ADEL2020ARZ-20-REEL [ADI]

OP-AMP, 10000uV OFFSET-MAX, 8MHz BAND WIDTH, PDSO20, PLASTIC, SOIC-20;
ADEL2020ARZ-20-REEL
型号: ADEL2020ARZ-20-REEL
厂家: ADI    ADI
描述:

OP-AMP, 10000uV OFFSET-MAX, 8MHz BAND WIDTH, PDSO20, PLASTIC, SOIC-20

放大器 光电二极管
文件: 总12页 (文件大小:181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Improved Second Source  
to the EL2020  
ADEL2020  
FEATURES  
CONNECTION DIAGRAMS  
Ideal for Video Applications  
0.02% Differential Gain  
8-Lead PDIP (N)  
20-Lead SOIC (R)  
0.04Differential Phase  
0.1 dB Bandwidth to 25 MHz (G = +2)  
High Speed  
90 MHz Bandwidth (–3 dB)  
500 V/s Slew Rate  
60 ns Settling Time to 0.1% (VO = 10 V Step)  
Low Noise  
2.9 nV/Hz Input Voltage Noise  
Low Power  
6.8 mA Supply Current  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
NC  
BAL  
NC  
–IN  
NC  
+IN  
NC  
V–  
NC  
BAL  
–IN  
+IN  
V–  
1
2
3
4
8
7
6
5
DISABLE  
V+  
DISABLE  
NC  
ADEL2020  
TOP VIEW  
OUTPUT  
BAL  
V+  
ADEL2020  
TOP VIEW  
NC  
OUTPUT  
NC  
BAL  
NC  
NC  
2.1 mA Supply Current (Power-Down Mode)  
High Performance Disable Function  
Turn-Off Time of 100 ns  
NC 10  
NC  
NC = NO CONNECT  
Input to Output Isolation of 54 dB (Off State)  
GENERAL DESCRIPTION  
The ADEL2020 offers other significant improvements. The  
most important is lower power supply current (33% less than the  
competition) with higher output drive. Important specifications  
like voltage noise and offset voltage are less than half of those  
for the EL2020. The ADEL2020 also provides an improved  
disable feature. The disable time (to high output impedance) is  
100 ns with guaranteed break before make. The ADEL2020 is  
offered for the industrial temperature range of –40°C to +85°C  
and comes in both PDIP and SOIC packages.  
The ADEL2020 is an improved second source to the EL2020.  
This op amp improves on all the key dynamic specifications  
while offering lower power and lower cost. The ADEL2020  
offers 50% more bandwidth and gain flatness of 0.1 dB to  
beyond 25 MHz. In addition, differential gain and phase are  
less than 0.05% and 0.05° while driving one back terminated  
cable (150 ).  
+0.1  
R
= 150ꢂ  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
L
GAIN = +2  
0
15V  
5V  
R
R
= 750ꢂ  
= 150ꢂ  
F
L
–0.1  
fC = 3.58MHz  
100 IRE  
MODULATED RAMP  
+0.1  
0
R
= 1kꢂ  
L
15V  
5V  
GAIN  
PHASE  
–0.1  
100k  
1M  
10M  
FREQUENCY – Hz  
100M  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
SUPPLY VOLTAGE – V  
Figure 1. Fine-Scale Gain (Normalized) vs. Frequency  
for Various Supply Voltages, RF = 750 , Gain = +2  
Figure 2. Differential Gain and Phase vs. Supply Voltage  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
ADEL2020–SPECIFICATIONS  
(@ TA = 25C, VS = 15 V dc, RL = 150 , unless otherwise noted.)  
ADEL2020A  
Parameter  
Conditions  
Temperature  
Min  
Typ  
Max  
Unit  
INPUT OFFSET VOLTAGE  
1.5  
2.0  
7
7.5  
10.0  
mV  
mV  
µV/°C  
TMIN to TMAX  
Offset Voltage Drift  
COMMON-MODE REJECTION  
VCM = 10 V  
VOS  
Input Current  
TMIN to TMAX  
TMIN to TMAX  
50  
65  
64  
0.1  
dB  
µA/V  
1.0  
0.5  
POWER SUPPLY REJECTION  
VOS  
VS = 4.5 V to 18 V  
TMIN to TMAX  
TMIN to TMAX  
72  
0.05  
dB  
µA/V  
Input Current  
INPUT BIAS CURRENT  
–Input  
+Input  
TMIN to TMAX  
TMIN to TMAX  
0.5  
1
7.5  
15  
µA  
µA  
INPUT CHARACTERISTICS  
+Input Resistance  
–Input Resistance  
1
1
10  
40  
2
MΩ  
+Input Capacitance  
pF  
OPEN-LOOP TRANSRESISTANCE  
VO = 10 V  
RL = 400 Ω  
TMIN to TMAX  
3.5  
MΩ  
OPEN-LOOP DC VOLTAGE GAIN  
RL = 400 , VOUT  
RL = 100 , VOUT  
=
=
10 V TMIN to TMAX  
2.5 V TMIN to TMAX  
80  
76  
100  
88  
