ADD8704 [ADI]

16 V Quad Operational Amplifier; 16 V四路运算放大器
ADD8704
型号: ADD8704
厂家: ADI    ADI
描述:

16 V Quad Operational Amplifier
16 V四路运算放大器

运算放大器
文件: 总16页 (文件大小:546K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16 V Quad  
Operational Amplifier  
ADD8704  
FEATURES  
PIN CONFIGURATIONS  
Single-supply operation: 4.5 V to 16.5 V  
Upper/lower buffers swing to VDD/GND  
Continuous output current: 35 mA  
VCOM peak output current: 250 mA  
Offset voltage: 15 mV  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT A  
–IN A  
+IN A  
V+  
OUT D  
–IN D  
+IN D  
V–  
+
+ –  
Slew rate: 6 V/µs  
ADD8704  
Unity gain stable with large capacitive loads  
Supply current: 700 µA per amplifier  
Drop-in replacement for EL5420  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
+
+ –  
8
APPLICATIONS  
TFT LCD monitor panels  
TFT LCD notebook panels  
Communications equipment  
Portable instrumentation  
Electronic games  
Figure 1. 14-Lead TSSOP (RU Suffix)  
12 –IN D  
11 +IN D  
10 V–  
–IN A  
+IN A  
V+  
1
2
3
4
GENERAL DESCRIPTION  
ADD8704  
TOP VIEW  
The ADD8704 is a single-supply quad operational amplifier that  
has been optimized for todays low cost TFT LCD notebook and  
monitor panels. Output channels A and D swing to the rail for  
use as end-point gamma references. Output channels B and C  
provide high continuous and peak current drive for use as VCOM  
or repair amplifiers; they can also be used as midpoint gamma  
references. All four amplifiers have excellent transient response  
and have high slew rate and capacitive load drive capability. The  
ADD8704 is specified over the –40°C to +85°C temperature  
range and is available in either a 14-lead TSSOP or a 16-lead  
LFCSP package for thin, portable applications.  
+IN B  
9 +IN C  
Figure 2. 16-Lead CSP (CP Suffix)  
Table 1. Input/Output Characteristics  
Channel  
VIH  
VIL  
IO (mA)  
15  
35  
35  
15  
ISC (mA)  
150  
250  
250  
150  
A
B
C
D
VDD – 1.7 V  
VDD – 1.7 V  
VDD  
GND  
GND  
GND  
GND + 1.7 V  
VDD  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
ADD8704  
TABLE OF CONTENTS  
Electrical Characteristics ................................................................. 3  
Absolute Maximum Ratings............................................................ 5  
Typical Performance Characteristics ............................................. 6  
Application Information................................................................ 12  
Theory.......................................................................................... 12  
Input............................................................................................. 12  
Output.......................................................................................... 12  
Important Note........................................................................... 12  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
REVISION HISTORY  
Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
ADD8704  
ELECTRICAL CHARACTERISTICS  
Table 2. VS = 16 V, VCM = VS/2, TA @ 25°C, unless otherwise noted  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
Offset Voltage Drift  
Input Bias Current  
VOS  
2
10  
200  
15  
mV  
µV/°C  
nA  
nA  
nA  
–40°C ≤ TA ≤ +85°C  
–40°C ≤ TA ≤ +85°C  
VOS/T  
IB  
1100  
1500  
100  
Input Offset Current  
IOS  
10  
–40°C ≤ TA ≤ +85°C  
–40°C ≤ TA ≤ +85°C  
VCM = 0 to (VS – 1.7 V)  
VCM = 0 to (VS – 1.7 V)  
VCM = 0 to VS  
250  
nA  
Common-Mode Rejection Ratio  
Amp A  
Amp B  
Amp C  
Amp D  
Large Signal Voltage Gain  
Input Impedance  
Input Capacitance  
OUTPUT CHARACTERISTIS  
Output Voltage High (A)  
Optimized for Low Swing  
CMRR  
54  
54  
54  
54  
1
95  
95  
95  
95  
10  
400  
1
dB  
dB  
dB  
dB  
V/mV  
kΩ  
pF  
VCM = 1.7 V to VS  
RL = 10 kΩ, VO = 0.5 to (VS – 0.5 V)  
AVO  
ZIN  
CIN  
VOH  
VOH  
VOH  
VOH  
VOL  
VOL  
VOL  
VOL  
IL = 100 µA  
IL = 5 mA  
–40°C ≤ TA ≤ +85°C  
IL = 100 µA  
IL = 5 mA  
–40°C ≤ TA ≤ +85°C  
IL = 100 µA  
IL = 5 mA  
–40°C ≤ TA ≤ +85°C  
IL = 100 µA  
IL = 5 mA  
–40°C ≤ TA ≤ +85°C  
IL = 100 µA  
IL = 5 mA  
–40°C ≤ TA ≤ +85°C  
IL = 100 µA  
IL = 5 mA  
–40°C ≤ TA ≤ +85°C  
IL = 100 µA  
IL = 5 mA  
–40°C ≤ TA ≤ +85°C  
IL = 100 µA  
IL = 5 mA  
15.985  
15.75  
V
V
V
V
V
V
V
V
V
V
V
V
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
mA  
mA  
15.6  
15.5  
Output Voltage High (B)  
Optimized for VCOM  
15.995  
15.9  
15.8  
15.75  
Output Voltage High (C)  
Optimized for Midrange  
15.995  
15.9  
15.8  
15.75  
Output Voltage High (D)  
Optimized for High Swing  
15.99  
15.85  
15.75  
15.65  
Output Voltage Low (A)  
Optimized for Low Swing  
20  
80  
200  
300  
Output Voltage Low (B)  
Optimized for VCOM  
5
50  
150  
250  
Output Voltage Low (C)  
Optimized for Midrange  
5
50  
150  
250  
Output Voltage Low (D)  
Optimized for High Swing  
50  
375  
500  
600  
–40°C ≤ TA ≤ +85°C  
Continuous Output Current (A and D)  
Continuous Output Current (B and C)  
Peak Output Current (A and D)  
Peak Output Current (B and C)  
SUPPLY CHARACTERISTICS  
Supply Voltage  
IOUT  
IOUT  
IPK  
15  
35  
50  
200  
VS = 16 V  
VS = 16 V  
IPK  
VS  
PSRR  
ISY  
4.5  
70  
16  
V
Power Supply Rejection Ratio  
Total Supply Current  
VS = 4 V to 17 V, –40°C ≤ TA ≤ +85°C  
VO = VS/2, No Load  
–40°C ≤ TA ≤ +85°C  
90  
2.8  
dB  
mA  
mA  
3.4  
4
Rev. 0 | Page 3 of 16  
 
