ADAU1513ASVZ-RL7 [ADI]

Class-D Audio Power Stage; D类音频功率级
ADAU1513ASVZ-RL7
型号: ADAU1513ASVZ-RL7
厂家: ADI    ADI
描述:

Class-D Audio Power Stage
D类音频功率级

消费电路 商用集成电路 音频放大器 视频放大器
文件: 总16页 (文件大小:379K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Class-D Audio Power Stage  
ADAU1513  
FEATURES  
GENERAL DESCRIPTION  
Integrated stereo power stage  
The ADAU1513 is a 2-channel bridge-tied load (BTL)  
Class-D audio power stage. The power stage can drive the  
speaker loads of 4 Ω at up to 15 W per channel at high  
efficiency. The 4-channel audio system can be formed when  
used with an ADAV4201 pulse-width modulator (PWM)  
processor using two ADAU1513s. The power stage accepts a  
3.3 V logic differential PWM as input from an ADAV4201  
processor. The power stage comprises thermal and output  
short-circuit protection with logic-level error flag outputs for  
interfacing to a system microcontroller along with reset and  
mute control of the power stage. The power stage operates from  
a range of power supply voltages from 9 V up to 18 V. The low  
power digital logic operates from a 3.3 V supply. The power  
stage can be used with modulators other than the ADAV4201.  
Contact your local sales department for application assistance.  
R
DS-ON < 0.3 Ω (per transistor)  
Efficiency > 90%  
Short-circuit protection  
Overtemperature protection  
APPLICATIONS  
Flat panel televisions  
PC audio systems  
Mini components  
FUNCTIONAL BLOCK DIAGRAM  
PVDD  
INL+  
INL–  
A1  
A2  
OUTL+  
PGND  
PVDD  
B1  
B2  
OUTL–  
INR+  
INR–  
PGND  
PVDD  
LEVEL SHIFT  
AND DEAD  
TIME CONTROL  
C1  
C2  
OUTR+  
PGND  
PVDD  
AVDD  
AGND  
VOLTAGE  
REFERENCE  
D1  
D2  
OUTR–  
PGND  
TEMPERATURE/  
OVERCURRENT  
PROTECTION  
MODE CONTROL  
LOGIC  
DVDD  
ADAU1513  
DGND  
STDN MUTE ERR OTW  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
ADAU1513  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 12  
Overview ..................................................................................... 12  
Power Stage ................................................................................. 12  
Protection Circuits ..................................................................... 12  
Thermal Protection.................................................................... 12  
Overcurrent Protection ............................................................. 12  
Undervoltage Protection ........................................................... 12  
Automatic Recovery from Protections.................................... 12  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Performance Summary................................................................ 3  
Power Supplies .............................................................................. 3  
Digital I/O ..................................................................................... 4  
PWM Input Logic Table .............................................................. 4  
Digital Timing............................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Description .............................. 6  
Typical Performance Characteristics ............................................. 8  
MUTE  
STDN  
...................................................................... 13  
and  
Power-Up/Power-Down Sequence .......................................... 13  
Applications Information.............................................................. 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
REVISION HISTORY  
5/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
ADAU1513  
SPECIFICATIONS  
DVDD = 3.3 V, AVDD = 3.3 V, PVDD = 15 V, ambient temperature = 25°C, load impedance = 8 Ω, measurement bandwidth = 20 Hz to  
20 kHz, unless otherwise noted. Audio performance test data measured with ADAV4201.  
PERFORMANCE SUMMARY  
Table 1.  
Parameter  
OUTPUT POWER1  
Min Typ  
Max Unit Test Conditions/Comments  
1 kHz  
11  
14  
14.5  
17.5  
19  
W
W
W
W
W
W
%
1% THD + N, 8 Ω  
10% THD + N, 8 Ω  
1% THD + N, 6 Ω  
10% THD + N, 6 Ω  
1% THD + N, 4 Ω  
10% THD + N, 4 Ω  
POUT = 15 W  
23  
EFFICIENCY  
90  
RDS-ON  
Per High-Side Transistor  
Per Low-Side Transistor  
280  
250  
mΩ  
mΩ  
ID = 100 mA  
ID = 100 mA  
THERMAL CHARACTERISTICS  
Thermal Warning Active2  
135  
150  
5
°C  
°C  
A
Die temperature  
Die temperature  
Thermal Shutdown Active  
OVERCURRENT SHUTDOWN ACTIVE  
TOTAL HARMONIC DISTORTION PLUS NOISE (THD + N)  
SIGNAL-TO-NOISE RATIO (SNR)  
DYNAMIC RANGE  
peak  
0.1  
96  
96  
65  
5
%
POUT = 1 W, 1 kHz  
dB  
dB  
dB  
V
A-weighted, referred to 1% THD + N output  
A-weighted, measured with −60 dBFS input  
@ 0 dBFS input 20 Hz to 20 kHz  
CROSSTALK BETWEEN LEFT AND RIGHT CHANNELS  
UNDERVOLTAGE TRIP THRESHOLD  
MINIMUM OUTPUT PULSE WIDTH  
50  
ns  
1 Output powers above 15 W at 4 Ω and above 18 W at 6 Ω may need extra heat-sinking for continuous operation.  
2 Thermal warning flag is for indication of device TJ reaching close to shutdown temperature.  
POWER SUPPLIES  
Table 2.  
Parameter  
Min  
3.0  
3.0  
9
Typ  
3.3  
3.3  
15  
Max  
3.6  
3.6  
18  
Unit  
Test Conditions/Comments  
STDN held low  
DIGITAL SUPPLY VOLTAGE (DVDD)  
V
V
V
ANALOG SUPPLY VOLTAGE (AVDD)  
POWER TRANSISTOR SUPPLY VOLTAGE (PVDD)  
POWER-DOWN CURRENT  
AVDD  
DVDD  
PVDD  
2
50  
55  
3
55  
600  
μA  
μA  
ꢀA  
MUTE CURRENT  
AVDD  
DVDD  
MUTE held low  
0.5  
0.9  
0.3  
0.6  
1.2  
0.9  
mA  
mA  
mA  
PVDD  
OPERATING CURRENT  
AVDD  
DVDD  
STDN and MUTE held high  
0.5  
1.1  
34  
0.6  
2.5  
40  
mA  
mA  
mA  
PVDD  
Rev. 0 | Page 3 of 16  
 