dB  
dB  
OUTPUT VOLTAGE SWING  
Short-Circuit Current  
Output Current  
RL = 400 Ω  
TMIN to TMAX  
TMIN to TMAX  
12.0  
30  
13.0  
150  
60  
V
mA  
mA  
POWER SUPPLY  
Operating Range  
Quiescent Current  
Power-Down Current  
Disable Pin Current  
Min Disable Pin Current to Disable  
3.0  
18  
10.0  
3.0  
V
TMIN to TMAX  
TMIN to TMAX  
TMIN to TMAX  
TMIN to TMAX  
6.8  
2.1  
290  
30  
mA  
mA  
µA  
µA  
Disable Pin = 0 V  
400  
DYNAMIC PERFORMANCE  
3 dB Bandwidth  
G = +1; RFB = 820  
G = +2; RFB = 750  
G = +10; RFB = 680  
G = +2; RFB = 750  
VO = 20 V p-p,  
90  
70  
30  
25  
MHz  
MHz  
MHz  
MHz  
0.1 dB Bandwidth  
Full Power Bandwidth  
RL = 400 Ω  
8
500  
60  
0.02  
0.04  
MHz  
V/µs  
ns  
%
Degree  
Slew Rate  
RL = 400 , G = +1  
10 V Step, G = –1  
f = 3.58 MHz  
Settling Time to 0.1%  
Differential Gain  
Differential Phase  
f = 3.58 MHz  
INPUT VOLTAGE NOISE  
INPUT CURRENT NOISE  
f = 1 kHz  
2.9  
nV/Hz  
–IIN, f = 1 kHz  
+IIN, f = 1 kHz  
13  
1.5  
pA/Hz  
pA/Hz  
OUTPUT RESISTANCE  
Open Loop (5 MHz)  
15  
Specifications subject to change without notice.  
–2–  
REV. A  
ADEL2020  
ABSOLUTE MAXIMUM RATINGS1  
MAXIMUM POWER DISSIPATION  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Internal Power Dissipation2 . . . . . . . Observe Derating Curves  
Output Short Circuit Duration . . . . Observe Derating Curves  
Common-Mode Input Voltage . . . . . . . . . . . . . . . . . . . . . VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Storage Temperature Range  
PDIP and SOIC . . . . . . . . . . . . . . . . . . . . . –65°C to +125°C  
Operating Temperature Range . . . . . . . . . . . –40°C to +85°C  
Lead Temperature Range (Soldering 60 sec) . . . . . . . . . 300°C  
The maximum power that can be safely dissipated by the  
ADEL2020 is limited by the associated rise in junction tempera-  
ture. For the plastic packages, the maximum safe junction  
temperature is 145°C. If the maximum is exceeded momen-  
tarily, proper circuit operation will be restored as soon as the  
die temperature is reduced. Leaving the device in the over-  
heated condition for an extended period can result in device  
burnout. To ensure proper operation, it is important to observe  
the derating curves in figure 4.  
While the ADEL2020 is internally short circuit protected, this  
may not be sufficient to guarantee that the maximum junction  
temperature is not exceeded under all conditions.  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only and functional operation of  
the device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
28-Lead PDIP: θJA = 90°C/W  
2.4  
2.2  
2.0  
20-Lead SOIC Package: θJA = 150°C/W  
1.8  
+V  
S
20-LEAD SOIC  
0.1F  
1.6  
1.4  
10kꢂ  
7
1.2  
1
8-LEAD PDIP  
2
3
5
1.0  
6
ADEL2020  
0.8  
0.6  
0.4  
+
4
0.1F  
–40  
–20  
0
20  
40  
60  
80  
100  
–V  
S
AMBIENTTEMPERATURE – C  
Figure 3. Offset Null Configuration  
Figure 4. Maximum Power Dissipation vs. Temperature  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
ADEL2020AN  
ADEL2020AR-20  
ADEL2020AR-20-REEL  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead PDIP  
20-Lead SOIC  
20-Lead SOIC  
N-8  
R-20  
R-20  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
ADEL2020 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
REV. A  
–3–  
ADEL2020–Typical Performance Characteristics  
GAIN = +1  
L
GAIN = +1  
L
R
= 150ꢂ  
R
= 1kꢂ  
0
0
–45  
–90  
–135  
–180  
–225  
–270  
–45  
–90  
–135  
–180  
–225  
–270  
PHASE  
PHASE  
V
= 15V  
S
V
= 15V  
5V  
S
1
0
1
0
5V  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
GAIN  
GAIN  
V
= 15V  
5V  
V
