ADF4107BCPZ [ADI]

PLL Frequency Synthesizer; PLL频率合成器
ADF4107BCPZ
型号: ADF4107BCPZ
厂家: ADI    ADI
描述:

PLL Frequency Synthesizer
PLL频率合成器

信号电路 锁相环或频率合成电路 PC
文件: 总20页 (文件大小:470K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PLL Frequency Synthesizer  
ADF4107  
Data Sheet  
FEATURES  
GENERAL DESCRIPTION  
7.0 GHz bandwidth  
2.7 V to 3.3 V power supply  
Separate charge pump supply (VP) allows extended tuning  
voltage in 3 V systems  
Programmable dual-modulus prescaler  
8/9, 16/17, 32/33, 64/65  
Programmable charge pump currents  
Programmable antibacklash pulse width  
3-wire serial interface  
Analog and digital lock detect  
Hardware and software power-down mode  
The ADF4107 frequency synthesizer can be used to implement  
local oscillators in the upconversion and downconversion sections  
of wireless receivers and transmitters. It consists of a low noise  
digital PFD (phase frequency detector), a precision charge pump, a  
programmable reference divider, programmable A and B counters,  
and a dual-modulus prescaler (P/P + 1). The A (6-bit) and B  
(13-bit) counters, in conjunction with the dual-modulus  
prescaler (P/P + 1), implement an N divider (N = BP + A). In  
addition, the 14-bit reference counter (R counter), allows  
selectable REFIN frequencies at the PFD input. A complete PLL  
(phase-locked loop) can be implemented if the synthesizer is  
used with an external loop filter and VCO (voltage controlled  
oscillator). Its very high bandwidth means that frequency  
doublers can be eliminated in many high frequency systems,  
simplifying system architecture and reducing cost.  
APPLICATIONS  
Broadband wireless access  
Satellite systems  
Instrumentation  
Wireless LANs  
Base stations for wireless radio  
FUNCTIONAL BLOCK DIAGRAM  
AV  
DV  
R
SET  
V
CPGND  
DD  
DD  
P
REFERENCE  
14-BIT  
R COUNTER  
PHASE  
FREQUENCY  
DETECTOR  
REF  
CHARGE  
PUMP  
IN  
CP  
14  
R COUNTER  
LATCH  
LOCK  
DETECT  
CURRENT  
SETTING 2  
CURRENT  
SETTING 1  
CLK  
DATA  
LE  
24-BIT INPUT  
REGISTER  
FUNCTION  
LATCH  
CPI6 CPI5 CPI4  
HIGH Z  
CPI3 CPI2 CPI1  
22  
A, B COUNTER  
LATCH  
FROM  
SD  
19  
OUT  
AV  
FUNCTION  
LATCH  
DD  
MUXOUT  
MUX  
13  
13-BIT  
N = BP + A  
SD  
OUT  
B COUNTER  
LOAD  
RF  
RF  
A
B
PRESCALER  
P/P + 1  
IN  
IN  
LOAD  
M3 M2 M1  
6-BIT  
A COUNTER  
ADF4107  
6
CE  
AGND DGND  
Figure 1.  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2003–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADF4107  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Phase Frequency Detector and Charge Pump ..............................9  
MUXOUT and Lock Detect...................................................... 10  
Input Shift Register .................................................................... 10  
Latch Summary........................................................................... 11  
Reference Counter Latch Map.................................................. 12  
AB Counter Latch Map ............................................................. 13  
Function Latch Map................................................................... 14  
Initialization Latch Map ............................................................ 15  
Function Latch............................................................................ 16  
Initialization Latch ..................................................................... 17  
Device Programming after Initial Power-Up ............................. 17  
Applications..................................................................................... 18  
Local Oscillator for LMDS Base Station Transmitter............ 18  
Interfacing ................................................................................... 19  
PCB Design Guidelines for Chip Scale Package .................... 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 7  
Functional Description.................................................................... 9  
Reference Input Stage................................................................... 9  
RF Input Stage............................................................................... 9  
Prescaler (P/P + 1)........................................................................ 9  
A and B Counters ......................................................................... 9  
R Counter ...................................................................................... 9  
REVISION HISTORY  
3/13—Rev. C to Rev. D  
4/07—Rev. 0 to Rev. A  
Changed RFINA to RFINB Parameter from 320 mV to 600 mV,  
Table 3 ................................................................................................ 5  
Updated Outline Dimensions....................................................... 20  
Changes to Ordering Guide .......................................................... 20  
Updated Format..................................................................Universal  
Changes to REFIN Characteristics Section ...................................3  
Changes to Noise Characteristics Section......................................4  
Changes to Absolute Maximum Ratings Section..........................5  
Changes to Figure 23...................................................................... 12  
Changes to Ordering Guide.......................................................... 20  
11/12—Rev. B to Rev. C  
Changed EVAL-ADF411xEBZ1 to EV-ADF411XSD1Z ............. 4  
Changes to Table 3............................................................................ 5  
Updated Outline Dimensions....................................................... 20  
Changes to Ordering Guide .......................................................... 20  
5/03—Revision 0: Initial Version  
9/11—Rev. A to Rev. B  
Changes to Normalized Phase Noise Floor (PNSYNTH) Parameter,  
Table 1 ................................................................................................ 3  
Added Normalized 1/f Noise (PN1_f) Parameter and Endnote 11,  
Table 1 ................................................................................................ 3  
Changed EVAL-ADF4107EB1 to EVAL-ADF411xEBZ1............ 4  
Changes to Figure 4 and Table 4..................................................... 6  
Updated Outline Dimensions....................................................... 20  
Changes to Ordering Guide .......................................................... 20  
Rev. D | Page 2 of 20  
 