ADAU1513  
DIGITAL I/O  
Table 3.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
INPUT VOLTAGE  
Input Voltage High  
Input Voltage Low  
OUTPUT VOLTAGE  
Output Voltage High  
Output Voltage Low  
LEAKAGE CURRENT ON DIGITAL INPUTS  
2.0  
V
V
0.8  
2.4  
V
V
@ 2 mA  
@ 2 mA  
0.4  
10  
μA  
PWM INPUT LOGIC TABLE  
Table 4.  
MUTE  
INL+/INR+  
INL/INR−  
OUTL+/OUTR+  
OUTL−/OUTR−  
Mode  
Low  
Low/High  
Low  
High  
Low  
High  
Low/High  
Low  
Low  
High  
High  
Off  
Off  
High-Z  
High  
High  
High  
High  
GND  
PVDD  
GND  
PVDD  
GND  
GND  
PVDD  
PVDD  
Output damped  
Positive output  
Negative output  
Not used  
DIGITAL TIMING  
Table 5.  
Parameter  
Min  
Typ  
Unit  
μs  
μs  
Description  
tSET  
tHOLD  
tWAIT  
10  
10  
100  
Wait Time for Unmute  
Wait Time for Shutdown  
Wait Time for Applying Input  
ns  
tPDL-H  
tPDH-L  
13  
13  
ns  
ns  
Propagation Delay (Low to High)  
Propagation Delay (High to Low)  
tOUTx +/OUTx− MUTE  
600  
ns  
Time Delay After MUTE Held Low Until Output Stops Switching  
STDN  
MUTE  
tSET  
tWAIT  
INx+/INx–  
tPDL-H  
tPDH-L  
OUTx+/OUTx–  
Figure 2. Timing Diagram Unmute  
STDN  
tHOLD  
MUTE  
INx+/INx–  
OUTx+/OUTx–  
tOUTx+/OUTx– MUTE  
Figure 3. Timing Diagram Mute  
Rev. 0 | Page 4 of 16  
 
