONDITION.  
Figure 117. SPI Control Register (ADDR = 0x12)  
SPI CLOCK INDEX  
DATA-WORD INDEX  
10 11 12 13 14 15 16 17 18 19 20  
21 22 23  
24 25  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
RESERVED[15:1]  
RESERVED  
VHH_ENABLE[0]  
VHH (HVOUT) ENABLE, CHANNEL 0 ONLY  
[0] = HVOUT PIN IS DISABLED.  
1 = HVOUT PIN IS ENABLED.  
WHEN VHH MODE IS ENABLED, THE HVOUT PIN IS SET TO THE LEVELS  
ACCORDING TO THE VHH AND VIH/VIL DRIVER TRUTH TABLE (TABLE 25).  
WHEN VHH MODE IS DISABLED, THE IMPEDANCE OF THE HVOUT PIN  
IS APPROXIMATELY 50TO VDUTGND.  
Figure 118. VHH Control Register (ADDR = 0x18) Active Truth Table  
Rev. 0 | Page 56 of 80  
ADATE318  
SPI CLOCK INDEX  
DATA-WORD INDEX  
10 11 12 13 14 15 16 17 18 19 20  
21 22 23  
24 25  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
RESERVED[15:8]  
RESERVED  
DUT_PULLDOWN_x[7]  
DUTx PIN 10K SOFT PULL-DOWN, CHANNEL 0/CHANNEL 1  
0 = HVOUT PIN IS DISABLED.  
[1]  
= DUTx PIN HAS 10kPULL-DOWN TO DUTGND.  
WHEN DUT_PULLDOWN IS ASSERTED, THE DUTx PIN ON CHANNEL x  
HAS A 10kPULL-DOWN TO DUTGND. THIS CONTROL BIT IS  
ASYNCHRONOUSLY SET AT THE BEGINNING OF ANY RESET OPERATION,  
AND IT REMAINS SET UNTIL CLEARED BY THE USER. THIS CONTROL  
BIT DOES NOT DEPEND ON OTHER CONTROL BITS IN THIS REGISTER.  
DRIVE_VT_HIZ_x[6]  
DRIVER VT/HiZ MODE SELECT, CHANNEL 0/CHANNEL 1  
[0] = DRIVER GOES TO HIGH-Z STATE WHEN RCVx = 1.  
1 = DRIVER GOES TO VIT STATE WHEN RCVx = 1.  
WHEN DRV_VT_HIZ IS ASSERTED, THE DRIVER ON CHANNEL x ASSUMES  
THE VIT LEVEL ON ASSERTION OF THE RCVx HIGH SPEED INPUT IN  
ACCORDANCE WITH THE DRIVER TRUTH TABLE. THIS CONTROL BIT IS  
SUBORDINATE TO THE DCL_ENABLE AND FORCE_DRIVE CONTROL BITS.  
LOAD_ENABLE_x[5]  
ACTIVE LOAD ENABLE, CHANNEL 0/CHANNEL 1  
[0] = ACTIVE LOAD IS DISABLED AND POWERED DOWN.  
1 = ACTIVE LOAD IS ENABLED.  
WHEN LOAD_ENABLE IS ASSERTED, THE ACTIVE LOAD ON CHANNEL x IS ENABLED  
AND CONNECTS TO THE DUTx PIN ON ASSERTION OF THE RCVn HIGH SPEED INPUT  
IN ACCORDANCE WITH THE ACTIVE LOAD TRUTH TABLE. THIS CONTROL BIT IS  
SUBORDINATE TO THE DCL_ENABLE AND FORCE_LOAD CONTROL BITS BUT TAKES  
PRECEDENCE OVER THE RCVn HIGH SPEED INPUTS.  
FORCE_DRIVE_STATE_x[4:3]  
DRIVER STATE WHEN FORCE_DRIVE, CHANNEL 0/CHANNEL 1  
[00] = FORCE DRIVE VIL STATE.  
01 = FORCE DRIVE VIH STATE.  
10 = FORCE DRIVE HIGH-Z STATE.  
11 = FORCE DRIVE VIT STATE.  
WHEN THE FORCE_DRIVE CONTROL BIT IS ACTIVE, THE DRIVER ON CHANNEL x  
ASSUMES THE INDICATED STATE IN ACCORDANCE WITH THE DRIVER TRUTH TABLE.  
FORCE_LOAD_x[2]  
FORCE ACTIVE LOAD TO ACTIVE ON STATE, CHANNEL 0/CHANNEL 1  
[0] = ACTIVE LOAD RESPONDS TO RCVx.  
1 = FORCE ACTIVE ON STATE.  
WHEN FORCE_LOAD IS ASSERTED, THE ACTIVE LOAD ON CHANNEL x ASSUMES THE ACTIVE ON  
STATE AND IS CONNECTED TO THE DUTx PIN IN ACCORDANCE WITH THE ACTIVE LOAD TRUTH  
TABLE. THIS CONTROL BIT IS SUBORDINATE TO THE DCL_ENABLE CONTROL BIT BUT TAKES  
PRECEDENCE OVER BOTH THE LOAD_ENABLE AND DRV_VT_HIZ CONTROL BITS, AS WELL AS  
THE RCVx INPUTS. THIS BIT DOES NOT FORCE SELECTION OF VCOM CALIBRATION CONSTANTS.  
FORCE_DRIVE_x[1]  
FORCE DRIVER TO FORCE_STATE, CHANNEL 0/CHANNEL 1  
[0] = DRIVER RESPONDS TO DATx AND RCVx.  
1 = FORCE DRIVER STATE TO FORCE_STATE.  
WHEN FORCE_DRIVE IS ASSERTED, THE DRIVER ON CHANNEL x ASSUMES THE STATE INDICATED  
BY FORCE_STATE IN ACCORDANCE WITH THE DRIVER TRUTH TABLE. THIS CONTROL BIT IS SUBORDINATE  
TO THE DCL_ENABLE CONTROL BIT BUT TAKES PRECEDENCE OVER DRV_VT_HIZ, AS WELL AS THE  
DATx AND RCVx INPUTS. THIS BIT DOES NOT FORCE SELECTION OF VCH AND VCL CALIBRATION  
CONSTANTS NOR DOES IT FORCE SELECTION OF VIT CALIBRATION CONSTANTS.  
DCL_ENABLE_x[0]  
ENABLE DCL ON CHANNEL 0/CHANNEL 1  
[0] = DCL IS DISABLED (LOW LEAKAGE MODE).  
1 = DCL IS ENABLED.  
WHEN DCL_ENABLE IS NOT ASSERTED, THE DRIVER, COMPARATOR, AND ACTIVE LOAD ON  
CHANNEL x ASSUME THE LOW LEAKAGE STATE IN ACCORDANCE WITH DRIVER AND  
ACTIVE LOAD TRUTH TABLES. THIS CONTROL BIT TAKES PRECEDENCE OVER ALL OTHER CONTROL  
BITS IN THE DCL CONTROL REGISTER EXCEPT FOR DUT_PULLDOWN.  
Figure 119. DCL Control Register (ADDR = 0x19)  
Rev. 0 | Page 57 of 80  
ADATE318  
SPI CLOCK INDEX  
DATA-WORD INDEX  
10 11 12 13 14 15 16 17 18 19 20  
21 22 23  
24 25  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
PPMU_POWER_x[15]  
PPMU POWER, CHANNEL 0/CHANNEL 1  
[0] = PPMU POWER OFF.  
1
= PPMU POWER ON.  
WHEN PPMU_POWER_x[15] = 1, THE NWC  
AND DMC HYSTERESIS IS FORCED TO A  
MAXIMUM, BUT THE HYSTERESIS  
REGISTER VALUES ARE LEFT UNCHANGED.  
RESERVED[14:12]  
RESERVED  
PMU_S_ENABLE_x[11]  
PMU SENSE INPUT ENABLE, CHANNEL 0/CHANNEL 1  
[0] = PMU SENSE INPUT SWITCH OPEN.  
1
= PMU SENSE INPUT SWITCH CLOSED.  
RESERVED  
PPMU_CLAMP_ENABLE_x[9]  
PPMU CLAMP ENABLE, CHANNEL 0/CHANNEL 1  
[0] = PPMU CLAMPS DISABLED.  
1
= PPMU CLAMPS ENABLED.  
PPMU_SENSE_PATH_x[8]  
PPMU SENSE PATH, CHANNEL 0/CHANNEL 1  
[0] = PPMU INTERNAL SENSE PATH.  
1
= PPMU EXTERNAL SENSE PATH.  
PPMU_INPUT_SEL_x[7:6]  
PPMU INPUT SELECT, CHANNEL 0/CHANNEL 1  
[00] = PPMU INPUT FROM DUTGND.  
01 = PPMU INPUT FROM DUTGND + 2.5V.  
= PPMU INPUT FROM DAC  
LEVEL.  
1X  
PPMU  
PPMU_MEAS_VI_x[5]  
PPMU MEASURE V OR MEASURE I, CHANNEL 0/CHANNEL 1  
[0] = PPMU MEASURE V MODE.  
1
= PPMU MEASURE I MODE.  
PPMU_FORCE_VI_x[4]  
PPMU FORCE V OR FORCE I, CHANNEL 0/CHANNEL 1  
[0] = PPMU FORCE V MODE.  
1
= PPMU FORCE I MODE.  
PPMU_RANGE_x[3:1]  
PPMU RANGE, CHANNEL 0/CHANNEL 1  
[0XX] = PPMU RANGE E (2µA).  
100 = PPMU RANGE D (10µA).  
101 = PPMU RANGE C (100µA).  
110 = PPMU RANGE B (1mA).  
111 = PPMU RANGE A (40mA).  
PPMU_ENABLE_x[0]  
PPMU ENABLE, CHANNEL 0/CHANNEL 1  
[0] = PPMU FULL POWER STANDBY.  
1
= PPMU ACTIVE.  
Figure 120. PPMU Control Register (ADDR = 0x1A)  
Rev. 0 | Page 58 of 80  
 