= 15V  
5V  
S
S
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
TPC 1. Closed-Loop Gain and Phase vs. Frequency,  
TPC 4. Closed-Loop Gain and Phase vs. Frequency,  
G = + 1, RL = 150 , RF = 1 kfor 15 V, 910 for 5 V  
G = +1, RL = 1 k, RF = 1 kfor 15 V, 910 for 5 V  
110  
110  
GAIN = +1  
L
GAIN = –1  
L
R
= 150ꢂ  
R
= 150ꢂ  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
= 250mV p-p  
V
= 250mV p-p  
O
O
<
PEAKING 1.0dB  
<
PEAKING 1.0dB  
R
= 750ꢂ  
R
R
= 499ꢂ  
= 681ꢂ  
F
F
<
<
PEAKING 0.1dB  
R
= 1kꢂ  
PEAKING 0.1dB  
F
F
F
R
= 1.5kꢂ  
R = 1kꢂ  
F
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
SUPPLYVOLTAGE – V  
SUPPLYVOLTAGE – V  
TPC 2. –3 dB Bandwidth vs. Supply Voltage,  
TPC 5. –3 dB Bandwidth vs. Supply Voltage,  
Gain = +1, RL = 150 Ω  
Gain = –1, RL = 150 Ω  
GAIN = –1  
L
GAIN = –1  
L
R
= 150ꢂ  
R
= 1kꢂ  
180  
135  
90  
180  
135  
90  
PHASE  
PHASE  
V
= 15V  
V
= 15V  
S
S
1
0
45  
1
0
45  
0
0
5V  
5V  
–1  
–2  
–3  
–4  
–5  
–45  
–1  
–2  
–3  
–4  
–5  
–45  
GAIN  
GAIN  
V
= 15V  
5V  
V
= 15V  
5V  
S
S
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
TPC 3. Closed-Loop Gain and Phase vs. Frequency,  
G = –1, RL = 150 , RF = 680 for 15 V, 620 for 5 V  
TPC 6. Closed-Loop Gain and Phase vs. Frequency,  
G = –1, RL = 1 k, RF = 680 for VS = 15 V, 620 Ω  
for 5 V  
–4–  
REV. A  
ADEL2020  
GAIN = +2  
L
GAIN = +2  
L
R
= 150ꢂ  
R
= 1kꢂ  
0
0
–45  
–90  
–135  
–180  
–225  
–270  
–45  
–90  
–135  
–180  
–225  
–270  
PHASE  
PHASE  
V
= 15V  
V
= 15V  
S
S
7
6
7
6
5V  
5V  
5
4
3
2
1
5
4
3
2
1
GAIN  
GAIN  
V
= 15V  
5V  
V
= 15V  
5V  
S
S
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
TPC 7. Closed-Loop Gain and Phase vs. Frequency,  
TPC 10. Closed-Loop Gain and Phase vs. Frequency,  
G = +2, RL = 150 , RF = 750 for 15 V, 715 for 5 V  
G = +2, RL = 1 k, RF = 750 for 15 V, 715 for 5 V  
110  
110  
GAIN = +2  
L
GAIN = +10  
L
R
= 150ꢂ  
R
= 150ꢂ  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
= 250mV p-p  
V
= 250mV p-p  
O
O
<
PEAKING 1.0dB  
R
= 500ꢂ  
F
<
PEAKING 0.5dB  
R
= 232ꢂ  
<
F
PEAKING 0.1dB  
R
= 750ꢂ  
F
R
= 442ꢂ  
F
<
PEAKING 0.1dB  
R
= 1kꢂ  
F
R
= 1kꢂ  
F
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
SUPPLYVOLTAGE – V  
SUPPLYVOLTAGE – V  
TPC 8. –3 dB Bandwidth vs. Supply Voltage,  
TPC 11. –3 dB Bandwidth vs. Supply Voltage,  
Gain = +2, RL = 150 Ω  
Gain = +10, RL = 150 Ω  
GAIN = +10  
GAIN = +10  
R
R
= 270ꢂ  
= 150ꢂ  
R
R
= 270ꢂ  
= 1kꢂ  
0
0
F
L
F
L
–45  
–90  
–135  
–180  
–225  
–270  
–45  
–90  
–135  
–180  
–225  
–270  
PHASE  
PHASE  
V
= 15V  
5V  
V
= 15V  
5V  
S
S
21  
20  
21  
20  
19  
18  
17  
16  
15  
19  
18  
17  
16  
15  
GAIN  
GAIN  
V
= 15V  
5V  
V
= 15V  
5V  
S
S
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
TPC 9. Closed-Loop Gain and Phase vs. Frequency,  
TPC 12. Closed-Loop Gain and Phase vs. Fre-  
G = +10, RL = 150 kΩ  
quency, G = +10, RL = 1 kΩ  
REV. A  
–5–  
ADEL2020  
30  
10  
GAIN = +2  
= 715ꢂ  
V
= 15V  
R
S
F
25  
20  
V
= 5V  
S
1
OUTPUT LEVEL FOR 3% THD  
15  
10  
5
V
= 15V  
S
0.1  
V
= 5V  
S
0
100k  
0.01  
10k  
1M  
10M  
FREQUENCY – Hz  
100M  
100k  
1M  
FREQUENCY – Hz  
10M  
100M  
TPC 13. Maximum Undistorted Output Voltage  
vs. Frequency  
TPC 16. Closed-Loop Output Resistance vs. Frequency  
80  
10  
9
R
A
= 715ꢂ  
= +2  
F
V
70  
60  
50  
40  
30  
20  
10  
0
V
= 15V  
= 5V  
S
V
= 15V  
8
7
6
5
S
V
= 5V  
V
S
S
CURVES ARE FORWORST-CASE  
CONDITIONWHERE ONE  
SUPPLY ISVARIEDWHILETHE  
OTHER IS HELD CONSTANT  
4
10k  
100k  
1M  
10M  
100M  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
FREQUENCY – Hz  