ADAU1513  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
DVDD to DGND  
AVDD to AGND  
PVDD to PGND1  
−0.3 V to +3.6 V  
−0.3 V to +3.6 V  
−0.3 V to +20.0 V  
DGND − 0.3 V to DVDD + 0.3 V  
DGND − 0.3 V to DVDD + 0.3 V  
−40°C to +85°C  
–65°C to +150°C  
150°C  
PWM Inputs  
MUTE/STDN Inputs  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
θJA Thermal Resistance  
ESD CAUTION  
26.7°C/W  
ΨJB Thermal Characterization  
(Junction-Board)  
13.3°C/W  
ΨJT Thermal Characterization  
(Junction-Package Top)  
0.2°C/W  
Lead Temperature  
Soldering (10 sec)  
Vapor Phase (60 sec)  
Infrared (15 sec)  
260°C  
215°C  
220°C  
1 Includes any induced voltage due to inductive load.  
Rev. 0 | Page 5 of 16  
 
ADAU1513  
PIN CONFIGURATION AND FUNCTION DESCRIPTION  
OUTL–  
OUTL–  
OUTL–  
OUTL+  
OUTL+  
OUTL+  
INL–  
1
2
3
4
5
6
7
8
9
36 OUTR–  
35 OUTR–  
34 OUTR–  
33 OUTR+  
32 OUTR+  
31 OUTR+  
30 TEST13  
29 TEST12  
28 TEST11  
27 TEST10  
26 TEST9  
25 TEST8  
PIN 1  
INDICATOR  
ADAU1513  
TOP VIEW  
(Not to Scale)  
INL+  
ERR  
OTW 10  
TEST2 11  
TEST3 12  
NOTES  
1. EPAD NOT SHOWN AND INTERNALLY CONNECTED TO  
PGND, DGND, AND AGND FOR TQFP-48.  
2. EPAD NOT SHOWN AND INTERNALLY CONNECTED TO  
PGND AND DGND FOR LFCSP-48.  
Figure 4. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin Number  
Mnemonic Type1  
Description  
1, 2, 3  
4, 5, 6  
7
OUTL−  
OUTL+  
INL−  
O
O
I
Output of High Power Transistors, Left Channel Negative Polarity.  
Output of High Power Transistors, Left Channel Positive Polarity.  
Differential PWM Left Input (−).  
8
INL+  
I
Differential PWM Left Input (+).  
9
ERR  
O
O
I
I
I
Overtemperature Shutdown Error Indicator (Active Low Open-Drain Output).  
Overtemperature Warning Indicator (Active Low Open-Drain Output).  
Reserved for Internal Use. Connect to DGND.  
Reserved for Internal Use. Connect to DVDD.  
Differential PWM Right Input (−).  
10  
OTW  
11  
12  
13  
TEST2  
TEST3  
INR−  
14  
INR+  
I
Differential PWM Right Input (+).  
15  
MUTE  
STDN  
TEST4  
TEST5  
DGND  
DVDD  
AVDD  
AGND  
TEST6  
TEST7  
TEST8  
TEST9  
TEST10  
TEST11  
TEST12  
TEST13  
OUTR+  
I
Mute (Active Low Input).  
16  
I
Shutdown/Reset Input (Active Low Input).  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31, 32, 33  
I
Reserved for Internal Use. Connect to DGND.  
Reserved for Internal Use. Do not connect.  
Digital Ground for Digital Circuitry. Internally connected to exposed pad (ePAD)2.  
Positive Supply for Digital Circuitry.  
Positive Supply for Analog Circuitry (Can be Tied to DVDD).  
Analog Ground for Analog Circuitry. Internally connected to ePAD2. Can be tied to DGND.  
Reserved for Internal Use. Connect to DGND.  
Reserved for Internal Use. Connect to DGND.  
Reserved for Internal Use. Connect to DGND.  
Reserved for Internal Use. Connect to DGND.  
Reserved for Internal Use. Connect to DGND.  
Reserved for Internal Use. Connect to DGND.  
Reserved for Internal Use. Connect to DGND.  
Reserved for Internal Use. Connect to DGND.  
Output of High Power Transistors, Right Channel Positive Polarity.  
O
P
P
P
P
I
I
I
I
I
I
I
I
O
Rev. 0 | Page 6 of 16  
 