ADATE318  
SPI CLOCK INDEX  
DATA-WORD INDEX  
10 11 12 13 14 15 16 17 18 19 20  
21 22 23  
24 25  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
RESERVED[15:3]  
RESERVED  
PPMU_MEAS_SEL_x[2:1]  
PPMU ANALOG MEASURE OUT PIN SELECT, CHANNEL 0/CHANNEL 1  
[X0] = PPMU CHANNEL x TO PPMU_MEASx OUTPUT PIN.  
X1 = CHANNEL 0: TEMPERATURE SENSOR OUTPUT (THERM).  
CHANNEL 1: TEMPERATURE SENSOR GND REFERENCE.  
PPMU_MEAS_ENABLE_x[0]  
PPMU ANALOG MEASURE OUT PIN ENABLE, CHANNEL 0/CHANNEL 1  
[0] = PPMU MEASURE OUT PIN ON CHANNEL x IS DISABLED, HIGH-Z.  
1
= PPMU MEASURE OUT PIN ON CHANNEL x IS ENABLED.  
Figure 121. PPMU MEAS Control Register (ADDR = 0x1B)  
SPI CLOCK INDEX  
DATA-WORD INDEX  
10 11 12 13 14 15 16 17 18 19 20  
21 22 23  
24 25  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
RESERVED[15:11]  
RESERVED  
NWC_HYST_x[10:6]  
NORMAL WINDOW COMPARATOR HYSTERESIS VALUE, CHANNEL 0/CHANNEL 1  
0x00 = DISABLE HYSTERESIS.  
0x01 = ENABLE MINIMUM HYSTERESIS.  
[0x1F] = ENABLE MAXIMUM HYSTERESIS.  
WHEN SET TO 0x00, THE NORMAL WINDOW COMPARATOR ON CHANNEL x  
HAS NO HYSTERESIS ADDED TO THE INPUT STAGE. WHEN SET TO A VALUE  
OTHER THAN 0x00, HYSTERESIS IS ADDED AND THE AMOUNT IS CONTROLLED  
BY THE VALUE IN THIS REGISTER.  
WHEN ADDR 0x1A PPMU _POWER_x[15] = 1, THE NWC HYSTERESIS IS FORCED TO A  
MAXIMUM, BUT THE HYSTERESIS REGISTER VALUE IS LEFT UNCHANGED.  
DMC_HYST[5:1]  
DIFFERENTIAL COMPARATOR HYSTERESIS VALUE, CHANNEL 0 ONLY  
0x00 = DISABLE HYSTERESIS.  
0x01 = ENABLE MINIMUM HYSTERESIS.  
[0x1F]  
= ENABLE MAXIMUM HYSTERESIS.  
WHEN SET TO 0x00, THE DIFFERENTIAL COMPARATOR ON CHANNEL 0  
HAS NO HYSTERESIS ADDED TO THE INPUT STAGE. WHEN SET TO A VALUE  
OTHER THAN 0x00, HYSTERESIS IS ADDED AND THE AMOUNT IS CONTROLLED  
BY THE VALUE IN THIS REGISTER.  
WHEN ADDR 0x1A PPMU _POWER_x[15] = 1, THE DMC HYSTERESIS IS FORCED TO A  
MAXIMUM, BUT THE HYSTERESIS REGISTER VALUE IS LEFT UNCHANGED.  
DMC_ENABLE[0]  
DIFFERENTIAL MODE COMPARATOR ENABLE, CHANNEL 0 ONLY  
[0] = DISABLE DIFFERENTIAL MODE COMPARATOR.  
1 = ENABLE DIFFERENTIAL MODE COMPARATOR.  
WHEN DMC_ENABLE IS ASSERTED, THE NORMAL WINDOW COMPARATOR  
ON CHANNEL 0 IS DISABLED, THE DIFFERENTIAL MODE COMPARATOR ON  
CHANNEL 0 IS ENABLED, AND ITS OUTPUTS GOES TO THE CMPH0 AND CMPL0  
HIGH SPEED OUTPUT PINS. THE OPERATION OF THE NORMAL WINDOW  
COMPARATOR ON CHANNEL 1 IS NOT AFFECTED. THIS CONTROL BIT EXISTS  
AT ADDR 0x1C CHANNEL 0 ONLY.  
Figure 122. CMP Control Register (ADDR = 0x1C)  
Rev. 0 | Page 59 of 80  
ADATE318  
SPI CLOCK INDEX  
DATA-WORD INDEX  
10 11 12 13 14 15 16 17 18 19 20  
21 22 23  
24 25  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
RESERVED[15:7]  
RESERVED  
THERM_ALARM_THRESH[6:4]  
THERMAL ALARM THRESHOLD, CHANNEL 0 ONLY  
000 = 0°C (FOR TEST USE ONLY)  
001 = 25°C  
010 = 50°C  
011 = 75°C  
[100] = 100°C  
101 = 125°C  
110 = 150°C  
111 = 175°C  
THERM_ALARM_MASK[3]  
THERMAL ALARM MASK BIT, CHANNEL 0 ONLY  
[0] = THERMAL ALARM ENABLED.  
1
= THERMAL ALARM DISABLED.  
WHEN THE THERMAL ALARM IS ENABLED, A TEMPERATURE SENSOR READING  
ABOVE THE THRESHOLD SPECIFIED BY THERM_ALARM_THRESH  
ASSERTS AND LATCHES THE ALARM OPEN DRAIN OUTPUT PIN.  
PPMU_ALARM_MASK_x[2]  
PPMU CLAMP ALARM MASK, CHANNEL 0/CHANNEL 1  
0
= PPMU CLAMP ALARM ENABLED.  
[1] = PPMU CLAMP ALARM DISABLED.  
WHEN THE PPMU CLAMP IS ENABLED, A CLAMP CONDITION ON CHANNEL x  
PPMU CLAMPS ASSERTS AND LATCHES THE ALARM OPEN DRAIN OUTPUT  
PIN. THE PPMU CLAMP LEVELS ARE DEFINED BY THE VCL AND VCH DAC  
REGISTERS.  
RESERVED[1]  
RESERVED  
OVD_ALARM_MASK_n[0]  
OVERVOLTAGE DETECTOR ALARM MASK, CHANNEL 0/CHANNEL 1  
0
[1]  
= OVERVOLTAGE ALARM ENABLED.  
= OVERVOLTAGE ALARM DISABLED.  
WHEN THE OVD ALARM IS ENABLED, AN OVERVOLTAGE FAULT CONDITION  
ON DUTx ASSERTS AND LATCHES THE ALARM OPEN DRAIN OUTPUT PIN.  
THE OVERVOLTAGE THRESHOLDS ARE DEFINED BY THE OVDH AND  
OVDL DAC REGISITERS.  
Figure 123. Alarm Mask Register (ADDR = 0x1D)  
Rev. 0 | Page 60 of 80  
 
ADATE318  
SPI CLOCK INDEX  
DATA-WORD INDEX  
10 11 12 13 14 15 16 17 18 19 20  
21 22 23  
24 25  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
RESERVED[15:4]  
RESERVED  
THERM_ALARM_FLAG[3]  
THERMAL ALARM FLAG, CHANNEL 0 ONLY  
[0] = THERMAL FAULT NOT DETECTED.  
1 = THERMAL FAULT DETECTED.  
WHEN THE THERM_ALARM_FLAG BIT IS SET, A FAULT WAS DETECTED  
ON THE DIE ACCORDING TO THE THERMAL THRESHOLD SET IN THE  
THERM_ALARM_THRESH REGISTER. THIS FLAG IS SUBORDINATE TO THE  
THERM_ALARM_MASK CONTROL BIT, AND IT IS AUTOMATICALLY  
RESET AFTER ANY READ FROM THE ALARM STATE REGISTER.  
PPMU_ALARM_FLAG_x[2]  
PPMU CLAMP ALARM FLAG, CHANNEL 0/CHANNEL 1  
[0] = PPMU CLAMP CONDITION NOT DETECTED.  
1 = PPMU CLAMP CONDITION DETECTED.  
WHEN THE PPMU_ALARM_FLAG BIT IS SET, A PPMU CLAMP CONDITION WAS  
DETECTED ON CHANNEL x ACCORDING TO THE THRESHOLDS SET IN THE  
VCH AND VCL CLAMP REGISTERS. THIS FLAG IS SUBORDINATE TO THE  
PPMU_ALARM_MASK_x CONTROL BIT, AND IT AUTOMATICALLY RESETS  
AFTER ANY READ FROM THE ALARM STATE REGISTER.  
OVDH_ALARM_FLAG_x[1]  
OVER VOLTAGE ALARM FLAG, CHANNEL 0/CHANNEL 1  
[0] = OVER VOLTAGE FAULT NOT DETECTED.  
1 = OVER VOLTAGE FAULT DETECTED.  
WHEN OVDH_ALARM_FLAG IS SET, AN OVER VOLTAGE FAULT CONDITION  
WAS DETECTED ON CHANNEL x DUTx PIN ACCORDING TO THE THRESHOLD SET  
IN THE OVDH DAC REGISTER. THIS FLAG IS SUBORDINATE TO THE  
OVD_ALARM_MASK_x CONTROL BIT, AND IT IS AUTOMATICALLY RESET  
AFTER ANY READ FROM THE ALARM STATE REGISTER.  
OVDL_ALARM_FLAG_x[0]  
UNDER VOLTAGE ALARM FLAG, CHANNEL 0/CHANNEL 1  
[0] = UNDER VOLTAGE FAULT NOT DETECTED.  
1 = UNDER VOLTAGE FAULT DETECTED.  
WHEN OVDL_ALARM_FLAG IS SET, AN UNDER VOLTAGE FAULT CONDITION  
WAS DETECTED ON CHANNEL x DUTx PIN ACCORDING TO THE THRESHOLD SET  
IN THE OVDL DAC REGISTER. THIS FLAG IS SUBORDINATE TO THE  
OVD_ALARM_MASK_x CONTROL BIT, AND IT IS AUTOMATICALLY RESET  
AFTER ANY READ FROM THE ALARM STATE REGISTER.  
Figure 124. Alarm State Register (ADDR = 0x1E) (Read Only)  
Rev. 0 | Page 61 of 80  
 
