ADCMP561BRQ [ADI]

Dual High Speed PECL Comparators; 双路高速PECL比较器
ADCMP561BRQ
型号: ADCMP561BRQ
厂家: ADI    ADI
描述:

Dual High Speed PECL Comparators
双路高速PECL比较器

比较器
文件: 总16页 (文件大小:465K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual High Speed PECL Comparators  
ADCMP561/ADCMP562  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
HYS*  
Differential PECL compatible outputs  
700 ps propagation delay input to output  
75 ps propagation delay dispersion  
Input common-mode range: –2.0 V to +3.0 V  
Robust input protection  
NONINVERTING  
Q OUTPUT  
INPUT  
ADCMP561/  
ADCMP562  
INVERTING  
Q OUTPUT  
INPUT  
Differential latch control  
Internal latch pull-up resistors  
Power supply rejection greater than 85 dB  
700 ps minimum pulse width  
LATCH ENABLE  
LATCH ENABLE  
INPUT  
INPUT  
*ADCMP562 ONLY  
Figure 1.  
1.5 GHz equivalent input rise time bandwidth  
Typical output rise/fall time of 500 ps  
ESD protection > 4kV HBM, >200V MM  
Programmable hysteresis  
V
V
DD  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
DD  
QA  
QA  
QB  
1
2
3
4
5
6
7
8
16  
QB  
QA  
QA  
QB  
3
APPLICATIONS  
15 QB  
ADCMP562  
TOP VIEW  
(Not to Scale)  
V
GND  
LEB  
LEB  
4
DD  
Automatic test equipment  
High speed instrumentation  
Scope and logic analyzer front ends  
Window comparators  
High speed line receivers  
Threshold detection  
14 GND  
13 LEB  
12 LEB  
V
LEA  
5
DD  
ADCMP561  
TOP VIEW  
(Not to Scale)  
LEA  
LEA  
6
LEA  
V
V
7
EE  
CC  
11  
V
V
–INA  
+INA  
–INB  
+INB  
HYSB  
CC  
10 –INB  
+INB  
8
EE  
–INA  
+INA  
9
9
HYSA  
10  
Peak detection  
High speed triggers  
Figure 2. ADCMP561 16-Lead QSOP  
Figure 3. ADCMP562 20-Lead QSOP  
Patient diagnostics  
Disk drive read channel detection  
Hand-held test instruments  
Zero-crossing detectors  
Line receivers and signal restoration  
Clock drivers  
GENERAL DESCRIPTION  
The ADCMP561/ADCMP562 are high speed comparators  
fabricated on Analog Devices’ proprietary XFCB process. The  
devices feature a 700 ps propagation delay with less than 75 ps  
overdrive dispersion. Dispersion, a measure of the difference in  
propagation delay under differing overdrive conditions, is a  
particularly important characteristic of comparators. A separate  
programmable hysteresis pin is available on the ADCMP562.  
are fully compatible with PECL 10 K and 10 KH logic families.  
The outputs provide sufficient drive current to directly drive  
transmission lines terminated in 50 Ω to VDD − 2 V. A latch  
input, which is included, permits tracking, track-and-hold, or  
sample-and-hold modes of operation. The latch input pins  
contain internal pull-ups that set the latch in tracking mode  
when left open.  
A differential input stage permits consistent propagation delay  
with a wide variety of signals in the common-mode range from  
−2.0 V to +3.0 V. Outputs are complementary digital signals that  
The ADCMP561/ADCMP562 are specified over the industrial  
temperature range (−40°C to +85°C).  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
ADCMP561/ADCMP562  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Considerations.............................................................. 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 8  
Timing Information ....................................................................... 10  
Application Information................................................................ 11  
Clock Timing Recovery............................................................. 11  