 
ADAU1513  
Pin Number  
Mnemonic Type1  
Description  
34, 35, 36  
37, 38, 47, 48  
39, 40, 41, 42, 43, 44, 45, 46  
OUTR−  
PGND  
PVDD  
O
P
P
Output of High Power Transistors, Right Channel Negative Polarity.  
Power Ground for High Power Transistors. Internally connected to ePAD2.  
Positive Power Supply for High Power Transistors.  
1 I = input, O = output, P = power.  
2
ePAD is connected internally to PGND, DGND, and AGND.  
Rev. 0 | Page 7 of 16  
ADAU1513  
TYPICAL PERFORMANCE CHARACTERISTICS  
–20  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–30  
–40  
–50  
–60  
–70  
–80  
10m  
100m  
1
10  
10m  
100m  
1
10  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 5. THD + N vs. Output Power, 9 V, 4 Ω  
Figure 8. THD + N vs. Output Power, 12 V, 4 Ω  
–20  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–30  
–40  
–50  
–60  
–70  
–80  
10m  
100m  
1
10  
10m  
100m  
1
10  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 6. THD + N vs. Output Power, 9 V, 6 Ω  
Figure 9. THD + N vs. Output Power, 12 V, 6 Ω  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
10m  
100m  
1
10  
10m  
100m  
1
10  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 10. THD + N vs. Output Power, 12 V, 8 Ω  
Figure 7. THD + N vs. Output Power, 9 V, 8 Ω  
Rev. 0 | Page 8 of 16  
 
