ADCMP394ARZ [ADI]

Single Comparator with Accurate Reference Output;
ADCMP394ARZ
型号: ADCMP394ARZ
厂家: ADI    ADI
描述:

Single Comparator with Accurate Reference Output

放大器 光电二极管
文件: 总18页 (文件大小:487K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single/Dual/Quad Comparators with  
Accurate Reference Output  
Data Sheet  
ADCMP394/ADCMP395/ADCMP396  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
VCC  
High accuracy reference output voltage: 1 V 0.9%  
Single-supply voltage operation: 2.3 V to 5.5 V  
Rail-to-rail common-mode input voltage range  
Low input offset voltage across VCMR: 1 mV typical  
Guarantees comparator output logic low from VCC = 0.9 V to  
undervoltage lockout (UVLO)  
ADCMP394  
REF  
REF  
IN+  
IN–  
OUT  
GND  
Operating temperature range: −40°C to +125°C  
Package types:  
Figure 1.  
8-lead, narrow body SOIC (ADCMP394)  
10-lead MSOP (ADCMP395)  
16-lead, narrow body SOIC (ADCMP396)  
VCC  
ADCMP395  
REF  
REF  
APPLICATIONS  
INA+  
INA–  
OUTA  
OUTB  
Battery management/monitoring  
Power supply detection  
Window comparators  
INB+  
INB–  
Threshold detectors/discriminators  
Microprocessor systems  
GND  
Figure 2.  
VCC  
GENERAL DESCRIPTION  
The ADCMP394/ADCMP395/ADCMP396 are single/dual/quad  
rail-to-rail input, low power comparator ideal for use in general-  
purpose applications. These comparators operate from a supply  
voltage of 2.3 V to 5.5 V and draw a minimal amount of  
current. The single ADCMP394 consumes only 33.9 μA of  
supply current. The dual ADCMP395 and quad ADCMP396  
consumes 37.2 μA and 41.6 μA of supply current respectively.  
The low voltage and low current operation of these devices  
makes it ideal for battery-powered systems.  
ADCMP396  
REF  
REF  
INA+  
INA–  
OUTA  
OUTB  
OUTC  
OUTD  
INB+  
INB–  
INC+  
INC–  
IND+  
IND–  
The comparators features a common-mode input voltage range  
of 200 mV beyond rails, an offset voltage of 1 mV typical across  
the full common-mode range, and a UVLO monitor. In addition,  
the design of the comparator allows a defined output state upon  
power-up. The comparator generates a logic low output if the  
supply voltage is less than the UVLO threshold.  
GND  
Figure 3.  
The ADCMP394/ADCMP395/ADCMP396 incorporates a 1 V  
0.9% buffered reference voltage. The reference voltage output  
can directly connect to the comparator input to serve as the trip  
value for precise monitoring and detection of positive voltage. It  
can also act as an offset when monitoring the negative voltage.  
The ADCMP394 and ADCMP396 are available in 8-pin and 16-  
lead, narrow body SOIC package, respectively. The ADCMP395  
is available in a 10-lead MSOP package. The comparators are  
specified to operate over the −40°C to +125°C extended  
temperature range.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADCMP394/ADCMP395/ADCMP396  
Data Sheet  
TABLE OF CONTENT  
Open-Drain Output................................................................... 11  
Power-Up Behavior.................................................................... 11  
Crossover Bias Point .................................................................. 11  
Comparator Hysteresis .............................................................. 11  
Typical Applications....................................................................... 12  
Adding Hysteresis....................................................................... 12  
Window Comparator for Positive Voltage Monitoring......... 12  
Window Comparator for Negative Voltage Monitoring....... 13  
Programmable Sequencing Control Circuit............................... 13  
Mirrored Voltage Sequencer Example..................................... 15  
Threshold and Timeout Programmable Voltage Supervisor 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 18  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configurations and Function Descriptions ........................... 5  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 11  
Basic Comparator....................................................................... 11  
Rail-to-Rail Input (RRI) ............................................................ 11  
REVISION HISTORY  
5/16—Rev. A to Rev. B  
Changes to Equation 4 ................................................................... 12  
Changes to Figure 39...................................................................... 14  
3/15—Rev. 0 to Rev. A  
Added ADCMP395/ADCMP396 (Throughout) ......................... 1  
11/14—Revision 0: Initial Version  
Rev. B | Page 2 of 18  
 