ADD8704  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
–3 dB Bandwidth  
SR  
RL = 2 kΩ, CL = 200 pF  
RL = 10 kΩ, CL = 40 pF  
RL = 10 kΩ, CL = 40 pF  
RL = 10 kΩ, CL = 40 pF  
4
6
V/µs  
GBP  
BW  
Øo  
5.8  
6.8  
55  
75  
MHz  
MHz  
Degrees  
dB  
Phase Margin  
Channel Separation  
NOISE PERFORMANCE  
Voltage Noise Density (A, B, and C)  
en  
en  
en  
en  
in  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
f = 10 kHz  
f = 10 kHz  
26  
25  
36  
35  
0.8  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
pA/√Hz  
Voltage Noise Density (D)  
Current Noise Density  
Rev. 0 | Page 4 of 16  
ADD8704  
ABSOLUTE MAXIMUM RATINGS  
Table 3. ADD8704 Stress Ratings1  
Table 4. Package Characteristics  
Package Type  
2
Parameter  
Rating  
θJA  
θJC  
35  
303  
Unit  
°C/W  
°C/W  
Supply Voltage (VS)  
18 V  
14-Lead TSSOP (RU)  
180  
383  
Input Voltage  
–0.5 V to VS + 0.5 V  
VS  
–65°C to +150°C  
–40°C to +85°C  
–65°C to +150°C  
300°C  
16-Lead LFCSP (CP)  
Differential Input Voltage  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature Range  
ESD Tolerance (HBM)  
ESD Tolerance (MM)  
1 Stresses above those listed under Absolute Maximum Ratings may cause  
permanent damage to the device. This is a stress rating only; functional  
operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may  
affect device reliability.  
1500 V  
175 V  
2 θJA is specified for worst-case conditions, i.e., θJA is specified for devices  
soldered onto a circuit board for surface-mount packages.  
3 DAP is soldered down to PCB.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this part features proprietary  
ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic  
discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of  
functionality.  
Rev. 0 | Page 5 of 16  
 