ADAU1513  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–10  
0dBr = OUTPUT POWER AT 1% THD + N  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
10m  
100m  
1
10  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
OUTPUT POWER (W)  
FREQUENCY (kHz)  
Figure 11. THD + N vs. Output Power, 15 V, 4 Ω  
Figure 14. FFT, 1 W, 15 V, 8 Ω  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0dBr = OUTPUT POWER AT 1% THD + N  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
10m  
100m  
1
10  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
OUTPUT POWER (W)  
FREQUENCY (kHz)  
Figure 12. THD + N vs. Output Power, 15 V, 6 Ω  
Figure 15. FFT, 60 dBFS, 15 V, 8 Ω  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
20  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
10m  
100m  
1
10  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
OUTPUT POWER (W)  
FREQUENCY (kHz)  
Figure 13. THD + N vs. Output Power, 15 V, 8 Ω  
Figure 16. FFT Dither, 15 V, 8 Ω  
Rev. 0 | Page 9 of 16  
ADAU1513  
0
–5  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
20  
100  
1k  
10k  
0
5
10  
15  
20  
25  
30  
FREQUENCY (Hz)  
OUTPUT POWER (W)  
Figure 17. THD + N vs. Frequency, 1 W, 15 V, 8 Ω  
Figure 20. Efficiency vs .Output Power, 15 V, 4 Ω  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LEFT TO RIGHT  
RIGHT TO LEFT  
20  
100  
1k  
10k  
0
5
10  
15  
20  
25  
FREQUENCY (Hz)  
OUTPUT POWER (W)  
Figure 21. Efficiency vs. Output Power, 15 V, 6 Ω  
Figure 18. Crosstalk, 0 dBFS, 15 V, 8 Ω  
6
5
4
3
2
1
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160  
(°C)  
0
5
10  
15  
20  
25  
T
OUTPUT POWER (W)  
AMBIENT  
Figure 19. Power Dissipation vs. Ambient Temperature  
Figure 22. Efficiency vs. Output Power, 15 V, 8 Ω  
Rev. 0 | Page 10 of 16  
ADAU1513  
6
5
4
3
2
1
0
30  
25  
20  
15  
10  
5
REQUIRES EXTRA HEAT-SINKING  
4  
6Ω  
8Ω  
0
0
5
10  
15  
20  
25  
6
7
8
9
10 11 12 13 14 15 16 17 18  
PVDD (V)  
OUTPUT POWER PER CHANNEL, STEREO MODE (W)  
Figure 26. Power Dissipation vs. Output Power, 6 Ω  
Figure 23. Output Power vs. PVDD, 40 dB THD + N  
40  
35  
30  
25  
20  
15  
10  
5
3
2
1
0
4Ω  
6Ω  
8Ω  
0
6
7
8
9
10 11 12 13 14 15 16 17 18  
PVDD (V)  
0
5
10  
15  
20  
OUTPUT POWER PER CHANNEL, STEREO MODE (W)  
Figure 27. Power Dissipation vs. Output Power, 8 Ω  
Figure 24. Output Power vs. PVDD, 20 dB THD + N  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
5
10  
15  
20  
25  
30  
35  
OUTPUT POWER PER CHANNEL, STEREO MODE (W)  
Figure 25. Power Dissipation vs. Output Power, 4 Ω  
Rev. 0 | Page 11 of 16  
ADAU1513  
THEORY OF OPERATION  
This error flag is latched type. To restore the normal operation,  
MUTE  
again. The error flag is useful for the microcontroller in the  
system to indicate an abnormal operation and to initiate the  
OVERVIEW  
(Pin 16ꢀ needs to be toggled to low and then to high  
The ADAU1513 is a 2-channel integrated power stage designed  
to accept the logic level PWM inputs. The PWM inputs are  
amplified, low-pass filtered using a simple passive LC network,  
and then can be used to drive the speaker loads. The power  
stage has built-in circuits for overtemperature, overcurrent,  
short-circuit, and undervoltage protection.  
MUTE  
audio  
sequence. The device senses the short-circuit  
condition on the outputs after the LC filter. Typical short-circuit  
conditions include shorting of the output load and shorting to  
either PVDD or GND.  
POWER STAGE  
UNDERVOLTAGE PROTECTION  
The 2-channel ADAU1513 power stage comprises a total of  
eight half bridges. Each half bridge is made up of PMOS and  
NMOS devices. The gate drive for the respective FETs is  
generated internally and does not need a special gate drive  
supply or bootstrap capacitor compared to all NMOS stages.  
This simplifies the high-side driver design and requires less  
external components.  
The ADAU1513 has an undervoltage protection circuit that  
senses the undervoltage on PVDD. When the PVDD supply  
goes below the operating threshold, the output FETs are turned  
to a high-Z condition. Also, the device issues an error flag by  
ERR  
the operation,  
pulling the  
pin low. This condition is latched. To restore  
MUTE  
(Pin 16ꢀ needs to be toggled to low and  
then to high again.  
PROTECTION CIRCUITS  
AUTOMATIC RECOVERY FROM PROTECTIONS  
The ADAU1513 includes comprehensive protection circuits.  
It includes thermal warning, thermal overheat, and overcurrent  
In certain applications, it is desired for the amplifier to recover  
itself from thermal protection without the need for system  
microcontroller intervention.  
ERR  
OTW  
or short-circuit protection on the outputs. The  
and  
outputs are open drain, requiring external pull-up resistors.  
The outputs are capable of sinking 10 mA. The open-drain  
outputs are useful in multichannel applications where more  
than one ADAU1513 are used. The error outputs of multiple  
ADAU1513s can be ORed to simplify the system design. The  
logic outputs of the error flags ease the system design using a  
microcontroller.  
The ADAU1513 thermal protection circuit issues two error  
OTW  
signals for this purpose: one thermal warning (  
ERR  
ꢀ and the  
other thermal shutdown (  
ꢀ.  
With these two error signals, there are two options for using the  
protections:  
OTW  
ERR  
Option 1: Using  
Option 2: Using  
The power stage does not consist of protection in case PWM  
input stays high continuously. In such a case, the output pro-  
duces dc and it is possible to damage the speaker. To prevent  
this, ensure that the modulator is switching whenever the power  
stage is turned on.  
The following sections provide further details of these two  
options.  
OTW  
Option 1: Using  
THERMAL PROTECTION  
OTW  
The  
pin is pulled low when the die temperature reaches  
130°C to 135°C This pin can be wired to the  
an RC circuit as shown in Figure 28.  
Thermal protection in the ADAU1513 is categorized into two  
error flags: one as thermal warning and the other as thermal  
shutdown. When the device junction temperature reaches near  
135°C ( 5°Cꢀ the ADAU1513 outputs a thermal warning error  
MUTE  
pin using  
DVDD  
ADAU1513  
OTW  
R1  
flag by pulling  
(Pin 10ꢀ low. This flag can be used by the  
100k  
D1  
1N4148  
microcontroller in the system as an indication to the user or can  
be used to lower the input level to the amplifier to prevent the  
thermal shutdown. The device continues operation until  
shutdown temperature is reached.  
10  
TO MUTE  
LOGIC INPUT  
OTW  
C1  
47µF  
15  
MUTE  
When the device junction temperature exceeds 150°C the  
Figure 28. Option 1 Schematic for Autorecovery  
ERR  
device outputs an error flag by pulling the  
(Pin 9ꢀ low. This  
MUTE  
OTW  
MUTE  
pin.  
The low logic level on  
also pulls down the  
error flag is latched. To restore the operation,  
(Pin 16ꢀ  
The bridge is shut down and, therefore, starts cooling or the  
die temperature starts reducing. When it reaches 120°C, the  
needs to be toggled to low and then to high again.  
OVERCURRENT PROTECTION  
OTW  
signal starts going high. While this pin is tied to a  
The overcurrent protection in the ADAU1513 is set internally at  
5 A peak output current. The device protects the output devices  
capacitor with a resistor pulled to DVDD, the voltage on this  
pin starts rising slowly towards DVDD. When it reaches the  
ERR  
against excessive output current by pulling the  
(Pin 9ꢀ low.  
MUTE  
input logic high threshold, is deasserted and the  
Rev. 0 | Page 12 of 16  
 