Data Sheet  
ADF4107  
SPECIFICATIONS  
AVDD = DVDD = 3 V 10%, AVDD ≤ VP ≤ 5.5 V, AGND = DGND = CPGND = 0 V, RSET = 5.1 kΩ, dBm referred to 50 Ω, TA = TMAX to TMIN  
,
unless otherwise noted.  
Table 1.  
Parameter  
B Version1  
B Chips2 (Typ) Unit  
Test Conditions/Comments  
RF CHARACTERISTICS  
RF Input Frequency (RFIN)3  
RF Input Sensitivity  
Maximum Allowable Prescaler Output  
Frequency4  
1.0/7.0  
–5/+5  
300  
1.0/7.0  
–5/+5  
300  
GHz min/max  
dBm min/max  
MHz max  
See Figure 18 for input circuit  
REFIN CHARACTERISTICS  
REFIN Input Frequency  
REFIN Input Sensitivity5  
REFIN Input Capacitance  
REFIN Input Current  
PHASE DETECTOR  
Phase Detector Frequency7  
CHARGE PUMP  
20/250  
0.8/VDD  
10  
20/250  
0.8/VDD  
10  
MHz min/max  
For f < 20 MHz, ensure slew rate >50 V/µs  
V p-p min/max Biased at AVDD/26  
pF max  
µA max  
100  
100  
104  
104  
MHz max  
ABP = 0,0 (2.9 ns antibacklash pulse width)  
Programmable; see Figure 25  
ICP Sink/Source  
High Value  
Low Value  
5
625  
2.5  
3.0 to 11  
1
2
1.5  
2
5
625  
2.5  
3.0 to 11  
1
2
1.5  
2
mA typ  
µA typ  
% typ  
kΩ typ  
nA typ  
% typ  
% typ  
% typ  
With RSET = 5.1 kΩ  
Absolute Accuracy  
RSET Range  
ICP Three-State Leakage  
Sink and Source Current Matching  
ICP vs. VCP  
With RSET = 5.1 kΩ  
See Figure 25  
0.5 V ≤ VCP ≤ VP − 0.5 V  
0.5 V ≤ VCP ≤ VP − 0.5 V  
VCP = VP/2  
ICP vs. Temperature  
LOGIC INPUTS  
VIH, Input High Voltage  
VIL, Input Low Voltage  
IINH, IINL, Input Current  
CIN, Input Capacitance  
LOGIC OUTPUTS  
1.4  
0.6  
1
1.4  
0.6  
1
V min  
V max  
µA max  
pF max  
10  
10  
VOH, Output High Voltage  
1.4  
1.4  
V min  
Open-drain output chosen; 1 kΩ pull-up  
resistor to 1.8 V  
VOH, Output High Voltage  
IOH  
VOL, Output Low Voltage  
VDD − 0.4  
100  
0.4  
VDD − 0.4  
100  
0.4  
V min  
µA max  
V max  
CMOS output chosen  
IOL = 500 µA  
POWER SUPPLIES  
AVDD  
DVDD  
VP  
IDD8 (AIDD + DIDD)  
IP  
Power-Down Mode9 (AIDD + DIDD)  
NOISE CHARACTERISTICS  
Normalized Phase Noise Floor (PNSYNTH  
2.7/3.3  
AVDD  
AVDD/5.5  
17  
0.4  
10  
2.7/3.3  
AVDD  
AVDD/5.5  
15  
0.4  
10  
V min/V max  
V min/V max  
mA max  
mA max  
µA typ  
AVDD ≤ VP ≤ 5.5 V  
15 mA typ  
TA = 25°C  
10  
)
−223  
−122  
−223  
−122  
dBc/Hz typ  
dBc/Hz typ  
PLL loop BW = 500 kHz, measured at  
100 kHz offset  
10 kHz offset; normalized to 1 GHz  
Normalized 1/f Noise (PN1_f)11  
Rev. D | Page 3 of 20  
 
ADF4107  
Data Sheet  
Parameter  
B Version1  
B Chips2 (Typ) Unit  
Test Conditions/Comments  
Phase Noise Performance12  
900 MHz Output13  
6400 MHz Output14  
6400 MHz Output15  
Spurious Signals  
@ VCO output  
−93  
−76  
−83  
−93  
−76  
−83  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
@ 1 kHz offset and 200 kHz PFD frequency  
@ 1 kHz offset and 200 kHz PFD frequency  
@ 1 kHz offset and 1 MHz PFD frequency  
900 MHz Output13  
−90/−92  
−65/−70  
−70/−75  
−90/−92  
−65/−70  
−70/−75  
dBc typ  
dBc typ  
dBc typ  
@ 200 kHz/400 kHz and 200 kHz PFD  
frequency  
@ 200 kHz/400 kHz and 200 kHz PFD  
frequency  
6400 MHz Output14  
6400 MHz Output15  
@ 1 MHz/2 MHz and 1 MHz PFD frequency  
1 Operating temperature range (B version) is −40°C to +85°C.  
2 The B chip specifications are given as typical values.  
3 Use a square wave for lower frequencies, below the minimum stated.  
4 This is the maximum operating frequency of the CMOS counters. The prescaler value should be chosen to ensure that the RF input is divided down to a frequency that  
is less than this value.  
5 AVDD = DVDD = 3 V.  
6 AC-coupling ensures AVDD/2 bias.  
7 Guaranteed by design. Sample tested to ensure compliance.  
8 TA = 25°C; AVDD = DVDD = 3 V; P = 32; RFIN = 7.0 GHz.  
9 TA = 25°C; AVDD = DVDD = 3.3 V; R = 16,383; A = 63; B = 891; P = 32; RFIN = 7.0 GHz.  
10 The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20logN (where N is the N divider value)  
and 10 log(FPFD). PNSYNTH = PNTOT – 20 logN −10 logFPFD  
.
11 The PLL phase noise is composed of 1/f (flicker) noise plus the normalized PLL noise floor. The formula for calculating the 1/f noise contribution at an RF frequency, fRF,  
and at a frequency offset, f, is given by PN = PN1_f + 10 log(10 kHz/f) + 20 log(fRF/1 GHz). Both the normalized phase noise floor and flicker noise are modeled in  
ADIsimPLL.  
12 The phase noise is measured with the EV-ADF411xSD1Z evaluation board and the HP8562E spectrum analyzer. The spectrum analyzer provides the REFIN for the  
synthesizer (fREFOUT = 10 MHz @ 0 dBm).  
13  
f
f
f
= 10 MHz; fPFD = 200 kHz; offset frequency = 1 kHz; fRF = 900 MHz; N = 4500; loop BW = 20 kHz.  
= 10 MHz; fPFD = 200 kHz; offset frequency = 1 kHz; fRF = 6400 MHz; N = 32,000; loop BW = 20 kHz.  
= 10 MHz; fPFD = 1 MHz; offset frequency = 1 kHz; fRF = 6400 MHz; N = 6400; loop BW = 100 kHz.  
REFIN  
REFIN  
REFIN  
14  
15  
TIMING CHARACTERISTICS  
AVDD = DVDD = 3 V ꢀ10% AVDD ≤ VP ≤ 5.5 V% AGND = DGND = CPGND = 1 V% RSET = 5.ꢀ kΩ% dBm referred to 51 Ω% TA = TMAX to TMIN  
%
unless otherwise noted. ꢀ  
Table 2.  
Parameter  
Limit2 (B Version)  
Unit  
Test Conditions/Comments  
DATA to CLOCK setup time  
DATA to CLOCK hold time  
CLOCK high duration  
CLOCK low duration  
t1  
t2  
t3  
t4  
t5  
t6  
10  
10  
25  
25  
10  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
CLOCK to LE setup time  
LE pulse width  
1 Guaranteed by design but not production tested.  
2 Operating temperature range (B Version) is −40°C to +85°C.  
t3  
t4  
CLOCK  
t1  
t2  
DB0 (LSB)  
(CONTROL BIT C1)  
DB1 (CONTROL  
BIT C2)  
DB2  
DB23 (MSB)  
DATA  
DB22  
t6  
LE  
LE  
t5  
Figure 2. Timing Diagram  
Rev. D | Page 4 of 20  
 
 
 
Data Sheet  
ADF4107  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 3.  
Parameter  
Rating  
AVDD to GND1  
AVDD to DVDD  
VP to GND  
VP to AVDD  
Digital I/O Voltage to GND  
Analog I/O Voltage to GND  
REFIN, RFINA, RFINB to GND  
RFINA to RFINB  
−0.3 V to +3.6 V  
−0.3 V to +0.3 V  
−0.3 V to +5.8 V  
−0.3 V to +5.8 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to Vp + 0.3 V  
−0.3 V to VDD + 0.3 V  
600 mV  
This device is a high performance RF integrated circuit with an  
ESD rating of <2 kV, and it is ESD sensitive. Proper precautions  
should be taken for handling and assembly.  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Maximum Junction Temperature  
TSSOP θJA Thermal Impedance  
LFCSP θJA Thermal Impedance  
(Paddle Soldered)  
ESD CAUTION  
−40°C to +85°C  
−65°C to +125°C  
150°C  
112°C/W  
30.4°C/W  
Reflow Soldering  
Peak Temperature  
Time at Peak Temperature  
Transistor Count  
260°C  
40 sec  
CMOS  
Bipolar  
6425  
303  
1 GND = AGND = DGND = 0 V.  
Rev. D | Page 5 of 20  
 