ADATE318  
SPI CLOCK INDEX  
DATA-WORD INDEX  
10 11 12 13 14 15 16 17 18 19 20  
21 22 23  
24 25  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
DRV_CLC_x[15:13]  
DRIVER CABLE LOSS COMPENSATION,  
CHANNEL 0/CHANNEL 1  
[000] = DISABLE DRIVER CLC.  
001 = ENABLE DRIVER MINIMUM CLC.  
111 = ENABLE DRIVER MAXIMUM CLC.  
WHEN SET TO 0x00, THE DRIVER ON CHANNEL x HAS  
ZERO CABLE LOSS COMPENSATION (CLC) ADDED  
TO ITS OUTPUT CHARACTERISTIC. WHEN SET TO A  
VALUE OTHER THAN 0x00, CABLE LOSS COMPENSATION  
PRE-EMPHASIS IS ADDED AND THE PERCENTAGE  
IS CONTROLLED BY THE REGISTER VALUE.  
RESERVED[12:11]  
RESERVED  
NWC_CLC_x[10:8]  
NORMAL WINDOW COMPARATOR CABLE LOSS COMPENSATION,  
CHANNEL 0/CHANNEL 1  
[000] = DISABLE NWC CLC.  
001 = ENABLE NWC MINIMUM CLC.  
111 = ENABLE NWC MAXIMUM CLC.  
WHEN SET TO 0x00, THE NORMAL WINDOW COMPARATOR (NWC) ON CHANNEL x  
HAS NO CABLE LOSS COMPENSATION (CLC) ADDED TO THE INPUT ADDED TO  
THE INPUT WAVEFORM CHARACTERISTIC. WHEN SET TO A VALUE OTHER THAN  
0x00, PRE-EMPHASIS IS ADDED AND THE PERCENTAGE IS CONTROLLED BY  
THE VALUE IN THIS REGISTER.  
RESERVED[7:6]  
RESERVED  
DMC_CLC[5:3]  
DIFFERENTIAL MODE COMPARATOR CABLE LOSS COMPENSATION, CHANNEL 0 ONLY  
[000] = DISABLE DMC CLC.  
001 = ENABLE DMC MINIMUM CLC.  
111 = ENABLE DMC MAXIMUM CLC.  
WHEN SET TO 0x00, THE DIFFERENTIAL MODE COMPARATOR (ON CHANNEL 0 ONLY)  
HAS NO CABLE LOSS COMPENSATION (CLC) ADDED TO THE INPUT WAVEFORM  
CHARACTERISTIC. WHEN SET TO A VALUE OTHER THAN 0x00, PRE-EMPHASIS IS ADDED  
AND THE PERCENTAGE IS CONTROLLED BY THE VALUE IN THIS REGISTER.  
RESERVED[2:0]  
RESERVED  
Figure 125. CLC Control Register (ADDR = 0x1F)  
Rev. 0 | Page 62 of 80  
ADATE318  
LEVEL SETTING DACS  
operation can address corresponding DACs on both channels at  
the same time even though the channels may be configured  
with different DAC update modes. In such a case, the part  
behaves as expected. For example, if both channels are in  
immediate update mode, the update of analog levels of both  
DAC UPDATE MODES  
The ADATE318 provides 24- × 16-bit integrated level setting  
DACs organized as two channel banks of 12 DACs each. The  
detailed mapping of the DAC register to pin electronics  
function is shown in Table 19. Each DAC can be programmed  
by writing data to the respective SPI register address and  
channel.  
channel banks begins after the associated release of the  
pin.  
CS  
If both channels are in deferred update mode, the update of  
analog levels is deferred for both channels until the corres-  
ponding DAC_LOAD bits are set. If one channel is in deferred  
update mode and the other channel is in immediate update  
mode, the former channel defers analog updates until the  
corresponding DAC_LOAD bit is written, and the latter  
channel begins analog updates immediately after the associated  
The ADATE318 provides two methods for updating analog  
DAC levels: DAC immediate update mode and DAC deferred  
update mode. At release of the  
pin associated with any valid  
CS  
SPI write to a DAC address, the update of analog levels may  
start immediately1, or it can be deferred, depending on the state  
of the DAC_LOAD_MODE control bits in the DAC control  
register (SPI ADDR 0x11[1] (see Figure 116)). The DAC update  
mode can be selected independently for each channel bank.  
release of the  
pin.  
CS  
An on-chip deglitch circuit with a period of approximately 3 μs  
is provided to prevent DAC-to-DAC crosstalk whenever an  
analog update is processed. Only one deglitch circuit is  
provided per chip, and it must operate over all physical DACs  
(both channels) at the same time. The deglitch circuit can be  
retriggered when an analog levels update is initiated before a  
previous update operation has completed. In the case of a dual-  
channel immediate mode DAC write using a single SPI  
command, the deglitch circuit is triggered once after data is  
loaded into both DAC channels. Analog transitions at the DAC  
outputs do not begin until the deglitch circuit has timed out,  
and final settling to full precision requires an additional 7 μs  
beyond the end of the 3 μs deglitch interval. Total settling time  
If the DAC_LOAD_MODE control bit for a given channel bank  
is cleared, the DACs assigned to that channel are then in the  
DAC immediate update mode. Writing to any DAC of that  
channel causes the corresponding analog level to be updated  
immediately following the associated release of . Because all  
CS  
analog levels are updated on a per-channel basis, any previously  
pending DAC writes queued to the channel (while in deferred  
update mode) are also updated at this time. This situation can  
arise if DAC writes are queued to the channel while in deferred  
update mode, and the DAC_LOAD_MODE bit is subsequently  
changed to immediate update mode before the analog levels are  
updated by writing to the respective DAC_LOAD soft pin. The  
queued data is not lost. Note that writing to the DAC_LOAD  
soft pin has no effect in immediate update mode.  
following release of the associated  
is approximately 10 μs.  
CS  
Note that prolonged and consecutive retriggering of the deglitch  
circuit by one channel may cause the apparent settling time of  
analog levels on the other channel to be much longer than the  
specified 10 μs.  
If the DAC_LOAD_MODE control bit for a given channel is set,  
the DACs assigned to that channel are in the deferred update  
mode. Writing to any DAC of that channel only queues the  
DAC data into that channel. The analog update of queued DAC  
levels is deferred until the respective DAC_LOAD soft pin is set  
(SPI ADDR 0x11[2] (see Figure 116)). The DAC deferred  
update mode, in conjunction with the respective DAC_LOAD  
soft pin, provides the means to queue all DAC level writes to a  
given channel bank before synchronously updating the analog  
levels with a single SPI command.  
A typical DAC update sequence is illustrated in Figure 126 in  
which two immediate mode DAC update commands are  
written in direct succession. This example illustrates what  
happens when a DAC update command is written subsequent  
to a previous update command that has not yet finished its  
deglitch and settling sequence.  
Recommended Sequence for OVDH DAC Level  
Addressing  
Certain pin electronics functions, such as VHH, OVDH,  
OVDL, and the spare DAC, do not fit neatly within a particular  
channel bank. However, they must be updated as a part of the  
channel bank to which they are assigned as shown in Table 19.  
For correct OVDH addressing, first write data to the OVDH  
DAC level at SPI 0x0C at CH0. If in DAC immediate mode, the  
OVDH data write must be followed by either a DAC_LOAD  
command to SPI 0x11[2] at CH1 or a subsequent write to any  
other CH1 DAC data address before the OVDH value will be  
updated. If in DAC deferred mode, the OVDH DAC level write  
must be followed by a DAC_LOAD command to SPI 0x11[2] at  
CH1 (not CH0) before the analog OVDH value will be updated.  
The ADATE318 provides a feature in which a single SPI write  
operation can address two channels at one time (see Figure 115).  
This feature makes possible a scenario in which a SPI write  
1 Initiation of the analog level update sequence (and triggering of the on-chip  
deglitch circuit) actually begins four SCLK cycles following the associated  
CS  
release of the pin. For the purpose of this discussion, it is assumed to start  
CS  
.
coincident with the release of  
Rev. 0 | Page 63 of 80  
 