JUNCTIONTEMPERATURE – C  
TPC 14. Power Supply Rejection vs. Frequency  
TPC 17. Supply Current vs. Junction Temperature  
100  
10  
1
100  
1200  
V
= 5V TO 15V  
R
= 400ꢂ  
S
L
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
GAIN = –10  
INVERTING INPUT  
CURRENT  
GAIN = +10  
10  
GAIN = +2  
VOLTAGE NOISE  
NONINVERTING  
INPUT CURRENT  
1
100k  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
10  
100  
1k  
FREQUENCY – Hz  
10k  
SUPPLYVOLTAGE – V  
TPC 15. Input Voltage and Current Noise vs. Frequency  
TPC 18. Slew Rate vs. Supply Voltage  
–6–  
REV. A  
ADEL2020  
1kꢂ  
750ꢂ  
+V  
7
+V  
7
S
S
0.1F  
0.1F  
750ꢂ  
2
3
2
3
6
6
V
ADEL2020  
V
O
ADEL2020  
O
R
R
L
L
V
V
IN  
+
+
IN  
4
4
0.1F  
0.1F  
R
R
T
T
–V  
–V  
S
S
Figure 5. Connection Diagram for AVCL = +1  
Figure 7. Connection Diagram for AVCL = +2  
681ꢂ  
270ꢂ  
+V  
+V  
S
S
0.1F  
0.1F  
681ꢂ  
30ꢂ  
7
7
V
2
3
2
3
IN  
6
6
V
V
O
ADEL2020  
ADEL2020  
O
R
R
L
L
V
+
+
4
IN  
4
0.1F  
0.1F  
R
T
–V  
–V  
S
S
Figure 6. Connection Diagram for AVCL = –1  
Figure 8. Connection Diagram for AVCL = +10  
REV. A  
–7–  
ADEL2020  
GENERAL DESIGN CONSIDERATIONS  
DISABLE MODE  
The ADEL2020 is a current feedback amplifier optimized for  
use in high performance video and data acquisition systems.  
Since it uses a current feedback architecture, its closed-loop  
bandwidth depends on the value of the feedback resistor. The  
–3 dB bandwidth is also somewhat dependent on the power  
supply voltage. Lowering the supplies increases the values of  
internal capacitances, reducing the bandwidth. To compen-  
sate for this, smaller values of feedback resistors are used at  
lower supply voltages.  
By pulling the voltage on Pin 8 to common (0 V), the ADEL2020  
can be put into a disabled state. In this condition, the supply  
current drops to less than 2.8 mA, the output becomes a high  
impedance, and there is a high level of isolation from input to  
output. In the case of a line driver, for example, the output  
impedance will be about the same as that for a 1.5 kresistor  
(the feedback plus gain resistors) in parallel with a 13 pF capacitor  
(due to the output), and the input to output isolation will be  
better than 50 dB at 10 MHz.  
Leaving the disable pin disconnected (floating) will leave the  
part in the enabled state.  
POWER SUPPLY BYPASSING  
Adequate power supply bypassing can be critical when optimiz-  
ing the performance of a high frequency circuit. Inductance in  
the power supply leads can contribute to resonant circuits that  
produce peaking in the amplifier’s response. In addition, if large  
current transients must be delivered to the load, then bypass  
capacitors (typically greater than 1 µF) will be required to  
provide the best settling time and lowest distortion. Although  
the recommended 0.1 µF power supply bypass capacitors will  
be sufficient in most applications, more elaborate bypassing  
(such as using two paralleled capacitors) may be required in  
some cases.  
In cases where the amplifier is driving a high impedance load,  
the input to output isolation will decrease significantly if the  
input signal is greater than about 1.2 V p–p. The isolation can  
be restored to the 50 dB level by adding a dummy load (say 150 )  
at the amplifier output. This will attenuate the feedthrough  
signal. (This is not an issue for multiplexer applications where the  
outputs of multiple ADEL2020s are tied together as long as at  
least one channel is in the ON state.) The input impedance of  
the disable pin is about 35 kin parallel with a few pF. When  
grounded, about 50 µA flows out of the disable pin for 5 V supplies.  