Data Sheet  
ADCMP394/ADCMP395/ADCMP396  
SPECIFICATIONS  
VCC = 2.3 V to 5.5 V, TA = −40°C to +125°C, VCMR = −200 mV to VCC + 200 mV, unless otherwise noted. Typical values are at TA = 25°C.  
Table 1.  
Parameter  
Symbol  
VCC  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments1  
POWER SUPPLY  
Supply Voltage Range  
2.3  
0.9  
5.5  
UVLORISE  
V
V
Guarantees comparator output low  
VCC Quiescent Current  
ADCMP394  
ICC  
33.9  
32.6  
37.2  
35.9  
41.6  
41.3  
47.9  
45.8  
51.9  
49.2  
59.4  
56.4  
µA  
µA  
µA  
µA  
µA  
µA  
All outputs in high-Z state, VOD = 0.1 V  
All outputs low, VOD = 0.1 V  
All outputs in high-Z state, VOD = 0.1 V  
All outputs low, VOD = 0.1 V  
All outputs in high-Z state, VOD = 0.1 V  
All outputs low, VOD = 0.1 V  
ADCMP395  
ADCMP396  
UNDERVOLTAGE LOCKOUT  
VCC Rising  
Hysteresis  
UVLORISE  
UVLOHYS  
2.062  
5
2.162  
25  
2.262  
50  
V
mV  
REFERENCE OUTPUT  
Reference Output Voltage  
VREF  
0.991  
0.991  
1
1
1.008  
1.008  
V
V
IREF  
IREF  
=
=
1 mA, TA = −40°C to +85°C  
1 mA  
COMPARATOR INPUT  
Common-Mode Input Range  
Input Offset Voltage  
VCMR  
VOS  
−200  
VCC + 200  
mV  
mV  
mV  
mV  
mV  
nA  
nA  
nA  
nA  
mV  
mV  
0.5  
0.5  
1
2.5  
2.5  
5
IN+ = IN− = 1 V  
IN+ = IN− = 1 V, TA = −40°C to +85°C  
1
5
TA = −40°C to +85°C  
VCMR = −50 mV to VCC + 50 mV  
IN+ = IN− = 1 V  
VCMR = −50 mV to VCC + 50 mV  
VCMR = −50 mV to VCC + 50 mV, TA = −40°C to +85°C  
VCM = 1 V  
Input Offset Current  
Input Bias Current  
IOS  
IBIAS  
10  
30  
80  
10  
4
Input Hysteresis  
VHYST  
3
6
8
COMPARATOR OUTPUT  
Output Low Voltage  
VOL  
0.1  
0.01  
0.3  
0.15  
150  
V
V
nA  
VCC = 2.3 V, ISINK = 2.5 mA  
VCC = 0.9 V, ISINK = 100 µA  
VOUT = 0 V to 5.5 V  
Output Leakage Current  
COMPARATOR CHARACTERISTICS  
Power Supply Rejection Ratio  
Common-Mode Rejection Ratio  
Voltage Gain  
Rise Time2  
Fall Time2  
ILEAK  
PSRR  
CMRR  
AV  
60  
50  
80  
74  
132  
1.1  
0.15  
dB  
dB  
dB  
µs  
tR  
VOUT = 10% to 90% of VCC  
VOUT = 90% to 10% of VCC  
tF  
µs  
Propagation Delay  
Input Rising2  
tPROP_R  
4.7  
4.9  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
VCM = 1 V, VCC = 2.3 V, VOD = 10 mV  
VCM = 1 V, VCC = 5 V, VOD = 10 mV  
VCM = 1 V, VCC = 2.3 V, 100 mV overdrive  
VCM = 1 V, VCC = 5 V, 100 mV overdrive  
VCM = 1 V, VCC = 2.3 V, VOD = 10 mV  
VCM = 1 V, VCC = 5 V, VOD= 10 mV  
VCM = 1 V, VCC = 2.3 V, VOD = 10 mV  
VCM = 1 V, VCC = 5 V, VOD = 10 mV  
VCM = 1 V, VCC = 2.3 V, 100 mV overdrive  
VCM = 1 V, VCC = 5 V, 100 mV overdrive  
VCM = 1 V, VCC = 2.3 V, VOD = 10 mV  
VCM = 1 V, VCC = 5 V, VOD = 10 mV  
2.8  
3.2  
ADCMP395 Channel B  
Input Falling2  
4.9  
9.7  
4.5  
9.5  
tPROP_F  
2
4.2  
ADCMP395 Channel B  
4.7  
5
1 VOD is overdrive voltage.  
2 RPULL-UP = 10 kΩ, and CL = 50 pF.  
Rev. B | Page 3 of 18  
 
ADCMP394/ADCMP395/ADCMP396  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
Parameter  
Rating  
Table 3. Thermal Resistance  
Package Type  
VCC Pin  
All INx+ and INx− Pins  
All OUTx Pins  
Reference Load Current, IREF  
OUTx Pins Sink Current, ISINK  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (10 sec)  
Junction Temperature  
−0.3 V to +6 V  
−0.3 V to +6 V  
−0.3 V to +6 V  
1 mA  
θJA  
121  
130  
80  
Unit  
°C/W  
°C/W  
°C/W  
8-Lead Narrow-Body SOIC  
10-Lead MSOP  
16-Lead Narrow-Body SOIC  
10 mA  
−65°C to +150°C  
−40°C to +125°C  
300°C  
ESD CAUTION  
150°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 4 of 18  
 
 
 
Data Sheet  
ADCMP394/ADCMP395/ADCMP396  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
GND  
NIC  
IN+  
1
2
3
4
8
7
6
5
OUT  
VCC  
REF  
NIC  
ADCMP394  
TOP VIEW  
(Not to Scale)  
IN–  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED.  
Figure 4. ADCMP394 Pin Configuration  
Table 4. ADCMP394 Pin Function Descriptions  
Pin No.  
Mnemonic  
GND  
NIC  
IN+  
IN−  
Description  
1
2, 5  
3
Device Ground.  
Not Internally Connected.  
Comparator Noninverting Input.  
Comparator Inverting Input.  
4
6
7
REF  
VCC  
Reference Output. This pin can be used to setup the comparator threshold.  
Device Supply Input.  
8
OUT  
Comparator Output, Open-Drain.  
OUTA  
VCC  
INA–  
INA+  
NIC  
1
2
3
4
5
10 OUTB  
9
8
7
6
GND  
INB–  
INB+  
REF  
ADCMP395  
TOP VIEW  
(Not to Scale)  
NIC = NOT INTERNALLY CONNECTED.  
Figure 5. ADCMP395 Pin Configuration  
Table 5. ADCMP395 Pin Function Descriptions  
Pin No.  
Mnemonic  
OUTA  
VCC  
INA−  
INA+  
NIC  
Description  
1
2
3
4
5
6
7
8
9
10  
Comparator A Output, Open Drain.  
Device Supply Input.  
Comparator A Inverting Input.  
Comparator A Noninverting Input.  
Not Internally Connected.  
Reference Output. This pin can be used to set up comparator threshold.  
Comparator B Noninverting Input.  
Comparator B Inverting Input.  
REF  
INB+  
INB−  
GND  
Device Ground.  
Comparator B Output, Open Drain.  
OUTB  
Rev. B | Page 5 of 18  
 