Optimizing High Speed Performance ..................................... 11  
Comparator Propagation Delay Dispersion ........................... 11  
Comparator Hysteresis .............................................................. 12  
Minimum Input Slew Rate Requirement................................ 12  
Typical Application Circuits.......................................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
REVISION HISTORY  
7/04—Data Sheet Changed from Rev. 0 to Rev. A  
Changes to Specification Table ....................................................... 4  
Changes to Figure 14........................................................................ 9  
Changes to Figure 21...................................................................... 12  
Changes to Figure 23...................................................................... 13  
4/04—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
ADCMP561/ADCMP562  
SPECIFICATIONS  
VCC = +5.0 V, VEE = −5.2 V, VDD = +3.3 V, TA = −40°C to +85°C. Typical values are at TA = +25°C, unless otherwise noted.  
Table 1. Electrical Characteristics  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
DC INPUT CHARACTERISTICS  
Input Voltage Range  
Input Differential Voltage  
Input Offset Voltage  
Input Offset Voltage Channel Matching  
Offset Voltage Tempco  
Input Bias Current  
−2.0  
−5  
−10.0  
3.0  
+5  
+10.0  
V
V
VOS  
VCM = 0 V  
2.0  
2.0  
2.0  
3
mV  
mV  
µV/°C  
µA  
∆VOS/dT  
IIN  
−IN = −2 V, +IN = +3 V  
−10.0  
+10.0  
Input Bias Current Tempco  
Input Offset Current  
Input Capacitance  
Input Resistance, Differential Mode  
Input Resistance, Common Mode  
Active Gain  
0.5  
1.0  
0.75  
750  
1800  
63  
nA/°C  
µA  
pF  
kΩ  
kΩ  
dB  
CIN  
AV  
Common-Mode Rejection Ratio  
Hysteresis  
CMRR  
VCM = −2.0 V to +3.0 V  
RHYS = ∞  
80  
1.0  
dB  
mV  
LATCH ENABLE CHARACTERISTICS  
Latch Enable Voltage Range  
Latch Enable Differential Voltage Range  
Latch Enable Input High Current  
Latch Enable Input Low Current  
LE Voltage, Open  
VDD − 2.0  
0.4  
−300  
−300  
VDD − 0.2  
VDD  
2.0  
+300  
+300  
VDD + 0.1  
V
V
µA  
µA  
V
@ VDD  
@ VDD −2.0 V  
Latch inputs not connected  
Latch inputs not connected  
VOD = 250 mV  
VDD  
LE Voltage, Open  
VDD/2 − 0.2 VDD/2 VDD/2 + 0.2  
V
Latch Setup Time  
Latch Hold Time  
tS  
tH  
250  
250  
600  
500  
ps  
ps  
ps  
ps  
VOD = 250 mV  
Latch-to-Output Delay  
Latch Minimum Pulse Width  
DC OUTPUT CHARACTERISTICS  
Output Voltage—High Level  
Output Voltage—Low Level  
Rise Time  
tPLOH, tPLOL VOD = 250 mV  
tPL  
VOD = 250 mV  
VOH  
VOL  
tR  
PECL 50 Ω to VDD − 2.0 V  
PECL 50 Ω to VDD − 2.0 V  
10% to 90%  
VDD − 1.15  
VDD − 1.95  
VDD − 0.81  
VDD − 1.54  
V
V
ps  
ps  
550  
470  
Fall Time  
tF  
10% to 90%  
AC PERFORMANCE  
Propagation Delay  
tPD  
VOD = 1 V  
VOD = 20 mV  
VOD = 1 V  
700  
830  
0.25  
ps  
ps  
ps/°C  
Propagation Delay Tempco  
∆tPD /dT  
Prop Delay Skew—Rising Transition to  
Falling Transition  
VOD = 1 V  
50  
ps  
Within Device Propagation Delay Skew—  
Channel-to-Channel  
Overdrive Dispersion  
Overdrive Dispersion  
Slew Rate Dispersion  
Pulse Width Dispersion  
Duty Cycle Dispersion  
Common-Mode Voltage Dispersion  
V
OD = 1 V  
50  
75  
75  
50  
25  
15  
10  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
20 mV ≤ VOD ≤ 100 mV  
100 mV ≤ VOD ≤ 1.5 V  
0.4 V/ns ≤ SR ≤ 1.33 V/ns  
700 ps ≤ PW ≤ 10 ns  
33 MHz, 1 V/ns, 0.5 V  
1 V swing, −1.5 V ≤ VCM ≤ +2.5 V  
Rev. A | Page 3 of 16  
 