 
 
 
ADD8704  
TYPICAL PERFORMANCE CHARACTERISTICS  
600  
10  
8
V
S
= 16V  
V
= 16V  
S
500  
400  
300  
200  
100  
0
6
4
C
2
B
0
A
–2  
–4  
–6  
D
–8  
–10  
–9  
–7  
–5  
–3  
–1  
1
3
5
7
9
11  
0
2
4
6
8
10  
12  
14  
16  
INPUT OFFSET VOLTAGE (mV)  
COMMON-MODE VOLTAGE (V)  
Figure 3. Input Offset Voltage, VS = 16 V  
Figure 6. Offset Voltage vs. Common-Mode Voltage  
20  
18  
16  
14  
12  
10  
8
400  
200  
V
= 16V  
S
V
= 16V  
S
A
0
–200  
–400  
–600  
–800  
–1000  
D
B
C
6
4
2
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
TCVOS (µV/°C)  
TEMPERATURE (°C)  
Figure 7. Input Bias Current vs. Temperature  
Figure 4. Input Offset Voltage Drift, VS = 16 V  
80  
10  
8
V
= 16V  
V
= 16V  
S
S
V
= V /2  
S
CM  
60  
40  
6
4
A
D
B
20  
2
C
D
0
0
B
C
–2  
–4  
–6  
–8  
–20  
–40  
A
–60  
–80  
–10  
–60  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 8. Input Offset Current vs. Temperature  
Figure 5. Input Bias Current vs. Temperature  
Rev. 0 | Page 6 of 16  
 