ADCMP394/ADCMP395/ADCMP396  
Data Sheet  
OUTB  
1
2
3
4
5
6
7
8
16 OUTC  
15 OUTD  
14 GND  
13 IND+  
12 IND–  
11 INC+  
10 INC–  
OUTA  
VCC  
INA–  
INA+  
INB–  
INB+  
NIC  
ADCMP396  
TOP VIEW  
(Not to Scale)  
9
REF  
NIC = NOT INTERNALLY CONNECTED.  
Figure 6. ADCMP396 Pin Configuration  
Table 6. ADCMP396 Pin Function Descriptions  
Pin No.  
Mnemonic  
OUTB  
OUTA  
VCC  
Description  
1
2
3
Comparator B Output, Open Drain.  
Comparator A Output, Open Drain.  
Device Supply Input.  
4
5
6
7
INA−  
INA+  
INB−  
INB+  
NIC  
Comparator A Inverting Input.  
Comparator A Noninverting Input.  
Comparator B Inverting Input.  
Comparator B Noninverting Input.  
Not Internally Connected.  
8
9
REF  
Reference Output. This pin can be used to set up the comparator threshold.  
Comparator C Inverting Input.  
Comparator C Noninverting Input.  
Comparator D Inverting Input.  
Comparator D Noninverting Input.  
Device Ground.  
Comparator D Output, Open Drain.  
Comparator C Output, Open Drain.  
10  
11  
12  
13  
14  
15  
16  
INC−  
INC+  
IND−  
IND+  
GND  
OUTD  
OUTC  
Rev. B | Page 6 of 18  
Data Sheet  
ADCMP394/ADCMP395/ADCMP396  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.5  
2.5  
2.0  
SAMPLE 1  
SAMPLE 2  
SAMPLE 3  
T
T
T
T
= +25°C  
= +85°C  
= +125°C  
= –40°C  
A
A
A
A
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
COMMON-MODE VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 7. Input Offset Voltage (VOS) vs. Common-Mode Voltage (VCM),  
VCC = 3.3 V  
Figure 10. Input Offset Voltage (VOS) vs. Supply Voltage (VCC), VCM = 1 V  
for Various Temperatures  
2.5  
2.4  
V
V
V
= 2.3V  
= 3.3V  
= 5.5V  
CC  
CC  
CC  
IN+ = IN– + 10mV  
2.2  
2.0  
1.5  
V
= IN– = 1V  
CM  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 8. Input Offset Voltage (VOS) vs. Temperature for  
Various Supply Voltages, VCM = 1 V  
Figure 11. Output Voltage (VOUT) vs. Supply Voltage (VCC), RPULLUP = 10 kΩ  
70  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
ADCMP394  
ADCMP395  
ADCMP396  
ADCMP394  
ADCMP395  
65  
ADCMP396  
60  
55  
50  
45  
40  
35  
30  
25  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 9. Supply Current (ICC) vs. Supply Voltage (VCC) at Output Low Voltage  
Figure 12. Supply Current (ICC) vs. Supply Voltage (VCC) at Output High  
Voltage  
Rev. B | Page 7 of 18  
 