ADCMP561/ADCMP562  
Parameter  
Symbol  
BWEQ  
Conditions  
Min  
Typ  
Max  
Unit  
AC PERFORMANCE (continued)  
Equivalent Input Rise Time Bandwidth1  
Maximum Toggle Rate  
Minimum Pulse Width  
RMS Random Jitter  
0 V to 1 V swing, 2 V/ns  
>50% output swing  
∆tPD < 25 ps  
VOD = 400 mV, 1.3 V/ns, 312 MHz,  
50% duty cycle  
1500  
800  
700  
1.0  
MHz  
MHz  
ps  
PWMIN  
ps  
Unit-to-Unit Propagation Delay Skew  
POWER SUPPLY  
100  
ps  
Positive Supply Current  
Negative Supply Current  
Logic Supply Current  
IVCC  
IVEE  
IVDD  
@ +5.0 V  
@ −5.2 V  
@ 3.3 V without load  
@ 3.3 V with load  
Dual  
Dual  
Dual  
Dual, without load  
Dual, with load  
2
10  
6
45  
4.75  
−4.96  
2.5  
130  
180  
3.2  
22  
9
5
28  
13  
70  
5.25  
−5.45  
5.0  
190  
250  
mA  
mA  
mA  
mA  
V
Logic Supply Current  
60  
Positive Supply Voltage  
Negative Supply Voltage  
Logic Supply Voltage  
Power Dissipation  
Power Dissipation  
DC Power Supply Rejection Ratio—VCC  
DC Power Supply Rejection Ratio—VEE  
DC Power Supply Rejection Ratio—VDD  
HYSTERESIS (ADCMP562 Only)  
Hysteresis  
VCC  
VEE  
VDD  
PD  
5.0  
−5.2  
3.3  
160  
220  
85  
V
V
mW  
mW  
dB  
dB  
dB  
PSRRVCC  
PSRRVEE  
PSRRVDD  
85  
85  
RHYS = 19.5 kΩ  
RHYS = 8.0 kΩ  
20  
70  
mV  
mV  
1 Equivalent input rise time bandwidth assumes a first-order input response and is calculated by the following formula: BWEQ = 0.22/√ (trCOMP2 – trIN2), where trIN is the  
20/80 input transition time applied to the comparator and trCOMP is the effective transition time as digitized by the comparator input.  
Rev. A | Page 4 of 16  
 
ADCMP561/ADCMP562  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to  
absolute maximum rating conditions for extended periods may  
affect device reliability.  
Parameter  
Rating  
Supply Voltages  
Positive Supply Voltage (VCC to GND)  
Negative Supply Voltage (VEE to GND)  
Logic Supply Voltage (VDD to GND)  
Ground Voltage Differential  
Input Voltages  
−0.5 V to +6.0 V  
−6.0 V to +0.5 V  
−0.5 V to +6.0 V  
−0.5 V to +0.5 V  
THERMAL CONSIDERATIONS  
Input Common-Mode Voltage  
Differential Input Voltage  
Input Voltage, Latch Controls  
Output  
−3.0 V to +4.0 V  
−7.0 V to +7.0 V  
−0.5 V to +5.5 V  
The ADCMP561 QSOP 16-lead package option has a θJA  
(junction-to-ambient thermal resistance) of 104°C/W in  
still air.  
Output Current  
30 mA  
The ADCMP562 QSOP 20-lead package option has a θJA  
(junction-to-ambient thermal resistance) of 80°C/W in  
still air.  
Temperature  
Operating Temperature, Ambient  
Operating Temperature, Junction  
Storage Temperature Range  
−40°C to +85°C  
125°C  
−65°C to +150°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 5 of 16  
 