Break-before-make operation is guaranteed by design. If driven  
by standard CMOS logic, the disable time (until the output is  
high impedance) is about 100 ns and the enable time (to low  
impedance output) is about 160 ns. Since it has an internal pull-  
up resistor of about 35 k, the ADEL2020 can be used with  
open drain logic as well. In that case, the enable time increases  
to about 1 µs.  
CAPACITIVE LOADS  
When used with the appropriate feedback resistor, the ADEL2020  
can drive capacitive loads exceeding 1000 pF directly without  
oscillation. Another method of compensating for large load  
capacitance is to insert a resistor in series with the loop output.  
In most cases, less than 50 is all that is needed to achieve an  
extremely flat gain response.  
If there is a nonzero voltage present on the amplifier’s output  
at the time it is switched to the disabled state, some additional  
decay time will be required for the output voltage to relax to  
zero. The total time for the output to go to zero will normally  
be about 250 ns; it is somewhat dependent on the load impedance.  
OFFSET NULLING  
A 10 kpot connected between Pins 1 and 5, with its wiper con-  
nected to V+, can be used to trim out the inverting input current  
(with about 20 µA of range). For closed-loop gains above about  
5, this may not be sufficient to trim the output offset voltage to  
zero. Tie the pot’s wiper to ground through a large value resistor  
(50 kfor 5 V supplies, 150 kfor 15 V supplies) to trim the  
output to zero at high closed-loop gains.  
OPERATION AS A VIDEO LINE DRIVER  
The ADEL2020 is designed to offer outstanding performance at  
closed-loop gains of 1 or greater. At a gain of 2, the ADEL2020  
makes an excellent video line driver. The low differential gain  
and phase errors and wide –0.1 dB bandwidth are nearly inde-  
pendent of supply voltage and load. For applications requiring  
widest 0.1 dB bandwidth, it is recommended to use 715 feed-  
back and gain resistors. This will result in about 0.05 dB of  
peaking and a –0.1 dB bandwidth of 30 MHz on 15 V supplies.  
–8–  
REV. A  
ADEL2020  
OUTLINE DIMENSIONS  
8-Lead Plastic Dual-in-Line Package [PDIP]  
(N-8)  
Dimensions shown in inches and (millimeters)  
0.375 (9.53)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.98)  
4
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.015  
(0.38)  
MIN  
0.180  
(4.57)  
MAX  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
SEATING  
PLANE  
0.060 (1.52)  
0.050 (1.27)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MO-095AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
20-Lead Standared Small Outline Pacakge [SOIC]  
Wide Body  
(R-20)  
Dimensions shown in millimeters and (inches)  
13.00 (0.5118)  
12.60 (0.4961)  
20  
1
11  
10  
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
2.65 (0.1043)  
2.35 (0.0925)  
0.75 (0.0295)  
0.25 (0.0098)  
45ꢀ  
0.30 (0.0118)  
0.10 (0.0039)  
8ꢀ  
0ꢀ  
1.27  
(0.0500)  
BSC  
0.51 (0.0201) SEATING  
0.33 (0.0130)  
1.27 (0.0500)  
0.40 (0.0157)  
COPLANARITY  
0.10  
0.32 (0.0126)  
0.23 (0.0091)  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-013AC  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
REV. A  
–9–  
ADEL2020  
Revision History  
Location  
Page  
1/03—Data Sheet changed from REV. 0 to REV. A.  
Format updated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
8-Lead PDIP (N) and 20-Lead SOIC (R) updated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
OUTLINE DIMENSIONS updated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
–10–  
REV. A  
–11–  
–12–  