ADCMP394/ADCMP395/ADCMP396  
Data Sheet  
ADCMP394  
ADCMP395  
ADCMP396  
ADCMP394  
ADCMP395  
65  
55  
45  
35  
25  
15  
65  
ADCMP396  
55  
45  
35  
25  
15  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE(°C)  
Figure 16. Supply Current (ICC) vs. Temperature at Output Low Voltage (VOL)  
Figure 13. Supply Current (ICC) vs. Temperature at Output High Voltage (VOH  
)
3.8  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
V
V
V
= 2.3V  
= 3.3V  
= 5.5V  
CC  
CC  
CC  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
T
T
T
T
= +25°C  
= +85°C  
= +125°C  
= –40°C  
A
A
A
A
2.1  
1.9  
1.7  
–50  
–25  
0
25  
50  
75  
100  
125  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 17. Input Hysteresis vs. Temperature, VCM = 1 V  
for Various Supply Voltages (VCC)  
Figure 14. Input Hysteresis vs. Supply Voltage (VCC), VCM = 1 V  
for Various Temperatures  
14  
12  
10  
8
8
V
V
V
= 2.3V  
= 3.3V  
= 5.5V  
CC  
CC  
CC  
V
V
V
= 2.3V  
= 3.3V  
= 5.5V  
CC  
CC  
CC  
7
6
5
4
3
2
6
4
2
0
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. Propagation Delay vs. Temperature, High to Low,  
OD = 10 mV  
Figure 15. Propagation Delay vs. Temperature, Low to High,  
OD = 10 mV  
V
V
Rev. B | Page 8 of 18  
Data Sheet  
ADCMP394/ADCMP395/ADCMP396  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
10  
9
8
7
6
5
4
3
2
1
V
V
V
= 2.3V  
= 3.3V  
= 5.5V  
R
C
V
= 10k  
= 50pF  
V
V
V
= 2.3V  
= 3.3V  
= 5.5V  
R
C
V
= 10k  
= 50pF  
CC  
CC  
CC  
PULLUP  
CC  
CC  
CC  
PULL-UP  
L
L
= 1V  
= 1V  
CM  
CM  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
INPUT OVERDRIVE VOLTAGE (mV)  
INPUT OVERDRIVE VOLTAGE (mV)  
Figure 19. Propagation Delay vs. Input Overdrive Voltage, Low to High  
Figure 22. Propagation Delay vs. Input Overdrive Voltage, High to Low  
12  
5.0  
R
C
V
= 10kΩ  
= 50pF  
= 1V  
V
V
V
= 2.3V  
= 3.3V  
= 5.5V  
R
C
V
= 10k  
= 50pF  
V
V
V
= 2.3V  
= 3.3V  
= 5.5V  
PULL-UP  
CC  
CC  
CC  
PULL-UP  
CC  
CC  
CC  
L
L
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
= 1V  
CM  
CM  
10  
8
6
4
2
0
10  
30  
50  
70  
90  
10  
30  
50  
70  
90  
INPUT OVERDRIVE VOLTAGE (mV)  
INPUT OVERDRIVE VOLTAGE (mV)  
Figure 20. Propagation Delay vs. Input Overdrive Voltage, Low to High,  
Channel B  
Figure 23. Propagation Delay vs. Input Overdrive Voltage, High to Low,  
Channel B  
200  
18  
V
C
= 3.3V  
= 50pF  
V
C
= 3.3V  
= 50pF  
CC  
CC  
L
L
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
16  
14  
12  
10  
8
6
4
2
0
1
10  
100  
1
10  
100  
PULL-UP RESISTANCE (k)  
PULL-UP RESISTANCE (k)  
Figure 21. Output Voltage Rise Time (tR) vs. Pull-Up Resistance (RPULLUP  
)
Figure 24. Output Voltage Fall Time (tF) vs. Pull-Up Resistance (RPULLUP)  
Rev. B | Page 9 of 18  
ADCMP394/ADCMP395/ADCMP396  
Data Sheet  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
I
(mA)  
I
(mA)  
SINK  
SOURCE  
Figure 25. Reference Voltage (VREF) vs. Source Current (ISOURCE) of the REF Pin,  
CC = 3.3 V  
Figure 28. Reference Voltage (VREF) vs. Sink Current (ISINK) of the REF Pin,  
V
V
CC = 3.3 V  
1.010  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
0.990  
1.010  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
0.990  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
TEMPERATURE (°C)  
V
(V)  
CC  
Figure 26. Reference Voltage (VREF) vs. Temperature, VCC = 3.3 V  
Figure 29. Reference Voltage (VREF) vs. Supply Voltage (VCC)  
700  
16  
V
V
V
= 2.3V  
= 3.3V  
= 5.5V  
CC  
CC  
CC  
14  
12  
10  
8
600  
500  
400  
300  
200  
100  
0
6
4
2
0
0
1
2
3
4
5
6
7
8
9
10  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
(mA)  
I
(mA)  
SINK  
I
SINK  
Figure 27. Output Voltage (VOUT) Low vs. Sink Current (ISINK) for  
Various Supply Voltages  
Figure 30. Output Voltage (VOUT) Low vs. Sink Current (ISINK), VCC = 0.9 V  
Rev. B | Page 10 of 18  
Data Sheet  
ADCMP394/ADCMP395/ADCMP396  
THEORY OF OPERATION  
BASIC COMPARATOR  
POWER-UP BEHAVIOR  
In its most basic configuration, a comparator can be used to  
convert an analog input signal to a digital output signal (see  
Figure 31). The analog signal on INx+ is compared to the  
voltage on INx−, and the voltage at OUTx is either high or low,  
depending on whether INx+ is at a higher or lower potential  
than INx−, respectively.  
On power-up, when VCC reaches 0.9 V, the ADCMP394/  
ADCMP395/ADCMP396 is guaranteed to assert an output low  
logic. When the voltage on the VCC pin exceeds UVLO, the  
comparator inputs take control.  
CROSSOVER BIAS POINT  
Rail-to-rail inputs of this type of architecture in both op amps  
and comparators, have a dual front-end design. PMOS devices  
are inactive near the VCC rail, and NMOS devices are inactive near  
GND. At some predetermined point in the common-mode range,  
a crossover occurs. At this point, normally 0.8 V and VCC − 0.8 V,  
the measured offset voltages change.  
V
CC  
V+  
INx+  
INx–  
V
IN  
OUTx  
V
REF  
COMPARATOR HYSTERESIS  
In noisy environments, or when the differential input amplitudes  
are relatively small or slow moving, adding hysteresis (VHYST) to  
the comparator is often desirable. The transfer function for a  
comparator with hysteresis is shown in Figure 32. As the input  
voltage approaches the threshold (0 V in Figure 32) from below  
the threshold region in a positive direction, the comparator  
switches from low to high when the input crosses +VHYST/2.  
The new switch threshold becomes −VHYST/2. The comparator  
remains in the high state until the −VHYST/2 threshold is crossed  
from below the threshold region in a negative direction. In this  
manner, noise or feedback output signals centered on the 0 V  
input cannot cause the comparator to switch states unless it  
exceeds the region bounded by VHYST/2.  
V
OUT  
V+  
V
REF  
0V  
t
V
IN  
Figure 31. Basic Comparator and Input and Output Signals  
RAIL-TO-RAIL INPUT (RRI)  
Using a CMOS nonRRI stage (that is, a single differential pair)  
limits the input voltage to approximately one gate-to-source  
voltage (VGS) away from one of the supply lines. Because VGS  
for normal operation is commonly more than 1 V, a single  
differential pair input stage comparator greatly restricts the  
allowable input voltage. This restriction can be quite limiting  
with low voltage supplies. To resolve this issue, RRI stages allow  
the input signal range to extend up to the supply voltage range.  
In the case of the ADCMP394/ADCMP395/ADCMP396, the  
inputs continue to operate 200 mV beyond the supply rails.  
OUTPUT  
V
OH  
OPEN-DRAIN OUTPUT  
V
OL  
0V  
The ADCMP394/ADCMP395/ADCMP396 have an open-drain  
output stage that requires an external resistor to pull up to the  
logic high voltage level when the output transistor is switched off.  
The pull-up resistor must be large enough to avoid excessive  
power dissipation, but small enough to switch logic levels  
reasonably quickly when the comparator output is connected to  
other digital circuitry. The rise time of the open-drain output  
depends on the pull-up resistor (RPULLUP) and load capacitor (CL)  
used.  
INPUT  
–V  
+V  
HYST  
2
HYST  
2
Figure 32. Comparator Hysteresis Transfer Function  
The rise time can be calculated by  
tR = 2.2 RPULLUP CL  
(1)  
Rev. B | Page 11 of 18  
 