ADD8704  
100k  
10k  
100k  
10k  
1k  
V
= 16V  
V
= 16V  
S
S
CHANNEL A  
CHANNEL D  
1k  
100  
10  
100  
10  
SINK  
SOURCE  
SOURCE  
SINK  
1
1
0.1  
0.1  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
100  
100  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 9. Channel A Output Voltage vs. Load Current  
Figure 12. Channel D Output Voltage vs. Load Current  
10k  
1k  
10k  
1k  
V
= 4.5V  
V
= 16V  
S
S
SOURCE  
CHANNEL B  
D
100  
10  
100  
A
B, C  
SOURCE  
10  
1
SINK  
1
0.1  
0.1  
0.0001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 10. Channel B Output Voltage vs. Load Current  
Figure 13. Output Source Voltage vs. Load Current, All Channels  
10k  
1k  
10k  
V
= 16V  
V
= 4.5V  
S
S
CHANNEL C  
SINK  
1k  
D
A
100  
100  
SOURCE  
B, C  
10  
10  
1
SINK  
1
0.1  
0.1  
0.0001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 11. Channel C Output Voltage vs. Load Current  
Figure 14. Output Sink Voltage vs. Load Current, All Channels  
Rev. 0 | Page 7 of 16  
ADD8704  
16.00  
15.95  
15.90  
15.85  
15.80  
15.75  
0.80  
0.75  
0.70  
0.65  
0.60  
V
= 16V  
S
V
= 16V  
S
I
= 5mA  
SOURCE  
B
C
D
A
15.70  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
100  
18  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. Output Source Voltage vs. Temperature  
Figure 18. Supply Current vs. Temperature  
500  
450  
400  
80  
60  
40  
20  
0
V
= 16V  
S
L
L
V
= 16V  
S
R
C
= 10k  
I
= 5mA  
SINK  
= 40pF  
D
45  
350  
300  
90  
250  
200  
150  
100  
50  
135  
180  
225  
A
B
C
0
–20  
–60  
–40  
–20  
0
20  
40  
60  
80  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
TEMPERATURE (°C)  
Figure 16. Output Sink Voltage vs. Temperature  
Figure 19. Frequency vs. Gain and Shift  
1.0  
0.9  
0.8  
0.7  
0.6  
80  
40  
60  
20  
0
0
V
= 4.5V  
= 10kΩ  
= 40pF  
S
L
L
R
C
45  
90  
0.5  
0.4  
0.3  
0.2  
0.1  
0
135  
180  
225  
–20  
0
2
4
6
8
10  
12  
14  
16  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
SUPPLY VOLTAGE (V)  
Figure 17. Supply Current vs. Supply Voltage  
Figure 20. Frequency vs. Gain and Shift  
Rev. 0 | Page 8 of 16  
ADD8704  
50  
40  
30  
20  
120  
100  
80  
60  
40  
20  
0
V
= 16V  
S
L
L
R
C
= 10kΩ  
= 40pF  
V
= 16V  
S
A
A
A
= 100  
= 10  
= 1  
V
V
V
10  
0
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. Closed-Loop Gain vs. Frequency  
Figure 24. Common-Mode Rejection vs. Frequency  
16  
14  
12  
10  
8
100  
80  
60  
40  
20  
0
V
= 16V  
= 10kΩ  
= 1  
S
R
A
L
V = 16V  
S
V
+PSRR  
PSRR  
ٛ
6
4
2
0
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. Output Swing vs. Frequency  
Figure 25. Common-Mode Rejection vs. Frequency  
675  
600  
525  
100  
90  
80  
70  
60  
50  
40  
V
= ±8V  
= ±50mV  
= 1  
A
= 1  
S
V
V
IN  
A
R
V
L
–OS  
= 2k  
V
= 4.5V  
S
450  
375  
300  
+OS  
225  
150  
75  
30  
20  
10  
0
V
= 16V  
S
0
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
CAPACITIVE LOAD (pF)  
Figure 26. Overshoot vs. Capacitive Load  
Figure 23. Impedance vs. Frequency  
Rev. 0 | Page 9 of 16  
ADD8704  
20  
R
= 10kΩ  
L
10  
0
100pF  
50pF  
–10  
–20  
–30  
–40  
–50  
540pF  
1040pF  
10M  
100k  
1M  
FREQUENCY (Hz)  
30M  
TIME (40µs/DIV)  
Figure 27.Gain vs. Capacitive Load  
Figure 30. No Phase Reversal  
20  
15  
V
= 16V  
V
= 16V  
S
S
R
C
= 2kΩ  
L
= 100pF  
LOAD  
10  
5
2kΩ  
0
10kΩ  
1kΩ  
150Ω  
–5  
–10  
–15  
–20  
–25  
–30  
100k  
1M  
10M  
100M  
TIME (0.2µs/DIV)  
FREQUENCY (Hz)  
Figure 28. Gain vs. Resistive Load  
Figure 31. Small-Signal Transient Response  
11  
10  
9
V
= 16V  
S
8
120pF  
7
1nF  
10nF  
320pF  
6
5
4
3
520pF  
2
1
0
V
= 16V  
S
R
C
SERIES = 33Ω  
OUT  
= 0.1µF  
LOAD  
–200  
200  
600  
1000  
1400  
1800  
TIME (20µs/DIV)  
TIME (ns)  
Figure 29. Transient Load Response  
Figure 32. Small-Signal Transient Response  
Rev. 0 | Page 10 of 16  
ADD8704  
70  
60  
50  
40  
30  
V
= 16V  
= 2kΩ  
DD  
V = 16V  
S
R
C
L
L
MARKER SET @ 10kHz  
MARKER READING = 36.6nV/ Hz  
CHANNEL D  
= 100pF  
20  
10  
0
–10  
0
5
10  
15  
20  
25  
TIME (2µs/DIV)  
FREQUENCY (Hz)  
Figure 33. Large Signal Transient Response  
Figure 35. Voltage Noise Density vs. Frequency  
70  
60  
50  
40  
V
= 16V  
S
MARKER SET @ 10kHz  
MARKER READING = 25.7nV/ Hz  
CHANNEL A, B, C  
30  
20  
10  
0
–10  
0
5
10  
15  
20  
25  
FREQUENCY (Hz)  
Figure 34. Voltage Noise Density vs. Frequency  
Rev. 0 | Page 11 of 16  
ADD8704  
APPLICATION INFORMATION  
THEORY  
Amplifier C is a rail-to-rail input range that makes the  
ADD8704 suitable for use anywhere on the RDAC as well as for  
The ADD8704 is designed for use in LCD gamma correction  
circuits. Depending on the panel architecture, between 4 and 18  
different gamma voltages may be needed. These gamma  
voltages provide the reference voltages for the column driver  
RDACs. Due to the capacitive nature of LCD panels, it is  
necessary for these drivers to provide high capacitive load drive.  
VCOM applications.  
Amplifier D has an NPN follower input stage. This covers the  
upper rail to GND plus 1.7 V. This amplifier is suitable for the  
upper range of the RDAC.  
OUTPUT  
In addition to providing gamma reference voltages, these parts  
are also capable of providing the VCOM voltage. VCOM is the  
center voltage common to all the LCD pixels. Since the VCOM  
circuit is common to all the pixels in the panel, the VCOM driver  
is designed to supply continuous currents up to 35 mA.  
The outputs of the amplifiers have been designed to match the  
performance needs of the gamma correction circuit. All four of  
the amplifiers have rail-to-rail outputs, but the current drive  
capabilities differ. Since amplifier A is suited for voltages close  
to VSS (GND), the output is designed to sink more current than  
it sources; it can sink 15 mA of continuous current. Likewise,  
since amplifier D is primarily used for voltages close to VDD, it  
sources more current. Amplifier D can source 15 mA of  
continuous current. Amplifiers B and C are designed for use as  
either midrange gamma or VCOM amplifiers. They therefore sink  
and source equal amounts of current. Since they are used as  
VCOM amplifiers, they have a drive capability of up to 35 mA of  
continuous current.  
INPUT  
The ADD8704 has four amplifiers specifically designed for the  
needs of an LCD panel. Figure 36 shows a typical gamma  
correction curve for a normally white twisted nematic LCD  
panel. The symmetric curve comes from the need to reverse the  
polarity on the LC pixels to avoid “burning” in the image. The  
application therefore requires gamma voltages that come close  
to both supply rails. To accommodate this transfer function, the  
ADD8704 has been designed to have four different amplifiers in  
one package.  
The nature of LCD panels introduces a large amount of  
parasitic capacitance from the column drivers as well as the  
capacitance associated with the liquid crystals via the common  
plane. This makes capacitive drive capability an important  
factor when designing the gamma correction circuit.  
V
DD  
V
G1  
V
V
V
G2  
IMPORTANT NOTE  
G3  
G4  
Because of the asymmetric nature of amplifiers A and D, care  
must be taken to connect an input that forces the amplifiers to  
operate in their most productive output states. Amplifier D has  
very limited sink capabilities, while amplifier A does not source  
well. If more than one ADD8704 is used, set the amplifier D  
input to enable the amplifier output to source current and set  
the amplifier A input to force a sinking output current. This  
means making sure the input is above the midpoint of the  
common-mode input range for amplifier D and below the  
midpoint for amplifier A. Mathematically speaking, make sure  
VIN > VS/2 for amplifier D and VIN < VS/2 for amplifier A.  
V
V
G5  
G6  
V
V
G7  
G8  
V
G9  
V
G10  
V
SS  
0
16  
32  
48  
64  
GRAY SCALE BITS  
Figure 36. LCD Gamma Correction Curve  
Figure 37 shows an example using 4 ADD8704s to generate 10  
gamma outputs. Note that the top three resistor tap-points are  
connected to the amplifier D inputs, thus assuring these  
channels will source current. Likewise, the bottom three resistor  
tap-points are connected to the amplifier A inputs to provide  
sinking output currents.  
Amplifier A has a single-supply PNP input stage followed by a  
folded cascode stage. This provides an input range that goes to  
the bottom rail. This amplifier can therefore be used to provide  
the bottom voltage on the RDAC string.  
Amplifier B (PNP folded cascode) swings to the low rail as well,  
but it provides 35 mA continuous output current versus 15 mA.  
This buffer is suitable for lower RDAC range, middle RDAC  
range, or VCOM applications.  
Rev. 0 | Page 12 of 16  
 