 
 
 
ADF4107  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
V
R
P
SET  
15 MUXOUT  
CPGND  
AGND  
AGND  
1
2
3
4
5
DV  
CP  
DD  
14 LE  
ADF4107  
MUXOUT  
LE  
CPGND  
AGND  
ADF4107  
13 DATA  
12 CLK  
11 CE  
TOP VIEW  
TOP VIEW 13  
(Not to Scale)  
12  
RF  
RF  
B
A
(Not to Scale)  
IN  
IN  
DATA  
CLK  
RF  
B
IN  
IN  
11  
10  
9
RF  
A
CE  
AV  
DD  
DGND  
REF  
IN  
NOTES  
1. TRANSISTOR COUNT 6425 (CMOS),  
303 (BIPOLAR).  
2. THE EXPOSED PAD MUST BE  
CONNECTED TO AGND.  
NOTES:  
1. TRANSISTOR COUNT 6425 (CMOS),  
303 (BIPOLAR).  
Figure 3. Pin Configuration, TSSOP  
Figure 4. Pin Configuration, LFCSP  
Table 4. Pin Function Descriptions  
Pin No.  
TSSOP LFCSP Mnemonic Description  
1
19  
RSET  
Connecting a resistor between this pin and CPGND sets the maximum charge pump output current. The  
nominal voltage potential at the RSET pin is 0.66 V. The relationship between ICP and RSET is  
25.5  
RSET  
ICP MAX  
=
so, with RSET = 5.1 kΩ, ICP MAX = 5 mA.  
2
20  
CP  
Charge Pump Output. When enabled, this pin provides ICP to the external loop filter, which in turn drives  
the external VCO.  
3
4
5
1
2, 3  
4
CPGND  
AGND  
RFINB  
Charge Pump Ground. This is the ground return path for the charge pump.  
Analog Ground. This is the ground return path of the prescaler.  
Complementary Input to the RF Prescaler. This point must be decoupled to the ground plane with a small  
bypass capacitor, typically 100 pF. See Figure 18.  
6
7
5
6, 7  
RFINA  
AVDD  
Input to the RF Prescaler. This small signal input is ac-coupled to the external VCO.  
Analog Power Supply. This voltage may range from 2.7 V to 3.3 V. Decoupling capacitors to the analog  
ground plane should be placed as close as possible to this pin. AVDD must be the same value as DVDD.  
8
8
REFIN  
Reference Input. This is a CMOS input with a nominal threshold of VDD/2 and a dc equivalent input  
resistance of 100 kΩ. See Figure 17. This input can be driven from a TTL or CMOS crystal oscillator or it can  
be ac-coupled.  
9
10  
9, 10  
11  
DGND  
CE  
Digital Ground.  
Chip Enable. A logic low on this pin powers down the device and puts the charge pump output into three-  
state mode. Taking the pin high powers up the device, depending on the status of the power-down bit, F2.  
11  
12  
13  
14  
15  
16  
12  
CLK  
Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is latched  
into the 24-bit shift register on the CLK rising edge. This input is a high impedance CMOS input.  
Serial Data Input. The serial data is loaded MSB first with the two LSBs being the control bits. This input is a  
high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into one of  
the four latches, the latch being selected using the control bits.  
This multiplexer output allows either the lock detect, the scaled RF, or the scaled reference frequency to  
be accessed externally.  
Digital Power Supply. This may range from 2.7 V to 3.3 V. Decoupling capacitors to the digital ground  
plane should be placed as close as possible to this pin. DVDD must be the same value as AVDD.  
Charge Pump Power Supply. This voltage should be greater than or equal to VDD. In systems where VDD is 3 V, it  
can be set to 5 V and used to drive a VCO with a tuning range of up to 5 V.  
13  
DATA  
LE  
14  
15  
MUXOUT  
DVDD  
VP  
16, 17  
18  
EP  
Exposed Pad. The exposed pad must be connected to AGND.  
Rev. D | Page 6 of 20  
 
Data Sheet  
ADF4107  
TYPICAL PERFORMANCE CHARACTERISTICS  
–40  
–50  
10dB/DIV  
= –40dBc/Hz  
R
L
RMS NOISE = 0.36°  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
100Hz  
1MHz  
FREQUENCY OFFSET FROM 900MHz CARRIER  
Figure 5. Parameter Data for the RF Input  
Figure 8. Integrated Phase Noise (900 MHz, 200 kHz, 20 kHz)  
0
0
V
V
= 3V  
REF LEVEL = –14.0dBm  
DD  
= 3V  
V
= 3V, V = 5V  
P
DD  
= 5mA  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
P
I
CP  
–5  
–10  
–15  
–20  
–25  
–30  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 2.5 SECONDS  
AVERAGES = 30  
T
= +85°C  
A
–91.0dBc/Hz  
T
= +25°C  
A
T
= –40°C  
4
A
0
1
2
3
5
6
–400kHz  
–200kHz  
900MHz  
200kHz  
400kHz  
RF INPUT FREQUENCY (GHz)  
FREQUENCY  
Figure 6. Input Sensitivity  
Figure 9. Reference Spurs (900 MHz, 200 kHz, 20 kHz)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
REF LEVEL = –14.3dBm  
REF LEVEL = –10dBm  
V
I
= 3V, V = 5V  
P
V
I
= 3V, V = 5V  
P
DD  
= 5mA  
DD  
= 5mA  
CP  
CP  
PFD FREQUENCY = 1MHz  
LOOP BANDWIDTH = 100kHz  
RES BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 10  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 10  
–93.0dBc/Hz  
–83.5dBc/Hz  
–2kHz  
–1kHz  
900MHz  
1kHz  
2kHz  
–2kHz  
–1kHz  
6400MHz  
1kHz  
2kHz  
FREQUENCY  
FREQUENCY  
Figure 7. Phase Noise (900 MHz, 200 kHz, 20 kHz)  
Figure 10. Phase Noise (6.4 GHz, 1 MHz, 100 kHz)  
Rev. D | Page 7 of 20  
 