相关型号:

ADEL2020ARZ-20-RL

Op Amp - Improved Second Source to the EL2020
ADI

ADET-5000

RF Power Detector
AVAGO

ADET-5000-BLK

RF Power Detector
AVAGO

ADET-5000-TR1

RF Power Detector
AVAGO

ADEX-10

Double Balanced Mixer, 10MHz Min, 1000MHz Max, 8.3dB Conversion Loss-Max, CASE CD542, 6 PIN
MINI

ADEX-10+

Double Balanced Mixer, 10MHz Min, 1000MHz Max, 8.3dB Conversion Loss-Max, ROHS COMPLIANT CASE CD542, 6 PIN
MINI

ADEX-10H

Double Balanced Mixer, 10MHz Min, 1000MHz Max, 9.5dB Conversion Loss-Max, CASE CD542, 6 PIN
MINI

ADEX-10H+

Double Balanced Mixer, 10MHz Min, 1000MHz Max, 9.5dB Conversion Loss-Max, ROHS COMPLIANT, CASE CD542, 6 PIN
MINI

ADEX-10L

Frequency Mixer Level 4 (LO Power +4 dBm) 10 to 1000 MHz
ETC

ADEX-10L+

Double Balanced Mixer, 10MHz Min, 1000MHz Max, 8.8dB Conversion Loss-Max, ROHS COMPLIANT, CASE CD542, 6 PIN
MINI

ADEX-R10

High Reliability Mixer
MINI

ADEX-R10+

High Reliability Mixer
MINI