ADCMP561/ADCMP562  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
V
DD  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
DD  
QA  
QA  
QB  
1
2
3
4
5
6
7
8
16  
QB  
QA  
QA  
QB  
3
15 QB  
ADCMP562  
TOP VIEW  
(Not to Scale)  
V
GND  
LEB  
LEB  
4
DD  
14 GND  
13 LEB  
12 LEB  
V
LEA  
5
DD  
ADCMP561  
TOP VIEW  
(Not to Scale)  
LEA  
LEA  
6
LEA  
V
V
7
EE  
CC  
11  
V
V
–INA  
+INA  
–INB  
+INB  
HYSB  
CC  
10 –INB  
+INB  
8
EE  
–INA  
+INA  
9
9
HYSA  
10  
Figure 4. ADCMP561 16-Lead QSOP Pin Configuration  
Figure 5. ADCMP562 20-Lead QSOP Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
ADCMP561 ADCMP562 Mnemonic Function  
1
2
VDD  
QA  
Logic Supply Terminal.  
1
2
One of two complementary outputs for Channel A. QA is logic high if the analog voltage at the  
noninverting input is greater than the analog voltage at the inverting input (provided the  
comparator is in compare mode). See the description of Pin LEA for more information.  
One of two complementary outputs for Channel A. QA is logic low if the analog voltage at the  
noninverting input is greater than the analog voltage at the inverting input (provided the  
comparator is in compare mode). See the description of Pin LEA for more information.  
3
QA  
3
4
4
5
VDD  
LEA  
Logic Supply Terminal.  
One of two complementary inputs for Channel A Latch Enable. In compare mode (logic high),  
the output tracks changes at the input of the comparator. In the latch mode (logic low), the  
output reflects the input state just prior to the comparator’s being placed in the latch mode.  
LEA must be driven in conjunction with LEA. If left unconnected, the comparator defaults to  
compare mode.  
5
6
LEA  
One of two complementary inputs for Channel A Latch Enable. In compare mode (logic low),  
the output tracks changes at the input of the comparator. In latch mode (logic high), the  
output reflects the input state just prior to the comparator’s being placed in the latch mode.  
LEA must be driven in conjunction with LEA. If left unconnected, the comparator defaults to  
compare mode.  
6
7
7
8
VEE  
−INA  
Negative Supply Terminal.  
Inverting Analog Input of the Differential Input Stage for Channel A. The inverting A input must  
be driven in conjunction with the noninverting A input.  
8
9
+INA  
Noninverting Analog Input of the Differential Input Stage for Channel A. The noninverting  
A input must be driven in conjunction with the inverting A input.  
10  
11  
12  
HYSA  
HYSB  
+INB  
Programmable Hysteresis Input.  
Programmable Hysteresis Input.  
Noninverting Analog Input of the Differential Input Stage for Channel B. The noninverting  
B input must be driven in conjunction with the inverting B input.  
9
10  
13  
−INB  
Inverting Analog Input of the Differential Input Stage for Channel B. The inverting B input must  
be driven in conjunction with the noninverting B input.  
11  
12  
14  
15  
VCC  
LEB  
Positive Supply Terminal.  
One of two complementary inputs for Channel B Latch Enable. In compare mode (logic low),  
the output tracks changes at the input of the comparator. In latch mode (logic high), the  
output reflects the input state just prior to placing the comparator in the latch mode. LEB  
must be driven in conjunction with LEB. If left unconnected, the comparator defaults to  
compare mode.  
13  
16  
LEB  
One of two complementary inputs for Channel B Latch Enable. In compare mode (logic high),  
the output tracks changes at the input of the comparator. In latch mode (logic low), the output  
reflects the input state just prior to placing the comparator in the latch mode. LEB must be  
driven in conjunction with LEB. If left unconnected, the comparator defaults to compare mode.  
Rev. A | Page 6 of 16  
 