ADF4107  
Data Sheet  
–40  
–5  
–15  
–25  
–35  
–45  
–55  
–65  
–75  
–85  
–95  
–105  
10dB/DIV  
= –40dBc/Hz  
RMS NOISE = 1.8°  
V
V
= 3V  
DD  
= 5V  
–50  
R
L
P
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
100Hz  
1MHz  
0
1
2
3
4
5
FREQUENCY OFFSET FROM 5800MHz CARRIER  
TUNING VOLTAGE (V)  
Figure 11. Integrated Phase Noise (6.4 GHz, 1 MHz, 100 kHz)  
Figure 14. Reference Spurs vs. VTUNE (6.4 GHz, 1 MHz, 100 kHz)  
0
–120  
V
I
= 3V, V = 5V  
P
DD  
= 5mA  
REF LEVEL = –10dBm  
V
V
= 3V  
DD  
= 5V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
CP  
P
PFD FREQUENCY = 1MHz  
LOOP BANDWIDTH = 100kHz  
RES BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 13 SECONDS  
AVERAGES = 1  
–130  
–140  
–150  
–160  
–170  
–180  
–65.0dBc  
–66.0dBc  
–2kHz  
–1kHz  
5800MHz  
1kHz  
2kHz  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (MHz)  
PHASE DETECTOR FREQUENCY (Hz)  
Figure 12. Reference Spurs (6.4 GHz, 1 MHz, 100 kHz)  
Figure 15. Phase Noise (Referred to CP Output) vs. PFD Frequency  
–60  
–70  
–6  
–5  
–4  
V
V
= 3V  
DD  
= 3V  
P
V
= 5V  
SETTLING = 5mA  
P
I
CP  
–3  
–2  
–1  
0
–80  
1
2
–90  
3
4
5
–100  
6
–40  
–20  
0
20  
40  
60  
80  
100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
TEMPERATURE (°C)  
V
CP  
Figure 13. Phase Noise (6.4 GHz, 1 MHz, 100 kHz) vs. Temperature  
Figure 16. Charge Pump Output Characteristics  
Rev. D | Page 8 of 20  
Data Sheet  
ADF4107  
FUNCTIONAL DESCRIPTION  
REFERENCE INPUT STAGE  
A AND B COUNTERS  
The reference input stage is shown in Figure 17. SW1 and SW2  
are normally closed switches. SW3 is normally open. When  
power-down is initiated, SW3 is closed and SW1 and SW2 are  
opened. This ensures that there is no loading of the REFIN pin  
on power-down.  
The A and B CMOS counters combine with the dual-modulus  
prescaler to allow a wide ranging division ratio in the PLL  
feedback counter. The counters are specified to work when the  
prescaler output is 300 MHz or less. Thus, with an RF input  
frequency of 4.0 GHz, a prescaler value of 16/17 is valid but a  
value of 8/9 is not valid.  
POWER-DOWN  
CONTROL  
Pulse Swallow Function  
100k  
SW2  
NC  
The A and B counters, in conjunction with the dual-modulus  
prescaler, make it possible to generate output frequencies that  
are spaced only by the reference frequency divided by R. The  
equation for the VCO frequency is as follows:  
TO R COUNTER  
REF  
IN  
NC  
BUFFER  
SW1  
fREFIN  
R
fVCO  
P BA   
   
SW3  
NO  
where:  
Figure 17. Reference Input Stage  
f
VCO is the output frequency of external voltage controlled  
RF INPUT STAGE  
oscillator (VCO).  
The RF input stage is shown in Figure 18. It is followed by a  
2-stage limiting amplifier to generate the CML clock levels  
needed for the prescaler.  
P is the preset modulus of dual-modulus prescaler (8/9, 16/17).  
B is the preset divide ratio of binary 13-bit counter (3 to 8191).  
A is the preset divide ratio of binary 6-bit swallow counter (0 to 63).  
f
REFIN is the external reference frequency oscillator.  
N = BP + A  
1.6V  
BIAS  
AV  
DD  
GENERATOR  
TO PFD  
13-BIT B  
COUNTER  
500  
500Ω  
LOAD  
FROM RF  
INPUT STAGE  
PRESCALER  
P/P + 1  
LOAD  
RF  
RF  
A
B
IN  
6-BIT A  
COUNTER  
MODULUS  
CONTROL  
IN  
N DIVIDER  
Figure 19. A and B Counters  
AGND  
R COUNTER  
Figure 18. RF Input Stage  
The 14-bit R counter allows the input reference frequency to be  
divided down to produce the reference clock to the phase  
frequency detector (PFD). Division ratios from 1 to 16,383 are  
allowed.  
PRESCALER (P/P + 1)  
The dual-modulus prescaler (P/P + 1), along with the A and B  
counters, enables the large division ratio, N, to be realized  
(N = BP + A). The dual-modulus prescaler, operating at CML  
levels, takes the clock from the RF input stage and divides it  
down to a manageable frequency for the CMOS A and CMOS B  
counters. The prescaler is programmable. It can be set in  
software to 8/9, 16/17, 32/33, or 64/65. It is based on a  
synchronous 4/5 core. A minimum divide ratio is possible for  
fully contiguous output frequencies. This minimum is  
determined by P, the prescaler value, and is given by: (P2 − P).  
PHASE FREQUENCY DETECTOR AND CHARGE PUMP  
The phase frequency detector (PFD) takes inputs from the R  
counter and N counter (N = BP + A) and produces an output  
proportional to the phase and frequency difference between  
them. Figure 20 is a simplified schematic. The PFD includes a  
programmable delay element that controls the width of the  
antibacklash pulse. This pulse ensures that there is no dead zone  
in the PFD transfer function and minimizes phase noise and  
reference spurs. Two bits in the reference counter latch, ABP2  
and ABP1, control the width of the pulse. Use of the minimum  
antibacklash pulse width is not recommended. See Figure 23.  
Rev. D | Page 9 of 20  
 
 
 
 
 
 
 
 
 
ADF4107  
Data Sheet  
DV  
DD  
V
P
CHARGE  
PUMP  
UP  
Q1  
U1  
D1  
HI  
ANALOG LOCK DETECT  
DIGITAL LOCK DETECT  
R COUNTER OUTPUT  
N COUNTER OUTPUT  
SDOUT  
R DIVIDER  
CLR1  
MUX  
CONTROL  
MUXOUT  
PROGRAMMABLE  
DELAY  
U3  
CP  
ABP2  
ABP1  
DGND  
CLR2  
D2 Q2  
DOWN  
HI  
Figure 21. MUXOUT Circuit  
U2  
INPUT SHIFT REGISTER  
N DIVIDER  
CPGND  
The ADF4107 digital section includes a 24-bit input shift  
register, a 14-bit R counter, and a 19-bit N counter, comprising a  
6-bit A counter and a 13-bit B counter. Data is clocked into the  
24-bit shift register on each rising edge of CLK. The data is  
clocked in MSB first. Data is transferred from the shift register  
to one of four latches on the rising edge of LE. The destination  
latch is determined by the state of the two control bits (C2, C1)  
in the shift register. These are the two LSBs, DB1 and DB0, as  
shown in the timing diagram of Figure 2. The truth table for  
these bits is shown in Table 5. Figure 22 shows a summary of  
how the latches are programmed.  
Figure 20. PFD Simplified Schematic and Timing (in Lock)  
MUXOUT AND LOCK DETECT  
The output multiplexer on the ADF4107 allows the user to  
access various internal points on the chip. The state of  
MUXOUT is controlled by M3, M2, and M1 in the function  
latch. Figure 25 shows the full truth table. Figure 21 shows the  
MUXOUT section in block diagram form.  
Lock Detect  
MUXOUT can be programmed for two types of lock detect:  
digital lock detect and analog lock detect.  
Table 5. C2, C1 Truth Table  
Digital lock detect is active high. When the lock detect  
precision (LDP) bit in the R counter latch is set to 0, digital lock  
detect is set high when the phase error on three consecutive  
phase detector (PD) cycles is less than 15 ns. With LDP set to 1,  
five consecutive cycles of less than 15 ns are required to set the  
lock detect. It stays set high until a phase error of greater than  
25 ns is detected on any subsequent PD cycle.  
Control Bits  
C2  
0
C1  
0
Data Latch  
R Counter  
0
1
N Counter (A and B)  
Function Latch (Including Prescaler)  
Initialization Latch  
1
0
1
1
The N-channel open-drain analog lock detect should be  
operated with an external pull-up resistor of 10 kΩ nominal.  
When lock has been detected, this output becomes high with  
narrow, low going pulses.  
Rev. D | Page 10 of 20  
 
 
 
 
 