 
 
 
 
 
 
 
 
ADCMP394/ADCMP395/ADCMP396  
Data Sheet  
TYPICAL APPLICATIONS  
ADDING HYSTERESIS  
WINDOW COMPARATOR FOR POSITIVE VOLTAGE  
MONITORING  
To add hysteresis, see Figure 33; two resistors are used to create  
different switching thresholds, depending on whether the input  
signal is increasing or decreasing in magnitude. When the input  
voltage increases, the threshold is above VREF, and when the  
When monitoring a positive supply, the desired nominal  
operating voltage for monitoring is denoted by VM, IM is the  
nominal current through the resistor divider, VOV is the  
overvoltage trip point, and VUV is the undervoltage trip point.  
input voltage decreases, the threshold is below VREF  
.
V
= 5V  
V
CC  
M
R
X
R
PULL-UP  
INA+  
INA–  
V
OUTx  
PH  
INx–  
INx+  
V
= 2.5V  
IN  
REF  
OUTA  
OUTB  
R
LOAD  
V
R1  
R
REF  
Y
INB+  
R2  
INB–  
V
PL  
R
V
Z
OUT  
Figure 34. Positive Undervoltage/Overvoltage Monitoring Configuration  
Figure 34 illustrates the positive voltage monitoring input  
connection. Three external resistors, RX, RY, and RZ, divide the  
positive voltage for monitoring, VM, into the high-side voltage,  
VPH, and the low-side voltage, VPL. The high-side voltage is  
connected to the INA+ pin and the low-side voltage is  
connected to the INB− pin.  
V
IN  
V
V
IN_HIGH  
IN_LOW  
Figure 33. Noninverting Comparator Configuration with Hysteresis  
The upper input threshold level is given by  
To trigger an overvoltage condition, the low-side voltage (in  
this case, VPL) must exceed the VREF threshold on the INB+ pin.  
Calculate the low-side voltage, VPL, by the following:  
V
REF (R1R2)  
VIN_HI  
(2)  
R2  
Assuming RLOAD >> R2, RPULLUP  
The lower input threshold level is given by  
VREF R1R2 RPULLUP VCC R1  
R2 RPULLUP  
The hysteresis is the difference between these voltages levels.  
REF (R1RPULLUP )VCC (R1R2)  
.
RZ  
VPL VREF VOV  
(5)  
RX RY RZ  
In addition,  
RX + RY + RZ = VM/IM  
VIN _ LO  
(3)  
(4)  
(6)  
Therefore, RZ, which sets the desired trip point for the  
overvoltage monitor, is calculated as  
V
VHYS  
R2(R2 RPULLUP  
)
VREF  
VM  
RZ   
(7)  
VOV  
IM  
To trigger the undervoltage condition, the high-side voltage,  
VPH, must be less than the VREF threshold on the INA− pin. The  
high-side voltage, VPH, is calculated by  
RY RZ  
RX RY RZ  
VPH VREF VUV  
(8)  
Because RZ is already known, RY can be expressed as  
VREF VM  
RZ  
RY   
(9)  
VUV  
IM  
When RY and RZ are known, RX can be calculated by  
RX = (VM/IM) – RY RZ  
(10)  
If VM, IM, VOV, or VUV changes, each step must be recalculated.  
Rev. B | Page 12 of 18  
 
 
 
 
 