 
 
ADAU1513  
amplifier starts functioning again. This cycle repeats itself  
depending on the input signal conditions and the temperature  
of the die. This option allows part operation that is safely below  
the shutdown temperature of 150°C and allows the amplifier to  
recover itself without the need for microcontroller intervention.  
POWER-UP/POWER-DOWN SEQUENCE  
Figure 30 shows the recommended power-up sequence for the  
ADAU1513.  
AVDD/DVDD  
ERR  
Option 2: Using  
PVDD  
STDN  
ERR  
Option 2 is similar to Option 1 if the  
pin can be tied to  
MUTE  
OTW  
. See the circuit in Figure 29.  
instead of  
tSET  
DVDD  
ADAU1513  
MUTE  
tWAIT  
R1  
100k  
D1  
INx+/INx–  
1N4148  
9
TO MUTE  
LOGIC INPUT  
ERR  
OUTx+/OUTx–  
C1  
47µF  
tPDL-H  
15  
MUTE  
Figure 30. Recommended Power-Up Sequence  
Figure 29. Option 2 Schematic for Autorecovery  
The ADAU1513 does not have any pop-and-click suppression  
circuits; therefore, care must be taken during the power-up. The  
power stage stays in Hi-Z on power-up. However, it is recom-  
In this case, the part goes into shutdown mode due to any of the  
error-generating events like output overcurrent, overtemperature,  
missing PVDD or DVDD, or clock loss. The part recovers itself  
based on the same circuit operation in Figure 28.  
STDN  
MUTE  
mended to ensure that  
initial power-up. First,  
and  
should be pulled high followed by  
are held low during  
STDN  
MUTE  
after the  
to turn on the power stage. The power stage turns on  
However, if the part goes into error mode due to overtempera-  
ture, then the device would have reached its maximum limit of  
150°C (15°C to 20°C higher than Option 1). If it goes into error  
mode due to an overcurrent from a short circuit on the speaker  
outputs, then the part will keep itself recycling on and off until  
the short circuit is removed.  
MUTE  
signal is pulled high and responds to PWM  
inputs after a small propagation delay of 200 μs.  
The special turn-on sequence may be necessary depending on  
the PWM used to prevent the turn-on pop or click. However, if  
the ADAV4201 processor is used, the processor has a built-in  
special turn-on PWM sequence. The processor sends a unique  
PWM input start sequence that ensures soft turn-on.  
It is possible that, with this operation, the part is subjected to a  
much higher temperature and current stress continuously. This,  
in turn, reduces the parts reliability in the long term. Therefore,  
using Option 1 for autorecovery from the thermal protection  
and using the system microcontroller to indicate to the user of  
an error condition is recommended.  
If another modulator is used, care must be taken to ensure that  
the modulator has built-in pop-and-click suppression. Also,  
because the power stage does not track the PWM inputs, it is  
recommended to use the system microcontroller to ensure that  
the modulator is ready to send the PWM sequence before  
turning on the power stage.  
MUTE AND STDN  
MUTE  
STDN  
are 3.3 V logic-compatible inputs used  
The  
to control the turn-on/turn-off for ADAU1513.  
STDN  
and  
Similarly, for muting the amplifier, it may be necessary to  
supply a special muting PWM sequence for minimum pop and  
click. The ADAV4201 processor has a built-in feature that takes  
care of this need. If any other modulator is used, care must be  
taken during muting of the power stage.  
The  
input is active low when the  
pin is pulled low  
and the device is in its energy-saving mode. The power stage is  
STDN  
STDN  
in high-Z state. The high logic level input on the  
pin will  
wake up the device. The logic circuits are running internally but  
the power stage is still in high-Z state.  
The system microcontroller can be used to handle the  
mute/unmute of the power stage as well as a modulator.  
MUTE  
When the  
and starts responding to PWM inputs. The low level on the  
MUTE  
pin is pulled high, the power stage is active  
The error outputs of the power stage should be connected to  
the microcontroller port. This error flag can be used to inform  
the modulator that the power stage is shut down and to mute  
the PWM inputs. On removal of the error condition, the  
microcontroller should initiate an unmute sequence to mini-  
mize pop and click while power stage is turning on/turning off.  
pin disables the power stage and is recommended to be  
used to mute the audio output. See the Power-Up/Power-Down  
Sequence section for more details.  
The ADAU1513 uses three separate supplies: AVDD (3.3 V  
analog for internal reference), DVDD (3.3 V digital for control  
logic and clock oscillator), and PVDD (9 V to 18 V power stage  
and level shifter). Separate pins are provided for the AVDD,  
Rev. 0 | Page 13 of 16  
 