Data Sheet  
LATCH SUMMARY  
RESERVED  
ADF4107  
REFERENCE COUNTER LATCH  
ANTI-  
BACKLASH  
WIDTH  
TEST  
MODE BITS  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
R6  
DB1  
DB0  
X
0
0
LDP  
T2  
T1 ABP2 ABP1 R14  
R13  
R12  
R11  
R10  
R9  
R8  
R7  
R5  
R4  
R3  
R2  
R1  
C2 (0) C1 (0)  
N COUNTER LATCH  
CONTROL  
BITS  
RESERVED  
13-BIT B COUNTER  
6-BIT A COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8  
DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB0  
X
X
G1  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
A6  
A5  
A4  
A3  
A2  
A1 C2 (0)  
C1 (1)  
FUNCTION LATCH  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
CONTROL  
BITS  
TIMER COUNTER  
CONTROL  
PRESCALER  
VALUE  
MUXOUT  
CONTROL  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB0  
P2  
P1  
PD2 CPI6 CPI5 CPI4 CPI3 CPI2 CPI1 TC4 TC3 TC2  
TC1  
F5  
F4  
F3  
F2  
M3  
M2  
M1  
PD1  
F1  
C2 (1) C1 (0)  
INITIALIZATION LATCH  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
CONTROL  
BITS  
MUXOUT  
CONTROL  
PRESCALER  
VALUE  
TIMER COUNTER  
CONTROL  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
CPI5  
F2  
DB1  
DB0  
P2  
P1  
PD2 CPI6  
CPI4 CPI3 CPI2 CPI1 TC4 TC3  
TC2  
TC1  
F5  
F4  
F3  
M3  
M2  
M1  
PD1  
F1  
C2 (1) C1 (1)  
Figure 22. Latch Summary  
Rev. D | Page 11 of 20  
 
 
ADF4107  
Data Sheet  
REFERENCE COUNTER LATCH MAP  
ANTI-  
BACKLASH  
WIDTH  
CONTROL  
BITS  
TEST  
MODE BITS  
14-BIT REFERENCE COUNTER  
RESERVED  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7  
DB6 DB5 DB4  
R5 R4 R3  
DB3 DB2  
R2  
DB1  
DB0  
0
0
LDP  
T2  
T1 ABP2 ABP1 R14  
R13  
R12 R11  
R10  
R9  
R8  
R7  
R6  
R1 C2 (0) C1 (0)  
X
X
= DON’T CARE  
R14  
R13  
R12  
..........  
R3  
R2  
R1  
DIVIDE RATIO  
0
0
0
0
0
0
0
0
0
..........  
..........  
..........  
0
0
0
0
1
1
1
0
1
1
2
3
0
.
0
.
0
.
..........  
..........  
1
.
0
.
0
.
4
.
.
.
.
.
.
.
..........  
..........  
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
..........  
1
1
1
1
0
0
1
1
0
1
0
1
16380  
16381  
16382  
16383  
ABP2  
0
ABP1  
0
ANTIBACKLASH PULSE WIDTH  
2.9ns  
0
1
1
0
1.3ns TEST MODE ONLY. DO NOT USE  
6.0ns  
1
1
2.9ns  
TEST MODE BITS  
SHOULD BE SET  
TO 00 FOR NORMAL  
OPERATION.  
LDP  
OPERATION  
0
THREE CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN  
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.  
FIVE CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN  
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.  
1
BOTH OF THESE BITS  
MUST BE SET TO 0 FOR  
NORMAL OPERATION.  
Figure 23. Reference Counter Latch Map  
Rev. D | Page 12 of 20  
 
 
Data Sheet  
ADF4107  
AB COUNTER LATCH MAP  
CONTROL  
BITS  
RESERVED  
6-BIT A COUNTER  
13-BIT B COUNTER  
DB21  
G1  
DB19  
B12  
DB16 DB15 DB14  
DB10  
B3  
DB9  
B2  
DB6  
A5  
DB5  
A4  
DB4  
A3  
DB3  
A2  
DB0  
C2 (0) C1 (1)  
DB23 DB22  
DB20  
B13  
DB18 DB17  
B11 B10  
DB13 DB12 DB11  
B6 B5 B4  
DB8  
B1  
DB7  
A6  
DB2  
A1  
DB1  
X
X
B9  
B8  
B7  
X = DON’T CARE  
A COUNTER  
A6  
A5  
..........  
A2  
A1  
DIVIDE RATIO  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
1
.
1
..........  
..........  
.
0
.
0
.
60  
1
1
1
1
1
1
..........  
..........  
..........  
0
1
1
1
0
1
61  
62  
63  
B13  
B12  
B11  
B3  
B2  
B1  
B COUNTER DIVIDE RATIO  
0
0
0
0
.
.
0
0
0
0
.
.
0
0
0
0
.
.
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
0
.
.
0
0
1
1
.
.
0
1
0
1
.
.
NOT ALLOWED  
NOT ALLOWED  
NOT ALLOWED  
3
.
.
.
.
.
.
..........  
..........  
..........  
..........  
..........  
.
.
.
8188  
8189  
8190  
8191  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
F4 (FUNCTION LATCH)  
FASTLOCK ENABLE  
CP GAIN OPERATION  
0
0
1
1
0
1
0
1
CHARGE PUMP CURRENT  
SETTING 1 IS PERMANENTLY USED.  
CHARGE PUMP CURRENT  
SETTING 2 IS PERMANENTLY USED.  
CHARGE PUMP CURRENT  
SETTING 1 IS USED.  
CHARGE PUMP CURRENT IS  
SWITCHED TO SETTING 2. THE  
TIME SPENT IN SETTING 2 IS  
DEPENDENT ON WHICH FASTLOCK  
MODE IS USED. SEE FUNCTION  
LATCH DESCRIPTION.  
N = BP + A, P IS PRESCALER VALUE SET IN THE FUNCTION  
LATCH. B MUST BE GREATER THAN OR EQUAL TO A. FOR  
CONTINUOUSLY ADJACENT VALUES OF (N × F  
), AT THE  
REF  
2
OUTPUT, N  
IS (P – P).  
MIN  
THESE BITS ARE NOT USED  
BY THE DEVICE AND ARE  
DON'T CARE BITS.  
Figure 24. AB Counter Latch Map  
Rev. D | Page 13 of 20  
 