 
ADATE318  
tSPI  
SCLK  
CS  
WRITE DAC  
WRITE DAC  
1
SDI  
0
SEE TABLE 18  
NOTE 1  
SEE TABLE 18  
NOTE 1  
BUSY  
±0.5 LSB  
DAC  
DAC  
DAC  
0
1
2
BEGINNING OF 3µs  
DEGLITCH PERIOD  
RETRIGGER OF 3µs  
DEGLITCH PERIOD  
COMPLETION OF 3µs  
DEGLITCH PERIOD  
DAC  
23  
3µs  
NOTES  
1. DAC DEGLITCH PERIOD ALWAYS BEGINS FOUR  
SCLK CYCLES BEFORE RELEASE OF BUSY.  
tDAC  
Figure 126. SPI DAC Write and Settling Time  
Addressing M and C Registers  
Some DACs have pairs of m/c-coefficients that are controlled depending on other register status. Table 20 details the specific register  
settings and register addresses for the different pairs (X = don’t care).  
Table 20. M- and C-Register Mapping  
PPMU_  
LOAD_  
PPMU_  
MEAS_  
SPI  
VHH_  
DMC_  
PPMU_  
Address  
(Channel)  
DAC  
Name  
Functional (DAC  
Usage) Description  
m-  
register  
c-  
ENABLE  
0x18[0]  
ENABLE  
0x1C[0]  
ENABLEx  
0x19[5]  
POWERx  
0x1A[15]  
VIx  
0x1A[5]  
PPMU_FORCE  
_VIx 0x1A[4]  
RANGEx  
(0x1A[3:1])  
register  
0x0D[0]  
0x04[0]  
OVDL  
VOH0  
Overvoltage detect low  
0x2D[0]  
0x24[0]  
0x3D[0]  
0x34[0]  
X
X
X
0
X
X
X
0
X
X
X
X
XXX  
XXX  
NWC high level,  
Channel 0  
DMC high level  
0x44[0]  
0x45[0]  
0x5C[0]  
0x5D[0]  
X
X
1
X
X
0
1
X
0
X
X
XXX  
XXX  
PPMU go/no-go MV  
high level, Channel 0  
X
PPMU go/no-go MI  
Range A high level,  
Channel 0  
0x46[0]  
0x47[0]  
0x48[0]  
0x49[0]  
0x4A[0]  
0x5E[0]  
0x5E[0]  
0x5E[0]  
0x5E[0]  
0x5E[0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
1
1
1
1
1
1
1
1
1
X
X
X
X
X
111  
110  
101  
100  
0XX  
PPMU go/no-go MI  
Range B high level,  
Channel 0  
PPMU go/no-go MI  
Range C high level,  
Channel 0  
PPMU go/no-go MI  
Range D high level,  
Channel 0  
PPMU go/no-go MI  
Range E high level,  
Channel 0  
Rev. 0 | Page 64 of 80  
 