 
ADD8704  
V
DD  
ADD8704  
TP 1  
TP 2  
TP 3  
TP 4  
TP 1  
TP 4  
TP 5  
TP 8  
D
GAMMA 1  
GAMMA 4  
GAMMA 5  
GAMMA 8  
C
B
A
V
DD  
ADD8704  
TP 5  
TP 6  
TP 7  
TP 8  
TP 2  
TP 6  
TP 7  
TP 9  
D
GAMMA 2  
GAMMA 6  
GAMMA 7  
GAMMA 9  
RESISTOR STRING  
TO COLUMN DRIVER  
C
B
A
V
DD  
ADD8704  
TP 9  
TP 3  
NC  
D
GAMMA 3  
NC  
TP 10  
C
A
B
TP 10  
V
DD  
GAMMA 10  
V
COM  
Figure 37. Using Four ADD8704s to Generate 10 Gamma Outputs  
Rev. 0 | Page 13 of 16  
ADD8704  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65  
BSC  
1.05  
1.00  
0.80  
0.20  
0.09  
1.20  
MAX  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153AB-1  
Figure 38. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU)  
Dimensions shown in millimeters  
4.0  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
0.60 MAX  
13  
12  
16  
1
0.65 BSC  
PIN 1  
INDICATOR  
2.25  
2.10 SQ  
1.95  
TOP  
VIEW  
3.75  
BSC SQ  
BOTTOM  
VIEW  
0.75  
0.60  
0.50  
4
9
8
5
0.25 MIN  
1.95 BSC  
0.80 MAX  
0.65 TYP  
12° MAX  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.35  
0.28  
0.25  
0.20 REF  
COPLANARITY  
0.08  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGC  
Figure 39. 16-Terminal Leadless Frame Chip Scale Package [LFCSP] (CP)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADD8704ARU  
Temperature Range  
–40°C to +85°C  
Package Description  
Package Option  
RU-14  
14-Lead Thin Shrink SOIC  
ADD8704ARU-REEL  
ADD8704ARUZ1  
ADD8704ARUZ-REEL1  
ADD8704ACPZ-R21  
ADD8704ACPZ-REEL71  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
14-Lead Thin Shrink SOIC  
14-Lead Thin Shrink SOIC  
14-Lead Thin Shrink SOIC  
16-Terminal Leadless Frame Chip Scale  
16-Terminal Leadless Frame Chip Scale  
RU-14  
RU-14  
RU-14  
CP-16  
CP-16  
1 Z = Pb-free part.  
Rev. 0 | Page 14 of 16  
 