ADF4107  
Data Sheet  
FUNCTION LATCH MAP  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
PRESCALER  
VALUE  
CONTROL  
BITS  
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5  
DB4 DB3 DB2 DB1  
DB0  
P2  
P1  
PD2  
CPI5 CPI4 CPI3 CPI2 CPI1 TC4 TC3 TC2  
TC1  
F4  
F3  
F2  
M3  
M2  
M1  
F1  
C2 (1) C1 (0)  
CPI6  
F5  
PD1  
PHASE DETECTOR  
POLARITY  
COUNTER  
OPERATION  
F2  
F1  
0
1
NEGATIVE  
POSITIVE  
0
1
NORMAL  
R, A, B COUNTERS  
HELD IN RESET  
CHARGE PUMP  
OUTPUT  
F3  
0
1
NORMAL  
THREE-STATE  
F4  
F5  
FASTLOCK MODE  
0
1
1
X
0
1
FASTLOCK DISABLED  
FASTLOCK MODE 1  
FASTLOCK MODE 2  
M3  
M2  
M1  
OUTPUT  
TIMEOUT  
TC4  
TC3  
TC2  
TC1  
(PFD CYCLES)  
0
0
0
0
0
1
THREE-STATE OUTPUT  
DIGITAL LOCK DETECT  
(ACTIVE HIGH)  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
3
7
11  
15  
19  
23  
27  
0
0
1
1
1
1
0
0
0
1
0
1
N DIVIDER OUTPUT  
DV  
DD  
R DIVIDER OUTPUT  
N-CHANNEL OPEN-DRAIN  
LOCK DETECT  
SERIAL DATA OUTPUT  
DGND  
1
1
1
1
0
1
0
1
1
0
1
0
1
0
31  
35  
1
0
0
1
39  
1
1
0
0
1
1
0
1
43  
47  
1
1
1
1
0
0
0
1
51  
55  
1
1
1
1
1
1
0
1
59  
63  
CPI6  
CPI5  
CPI4  
I
(mA)  
CP  
CPI3  
CPI2  
CPI1  
3kΩ  
1.06  
2.12  
3.18  
5.1kΩ  
0.625  
1.25  
11kΩ  
0
0
0
0
0
1
0
1
0
0.289  
0.580  
0.870  
1.875  
0
1
1
0
1
0
4.24  
5.30  
2.5  
3.125  
1.160  
1.450  
1
0
1
6.36  
3.75  
1.730  
1
1
1
1
0
1
7.42  
8.50  
4.375  
5.0  
2.020  
2.320  
CE PIN  
PD2  
PD1  
MODE  
X
X
0
1
ASYNCHRONOUS POWER-DOWN  
NORMAL OPERATION  
ASYNCHRONOUS POWER-DOWN  
SYNCHRONOUS POWER-DOWN  
0
1
1
1
X
0
1
1
PRESCALER VALUE  
P2  
P1  
0
0
1
1
0
1
0
1
8/9  
16/17  
32/33  
64/65  
Figure 25. Function Latch Map  
Rev. D | Page 14 of 20  
 
 
Data Sheet  
ADF4107  
INITIALIZATION LATCH MAP  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
PRESCALER  
VALUE  
CONTROL  
BITS  
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5  
DB4 DB3 DB2 DB1  
DB0  
P2  
P1  
PD2  
CPI5 CPI4 CPI3 CPI2 CPI1 TC4 TC3 TC2  
TC1  
F4  
F3  
F2  
M3  
M2  
M1  
F1  
C2 (1) C1 (1)  
CPI6  
F5  
PD1  
PHASE DETECTOR  
POLARITY  
COUNTER  
OPERATION  
F2  
F1  
0
1
NEGATIVE  
POSITIVE  
0
1
NORMAL  
R, A, B COUNTERS  
HELD IN RESET  
CHARGE PUMP  
F3 OUTPUT  
NORMAL  
THREE-STATE  
0
1
F4  
F5  
FASTLOCK MODE  
0
1
1
X
0
1
FASTLOCK DISABLED  
FASTLOCK MODE 1  
FASTLOCK MODE 2  
M3  
M2  
M1  
OUTPUT  
TIMEOUT  
TC4  
TC3  
TC2  
TC1  
(PFD CYCLES)  
0
0
0
0
0
1
THREE-STATE OUTPUT  
DIGITAL LOCK DETECT  
(ACTIVE HIGH)  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
3
7
11  
15  
19  
23  
27  
0
0
1
1
1
1
0
0
0
1
0
1
N DIVIDER OUTPUT  
DV  
DD  
R DIVIDER OUTPUT  
N-CHANNEL OPEN-DRAIN  
LOCK DETECT  
SERIAL DATA OUTPUT  
DGND  
1
1
1
1
0
1
0
1
1
0
1
0
1
0
31  
35  
1
0
0
1
39  
1
1
0
0
1
1
0
1
43  
47  
1
1
1
1
0
0
0
1
51  
55  
1
1
1
1
1
1
0
1
59  
63  
CPI6  
CPI5  
CPI4  
I
(mA)  
CP  
CPI3  
CPI2  
CPI1  
3kΩ  
1.06  
2.12  
3.18  
5.1kΩ  
0.625  
1.25  
11kΩ  
0
0
0
0
0
1
0
1
0
0.289  
0.580  
0.870  
1.875  
0
1
1
0
1
0
4.24  
5.30  
2.5  
3.125  
1.160  
1.450  
1
0
1
6.36  
3.75  
1.730  
1
1
1
1
0
1
7.42  
8.50  
4.375  
5.0  
2.020  
2.320  
CE PIN  
PD2  
PD1  
MODE  
X
X
0
1
ASYNCHRONOUS POWER-DOWN  
NORMAL OPERATION  
ASYNCHRONOUS POWER-DOWN  
SYNCHRONOUS POWER-DOWN  
0
1
1
1
X
0
1
1
PRESCALER VALUE  
P2  
P1  
0
0
1
1
0
1
0
1
8/9  
16/17  
32/33  
64/65  
Figure 26. Initialization Latch Map  
Rev. D | Page 15 of 20  
 
ADF4107  
Data Sheet  
Fastlock Mode Bit  
FUNCTION LATCH  
DB10 of the function latch is the fastlock mode bit. When  
fastlock is enabled, this bit determines which fastlock mode is  
used. If the fastlock mode bit is 0, then Fastlock Mode 1 is  
selected; and if the fastlock mode bit is 1, then Fastlock Mode 2  
is selected.  
The on-chip function latch is programmed with C2 and C1 set  
to 1 and 0, respectively. Figure 25 shows the input data format  
for programming the function latch.  
Counter Reset  
DB2 (F1) is the counter reset bit. When this bit is 1, the R  
counter and the AB counters are reset. For normal operation,  
this bit should be 0. Upon powering up, the F1 bit needs to be  
disabled (set to 0). Then, the N counter resumes counting in  
close alignment with the R counter. (The maximum error is one  
prescaler cycle).  
Fastlock Mode 1  
The charge pump current is switched to the contents of Current  
Setting 2. The device enters fastlock by having a 1 written to the  
CP gain bit in the AB counter latch. The device exits fastlock by  
having a 0 written to the CP gain bit in the AB counter latch.  
Fastlock Mode 2  
Power-Down  
The charge pump current is switched to the contents of Current  
Setting 2. The device enters fastlock by having a 1 written to the  
CP gain bit in the AB counter latch. The device exits fastlock  
under the control of the timer counter. After the timeout period  
determined by the value in TC4 to TC1, the CP gain bit in the  
AB counter latch is automatically reset to 0 and the device  
reverts to normal mode instead of fastlock. See Figure 25 for the  
timeout periods.  
DB3 (PD1) and DB21 (PD2) provide programmable power-  
down modes. They are enabled by the CE pin.  
When the CE pin is low, the device is immediately disabled  
regardless of the states of PD2 and PD1.  
In the programmed asynchronous power-down, the device  
powers down immediately after latching a 1 into the PD1 bit,  
with the condition that PD2 has been loaded with a 0.  
In the programmed synchronous power-down, the device  
power-down is gated by the charge pump to prevent unwanted  
frequency jumps. Once the power-down is enabled by writing  
a 1 into PD1 (on condition that a 1 has also been loaded to  
PD2), then the device goes into power-down on the occurrence  
of the next charge pump event.  
Timer Counter Control  
The user has the option of programming two charge pump  
currents. The intent is that Current Setting 1 is used when the RF  
output is stable and the system is in a static state. Current Setting 2  
is meant to be used when the system is dynamic and in a state of  
change (that is, when a new output frequency is programmed).  
When a power-down is activated (either in synchronous or  
asynchronous mode, including CE pin-activated power-down),  
the following events occur:  
The normal sequence of events is as follows:  
The user initially decides what the preferred charge pump  
currents are going to be. For example, the choice may be 2.5 mA  
as Current Setting 1 and 5 mA as Current Setting 2.  
All active dc current paths are removed.  
The R, N, and timeout counters are forced to their load state  
conditions.  
At the same time, it must be decided how long the secondary  
current is to stay active before reverting to the primary current.  
This is controlled by the timer counter control bits, DB14 to  
DB11 (TC4 to TC1), in the function latch. The truth table is  
given in Figure 25.  
The charge pump is forced into three-state mode.  
The digital lock detect circuitry is reset.  
The RFIN input is debiased.  
To program a new output frequency, the user simply programs  
the AB counter latch with new values for A and B. At the same  
time, the CP gain bit can be set to 1, which sets the charge  
pump with the value in CPI6 to CPI4 for a period of time  
determined by TC4 to TC1. When this time is up, the charge  
pump current reverts to the value set by CPI3 to CPI1. At the  
same time, the CP gain bit in the AB counter latch is reset to 0  
and is ready for the next time that the user wishes to change the  
frequency.  
The reference input buffer circuitry is disabled.  
The input register remains active and capable of loading and  
latching data.  
MUXOUT Control  
The on-chip multiplexer is controlled by M3, M2, and M1 on  
the ADF4107. Figure 25 shows the truth table.  
Fastlock Enable Bit  
Note that there is an enable feature on the timer counter. It is  
enabled when Fastlock Mode 2 is chosen by setting the fastlock  
mode bit (DB10) in the function latch to 1.  
DB9 of the function latch is the fastlock enable bit. Fastlock is  
enabled only when this bit is 1.  
Rev. D | Page 16 of 20  
 