 
ADATE318  
PPMU_  
MEAS_  
VIx  
LOAD_  
ENABLEx  
0x19[5]  
PPMU_  
POWERx  
0x1A[15]  
SPI  
Address  
(Channel)  
VHH_  
ENABLE  
0x18[0]  
DMC_  
ENABLE  
0x1C[0]  
PPMU_  
RANGEx  
(0x1A[3:1])  
DAC  
Name  
Functional (DAC  
Usage) Description  
m-  
register  
c-  
PPMU_FORCE  
_VIx 0x1A[4]  
register  
0x1A[5]  
0x05[0]  
VOL0  
NWC low level,  
Channel 0  
0x25[0]  
0x35[0]  
X
0
X
0
X
X
XXX  
DMC low level  
0x4B[0]  
0x4C[0]  
0x63[0]  
0x64[0]  
X
X
1
X
X
0
1
X
0
X
X
XXX  
XXX  
PPMU go/no-go MV low  
level, Channel 0  
X
PPMU go/no-go MI  
Range A low level,  
Channel 0  
0x4D[0]  
0x4E[0]  
0x4F[0]  
0x50[0]  
0x51[0]  
0x65[0]  
0x65[0]  
0x65[0]  
0x65[0]  
0x65[0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
1
1
1
1
1
1
1
1
1
X
X
X
X
X
111  
110  
101  
100  
0XX  
PPMU go/no-go MI  
Range B low level,  
Channel 0  
PPMU go/no-go MI  
Range C low level,  
Channel 0  
PPMU go/no-go MI  
Range D low level,  
Channel 0  
PPMU go/no-go MI  
Range E low level,  
Channel 0  
0x08[0]  
0x09[0]  
0x02[0]  
VIOH0  
VIOL0  
Load IOH level,  
Channel 0  
0x28[0]  
0x29[0]  
0x22[0]  
0x42[0]  
0x21[0]  
0x41[0]  
0x23[0]  
0x43[0]  
0x26[0]  
0x52[0]  
0x27[0]  
0x53[0]  
0x2A[0]  
0x54[0]  
0x55[0]  
0x56[0]  
0x57[0]  
0x58[0]  
0x38[0]  
0x39[0]  
0x32[0]  
0x5A[0]  
0x31[0]  
0x59[0]  
0x33[0]  
0x5B[0]  
0x36[0]  
0x6A[0]  
0x37[0]  
0x6B[0]  
0x3A[0]  
0x6C[0]  
0x6C[0]  
0x6C[0]  
0x6C[0]  
0x6C[0]  
X
X
X
X
0
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
0
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
1
1
1
1
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
111  
110  
101  
100  
0XX  
Load IOL level,  
Channel 0  
VIT0/  
VCOM0  
Drive term level,  
Channel 0  
Load commutation  
voltage, Channel 0  
1
0x01[0]  
0x03[0]  
0x06[0]  
0x07[0]  
0x0A[0]  
VIH0  
Drive high level,  
Channel 0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
HVOUT drive high level,  
Channel 0  
VIL0  
Drive low level,  
Channel 0  
HVOUT drive low level,  
Channel 0  
VCH0  
VCL0  
PPMU0  
Ref clamp high level,  
Channel 0  
PPMU clamp high level,  
Channel 0  
Ref clamp low level,  
Channel 0  
PPMU clamp low level,  
Channel 0  
PPMU VIN FV level,  
Channel 0  
PPMU VIN FI Range A  
level, Channel 0  
PPMU VIN FI Range B  
level, Channel 0  
PPMU VIN FI Range C  
level, Channel 0  
PPMU VIN FI Range D  
Level, Channel 0  
PPMU VIN FI Range E  
level, Channel 0  
0x0B[0]  
0x0C[0]  
VHH  
VHH level  
0x2B[0]  
0x2C[0]  
0x3B[0]  
0x3C[0]  
X
X
X
X
X
X
X
X
X
X
X
X
XXX  
XXX  
OVDH  
Overvoltage detect  
high  
Rev. 0 | Page 65 of 80  
ADATE318  
PPMU_  
MEAS_  
VIx  
LOAD_  
ENABLEx  
0x19[5]  
PPMU_  
POWERx  
0x1A[15]  
SPI  
Address  
(Channel)  
VHH_  
ENABLE  
0x18[0]  
DMC_  
ENABLE  
0x1C[0]  
PPMU_  
RANGEx  
(0x1A[3:1])  
DAC  
Name  
Functional (DAC  
Usage) Description  
m-  
register  
c-  
PPMU_FORCE  
_VIx 0x1A[4]  
register  
0x1A[5]  
0x04[1]  
VOH1  
NWC high level,  
Channel 1  
0x24[1]  
0x45[1]  
0x46[1]  
0x34[1]  
0x5D[1]  
0x5E[1]  
X
X
X
X
X
X
X
X
X
0
1
1
X
0
1
X
X
X
XXX  
XXX  
111  
PPMU go/no-go MV  
high level, Channel 1  
PPMU go/no-go MI  
Range A high level,  
Channel 1  
PPMU go/no-go MI  
Range B high level,  
Channel 1  
0x47[1]  
0x48[1]  
0x49[1]  
0x4A[1]  
0x5E[1]  
0x5E[1]  
0x5E[1]  
0x5E[1]  
X
X
X
X
X
X
X
X
X
X
X
X
1
1
1
1
1
1
1
1
X
X
X
X
110  
101  
100  
0XX  
PPMU go/no-go MI  
Range C high level,  
Channel 1  
PPMU go/no-go MI  
Range D high level,  
Channel 1  
PPMU go/no-go MI  
Range E high level,  
Channel 1  
0x05[1]  
VOL1  
NWC low level,  
Channel 1  
0x25[1]  
0x4C[1]  
0x4D[1]  
0x35[1]  
0x64[1]  
0x65[1]  
X
X
X
X
X
X
X
X
X
0
1
1
X
0
1
X
X
X
XXX  
XXX  
111  
PPMU go/no-go MV low  
level, Channel 1  
PPMU go/no-go MI  
Range A low level,  
Channel 1  
PPMU go/no-go MI  
Range B low level,  
Channel 1  
0x4E[1]  
0x4F[1]  
0x50[1]  
0x51[1]  
0x65[1]  
0x65[1]  
0x65[1]  
0x65[1]  
X
X
X
X
X
X
X
X
X
X
X
X
1
1
1
1
1
1
1
1
X
X
X
X
110  
101  
100  
0XX  
PPMU go/no-go MI  
Range C low level,  
Channel 1  
PPMU go/no-go MI  
Range D low level,  
Channel 1  
PPMU go/no-go MI  
Range E low level,  
Channel 1  
0x08[1]  
0x09[1]  
0x02[1]  
VIOH1  
VIOL1  
Load IOH level,  
Channel 1  
0x28[1]  
0x29[1]  
0x22[1]  
0x42[1]  
0x21[1]  
0x23[1]  
0x26[1]  
0x52[1]  
0x27[1]  
0x53[1]  
0x2A[1]  
0x54[1]  
0x55[1]  
0x56[1]  
0x57[1]  
0x58[1]  
0x38[1]  
0x39[1]  
0x32[1]  
0x5A[1]  
0x31[1]  
0x33[1]  
0x36[1]  
0x6A[1]  
0x37[1]  
0x6B[1]  
0x3A[1]  
0x6C[1]  
0x6C[1]  
0x6C[1]  
0x6C[1]  
0x6C[1]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
1
1
1
1
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
111  
110  
101  
100  
0XX  
Load IOL level,  
Channel 1  
VIT1/  
VCOM1  
Drive term level,  
Channel 0  
Load commutation  
voltage, Channel 1  
0x01[1]  
0x03[1]  
0x06[1]  
VIH1  
VIL1  
Drive high level,  
Channel 1  
Drive low level,  
Channel 1  
VCH1  
Ref clamp high level,  
Channel 1  
PPMU clamp high level,  
Channel 1  
0x07[1]  
0x0A[1]  
VCL1  
Ref clamp low level,  
Channel 1  
PPMU clamp low level,  
Channel 1  
PPMU1  
PPMU VIN FV level,  
Channel 1  
PPMU VIN FI Range A  
level, Channel 1  
PPMU VIN FI Range B  
level, Channel 1  
PPMU VIN FI Range C  
level, Channel 1  
PPMU VIN FI Range D  
level, Channel 1  
PPMU VIN FI Range E  
level, Channel 1  
Rev. 0 | Page 66 of 80  
ADATE318  
PPMU_  
MEAS_  
VIx  
LOAD_  
ENABLEx  
0x19[5]  
PPMU_  
POWERx  
0x1A[15]  
SPI  
Address  
(Channel)  
VHH_  
ENABLE  
0x18[0]  
DMC_  
ENABLE  
0x1C[0]  
PPMU_  
RANGEx  
(0x1A[3:1])  
DAC  
Name  
Functional (DAC  
Usage) Description  
m-  
register  
c-  
PPMU_FORCE  
_VIx 0x1A[4]  
register  
0x1A[5]  
0x0E[0]  
Spare  
Spare level  
0x2E[0]  
0x3E[1]  
X
X
X
X
X
X
XXX  
DAC TRANSFER FUNCTIONS  
Table 21. Detailed DAC Code to Voltage Level Transfer Functions  
Programmable DAC  
Range1, 0x0000 to  
Levels  
0xFFFF  
DAC-to-Level and Level-to-DAC Transfer Functions  
VIHx, VILx, VITx/VCOMx,  
VOLx, VOHx, VCHx, VCLx,  
OVDHx, OVDLx  
−2.5 V to +7.5 V  
VOUT = 2 × (VREF − VREFGND) × (DAC/216 ) − 0.5 × (VREF − VREFGND) + VDUTGND  
DAC = [VOUT − VDUTGND + 0.5 × (VREF − VREFGND)] × [(216)/(2 × (VREF − VREFGND))]  
VHH  
−3.0 V to +17.0 V  
−12.5 mA to +37.5 mA  
−2.5 V to +7.5 V  
VOUT = 4 × (VREF − VREFGND) × (DAC/216 ) − 0.6 × (VREF − VREFGND) + VDUTGND  
DAC = [VOUT − VDUTGND + 0.6 × (VREF − VREFGND)] × [216/(4 × (VREF − VREFGND))]  
IOHx, IOLx  
IOUT = [2 × (VREF − VREFGND) × (DAC/216 ) − 0.5 × (VREF − VREFGND)] × (25 mA/5)  
DAC = [(IOUT × (5/25 mA)) + 0.5 × (VREF − VREFGND)] × [216/(2 × (VREF − VREFGND))]  
PPMU_VINx (FV)  
VOUT = 2 × (VREF − VREFGND) × (DAC/216 ) − 0.5 × (VREF − VREFGND) + VDUTGND  
DAC = [VOUT − VDUTGND + 0.5 × (VREF − VREFGND)] × [216/(2 × (VREF − VREFGND))]  
PPMU_VINx (FI, Range A)  
PPMU_VINx (FI, Range B)  
PPMU_VINx (FI, Range C)  
PPMU_VINx (FI, Range D)  
PPMU_VINx (FI, Range E)  
−80 mA to +80 mA  
−2 mA to +2 mA  
−200 μA to +200 μA  
−20 μA to +20 μA  
−4 μA to +4 μA  
IOUT = [2 × (VREF − VREFGND) × (DAC/216) − 0.5 × (VREF − VREFGND) − 2.5] × (80 mA/5)  
DAC = [(IOUT × (5/80 mA)) + 2.5 + 0.5 × (VREF − VREFGND)] × [216/(2 × (VREF − VREFGND))]  
IOUT = [2 × (VREF − VREFGND) × (DAC/216 ) − 0.5 × (VREF − VREFGND) − 2.5] × (2 mA/5)  
DAC = [(IOUT × (5/2 mA)) + 2.5 + 0.5 × (VREF − VREFGND)] × [216/(2 × (VREF − VREFGND))]  
IOUT = [2 × (VREF − VREFGND) × (DAC/216 ) − 0.5 × (VREF − VREFGND) − 2.5] × (200 μA/5)  
DAC = [(IOUT × (5/200 μA)) + 2.5 + 0.5 × (VREF − VREFGND)] × [216/(2 × (VREF − VREFGND))]  
IOUT = [2 × (VREF − VREFGND) × (DAC/216) − 0.5 × (VREF − VREFGND) − 2.5] × (20 μA/5)  
DAC = [(IOUT × (5/20 μA)) + 2.5 + 0.5 × (VREF − VREFGND)] × [216/(2 × (VREF − VREFGND))]  
IOUT = [2 × (VREF − VREFGND) × (DAC/216) − 0.5 × (VREF − VREFGND) − 2.5] × (4 μA/5)  
DAC = [(IOUT × (5/4 μA)) + 2.5 + 0.5 × (VREF − VREFGND)] × [216/(2 × (VREF − VREFGND))]  
1 Programmable ranges include the margin outside the specified performance range, allowing for offset and gain calibration.  
Table 22. Load Transfer Functions  
Load Level  
Transfer Functions  
Notes  
IOLx  
IOHx  
VIOLx/( VREF − VREFGND) × 25 mA  
VIOHx/( VREF − VREFGND) × 25 mA  
VIOLx and VIOHx DAC levels are not referenced to VDUTGND.  
Table 23. PPMU Transfer Functions  
PPMU  
Mode  
Uncalibrated PPMU_VIN DAC Settings to Achieve  
Specified PPMU Range  
Transfer Functions1  
FV  
VOUT = PPMU_VINx  
−2.0 V < PPMU_VINx < +6.5 V  
MV  
MV  
FI  
VPPMU_MEASx = VDUTx (internal sense path)  
VPPMU_MEASx = VPPMU_Sx (external sense path)  
IOUT = [PPMU_VINx − (VREF − VREFGND)/2]/(5 × RPPMU)  
VPPMU_MEASx = [VREF − VREFGND)/2] + (5 × IOUT × RPPMU) +  
VDUTGND  
N/A  
N/A  
0.0 V < PPMU_VINx < 5.0 V  
N/A  
MI  
1 RPPMU = 12.5 Ω for Range A, 500 Ω for Range B, 5.0 kΩ for Range C, 50 kΩ for Range D, and 250 kΩ for Range E.  
Table 24. VHH Transfer Functions  
VHH Mode  
Transfer Functions  
VHH  
VIL  
HVOUT = 2 × [VHH + (VREF − VREFGND)/5] + VDUTGND  
HVOUT = VIL0 + VDUTGND  
VIH  
HVOUT = VIH0 + VDUTGND  
Rev. 0 | Page 67 of 80  
 
 
 