Data Sheet  
ADCMP394/ADCMP395/ADCMP396  
Because RZ is already known, RY can be expressed as follows:  
WINDOW COMPARATOR FOR NEGATIVE  
VOLTAGE MONITORING  
VREF  
VM VREF  
RZ  
RY   
(15)  
Figure 35 shows the circuit configuration for negative supply  
voltage monitoring. To monitor a negative voltage, a reference  
voltage is required to connect to the end node of the voltage  
divider circuit, in this case, REF.  
IM  
When RY and RZ are known, RX is then calculated by  
VM VREF  
VREF VUV  
RY RZ  
RX   
(16)  
IM  
REF  
PROGRAMMABLE SEQUENCING CONTROL CIRCUIT  
R
Z
INA+  
INA–  
V
NH  
The circuit shown in Figure 36 is used to control power supply  
sequencing. The delay is set by the combination of the pull-up  
resistor (RPULLUP), the load capacitor (CL), and the resistor  
divider network.  
OUTA  
OUTB  
R
Y
INB+  
INB–  
V
/V  
REF CC  
V
NL  
R
X
R
R5  
R4  
PULL-UP  
U1  
INA+  
INA–  
V
M
SEQ  
OUTA  
Figure 35. Negative Undervoltage/Overvoltage Monitoring Configuration  
V4  
V3  
C
L
INB+  
INB–  
Equation 7, Equation 9, and Equation 10 need some minor  
modifications. The reference voltage, VREF, is added to the  
overall voltage drop; therefore, it must be subtracted from VM,  
VUV, and VOV before using each of them in Equation 7, Equation 9,  
and Equation 10.  
OUTB  
R3  
INC+  
INC–  
OUTC  
OUTD  
V2  
V1  
To monitor a negative voltage level, the resistor divider circuit  
divides the voltage differential level between VREF and the  
negative supply voltage into the high-side voltage, VNH, and the  
low-side voltage, VNL. The high-side voltage, VNH, is connected  
to INA+, and the low-side voltage, VNL, is connected to INB−.  
R2  
R1  
IND+  
IND–  
Figure 36. Programmable Sequencing Control Circuit  
To trigger an overvoltage condition, the monitored voltage must  
exceed the nominal voltage in terms of magnitude, and the  
high-side voltage (in this case, VNH) on the INA+ pin must be  
more negative than ground. Calculate the high-side voltage,  
VNH, by using the following formula:  
Figure 37 shows a simple block diagram for a programmable  
sequencing control circuit. The application delays the enable signal,  
EN, of the external regulators (LDO x) in a linear order when  
the open-drain signal (SEQ) changes from low to high impedance.  
The ADCMP394/ADCMP395/ADCMP396 have a defined output  
state during startup, which prevents any regulator from turning  
on if VCC is still below the UVLO threshold.  
RX RY  
RX RY RZ  
VNH GND   
V
VOV  
V  
(11)  
REF  
OV  
3.3V  
IN  
OUT  
LDO 1  
3.0V  
1.8V  
2.5V  
1.2V  
In addition,  
EN  
VM VREF  
RX RY RZ   
(12)  
GND  
IM  
IN  
OUT  
LDO 2  
Therefore, RZ, which sets the desired trip point for the  
overvoltage monitor, is calculated by  
V
/V  
EN  
REF CC  
GND  
t1  
VREF  
IM  
VM VREF  
VREF VOV  
RZ   
(13)  
t2  
t3  
t4  
SEQ  
IN  
OUT  
LDO 3  
To trigger an undervoltage condition, the monitored voltage  
GND  
EN  
must be less than the nominal voltage in terms of magnitude,  
and the low-side voltage (in this case, VNL) on the INB− pin  
must be more positive than ground. Calculate the low-side  
voltage, VNL, by the following:  
GND  
IN  
OUT  
LDO 4  
EN  
GND  
RX  
VNL GND   
V
VUV  
V  
(14)  
REF  
UV  
RX RY RZ  
Figure 37. Simplified Block Diagram of a Programmable  
Sequencing Control Circuit  
Rev. B | Page 13 of 18  
 
 
 
 
 
ADCMP394/ADCMP395/ADCMP396  
Data Sheet  
First, determine the allowable current, IDIV, flowing through the  
resistor divider. After the value for IDIV is determined, calculate  
R1, R2, R3, R4, and R5 using the following formulas:  
SEQ  
V4  
V3  
V2  
V1  
V
C
L
t4  
t3  
VREF  
IDIV  
OUT4  
OUT3  
OUT2  
OUT1  
RDIV  
R1   
R2   
R3   
R4   
R1R2 R3 R4 R5  
(22)  
(23)  
(24)  
(25)  
V1RDIV  
VREF  
t2  
t1  
V2RDIV  
VREF  
Figure 38. Programmable Sequencing Control Circuit Timing Diagram  
R1  
When the SEQ signal changes from low to high impedance, the  
load capacitor, CL, starts to charge. The time it takes to charge the  
load capacitor to the pull-up voltage (in this case, VREF or VCC) is the  
maximum delay programmable in the circuit. It is recommended  
to have the threshold within 10% to 90% of the pull-up voltage.  
Calculate the maximum allowable delay by  
V3RDIV  
VREF  
R1R2  
R1R2 R3  
V4RDIV  
VREF  
(26)  
(27)  
R5 = RDIV R1 R2 R3 R4  
t
MAX = 2.2RPULLUPCLOAD  
(17)  
To create a mirrored voltage sequence, add a resistor (RMIRROR  
between the pull-up resistor (RPULLUP) and the load capacitor  
(CL) as shown in Figure 39.  
)
The delay of each output is changed by changing the threshold  
voltage, V1 to V4, when the comparator changes its output state.  
To calculate the voltage thresholds for the comparator, use the  
following formulas:  
V
/V  
REF CC  
t1  
RPULLUPCL  
R
R5  
R4  
PULL-UP  
R
MIRROR  
U1  
INA+  
INA–  
(18)  
(19)  
(20)  
(21)  
V1 V  
V2 V  
V3 V  
V4 V  
1 e  
1e  
1 e  
1e  
SEQ  
REF   
OUT4  
V4  
C
L
t2  
RPULLUPCL  
INB+  
INB–  
OUT3  
REF   
V3  
R3  
t3  
RPULLUPCL  
INA+  
INA–  
U2  
OUT2  
REF   
V2  
V1  
R2  
R1  
INB+  
INB–  
t4  
RPULLUPCL  
OUT1  
REF   
The threshold voltages can come from a voltage reference or a  
voltage divider circuit, as shown in Figure 36.  
Figure 39. Circuit Configuration for a Mirrored Voltage Sequencer  
Figure 39 shows the circuit configuration for a mirrored voltage  
sequencer. When SEQ changes from low to high impedance, the  
response is similar to Figure 38. When SEQ changes from high  
to low impedance, the load capacitor (CL) starts to discharge at  
a rate set by RMIRROR. The delay of each comparator is dependent  
on the threshold voltage previously set for t1 to t4. The result is a  
mirrored power-down sequence.  
Rev. B | Page 14 of 18  
 