ADCMP561/ADCMP562  
Pin No.  
ADCMP561 ADCMP562 Mnemonic Function  
14  
15  
17  
18  
GND  
QB  
Analog Ground.  
One of two complementary outputs for Channel B. QB is logic low if the analog voltage at the  
noninverting input is greater than the analog voltage at the inverting input (provided the  
comparator is in compare mode). See the description of PIN LEB for more information.  
16  
19  
20  
QB  
One of two complementary outputs for Channel B. QB is logic high if the analog voltage at the  
noninverting input is greater than the analog voltage at the inverting input (provided the  
comparator is in compare mode). See the description of Pin LEB for more information.  
VDD  
Logic Supply Terminal.  
Rev. A | Page 7 of 16  
ADCMP561/ADCMP562  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC = +5.0 V, VEE = –5.2 V, VDD = +3.3 V, TA = 25°C, unless otherwise noted.  
3.0  
2.80  
2.78  
2.76  
2.74  
2.72  
2.70  
2.68  
2.66  
2.64  
2.62  
2.60  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–2.5  
–1.5  
–0.5  
0.5  
1.5  
2.5  
3.5  
–40  
–20  
0
20  
40  
60  
80  
NONINVERTING INPUT VOLTAGE (INVERTING VOLTAGE = 0V)  
TEMPERATURE (°C)  
Figure 6. Input Bias Current vs. Input Voltage  
Figure 9. Input Bias Current vs. Temperature  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
–40  
–20  
0
20  
40  
60  
80  
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
TEMPERATURE (°C)  
TIME (ns)  
Figure 7. Input Offset Voltage vs. Temperature  
Figure 10. Rise and Fall of Outputs vs. Time  
575  
570  
565  
560  
555  
550  
545  
540  
535  
530  
525  
500  
495  
490  
485  
480  
475  
470  
465  
460  
455  
450  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 8. Rise Time vs. Temperature  
Figure 11. Fall Time vs. Temperature  
Rev. A | Page 8 of 16  
 
ADCMP561/ADCMP562  
715  
710  
705  
700  
695  
690  
685  
680  
708  
706  
704  
702  
700  
698  
696  
694  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
–2  
–1  
0
1
2
3
TEMPERATURE (°C)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 12. Propagation Delay vs. Temperature  
Figure 15. Propagation Delay vs. Common-Mode Voltage  
140  
120  
100  
80  
25  
20  
15  
10  
5
60  
40  
0
20  
0
–5  
0.7  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.7  
2.7  
3.7  
4.7  
5.7  
6.7  
7.7  
8.7  
9.7  
OVERDRIVE VOLTAGE (V)  
PULSE WIDTH (ns)  
Figure 13. Propagation Delay vs. Overdrive Voltage  
Figure 16. Propagation Delay Error vs. Pulse Width  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
0
50  
100  
(µA)  
150  
50  
40  
30  
20  
10  
0
I
R
(k)  
HYS  
HYS  
Figure 17. Comparator Hysteresis vs. IHYS  
Figure 14. Comparator Hysteresis vs. RHYS  
Rev. A | Page 9 of 16  
 
ADCMP561/ADCMP562  
TIMING INFORMATION  
LATCH ENABLE  
50%  
LATCH ENABLE  
tS  
tPL  
tH  
V
IN  
DIFFERENTIAL  
INPUT VOLTAGE  
V
± V  
OS  
REF  
V
OD  
tPDL  
tPLOH  
Q OUTPUT  
50%  
50%  
tF  
tPDH  
Q OUTPUT  
tPLOL  
tR  
Figure 18. System Timing Diagram  
Figure 18 shows the compare and latch features of the ADCMP561/ADCMP562. Table 4 describes the terms in the diagram.  
Table 4. Timing Descriptions  
Symbol Timing  
Description  
tPDH  
tPDL  
tPLOH  
tPLOL  
tH  
Input to Output High Delay  
Propagation delay measured from the time the input signal crosses the reference ( the  
input offset voltage) to the 50% point of an output low-to-high transition.  
Propagation delay measured from the time the input signal crosses the reference ( the  
input offset voltage) to the 50% point of an output high-to-low transition.  
Propagation delay measured from the 50% point of the latch enable signal low-to-high  
transition to the 50% point of an output low-to-high transition.  
Propagation delay measured from the 50% point of the latch enable signal low-to-high  
transition to the 50% point of an output high-to-low transition.  
Input to Output Low Delay  
Latch Enable to Output High Delay  
Latch Enable to Output Low Delay  
Minimum Hold Time  
Minimum time after the negative transition of the latch enable signal that the input signal  
must remain unchanged to be acquired and held at the outputs.  
tPL  
tS  
Minimum Latch Enable Pulse Width Minimum time the latch enable signal must be high to acquire an input signal change.  
Minimum Setup Time  
Output Rise Time  
Output Fall Time  
Minimum time before the negative transition of the latch enable signal that an input  
signal change must be present to be acquired and held at the outputs.  
Amount of time required to transition from a low to a high output as measured at the  
20% and 80% points.  
Amount of time required to transition from a high to a low output as measured at the  
20% and 80% points.  
tR  
tF  
VOD  
Voltage Overdrive  
Difference between the differential input and reference input voltages.  
Rev. A | Page 10 of 16  
 