 
ADATE318  
that the new X2 value is calculated correctly following the new  
data write, provided the desired m and c values are stored in  
advance. The sequence of operations is critical in that the mode  
or range change must be performed prior to writing the new  
DAC data, and both m and c values must be present before the  
new DAC data is written. The m and/or c value can be written  
either before or after a mode or range change but must be  
written prior to the DAC data to have the intended effect.  
GAIN AND OFFSET CORRECTION  
Each DAC within the ADATE318 has independent gain (m)  
and offset (c) correction registers that allow digital trim of gain  
and offset errors. DACs that are shared between functions or  
levels are provided with per-level or per-function gain and  
offset correction registers, as appropriate. These registers  
provide the ability to calibrate out errors in the complete signal  
chain, which includes error in pin electronics function as well as  
the DACs. All m- and c-registers are volatile and must be  
loaded after power-on as part of a calibration cycle if values  
other than the defaults are required.  
SAMPLE CALCULATIONS OF M AND C  
Because the ADATE318s on-chip DACs have a theoretical  
output range that exceeds the operating capabilities of the  
remainder of its signal channels, calibration points must be  
chosen to be within the normal operating span. Subject to this  
constraint, calibration is straightforward. One of the keys to  
understanding the calibration method is to recognize that the  
intrinsic DAC offset is defined by its output when the input  
code is 0x0000. This is quite different from the case of the  
analog signal paths, where a 0 V level occurs when the DAC  
code is programmed to near quarter-scale.  
The gain and offset correction function can be bypassed by  
clearing the DAC_CAL_ENABLE bit in the SPI DAC contol  
register (SPI ADDR 0x11[0]; see Figure 116). This bypass mode  
is available on a per-chip basis only; that is, it is not possible to  
bypass calibration for a subset of the DACs.  
The calibration function, when enabled, adjusts the numerical  
data sent to each DAC according to the following equation:  
m 1  
X2   
X  
c 2n1  
As a first example, consider the calibration of a drive high level  
with a theoretical output span of −2.5 V to 7.5 V, a convenient  
10.0 V span in which DAC quarter-scale corresponds to  
precisely 0.0 V out. The ADATE318 drivers do not of course  
support this full span, but it is a useful choice for illustration of  
the calibration methodology.  
1
2n  
where:  
X2 = the data-word loaded into the DAC and returned by an SPI  
read operation.  
X1 = the 16-bit data-word written to the DAC SPI input register.  
m = the code in the respective DAC gain register (default code  
= 0xFFFF = 2n − 1).  
1. Set the channel to drive high and program the VIL and  
VIT DACs for roughly −1.0 V outputs (Code 0x2700, not  
critical). Program the VIH DAC to quarter-scale (0x4000)  
and measure Output Voltage V1; then program the DAC to  
three-quarter-scale (0xC000) and measure Output Voltage  
V2. Note that V1 and V2 should be measured with respect to  
DUTGND.  
c = the code in the respective DAC offset register (default code  
= 0x8000 = 2n−1).  
n = the DAC resolution (n = 16).  
From this equation, it can be seen that the gain applied to the X1  
value is always less than or equal to 1.0, with the effect that a  
DAC’s output voltage can only be made smaller. To compensate  
for this numerically imposed limitation, the ADATE318’s signal  
paths are designed to have gain guaranteed to be greater than  
1.0 when the default m values (0xFFFF) are applied. This  
guarantees that proper gain calibration is always possible. Note  
also that the value of c is expressed in raw DAC LSBs; that is, it  
is calculated without considering the effect of the m-register.  
2. Calculate  
Actual _ DAC _ FSR 2  
V2 V1  
where (V2 − V1) represents half the full-scale span.  
3. Calculate the extrapolated DAC voltage at Code 0x0000.  
Actual _ DAC _ FSR  
V V   
0
1
4
When enabled, the calibration function applies the above  
operation to the X2 register(s) only after a SPI write to the  
respective X1 register(s). The X2 registers are not updated after  
writes to either the m- or c-register. In the case of a dual  
channel write to the DAC, two respective X2 registers are  
sequentially updated using the appropriate m and c values.  
4. Calculate  
Actual _ DAC _ LSB   
V2 V1  
32,768  
5. Calculate  
X2 REGISTERS  
5
m   
65,536 1  
Each DAC has associated with it a single X2 register. There is no  
provision for storing separate X2 values for DACs shared  
between functions or ranges. Thus, new data must be written to  
any shared DAC after a mode or range change is performed,  
even if the old and new DAC data is identical. The ADATE318  
provides separate m- and c-registers for all ranges and modes so  
V2 V1  
6. Calculate the offset from the ideal −2.5 V.  
Offset   2.5 V0  
Rev. 0 | Page 68 of 80  
 
ADATE318  
7. Calculate  
c 32,768  
3. Calculate the offset from the desired −1.5 V.  
Offset  1.5 V0  
4. Calculate DAC  
Offset  
Actual _ DAC _ LSB  
Offset  
Actual _ DAC _ LSB  
8. Calculate volts  
c 32,768   
5
Post _Calibration _ DAC _ LSB Actual _ DAC _ LSB  
5. Calculate  
Post _ Calibration _ DAC _ LSB   
V2 V1  
8
Volts  
The above procedure places the DAC’s theoretical 0x0000  
65,536  
output at −2.5 V and its theoretical 0xFFFF output at 7.49985 V  
(1 LSB below +7.5 V). The useful range extends from below  
0x199A (−1.5 V) to above 0xE666 (+6.5 V), a span of at least  
52,428 actual DAC codes.  
An alternative calibration approach can be used to map all 216  
DAC codes onto the part’s specified output range by mapping  
the zero-code to −1.5 V and the full-scale code to +6.5 V.  
Although this second approach gives an apparent 16 bits of  
resolution covering the full signal range, it must be kept in  
mind that this is achieved purely by mathematical alteration of  
the DAC data. The DAC’s internal LSB step size is not changed.  
In this example, the number of internal DAC codes used to  
cover the signal span remains roughly 52,428 even though the  
number of user codes has increased to 65,536. A consequence  
of this is that apparent DNL errors are increased as more input  
codes are mapped onto the same number of DAC codes. While  
the second calibration method is included here as an example of  
what is possible, its use can provide a false sense of improved  
accuracy and it is therefore not recommended.  
1. Repeat Step 1 to Step 4 above.  
2. Calculate  
4
m   
65,535  
V2 V1  
Rev. 0 | Page 69 of 80  
ADATE318  
POWER SUPPLY, GROUNDING, AND DECOUPLING STRATEGY  
The ADATE318 product is internally divided into a digital core  
and an analog core.  
(with the exception of VIOH and VIOL active load currents and  
VPMU when in PPMU FI mode) are adjusted relative to this  
DUTGND input. Further, the PPMU measure out pins  
(PPMU_MEASx) are referenced to DUTGND not AGND.  
This, therefore, requires the system ADC to reference its inputs  
relative to DUTGND as well. Referencing the system ADC to  
AGND results in errors, except in the case that DUTGND is tied  
to AGND. For applications that do not distinguish between DUT  
ground reference and system analog ground reference, the  
DUTGND pin can be connected to the same ground plane  
as AGND.  
The VCC and DGND pins provide power and ground,  
respectively, for the digital core, which includes the SPI and all  
digital calibration functions. DGND is the logic ground  
reference for the VCC supply, and VCC should be adequately  
bypassed to DGND with low ESR bypass capacitors. To reduce  
transient digital switching noise coupling from the VCC and  
DGND pins to the analog core, DGND should be connected to  
a dedicated ground domain that is separate from the analog  
ground domains. If the application permits, the DGND should  
share digital ground domain with the system FPGA or ASIC  
that interfaces with the ADATE318 SPI. All CMOS inputs and  
outputs are referenced between VCC and DGND, and their  
valid levels should be guaranteed relative to these.  
The ADATE318 should have ample supply decoupling of 0.1 μF  
on each supply pin located as close to the device as possible,  
ideally right up against the device. In addition, there should be  
one 10 μF tantalum capacitor shared across each power domain.  
The 0.1 μF capacitor should have low effective series resistance  
(ESR) and effective series inductance (ESL), such as the  
common ceramic capacitors that provide a low impedance path  
to ground at high frequencies to handle transient currents due  
to internal logic switching.  
The analog core of the product includes all analog ATE  
functional blocks such as DACs, driver, comparator, load,  
PPMU, VHH driver, and so on. The VPLUS, VDD, and VSS  
supplies provide power for the analog core. The AGND and  
PGND are analog ground and analog power ground references,  
respectively. PGND is generally more noisy with analog  
switching transients, and it may also have large static dc  
currents. The AGND is generally more quiet and has relatively  
small static dc currents. Ideally, these ground domains should  
be separated, but it is not necessary. They can be connected  
together outside the chip to a shared analog ground plane. VDD  
and VSS should be adequately bypassed to the PGND ground  
domain. Both PGND and AGND (whether separated or shared)  
should be kept separate from the DGND ground plane as  
discussed above.  
Digital lines running under the device should be avoided  
because these couple noise onto the device. The analog ground  
plane should be allowed to run under the device to avoid noise  
coupling. The power supply lines should use as large a trace as  
possible to provide low impedance paths and reduce the effects  
of glitches on the power supply line. Fast switching digital  
signals should be shielded with digital ground to avoid radiating  
noise to other parts of the board and should never be run near  
the reference inputs. It is essential to minimize noise on all  
VREF lines. Avoid crossover of digital and analog signals.  
Traces on opposite sides of the board should run at right angles  
to each other. This reduces the effects of feedthrough  
The VPLUS supply pin has the sole purpose to provide high  
voltage power for the VHH drive capability (HVOUT pin). If  
the VHH drive capability is used, the VPLUSsupply must be  
provided as specified. If the VHH drive capability is not used,  
the VPLUS supply can be connected directly to the VDD supply  
domain to save power.  
throughout the board. As is the case for all thin packages, care  
must be taken to avoid flexing the package and to avoid a point  
load on the surface of this package during the assembly process.  
The ADATE318 also has a DUTGND input pin that can be used  
to sense the remote DUT ground potential. All DAC functions  
Rev. 0 | Page 70 of 80  
 