 
Data Sheet  
ADCMP394/ADCMP395/ADCMP396  
SEQ  
V4  
V3  
V2  
V1  
V1  
V
C
L
V4  
V3  
V2  
t4  
t3  
t5  
t6  
OUT4  
OUT3  
t2  
t7  
OUT2  
OUT1  
t1  
t8  
Figure 40. Mirrored Voltage Sequencer Timing Diagram  
The timing diagram for the mirrored voltage sequencer is  
shown in Figure 40.  
MIRRORED VOLTAGE SEQUENCER EXAMPLE  
To illustrate how the mirrored voltage sequencer works, see  
Figure 37 and then consider a system that uses a VREF of 1 V and  
requires a delay of 50 ms when SEQ changes from low to high  
impedance, and between each regulator when turning on. These  
considerations require a rise time of at least 200 ms for the pull-up  
resistor (RPULLUP) and the load capacitor (CL). The sum of the  
resistance of RMIRROR and RPULLUP must be large enough to charge the  
capacitor longer than the minimum required delay. For a  
symmetrical mirrored power-down sequence, the value of RMIRROR  
must be much larger than RPULLUP. A 10 kΩ RPULLUP value limits the  
pull-down current to 100 μA while giving a reasonable value for  
Equation 18 through Equation 21 must account for the additional  
resistance, RMIRROR, in the calculations of the voltage thresholds.  
To calculate these new thresholds, see Equation 28 through  
Equation 31.  
t1  
RPULLUP RMIRROR CL  
V1 V  
1e  
(28)  
(29)  
(30)  
(31)  
REF   
t2  
RPULLUP RMIRROR  
CL  
REF   
V2 V  
V3 V  
V4 V  
1e  
RMIRROR. A typical 1 μF capacitor together with a 150 kΩ RMIRROR  
t3  
value gives a value of  
RPULLUP RMIRROR CL  
1 e  
1 e  
REF   
t
MAX = 2.2((160 × 103) × (1 × 10−6)) = 351 ms  
(36)  
The threshold voltage required by each comparator is set by  
Equation 28 to Equation 31. For example,  
t4  
RPULLUP RMIRROR CL  
REF   
50 103  
3 6  
10 1 10  
160  
V1 V  
1e  
RMIRROR provides the mirrored delay by prolonging the discharge  
time of the capacitor. The mirrored voltage sequencer uses the  
same threshold in Equation 28 to Equation 31 in a decreasing  
order. To calculate the exact value of the mirrored delay time,  
see Equation 32 through Equation 35.  
REF   
where V1 = 268.38 mV.  
Therefore, V2 = 464.74 mV, V3 = 608.39 mV, and V4 =  
713.5 mV.  
V4  
VREF  
Next, consider 10 μA as the maximum current (IDIV) flowing  
t5  RMIRRORCLln  
(32)  
(33)  
(34)  
(35)  
through the resistor divider network. This current gives the total  
resistance of the divider network (RDIV) and the individual  
resistor values using Equation 22 to Equation 27, resulting in  
the following:  
V3  
VREF  
t6  RMIRRORCLln  
RDIV = 100 kΩ  
V2  
VREF  
t7  RMIRRORCLln  
R1 = 26.84 kΩ ≈ 26.7 kΩ  
R2 = 19.64 kΩ ≈ 19.6 kΩ  
R3 = 14.37 kΩ ≈ 14.3 kΩ  
R4 = 10.51 kΩ ≈ 10.5 kΩ  
R5 = 28.65 kΩ ≈ 28.7 kΩ  
V1  
VREF  
t8  RMIRRORCLln  
Rev. B | Page 15 of 18  
 