 
 
 
ADAU1513  
DVDD, and PVDD supply connections, as well AGND, DGND,  
and PGND.  
When using separate AVDD and DVDD supplies, ensure that  
both supplies are stable before unmuting or turning on the  
power stage.  
In addition, the ADAU1513 incorporates a built-in undervoltage  
lockout logic on DVDD as well as PVDD. This helps detect  
undervoltage operation and eliminates the need to have an  
external mechanism to sense the supplies.  
STDN  
MUTE  
and  
During power-up, it is recommended to keep  
low to ensure that the power stage stays in high-Z mode.  
MUTE  
Similarly, during shutdown, pulling  
to logic low before  
down is recommended. However, where a fault  
The ADAU1513 monitors the DVDD and PVDD supply  
voltages and prevents the power stage from turning on if either  
of the supplies are not present or below the operating threshold.  
Therefore, if DVDD is missing or below the operating thresh-  
old, for example, the power stage will not turn on, even if the  
PVDD is present or vice versa.  
STDN  
pulling  
event occurs, the power stage will shut down to protect the part.  
In this case, depending on the signal level, there is some pop at  
the speaker.  
During shutdown of the power supplies to reduce power  
consumption, it is highly recommended to mute the amplifier  
Because this protection is only present on DVDD and PVDD  
and not on AVDD, shorting both AVDD and DVDD externally  
or generating AVDD and DVDD from one power source is  
recommended. This ensures both AVDD and DVDD supplies  
are tracking each other and avoids the need to monitor the  
sequence with respect to PVDD. This also ensures minimal  
pop and click during power-up.  
STDN  
first, followed by pulling  
low before shutting down any of  
the supplies. After MUTE is pulled low, the power supplies can  
be shut down in the following order: PVDD, DVDD, then  
AVDD. Where AVDD and DVDD are generated from a single  
source, ensure that PVDD is tuned off before DVDD and  
MUTE  
STDN  
AVDD, and after issuing  
and  
.
Rev. 0 | Page 14 of 16  
ADAU1513  
APPLICATIONS INFORMATION  
Refer to the application schematic in Figure 31 for details on connections and component values. For details on the PWM modulator part,  
refer to the ADAV4201 data sheet.  
For applications with PVDD > 15 V, add components R1 and R2 = 10 Ω typical, C5 and C6 = 680 pF typical, and D1 through D8 = CRS01/02.  
3.3V  
PVDD  
100nF  
100nF  
100nF  
470µF  
1µF  
100nF  
PVDD  
L1  
L2  
D1  
D2  
OUTL+  
R1  
C1  
C2  
10  
INL+  
PULSE-WIDTH  
MODULATOR  
ADAV4201  
PVDD  
INL–  
INR+  
C5  
680pF  
D3  
D4  
OUTL–  
INR–  
SDA SCL  
PVDD  
D5  
D6  
PVDD  
L3  
L4  
OUTR+  
OUTR–  
R2  
C3  
C4  
10Ω  
ADAU1513  
C6  
680pF  
2
I C CONTROL  
D7  
D8  
STDN  
SYSTEM LOGIC  
CONTROL  
MUTE  
ERR  
OR  
MICROCONTROLLER  
OTW  
Figure 31. Application Schematic  
Table 8. Suggested Low-Pass Filter Values  
Load Impedance (Ω)  
Inductance L1 to L4 (μH)  
Capacitance C1 to C4 (μF)  
4
6
8
10  
15  
22  
1.5  
1
0.68  
Rev. 0 | Page 15 of 16  
 