Data Sheet  
ADF4107  
Charge Pump Currents  
5. Then do an AB load (01 in two LSBs).  
6. When the initialization latch is loaded, the following  
occurs:  
a. The function latch contents are loaded.  
CPI3, CPI2, and CPI1 program Current Setting 1 for the charge  
pump. CPI6, CPI5, and CPI4 program Current Setting 2 for the  
charge pump. The truth table is given in Figure 25.  
b. An internal pulse resets the R, AB, and timeout counters to  
load-state conditions and also three-states the charge  
pump. Note that the prescaler band gap reference and the  
oscillator input buffer are unaffected by the internal reset  
pulse, allowing close phase alignment when counting  
resumes.  
c. Latching the first AB counter data after the initialization  
word activates the same internal reset pulse. Successive AB  
loads do not trigger the internal reset pulse unless there is  
another initialization.  
Prescaler Value  
P2 and P1 in the function latch set the prescaler values. The  
prescaler value should be chosen so that the prescaler output  
frequency is always less than or equal to 300 MHz. Thus, with  
an RF frequency of 4 GHz, a prescaler value of 16/17 is valid but  
a value of 8/9 is not valid.  
PD Polarity  
This bit sets the phase detector polarity bit. See Figure 25.  
CP Three-State  
CE Pin Method  
This bit controls the CP output pin. With the bit set high, the  
CP output is put into three-state. With the bit set low, the CP  
output is enabled.  
1. Apply VDD  
.
2. Bring CE low to put the device into power-down. This is  
an asychronous power-down in that it happens immediately.  
3. Program the function latch (10).  
4. Program the R counter latch (00).  
5. Program the AB counter latch (01).  
INITIALIZATION LATCH  
The initialization latch is programmed when C2 and C1 are set  
to 1 and 1. This is essentially the same as the function latch  
(programmed when C2, C1 = 1, 0).  
6. Bring CE high to take the device out of power-down. The  
R and AB counters resume counting in close alignment.  
However, when the initialization latch is programmed an  
additional internal reset pulse is applied to the R and AB  
counters. This pulse ensures that the AB counter is at load point  
when the AB counter data is latched and the device will begin  
counting in close phase alignment.  
Note that after CE goes high, a duration of 1 µs may be required  
for the prescaler band gap voltage and oscillator input buffer  
bias to reach steady state.  
CE can be used to power the device up and down in order to  
check for channel activity. The input register does not need to  
be reprogrammed each time the device is disabled and enabled  
as long as it has been programmed at least once after VDD was  
initially applied.  
If the latch is programmed for synchronous power-down (CE  
pin is high; PD1 bit is high; PD2 bit is low), the internal pulse  
also triggers this power-down. The prescaler reference and the  
oscillator input buffer are unaffected by the internal reset pulse and  
so close phase alignment is maintained when counting resumes.  
Counter Reset Method  
When the first AB counter data is latched after initialization, the  
internal reset pulse is again activated. However, successive AB  
counter loads after this will not trigger the internal reset pulse.  
1. Apply VDD  
.
2. Do a function latch load (10 in two LSBs). As part of this,  
load 1 to the F1 bit. This enables the counter reset.  
3. Do an R counter load (00 in two LSBs).  
4. Do an AB counter load (01 in two LSBs).  
5. Do a function latch load (10 in two LSBs). As part of this,  
load 0 to the F1 bit. This disables the counter reset.  
DEVICE PROGRAMMING AFTER INITIAL POWER-UP  
After initially powering up the device, there are three ways to  
program the device.  
Initialization Latch Method  
1. Apply VDD  
.
This sequence provides the same close alignment as the  
initialization method. It offers direct control over the internal  
reset. Note that counter reset holds the counters at load point  
and three-states the charge pump, but does not trigger  
synchronous power-down.  
2. Program the initialization latch (11 in two LSBs of input  
word). Make sure that the F1 bit is programmed to 0.  
3. Next, do a function latch load (10 in two LSBs of the  
control word), making sure that the F1 bit is programmed  
to a 0.  
4. Then do an R load (00 in two LSBs).  
Rev. D | Page 17 of 20  
 
 
ADF4107  
Data Sheet  
APPLICATIONS  
Other PLL system specifications are:  
LOCAL OSCILLATOR FOR LMDS BASE STATION  
TRANSMITTER  
KD = 5.0 mA  
KV = 80 MHz/V  
Loop bandwidth = 70 kHz  
Figure 27 shows the ADF4107 being used with a VCO to  
produce the LO for an LMDS base station.  
F
PFD = 1 MHz  
The reference input signal is applied to the circuit at FREFIN  
and, in this case, is terminated in 50 Ω. A typical base station  
system has either a TCXO or an OCXO driving the reference  
input without any 50 Ω termination.  
N = 6300  
Extra reference spur attenuation = 10 dB  
All of these specifications are needed and used to derive the  
loop filter component values shown in Figure 27.  
To have a channel spacing of 1 MHz at the output, the 10 MHz  
reference input must be divided by 10, using the on-chip  
reference divider of the ADF4107.  
Figure 27 gives a typical phase noise performance of −83 dBc/Hz  
at 1 kHz offset from the carrier. Spurs are better than −70 dBc.  
The loop filter output drives the VCO, which, in turn, is fed  
back to the RF input of the PLL synthesizer, and drives the RF  
output terminal. A T-circuit configuration provides 50 Ω  
matching between the VCO output, the RF output, and the RFIN  
terminal of the synthesizer.  
The charge pump output of the ADF4107 (Pin 2) drives the  
loop filter. In calculating the loop filter component values, a  
number of items need to be considered. In this example, the  
loop filter was designed so that the overall phase margin for the  
system would be 45°.  
In a PLL system, it is important to know when the system is in  
lock. In Figure 27, this is accomplished by using the MUXOUT  
signal from the synthesizer. The MUXOUT pin can be  
programmed to monitor various internal signals in the  
synthesizer. One of these is the LD or lock detect signal.  
V
V
P
DD  
RF  
OUT  
100pF  
18Ω  
18Ω  
16  
V
7
15  
100pF  
14  
18Ω  
AV  
DD  
DV  
P
1.7kΩ  
DD  
10  
V
CC  
1000pF  
1000pF  
2
2
CP  
FREF  
IN  
8
REF  
IN  
47pF  
100pF  
7.5kΩ  
51Ω  
V956ME01  
ADF4107  
1, 3, 4, 5, 7, 8,  
9, 11, 12, 13  
820pF  
CE  
LOCK  
DETECT  
MUXOUT  
14  
CLK  
DATA  
LE  
100pF  
6
5
RF  
RF  
A
IN  
R
1
SET  
51Ω  
B
IN  
5.1kΩ  
100pF  
3
4
9
NOTES:  
1. DECOUPLING CAPACITORS (0.1µF/10pF) ON AV , DV , AND  
DD DD  
OF THE V956ME03 HAVE  
V
OF THE ADF4106 AND ON V  
P
CC  
BEEN OMITTED FROM THE DIAGRAM TO AID CLARITY.  
Figure 27. 6.3 GHz Local Oscillator Using the ADF4107  
Rev. D | Page 18 of 20  
 