 
ADCMP394/ADCMP395/ADCMP396  
Data Sheet  
Resistor values from the calculation are nonindustry standard,  
using industry standard resistor values resulted in a new RDIV  
value of 99.8 kΩ. Due to the discrepancy of the calculated resistor  
value to the industry standard value, the threshold of each  
comparator also changed. Calculate the new threshold values  
by using a simple voltage divider formula:  
THRESHOLD AND TIMEOUT PROGRAMMABLE  
VOLTAGE SUPERVISOR  
Figure 41 shows a circuit configuration for a programmable  
threshold and timeout circuit. The timeout, tRESET, defines the  
duration that the input voltage (VIN) must be kept above the  
RESET  
threshold voltage to toggle the  
device from operating when VIN is not stable. If VIN falls below  
RESET  
signal, preventing the  
V1 = VREFR1/RDIV  
1V 26.7 kΩ  
(37)  
the threshold voltage, the  
signal toggles quickly.  
= 267.54 mV.  
where V1 =  
V
V
CC  
IN  
99.8 kΩ  
R1  
R
Therefore, V2 = 463.93 mV, V3 = 607.21 mV, and V4 = 712.42 mV.  
PULL-UP  
OUTA  
Because the threshold of each comparator has changed, the time  
when each comparator changes its output has also changed.  
Calculate the new delay values for each comparator by using the  
following equation:  
R2  
OUTB  
C
RESET  
T
V
REF  
Figure 41. Programmable Threshold and Timeout Circuit  
V1  
t1  CL  
R
PULLUP RMIRROR  
ln 1  
(38)  
VREF  
V
TH  
V
IN  
267.54mV  
1  
where t1 = −1 μF(10 kΩ + 150 kΩ)ln  
= 49.81 ms.  
tRESET  
tRESET  
1
RESET  
Therefore, t2 = 99.78 ms, t3 = 149.52 ms, and t4 = 199.4 ms.  
To calculate t5 through t8, use Equation 32 to Equation 35:  
Figure 42. Threshold and Timeout Programmable Voltage Supervisor  
Timing Diagram  
During startup, the ADCMP394/ADCMP395/ADCMP396  
guarantee a low output state when VCC is still below the UVLO  
threshold, preventing the voltage supervisor from toggling.  
V4  
VREF  
t5  RMIRRORCLln  
712.42 mV  
1
When VIN reaches the threshold set by the resistor divider (R1  
and R2) and VREF, OUT1 changes from low to high and starts to  
charge the timeout capacitor (CT). If VIN is kept above the threshold  
voltage and the voltage in CT reaches VREF, OUT2 toggles. If VIN  
falls below the threshold voltage while CT is charging, the timeout  
capacitor quickly discharges, preventing OUT2 from toggling  
while VIN is not stable.  
where t5 = −150 kΩ × 1 μF × ln  
= 50.86 ms.  
Therefore, t6 = 74.83 ms, t7 = 115.2 ms, and t8 = 197.78 ms.  
In the condition that VIN is tied to VCC, the circuit operates  
when VCC is more than the minimum operating voltage.  
The threshold voltage (VTH) is configured by changing the  
resistor divider or VREF. Calculate the threshold voltage by  
R1  
R2  
REF   
VTH V  
1  
(39)  
Timeout is adjusted by changing the values of the pull-up  
resistor or the timeout capacitor. To set the timeout value,  
determine the allowable current flowing through RPULLUP, IPULLUP  
.
When IPULLUP is known, calculate RPULLUP and CT by the following  
formulas:  
R
PULLUP = VCC/IPULLUP  
tRESET  
(40)  
(41)  
CT  
VREF  
VCC  
RPULLUP ln 1  
Rev. B | Page 16 of 18  
 
 
Data Sheet  
ADCMP394/ADCMP395/ADCMP396  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
45°  
1.27 (0.0500)  
BSC  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0099)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 43. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 44. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
Rev. B | Page 17 of 18  
 
ADCMP394/ADCMP395/ADCMP396  
Data Sheet  
10.00 (0.3937)  
9.80 (0.3858)  
9
8
16  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AC  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 45. 16-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
Branding  
ADCMP394ARZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
10-Lead Mini Small Outline Package [MSOP]  
10-Lead Mini Small Outline Package [MSOP]  
16-Lead Standard Small Outline Package [SOIC_N]  
16-Lead Standard Small Outline Package [SOIC_N]  
R-8  
R-8  
ADCMP394ARZ-RL7  
ADCMP395ARMZ  
ADCMP395ARMZ-RL7  
ADCMP396ARZ  
RM-10  
RM-10  
R-16  
R-16  
LQ4  
LQ4  
ADCMP396ARZ-RL7  
1 Z = RoHS Compliant Part.  
©2014–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12209-0-5/16(B)  
Rev. B | Page 18 of 18  
 

相关型号:

ADCMP394ARZ-RL7

Single Comparator with Accurate Reference Output
ADI

ADCMP395

Comparators
ADI

ADCMP395ARMZ

Dual Comparator with Accurate Reference Output
ADI

ADCMP395ARMZ-RL7

Dual Comparator with Accurate Reference Output
ADI

ADCMP396

Comparators
ADI

ADCMP396ARZ

Quad Comparator with Accurate Reference Output
ADI

ADCMP396ARZ-RL7

Comparators
ADI

ADCMP551

Single Supply High Speed PECL Comparators
ADI

ADCMP551BRQ

Single Supply High Speed PECL Comparators
ADI

ADCMP551BRQZ

Single Supply High Speed PECL/LVPECL Comparators
ADI

ADCMP551BRQZ-REEL7

Single Supply High Speed PECL/LVPECL Comparators
ADI

ADCMP551_0410

Single-Supply, High Speed PECL/LVPECL Comparators
ADI