ADATE318  
USER INFORMATION AND TRUTH TABLES  
Table 25. Driver Truth Table1  
DCL Control Register Bits (0x19)  
High Speed Inputs  
DCL Enable  
ADDR  
0x19[0]  
Force Load  
ADDR  
0x19[2]  
Force Drive Force State  
Load Enable  
ADDR  
0x19[5]  
ADDR  
0x19[1]  
ADDR  
0x19[4:3]  
DRV_VT_HIZ  
ADDR 0x19 [6]  
Driver  
Low leakage  
VIL  
VIH  
High-Z  
VIT  
VIL  
VIH  
High-Z  
VIT  
RCVx  
DATx  
0
1
1
1
1
1
1
1
1
X
X
X
X
X
X
X
X
X
X
1
1
1
1
0
0
0
0
XX  
00  
01  
10  
11  
XX  
XX  
XX  
XX  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
X
X
X
X
X
0
0
1
1
X
X
X
X
X
0
1
X
X
1 X = don’t care.  
Table 26. Active Load Truth Table1  
DCL Control Register Bits (0x19)  
Force Drive Force State Load Enable  
High Speed Inputs  
DCL Enable  
ADDR  
Force Load  
ADDR  
ADDR  
ADDR  
ADDR  
DRV_VT_HIZ  
Load  
0x19[0]  
0x19[2]  
0x19[1]  
0x19[4:3]  
0x19[5]  
ADDR 0x19 [6]  
RCVx  
DATx  
0
1
1
1
1
1
X
1
0
0
0
0
X
X
X
X
X
X
XX  
XX  
XX  
XX  
XX  
XX  
X
X
0
1
1
1
X
X
X
X
0
1
X
X
X
0
1
1
X
X
X
X
X
X
Low leakage  
Active on  
Low leakage  
Active off  
Active on  
Active off  
1 X = don’t care.  
Table 27. VHH and VIH/VIL Driver Truth Table1  
VHH_ENABLE ADDR 0x18[0]  
CH0 RCV (RCV0) CH0 DAT (DAT0) Output of VHH Driver  
1
1
1
0
0
0
1
X
0
1
X
X
VIL (Channel 0, VIL DAC)  
VIH (Channel 0, VIH DAC)  
VHH  
Disabled (HVOUT pin set to 0.0 V, approximately 50 Ω impedance)  
1 X = don’t care.  
Table 28. Comparator Truth Table  
DMC ENABLE  
ADDR 0x1C[0] CMPH0  
CMPL0  
CMPH1  
CMPL1  
0
Normal window compare  
mode  
Normal window compare  
mode  
Normal window compare  
mode  
Normal window compare  
mode  
Logic high: VOH0 < VDUT0 Logic high: VOL0 < VDUT0  
Logic low: VOH0 > VDUT0 Logic low: VOL0 > VDUT0  
Logic high: VOH1 < VDUT1  
Logic low: VOH1 > VDUT1  
Logic high: VOL1 < VDUT1  
Logic low: VOL1 > VDUT1  
1
Differential compare mode Differential compare mode Normal window compare  
Normal window compare  
mode  
mode  
Logic high:  
Logic high:  
Logic high: VOH1 < VDUT1  
Logic low: VOH1 > VDUT1  
Logic high: VOL1 < VDUT1  
Logic low: VOL1 > VDUT1  
VOH0 < VDUT0 – VDUT1  
Logic low:  
VOL0 < VDUT0 − VDUT1  
Logic low:  
VOH0 > VDUT0 – VDUT1  
VOL0 > VDUT0 − VDUT1  
Rev. 0 | Page 71 of 80  
 
ADATE318  
ALARM FUNCTIONS  
The ADATE318 contains per-channel overvoltage detectors  
(OVD), PPMU voltage/current clamps, and a per-chip thermal  
alarm to detect and signal fault conditions. The status of these  
circuits may be interrogated via the SPI by reading the alarm  
state register (SPI ADDR 0x1E; see Figure 124). This read-only  
register is cleared by a read operation. In addition, the fault  
conditions are combined in the fault alarm logic (see Figure 137)  
The various alarm circuits are controlled through the alarm  
mask register (ADDR 0x1D; see Figure 123). In the default  
state, the thermal alarm is enabled, and both the overvoltage  
alarm and the PPMU clamp alarms are masked off.  
The only function of the alarm circuits is to detect and signal  
the presence of a fault. The only actions taken upon detection of  
a fault are setting of the appropriate register bit and activating  
and drive the open drain  
pin to signal that a fault has  
ALARM  
the  
pin.  
ALARM  
occurred.  
PPMU EXTERNAL CAPACITORS  
Table 29. PPMU External Compensation and Feedforward Capacitors  
External Components  
Location  
220 pF  
220 pF  
1000 pF  
1000 pF  
Between FFCAPB0 and FFCAPA0  
Between FFCAPB1 and FFCAPA1  
Between AGND and SCAP0  
Between AGND and SCAP1  
Table 30. Other External Components  
External Components  
Location  
10 kΩ  
1 kΩ  
ALARM pull-up to VCC  
BUSY pull-up to VCC  
TEMPERATURE SENSOR  
Table 31.  
Temperature  
0 K  
Output  
0.00 V  
300 K  
3.00 V  
TKELVIN  
0.00 V + (TKELVIN ) × 10 mV/K  
Rev. 0 | Page 72 of 80  
 
 
ADATE318  
DEFAULT TEST CONDITIONS  
Table 32.  
Name  
Default Test Condition  
VIHx DAC Levels  
VITx/VCOMx DAC Levels  
VILx DAC Levels  
VOHx DAC Levels  
VOLx DAC Levels  
VCHx DAC Levels  
VCLxDAC Levels  
VIOHxDAC Levels  
VIOLx DAC Levels  
PPMU_VINx DAC Levels  
VHH DAC Level  
OVDH DAC Levels  
OVDL DAC Levels  
DAC_CONTROL  
VHH_CONTROL  
DCL_CONTROL  
PPMU_CONTROL  
2.0 V  
1.0 V  
0.0 V  
6.5 V  
−1.5 V  
7.5 V  
−2.5 V  
0.0 mA  
0.0 mA  
0.0 V  
13.0 V  
7.0 V  
−2.0 V  
0x0000: DAC calibration disabled, DAC load mode is immediate  
0x0000: HVOUT (VHH) disabled  
0x0001: DCL enabled, load disabled, high-Z for RCVx = 1, force drive = 0 (to VIL state)  
0x0000: PPMU disabled, PPMU Range E, Force-V1/Measure-V2, input to VDUTGND, internal sense path,  
clamps disabled, external PPMU_S open, PPMU_POWER_x off  
PPMU_MEAS_CONTROL  
COMPARATOR_CONTROL  
ALARM_MASK  
0x0000: PPMU_MEASx high-Z  
0x0000: normal window comparator mode, comparator hysteresis disabled  
0x0045: disable alarm functions  
PRE_EMPHASIS_CONTROL  
Calibration m-Coefficients  
Calibration c-Coefficients  
DATx, RCVx Inputs  
0x0000: disable driver CLC, differential comparator CLC, and normal window comparator CLC  
1.0 (0xFFFF)  
0.0 (0x8000)  
Logic low  
DUTx Pins  
CMPHx, CMPLx Outputs  
VDUTGND  
Unterminated  
Unterminated  
0.0 V  
1 Force-V indicates force voltage.  
2 Measure-V indicates measure voltage.  
Rev. 0 | Page 73 of 80  
 
 
ADATE318  
DETAILED FUNCTIONAL BLOCK DIAGRAMS  
DAC  
VCHx  
ADDR 0x06, CHx  
DAC  
PMU CLAMP LEVELS  
SHARED WITH HIGH  
SPEED DCL CLAMPS  
HIGH-Z  
VCLx  
ADDR 0x07, CHx  
(IDEAL CLAMP DIODES)  
TERM  
DRV_RCV_MODE  
(SEE THE DRIVER LOGIC DIAGRAM)  
0
1
DAC  
VIT/VCCMx  
ADDR 0x02, CHx  
DAC  
VIHx  
1
0
50  
0
ADDR 0x01, CHx  
DUTx  
DAC  
VILx  
DRV  
ADDR 0x03, CHx  
DATx  
DRV_RCV_SW  
(SEE THE DRIVER LOGIC DIAGRAM)  
DRV_LOW_LEAK  
(SEE THE DRIVER LOGIC DIAGRAM)  
Figure 127. Driver Block Diagram  
DCL_ENABLE  
ADDR 0x19[0]  
DRV_LOW_LEAK  
FORCE_DRV  
ADDR 0x19[1]  
DRV_LOW_LEAK = DCL_ENABLE  
DRV_RCV_MODE = DRIVE_VT_HIZ + FORCE_DRV × FORCE_STATE[0]  
DRV_RCV_SW = FORCE_DRV × FORCE_STATE[1] + FORCE_DRV × RCVx  
FORCE_STATE[1]  
ADDR 0x19[4]  
FORCE_STATE[0]  
ADDR 0x19[3]  
DRV_VT_HIZ  
ADDR 0x19[6]  
RCVx  
DRV_RCV_MODE  
(SEE THE DRIVER BLOCK DIAGRAM)  
DRV_RCV_SW  
(SEE THE DRIVER BLOCK DIAGRAM)  
Figure 128. Driver Logic Diagram  
Rev. 0 | Page 74 of 80  
 