 
 
Data Sheet  
ADF4107  
ADSP-2181 Interface  
INTERFACING  
Figure 29 shows the interface between the ADF4107 and the  
ADSP21xx digital signal processor. The ADF4107 needs a  
24-bit serial word for each latch write. The easiest way to  
accomplish this using the ADSP-21xx family is to use the  
autobuffered transmit mode of operation with alternate  
framing. This provides a means for transmitting an entire block  
of serial data before an interrupt is generated. Set up the word  
length for 8 bits and use three memory locations for each 24-bit  
word. To program each 24-bit latch, store the three 8-bit bytes,  
enable the autobuffered mode, and then write to the transmit  
register of the DSP. This last operation initiates the autobuffer  
transfer.  
The ADF4107 has a simple SPI®-compatible serial interface for  
writing to the device. CLK, DATA, and LE control the data  
transfer. When LE (latch enable) goes high, the 24 bits that have  
been clocked into the input register on each rising edge of CLK  
are transferred to the appropriate latch. See Figure 2 for the  
timing diagram and Table 5 for the latch truth table.  
The maximum allowable serial clock rate is 20 MHz. This  
means that the maximum update rate possible for the device is  
833 kHz or one update every 1.2 µs. This is certainly more than  
adequate for systems that have typical lock times in hundreds of  
microseconds.  
ADuC812 Interface  
SCLOCK  
DT  
CLK  
Figure 28 shows the interface between the ADF4107 and the  
ADuC812 MicroConverter®. Since the ADuC812 is based on an  
8051 core, this interface can be used with any 8051-based  
microcontroller. The MicroConverter is set up for SPI master  
mode with CPHA = 0. To initiate the operation, the I/O port  
driving LE is brought low. Each latch of the ADF4107 needs a  
24-bit word. This is accomplished by writing three 8-bit bytes  
from the MicroConverter to the device. When the third byte  
has been written, the LE input should be brought high to  
complete the transfer.  
DATA  
TFS  
LE  
CE  
ADSP-21xx  
ADF4107  
I/O FLAGS  
MUXOUT  
(LOCK DETECT)  
Figure 29. ADSP-21xx to ADF4107 Interface  
PCB DESIGN GUIDELINES FOR CHIP SCALE  
PACKAGE  
On first applying power to the ADF4107, it needs four writes  
(one each to the initialization latch, function latch, R counter  
latch, and N counter latch) for the output to become active.  
The lands on the chip scale package (CP-20-6) are rectangular.  
The printed circuit board pad for these should be 0.1 mm  
longer than the package land length and 0.05 mm wider than  
the package land width. The land should be centered on the  
pad. This ensures that the solder joint size is maximized. The  
bottom of the chip scale package has a central thermal pad.  
I/O port lines on the ADuC812 are also used to control power-  
down (CE input) and to detect lock (MUXOUT configured as  
lock detect and polled by the port input).  
When operating in the mode described, the maximum  
SCLOCK rate of the ADuC812 is 4 MHz. This means that the  
maximum rate at which the output frequency can be changed is  
166 kHz.  
The thermal pad on the printed circuit board should be at least  
as large as this exposed pad. On the printed circuit board, there  
should be a clearance of at least 0.25 mm between the thermal  
pad and the inner edges of the pad pattern. This ensures that  
shorting is avoided.  
SCLOCK  
MOSI  
CLK  
DATA  
Thermal vias may be used on the printed circuit board thermal  
pad to improve thermal performance of the package. If vias are  
used, they should be incorporated in the thermal pad at 1.2 mm  
pitch grid. The via diameter should be between 0.3 mm and  
0.33 mm and the via barrel should be plated with 1 oz. copper  
to plug the via.  
LE  
CE  
ADuC812  
I/O PORTS  
ADF4107  
MUXOUT  
(LOCK DETECT)  
The user should connect the printed circuit board thermal pad  
to AGND.  
Figure 28. ADuC812 to ADF4107 Interface  
Rev. D | Page 19 of 20  
 
 
 
 
ADF4107  
Data Sheet  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 30. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
16  
15  
20  
0.50  
BSC  
1
EXPOSED  
PAD  
2.30  
2.10 SQ  
2.00  
11  
5
6
10  
0.65  
0.60  
0.55  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-1.  
Figure 31. 20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-20-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
–40°C to + 85°C  
–40°C to + 85°C  
–40°C to + 85°C  
–40°C to + 85°C  
–40°C to + 85°C  
–40°C to + 85°C  
–40°C to + 85°C  
–40°C to + 85°C  
–40°C to + 85°C  
Package Description  
Package Option  
ADF4107BRU  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
Evaluation Board  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
CP-20-6  
CP-20-6  
CP-20-6  
ADF4107BRU-REEL  
ADF4107BRU-REEL7  
ADF4107BRUZ  
ADF4107BRUZ-REEL  
ADF4107BRUZ-REEL7  
ADF4107BCPZ  
ADF4107BCPZ-REEL  
ADF4107BCPZ-REEL7  
EV-ADF411XSD1Z  
1 Z = RoHS Compliant Part.  
©2003–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03338-0-3/13(D)  
Rev. D | Page 20 of 20  
 
 
 

相关型号:

ADF4107BCPZ-REEL

PLL Frequency Synthesizer
ADI

ADF4107BCPZ-REEL7

PLL Frequency Synthesizer
ADI

ADF4107BRU

PLL Frequency Synthesizer
ADI

ADF4107BRU-REEL

PLL Frequency Synthesizer
ADI

ADF4107BRU-REEL7

PLL Frequency Synthesizer
ADI

ADF4107BRUZ

PLL Frequency Synthesizer
ADI

ADF4107BRUZ-REEL

PLL Frequency Synthesizer
ADI

ADF4107BRUZ-REEL7

PLL Frequency Synthesizer
ADI

ADF4108

PLL Frequency Synthesizer
ADI

ADF4108BCPZ

PLL Frequency Synthesizer
ADI

ADF4108BCPZ-RL

PLL Frequency Synthesizer
ADI

ADF4108BCPZ-RL7

PLL Frequency Synthesizer
ADI