 
 
ADCMP561/ADCMP562  
APPLICATION INFORMATION  
The ADCMP561/ADCMP562 comparators are very high speed  
devices. Consequently, high speed design techniques must be  
employed to achieve the best performance. The most critical  
aspect of any ADCMP561/ADCMP562 design is the use of a  
low impedance ground plane. A ground plane, as part of a  
multilayer board, is recommended for proper high speed  
performance. Using a continuous conductive plane over the  
surface of the circuit board can create this, allowing breaks in  
the plane only for necessary signal paths. The ground plane  
provides a low inductance ground, eliminating any potential  
differences at different ground points throughout the circuit  
board caused by ground bounce. A proper ground plane also  
minimizes the effects of stray capacitance on the circuit board.  
CLOCK TIMING RECOVERY  
Comparators are often used in digital systems to recover clock  
timing signals. High speed square waves transmitted over a  
distance, even tens of centimeters, can become distorted due to  
stray capacitance and inductance. Poor layout or improper  
termination can also cause reflections on the transmission line,  
further distorting the signal waveform. A high speed  
comparator can be used to recover the distorted waveform  
while maintaining a minimum of delay.  
OPTIMIZING HIGH SPEED PERFORMANCE  
As with any high speed comparator amplifier, proper design and  
layout techniques should be used to ensure optimal perform-  
ance from the ADCMP561/ADCMP562. The performance  
limits of high speed circuitry can be a result of stray capaci-  
tance, improper ground impedance, or other layout issues.  
It is also important to provide bypass capacitors for the power  
supply in a high speed application. A 1 µF electrolytic bypass  
capacitor should be placed within 0.5 inches of each power  
supply pin to ground. These capacitors reduce any potential  
voltage ripples from the power supply. In addition, a 10 nF  
ceramic capacitor should be placed as close as possible from the  
power supply pins on the ADCMP561/ADCMP562 to ground.  
These capacitors act as a charge reservoir for the device during  
high frequency switching.  
Minimizing resistance from source to the input is an important  
consideration in maximizing the high speed operation of the  
ADCMP561/ADCMP562. Source resistance in combination  
with equivalent input capacitance could cause a lagged response  
at the input, thus delaying the output. The input capacitance of  
the ADCMP561/ADCMP562, in combination with stray  
capacitance from an input pin to ground, could result in several  
picofarads of equivalent capacitance. A combination of 3 kΩ  
source resistance and 5 pF of input capacitance yields a time  
constant of 15 ns, which is significantly slower than the 750 ps  
capability of the ADCMP561/ADCMP562. Source impedances  
should be significantly less than 100 Ω for best performance.  
The LATCH ENABLE input is active low (latched). If the  
latching function is not used, the LATCH ENABLE input may  
be left open or may be attached to VDD (VDD is a PECL logic  
high). The complementary input,  
, may be left  
LATCH ENABLE  
open or may be tied to VDD − 2.0 V. Leaving the latch inputs  
unconnected or providing the proper voltages disables the  
latching function.  
Sockets should be avoided due to stray capacitance and induc-  
tance. If proper high speed techniques are used, the devices  
should be free from oscillation when the comparator input  
signal passes through the switching threshold.  
Occasionally, one of the two comparator stages within the  
ADCMP561/ADCMP562 is not used. The inputs of the unused  
comparator should not be allowed to float. The high internal  
gain may cause the output to oscillate (possibly affecting the  
comparator that is being used) unless the output is forced into a  
fixed state. This is easily accomplished by ensuring that the two  
inputs are at least one diode drop apart, while also appropriately  
COMPARATOR PROPAGATION DELAY  
DISPERSION  
The ADCMP561/ADCMP562 have been specifically designed  
to reduce propagation delay dispersion over an input overdrive  
range of 100 mV to 1.5 V. Propagation delay overdrive  
dispersion is the change in propagation delay that results from a  
change in the degree of overdrive (how far the switching point  
is exceeded by the input). The overall result is a higher degree of  
timing accuracy because the ADCMP561/ADCMP562 are far  
less sensitive to input variations than most comparator designs.  
connecting the LATCH ENABLE and  
inputs  
LATCH ENABLE  
as described previously.  
The best performance is achieved with the use of proper PECL  
terminations. The open emitter outputs of the ADCMP561/  
ADCMP562 are designed to be terminated through 50 Ω  
resistors to VDD − 2.0 V, or any other equivalent PECL termin-  
ation. If high speed PECL signals must be routed more than a  
centimeter, microstrip or stripline techniques may be required  
to ensure proper transition times and prevent output ringing.  
Rev. A | Page 11 of 16  
 