ADATE318  
ADATE318  
DAT  
100Ω  
DAT  
RCV  
TO DRIVER,  
LOAD, AND VHH  
100Ω  
RCV  
0.0V V  
CM  
3.3V  
1.0V  
200mV V  
DM  
TYPICAL INPUT WAVEFORMS  
DAT  
DAT  
1.30V  
V
V
= 1.20V  
= 200mV  
CM  
DM  
V
DM  
1.10V  
V
CM  
RCV  
RCV  
1.25V  
0.95V  
V
V
= 1.10V  
= 300mV  
CM  
DM  
V
DM  
V
CM  
Figure 129. Driver Input Stage Diagram  
50Ω  
FROM DRIVER  
DUTx  
LOAD_CONNECT  
(SEE THE ACTIVE LOAD LOGIC DIAGRAM)  
DAC  
VIOL  
ADDR 0x09  
DAC  
VIT/VCOM  
ADDR 0x2  
DAC  
VIOH  
ADDR 0x08  
ACTIVE LOAD  
LOAD_PWR_DOWN  
(SEE THE ACTIVE LOAD LOGIC DIAGRAM)  
Figure 130. Active Load Block Diagram  
DCL_ENABLE  
ADDR 0x19[0]  
FORCE_LOAD  
ADDR 0x19[2]  
LOAD_CONNECT  
(SEE THE ACTIVE LOAD BLOCK DIAGRAM)  
LOAD_ENABLE  
ADDR 0x19[5]  
DRV_VT_HIZ  
ADDR 0x19[6]  
RCVn  
LOAD_PWR_DOWN  
(SEE THE ACTIVE LOAD BLOCK DIAGRAM)  
LOAD_CONNECT = DCL_ENABLE × (FORCE_LOAD + RCVn × DRV_VT_HIZ × LOAD_ENABLE)  
LOAD_PWR_DOWN = DCL_ENABLE + FORCE_LOAD × LOAD_ENABLE  
Figure 131. Active Load Logic Diagram  
Rev. 0 | Page 75 of 80  
ADATE318  
DAC  
VHH  
<5Ω  
VHH (NOTE 1)  
VHH DRIVER  
VDUTGND  
HVOUT  
VIL (NOTE 2)  
VIH (NOTE 2)  
DAC  
DAC  
VIL  
50Ω  
50Ω  
VL/VH  
VIH  
DRIVER  
DAT0  
RCV0  
VHH_EN  
NOTES  
1. VHH = 2 × (DAC  
+ (V  
REF  
– V  
REFGND  
)/5 + V  
DUTGND  
) – V  
DUTGND  
VHH  
+ V  
2. VIL = DAC  
; VIH = DAC  
DUTGND VIH  
+ V  
DUTGND  
VIL  
Figure 132. VHH and VIL/VIH Driver Block Diagram  
DAC  
VHH  
DAC  
VIH  
HVOUT  
DAC  
VIL  
0.0V  
VHH_ENABLE  
ADDR 0x18[0]  
L
H
RCV0  
DAT0  
L
H
L
L
DON’T CARE  
DON’T CARE  
L
H
L
H
L
DON’T CARE  
H
H
Figure 133. VHH and VIL/VIH Waveform Diagram  
Rev. 0 | Page 76 of 80  
ADATE318  
DAC  
VOH0  
0
1
ADDR 0x04  
COMPH  
COMPH  
DUT0  
DAC  
VOL0  
ADDR 0x05  
DMC_ENABLE  
ADDR 0x1C[0]  
DAC  
VOH0  
0
1
COMPL  
COMPL  
DAC  
VOL0  
DIFFERENTIAL  
COMPARATOR ON  
CHANNEL 0 ONLY  
TO DUT1  
Figure 134. Comparator Block Diagram  
0.5V VTT_EXT VTTCx  
VTTC  
ADATE318  
50Ω  
50Ω  
50Ω  
50Ω  
50Ω  
50Ω  
CMP  
CMP  
250mV  
OUTPUT  
WAVEFORM  
VTTC  
VHI = VTTC – 25mV  
10mA  
VLO = VTTC – 275mV  
Figure 135. Comparator Output Stage Diagram  
Rev. 0 | Page 77 of 80  
ADATE318  
PPMU_CLAMP_ENABLE_x  
ADDR 0x1A[9], CHx  
DAC  
VCH  
ADDR 0x06, CHx  
DAC  
PMU CLAMP LEVELS  
SHARED WITH HIGH  
SPEED DCL CLAMPS  
PPMU_S_ENABLE_x  
ADDR 0x1A[11], CHx  
VCL  
ADDR 0x07, CHx  
PMU_Sx  
1.2K  
PPMU_INPUT_SEL_x  
ADDR 0x1A[7:6], CHx  
PPMU_ENABLE_x  
ADDR 0x1A[0], CHx  
VDUTGND  
2.5V + VDUTGND  
0
1
2
3
R
PPMU  
DAC  
F-AMP  
I-AMP  
DUTx  
PPMU  
ADDR 0x0A, CHx  
PPMU_RANGE_x  
ADDR 0x1A[3:1], CHx  
CURRENT  
VOLTAGE  
VREF/2 + VDUTGND  
A
= 5.0  
V
PPMU_FORCE_E_VI_x  
ADDR 0x1A[4], CHx  
PPMU_MEAS_VI_x  
ADDR 0x1A[5], CHx  
A
= 1.0  
PPMU_Sx  
V
PPMU_SENSE_PATH_x  
ADDR 0x1A[8], CHx  
PPMU_MEAS_SEL_x  
ADDR 0x1B[1], CHx  
0
1
PPMU_MEASx  
(RELATIVE TO VDUTGND)  
RANGE  
40mA  
1mA  
R
PPMU  
×1  
CH0: THERM OUT  
CH1: THERM GND  
12.5Ω  
500Ω  
5kΩ  
PPMU_MEAS_ENABLE_x  
100µA  
10µA  
2µA  
ADDR 0x1B[0], CHx  
PPMU_CMPHx  
50kΩ  
250kΩ  
VOH x  
ADDR 0x04, CHx  
PPMU_CMPLx  
PPMU GO/NO-GO COMPARATOR DAC LEVELS ARE  
SHARED WITH THE HIGH SPEED PE COMPARATOR.  
WHEN PPMU IS NOT IN ACTIVE MODE, PPMU  
GO/NO-GO COMPARATORS ARE NOT USED AND  
THEIR OUTPUTS ARE FORCED TO STATIC LOW.  
VOL x  
ADDR 0x05, CHx  
PPMU_ENABLE_x  
ADDR 0x1A[0], CHx  
PPMU_POWER_x  
ADDR 0x1A[15], CHx  
0
1
X
0
PPMU IS POWERED DOWN.  
PPMU IS IN FULL-POWER STANDBY MODE BUT NOT YET ENABLED TO  
FORCE V/FORCE I. USE THIS MODE FOR FAST INTERNAL SETTLING OF  
LEVELS PRIOR TO ENABLING ACTIVE MODE TO MINIMIZE PPMU GLITCHING.  
1
1
PPMU IS IN FULL-POWER ACTIVE MODE.  
Figure 136. PPMU Block Diagram  
Rev. 0 | Page 78 of 80  
 
ADATE318  
NOTE: DEDICATED OVERVOLTAGE WINDOW COMPARATORS  
ARE PROVIDED FOR EACH CHANNEL. ONLY ONE CHANNEL  
IS SHOWN HERE. THE DAC  
BETWEEN CHANNELS.  
, LEVELS ARE SHARED  
OVDx  
DAC  
OVDH  
ADDR 0x0C, CH0  
DUTx  
V
CC  
DAC  
OVDL  
ALARM  
ADDR 0x0D, CH0  
V
CC  
OVD_ALARM_MASK_x  
ADDR 0x1D[0], CHx  
D
Q
Q
THERM_ALARM_MASK  
ADDR 0x1D[3], CH0  
THERM_THRESHOLD  
ADDR 0x1D[6:4], CH0  
RESET BY READING  
FROM SPI ALARM  
STATE REGISTER  
ADDR 0x1E, CHx  
THERM  
(10mV/K)  
TEMPERATURE  
SENSOR  
(10mV/K)  
PPMU_ALARM_MASK_x  
ADDR 0x1D[2], CHx  
NOTE: DEDICATED PPMU CLAMP INDICATORS  
ARE PROVIDED FOR EACH CHANNEL. ONLY  
ONE CHANNEL IS SHOWN HERE.  
FROM PPMUx  
CLAMP INDICATOR  
Figure 137. Fault Alarm Block Diagram  
Rev. 0 | Page 79 of 80  
 
ADATE318  
OUTLINE DIMENSIONS  
0.60  
0.42  
0.24  
10.00  
0.35  
0.60  
0.42  
0.24  
BSC SQ  
(SEE NOTE 2)  
0.25  
(SEE NOTE 2)  
1
63  
84  
64  
PIN 1  
INDICATOR  
9.75  
BSC SQ  
0.40  
BSC  
EXPOSED PAD  
(SEE NOTE 1)  
6.85  
6.75 SQ  
6.65  
0.93  
0.83  
0.73  
0.60  
0.50  
0.40  
21  
22  
42  
43  
TOP VIEW  
BOTTOM VIEW  
8.00 REF  
0.70  
0.60  
0.50  
0.70  
0.65  
0.60  
12° MAX  
0.90  
0.85  
0.80  
0.05 MAX  
0.01 NOM  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-262-VHHE.  
NOTES:  
1. FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
SECTION OF THIS DATA SHEET.  
2. TIEBARS MUST BE SOLDERED TO THE BOARD.  
Figure 138. 84-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
10 mm × 10 mm Body, Very Thin Quad  
(CP-84-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
ADATE318BCPZ  
TJ = +25°C to +70°C  
84-Lead LFCSP_VQ with Exposed Pad  
CP-84-2  
1 Z = RoHS Compliant Part.  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09530-0-4/11(0)  
Rev. 0 | Page 80 of 80  
 
 
 
 
 
 
 
 
 
 
 

相关型号:

ADATE320

1.25 GHz Dual Integrated DCL
ADI

ADATE320-1KCPZ

1.25 GHz Dual Integrated DCL
ADI

ADATE320KCPZ

1.25 GHz Dual Integrated DCL
ADI

ADAU1301

Tape and Reel Packaging
ADI

ADAU1328

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

ADAU1328BSTZ

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

ADAU1328BSTZ-RL

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

ADAU1361

Audio Codec with Integrated PLL
ADI

ADAU1361BCPZ

Stereo, Low Power, 96 kHz, 24-Bit Audio Codec with Integrated PLL
ADI

ADAU1361BCPZ

SPECIALTY CONSUMER CIRCUIT, QCC32, 5 X 5 MM, ROHS COMPLIANT, MO-220VHHD-2, LFCSP-32
ROCHESTER

ADAU1361BCPZ-R7

SPECIALTY CONSUMER CIRCUIT, QCC32, 5 X 5 MM, ROHS COMPLIANT, MO-220VHHD-2, LFCSP-32
ROCHESTER

ADAU1361BCPZ-R7

Stereo, Low Power, 96 kHz, 24-Bit Audio Codec with Integrated PLL
ADI