 
ADAU1513  
OUTLINE DIMENSIONS  
0.30  
0.23  
0.18  
7.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
37  
36  
48  
1
PIN 1  
INDICATOR  
EXPOSED  
5.25  
5.10 SQ  
4.95  
TOP  
VIEW  
6.75  
BSC SQ  
PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
25  
24  
12  
13  
0.25 MIN  
5.50  
REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.50 BSC  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VKKD-2  
Figure 32. 48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
7 mm × 7 mm Body, Very Thin Quad  
(CP-48-1)  
Dimensions shown in millimeters  
9.20  
9.00 SQ  
8.80  
0.75  
0.60  
0.45  
1.20  
MAX  
BOTTOM VIEW  
(PINS UP)  
37  
36  
48  
37  
36  
48  
1
1
1.00 REF  
PIN 1  
SEATING  
PLANE  
TOP VIEW  
(PINS DOWN)  
5.10  
SQ  
7.20  
7.00 SQ  
6.80  
EXPOSED  
PAD  
1.05  
1.00  
0.95  
0.20  
0.09  
12  
25  
24  
25  
24  
12  
13  
13  
VIEW A  
7°  
3.5°  
0°  
0.27  
0.22  
0.17  
0.50 BSC  
LEAD PITCH  
0.15  
0.05  
0.08 MAX  
COPLANARITY  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-ABC  
Figure 33. 48-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]  
(SV-48-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package  
Option  
Model  
Package Description  
ADAU1513ACPZ1  
ADAU1513ACPZ-RL1  
ADAU1513ACPZ-RL71  
ADAU1513ASVZ1  
ADAU1513ASVZ-RL1  
ADAU1513ASVZ-RL71  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
CP-48-1  
CP-48-1  
CP-48-1  
SV-48-5  
SV-48-5  
SV-48-5  
48-Lead Lead Frame Chip Scale Package [LFCSP_VQ], 13”Tape and Reel  
48-Lead Lead Frame Chip Scale Package [LFCSP_VQ], 7”Tape and Reel  
48-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]  
48-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP], 13”Tape and Reel  
48-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP], 7”Tape and Reel  
1 Z = RoHS Compliant Part.  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06750-0-5/07(0)  
Rev. 0 | Page 16 of 16  
 
 
 

相关型号:

ADAU1590

Class-D Audio Power Amplifier
ADI

ADAU1590ACPZ

Class-D Audio Power Amplifier
ADI

ADAU1590ACPZ-RL

Class-D Audio Power Amplifier
ADI

ADAU1590ACPZ-RL7

Class-D Audio Power Amplifier
ADI

ADAU1590ASVZ

Class-D Audio Power Amplifier
ADI

ADAU1590ASVZ-RL

Class-D Audio Power Amplifier
ADI

ADAU1590ASVZRL7

Class-D Audio Power Amplifier
ADI

ADAU1592

Class-D Audio Power Amplifier
ADI

ADAU1592ACPZ

Class-D Audio Power Amplifier
ADI

ADAU1592ACPZ-RL

Class-D Audio Power Amplifier
ADI

ADAU1592ACPZ-RL7

Class-D Audio Power Amplifier
ADI

ADAU1592ASVZ

Class-D Audio Power Amplifier
ADI