ADCMP561/ADCMP562  
Propagation delay dispersion is a specification that is important  
in critical timing applications such as ATE, bench instruments,  
and nuclear instrumentation. Overdrive dispersion is defined  
as the variation in propagation delay as the input overdrive  
conditions are changed (Figure 19). For the ADCMP561 and  
ADCMP562, overdrive dispersion is typically 75 ps as the  
overdrive is changed from 100 mV to 1.5 V. This specification  
applies for both positive and negative overdrive because the  
ADCMP561/ADCMP562 have equal delays for positive and  
negative going inputs.  
hysteresis versus resistance curve is shown in Figure 21.  
A current source can also be used with the HYS pin. The  
relationship between the current applied to the HYS pin and the  
resulting hysteresis is shown in Figure 17.  
–V  
2
+V  
2
H
H
0V  
INPUT  
1
1.5V OVERDRIVE  
INPUT VOLTAGE  
20mV OVERDRIVE  
± V  
0
V
REF  
OS  
OUTPUT  
DISPERSION  
Q OUTPUT  
Figure 20. Comparator Hysteresis Transfer Function  
Figure 19. Propagation Delay Dispersion  
160  
140  
120  
100  
80  
COMPARATOR HYSTERESIS  
The addition of hysteresis to a comparator is often useful in a  
noisy environment, or where it is not desirable for the  
comparator to toggle between states when the input signal is at  
the switching threshold. The transfer function for a comparator  
with hysteresis is shown in Figure 20. If the input voltage  
approaches the threshold from the negative direction, the  
comparator switches from a 0 to a 1 when the input crosses  
+VH/2. The new switching threshold becomes −VH/2. The  
comparator remains in a 1 state until the threshold −VH/2 is  
crossed, coming from the positive direction. In this manner,  
noise centered on 0 V input does not cause the comparator to  
switch states unless it exceeds the region bounded by VH/2.  
60  
40  
20  
0
50  
40  
30  
20  
10  
0
R
(k)  
HYS  
Figure 21. Comparator Hysteresis vs. RHYS  
Positive feedback from the output to the input is often used to  
produce hysteresis in a comparator (Figure 24). The major  
problem with this approach is that the amount of hysteresis  
varies with the output logic levels, resulting in a hysteresis that  
is not symmetrical around zero.  
MINIMUM INPUT SLEW RATE REQUIREMENT  
As for all high speed comparators, a minimum slew rate must  
be met to ensure that the device does not oscillate when the  
input crosses the threshold. This oscillation is due in part to the  
high input bandwidth of the comparator and the parasitics of  
the package. Analog Devices recommends a slew rate of 1 V/µs  
or faster to ensure a clean output transition. If slew rates less  
than 1 V/µs are used, hysteresis should be added to reduce the  
oscillation.  
In the ADCMP562, hysteresis is generated through the  
programmable hysteresis pin. A resistor from the HYS pin to  
GND creates a current into the part that is used to generate  
hysteresis. Hysteresis generated in this manner is independent  
of output swing and is symmetrical around the trip point. The  
Rev. A | Page 12 of 16  
 
 
 