 
 
ADD8704  
NOTES  
Rev. 0 | Page 15 of 16  
ADD8704  
NOTES  
© 2003 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C04417–0–10/03(0)  
Rev. 0 | Page 16 of 16  

相关型号:

ADD8704ACPZ-R2

16 V Quad Operational Amplifier
ADI

ADD8704ACPZ-REEL7

16 V Quad Operational Amplifier
ADI

ADD8704ARU

16 V Quad Operational Amplifier
ADI

ADD8704ARU-REEL

16 V Quad Operational Amplifier
ADI

ADD8704ARUZ

16 V Quad Operational Amplifier
ADI

ADD8704ARUZ-REEL

16 V Quad Operational Amplifier
ADI

ADD8706

16 V 5 + 1-Channel Operational Amplifier
ADI

ADD8706ARUZ

16 V 5 + 1-Channel Operational Amplifier
ADI

ADD8706ARUZ-REEL

16 V 5 + 1-Channel Operational Amplifier
ADI

ADD8707

12-Channel Gamma Buffers with VCOM and Regulator
ADI

ADD8707ACPZ-REEL7

12 BUFFER AMPLIFIER, QCC48, LEAD FREE, MO-220-VKKD, LFCSP-48
ROCHESTER

ADD8707WCPZ-REEL7

12-Channel Gamma Buffers with VCOM and Regulator
ADI