 
ADCMP561/ADCMP562  
TYPICAL APPLICATION CIRCUITS  
V
V
IN  
IN  
ADCMP561/  
ADCMP562  
OUTPUTS  
OUTPUTS  
ADCMP562  
HYS  
V
V
REF  
REF  
0TO 80kΩ  
LATCH  
ENABLE  
INPUTS  
V
– 2.0V  
V
– 2V  
DD  
DD  
ALL RESISTORS 50, UNLESS OTHERWISE NOTED  
ALL RESISTORS 50Ω  
Figure 22. High Speed Sampling Circuits  
Figure 24. Adding Hysteresis Using the HYS Control Pin  
50  
50Ω  
50Ω  
+V  
REF  
ADCMP561/  
ADCMP562  
ADCMP561/  
ADCMP562  
OUTPUTS  
V
IN  
V
50Ω  
IN  
100Ω  
100Ω  
(V – 2V)  
DD  
× 2  
V
–2V  
DD  
Figure 25. How to Interface a PECL Output to an  
Instrument with a 50 Ω to Ground Input  
ADCMP561/  
ADCMP562  
OUTPUTS  
–V  
REF  
V
–2V  
DD  
LATCH  
ENABLE  
INPUTS  
ALL RESISTORS 50UNLESS OTHERWISE NOTED  
Figure 23. High Speed Window Comparator  
Rev. A | Page 13 of 16  
 
ADCMP561/ADCMP562  
OUTLINE DIMENSIONS  
0.193  
BSC  
16  
1
9
8
0.154  
BSC  
0.236  
BSC  
PIN 1  
0.069  
0.053  
0.065  
0.049  
8°  
0°  
0.010  
0.004  
0.025  
BSC  
0.012  
0.008  
0.050  
0.016  
SEATING  
PLANE  
0.010  
0.006  
COPLANARITY  
0.004  
COMPLIANT TO JEDEC STANDARDS MO-137AB  
Figure 26. 16-Lead Shrink Small Outline Package [QSOP]  
(RQ-16)  
Dimensions shown in inches  
0.341  
BSC  
20  
1
11  
10  
0.154  
BSC  
0.236  
BSC  
PIN 1  
0.065  
0.049  
0.069  
0.053  
8°  
0°  
0.010  
0.004  
0.025  
BSC  
0.012  
0.008  
SEATING  
PLANE  
0.050  
0.016  
0.010  
0.006  
COPLANARITY  
0.004  
COMPLIANT TO JEDEC STANDARDS MO-137AD  
Figure 27. 20-Lead Shrink Small Outline Package [QSOP]  
(RQ-20)  
Dimensions shown in inches  
ORDERING GUIDE  
Model  
ADCMP561BRQ  
ADCMP562BRQ  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
RQ-16  
RQ-20  
16-Lead QSOP  
20-Lead QSOP  
Rev. A | Page 14 of 16  
 
ADCMP561/ADCMP562  
NOTES  
Rev. A | Page 15 of 16  
ADCMP561/ADCMP562  
NOTES  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04687–0–7/04(A)  
Rev. A | Page 16 of 16  

相关型号:

ADCMP561_15

Dual High Speed PECL Comparators
ADI

ADCMP562

Dual High Speed PECL Comparators
ADI

ADCMP562BRQ

Dual High Speed PECL Comparators
ADI

ADCMP562BRQZ

Dual High Speed PECL Comparators
ADI

ADCMP562BRQZ-RL7

Dual High Speed PECL Comparator 20 - Lead QSOP
ADI

ADCMP562_15

Dual High Speed PECL Comparators
ADI

ADCMP563

Dual High Speed ECL Comparators
ADI

ADCMP563BCP-R2

Dual, High Speed ECL Comparators
ADI

ADCMP563BCP-RL7

Dual, High Speed ECL Comparators
ADI

ADCMP563BCP-WP

Dual, High Speed ECL Comparators
ADI

ADCMP563BCPZ-R2

Dual High Speed ECL Comparator 16 - Lead QSOP
ADI

ADCMP563BCPZ-RL7

Dual High Speed ECL Comparator 16 - Lead QSOP
ADI