ADF4111BCP [ADI]

RF PLL Frequency Synthesizers; 射频锁相环频率合成器
ADF4111BCP
型号: ADF4111BCP
厂家: ADI    ADI
描述:

RF PLL Frequency Synthesizers
射频锁相环频率合成器

射频
文件: 总24页 (文件大小:263K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
RF PLL Frequency Synthesizers  
ADF4110/ADF4111/ADF4112/ADF4113  
GENERAL DESCRIPTION  
FEATURES  
The ADF4110 family of frequency synthesizers can be used  
to implement local oscillators in the upconversion and down-  
conversion sections of wireless receivers and transmitters. They  
consist of a low-noise digital PFD (Phase Frequency Detector),  
a precision charge pump, a programmable reference divider,  
programmable A and B counters and a dual-modulus prescaler  
(P/P+1). The A (6-bit) and B (13-bit) counters, in conjunction  
with the dual modulus prescaler (P/P+1), implement an N  
divider (N = BP + A). In addition, the 14-bit reference counter  
(R Counter), allows selectable REFIN frequencies at the PFD  
input. A complete PLL (Phase-Locked Loop) can be imple-  
mented if the synthesizer is used with an external loop filter and  
VCO (Voltage Controlled Oscillator).  
ADF4110: 550 MHz  
ADF4111: 1.2 GHz  
ADF4112: 3.0 GHz  
ADF4113: 4.0 GHz  
2.7 V to 5.5 V Power Supply  
Separate Charge Pump Supply (VP) Allows Extended  
Tuning Voltage in 3 V Systems  
Programmable Dual Modulus Prescaler 8/9, 16/17,  
32/33, 64/65  
Programmable Charge Pump Currents  
Programmable Antibacklash Pulsewidth  
3-Wire Serial Interface  
Analog and Digital Lock Detect  
Hardware and Software Power-Down Mode  
Control of all the on-chip registers is via a simple 3-wire interface.  
The devices operate with a power supply ranging from 2.7 V to  
5.5 V and can be powered down when not in use.  
APPLICATIONS  
Base Stations for Wireless Radio (GSM, PCS, DCS,  
CDMA, WCDMA)  
Wireless Handsets (GSM, PCS, DCS, CDMA, WCDMA)  
Wireless LANS  
Communications Test Equipment  
CATV Equipment  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
DVDD  
VP  
RSET  
CPGND  
REFERENCE  
14-BIT  
R COUNTER  
REFIN  
PHASE  
FREQUENCY  
DETECTOR  
CHARGE  
PUMP  
CP  
14  
R COUNTER  
LATCH  
CLK  
DATA  
LE  
24-BIT  
INPUT REGISTER  
FUNCTION  
LATCH  
LOCK  
DETECT  
CURRENT  
SETTING 1  
CURRENT  
SETTING 2  
22  
A, B COUNTER  
LATCH  
SDOUT  
CPI3 CPI2 CPI1 CPI6 CPI5 CPI4  
19  
FROM  
FUNCTION  
LATCH  
HIGH Z  
AVDD  
13  
MUX  
MUXOUT  
N = BP + A  
13-BIT  
B COUNTER  
SDOUT  
RFIN  
A
LOAD  
LOAD  
PRESCALER  
P/P +1  
RFINB  
6-BIT  
A COUNTER  
M3 M2 M1  
ADF4110/ADF4111  
ADF4112/ADF4113  
6
CE  
AGND  
DGND  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
ADF4110/ADF4111/ADF4112/ADF4113–SPECIFICATIONS1  
(AVDD = DVDD = 3 V ؎ 10%, 5 V ؎ 10%; AVDD VP 6.0 V; AGND = DGND = CPGND = 0 V; RSET = 4.7 k; TA = TMIN to TMAX unless otherwise noted)  
Parameter  
B Version  
B Chips2  
Unit  
Test Conditions/Comments  
RF CHARACTERISTICS (3 V)  
RF Input Frequency  
ADF4110  
See Figure 25 for Input Circuit.  
Use a square wave for lower frequencies.  
45/550  
25/550  
0.045/1.2  
0.2/3.0  
0.1/3.0  
0.2/3.7  
–15/0  
45/550  
25/550  
0.045/1.2  
0.2/3.0  
0.1/3.0  
0.2/3.7  
–15/0  
MHz min/max  
MHz min/max  
GHz min/max  
GHz min/max  
GHz min/max  
GHz min/max  
dBm min/max  
ADF4110  
ADF4111  
ADF4112  
ADF4112  
Input Level = –10 dBm  
Input Level = –10 dBm  
Input Level = –10 dBm  
ADF4113  
RF Input Sensitivity  
Maximum Allowable Prescaler  
Output Frequency3  
RF CHARACTERISTICS (5 V)  
RF Input Frequency  
ADF4110  
ADF4111  
ADF4112  
ADF4113  
ADF4113  
RF Input Sensitivity  
Maximum Allowable Prescaler  
Output Frequency3  
165  
165  
MHz max  
Use a square wave for lower frequencies.  
Input Level = –5 dBm  
25/550  
0.025/1.4  
0.1/3.0  
0.2/3.7  
0.2/4.0  
–10/0  
25/550  
0.025/1.4  
0.1/3.0  
0.2/3.7  
0.2/4.0  
–10/0  
MHz min/max  
GHz min/max  
GHz min/max  
GHz min/max  
GHz min/max  
dBm min/max  
200  
200  
MHz max  
REFIN CHARACTERISTICS  
REFIN Input Frequency  
0/100  
–5/0  
0/100  
–5/0  
MHz min/max  
dBm min/max  
Reference Input Sensitivity4  
AC-Coupled. When DC-Coupled:  
0 to VDD max (CMOS-Compatible)  
REFIN Input Capacitance  
REFIN Input Current  
10  
100  
10  
100  
pF max  
µA max  
PHASE DETECTOR  
Phase Detector Frequency5  
55  
55  
MHz max  
CHARGE PUMP  
I
CP Sink/Source  
High Value  
Low Value  
Absolute Accuracy  
RSET Range  
CP 3-State Leakage Current  
Programmable: See Table V  
With RSET = 4.7 kΩ  
5
5
mA typ  
µA typ  
% typ  
ktyp  
nA typ  
% typ  
% typ  
% typ  
625  
2.5  
2.7/10  
1
2
1.5  
2
625  
2.5  
2.7/10  
1
2
1.5  
2
With RSET = 4.7 kΩ  
See Table V  
I
Sink and Source Current Matching  
ICP vs. VCP  
ICP vs. Temperature  
0.5 V VCP VP – 0.5  
0.5 V VCP VP – 0.5  
VCP = VP/2  
LOGIC INPUTS  
V
INH, Input High Voltage  
VINL, Input Low Voltage  
INH/IINL, Input Current  
0.8 × DVDD  
0.8 × DVDD  
V min  
0.2 × DVDD  
0.2 × DVDD  
V max  
µA max  
pF max  
I
1
10  
1
10  
CIN, Input Capacitance  
LOGIC OUTPUTS  
V
OH, Output High Voltage  
DVDD – 0.4  
0.4  
DVDD – 0.4  
0.4  
V min  
V max  
IOH = 500 µA  
IOL = 500 µA  
VOL, Output Low Voltage  
POWER SUPPLIES  
AVDD  
DVDD  
VP  
2.7/5.5  
AVDD  
AVDD/6.0  
2.7/5.5  
AVDD  
AVDD/6.0  
V min/V max  
V min/V max  
AVDD VP 6.0 V  
See Figures 22 and 23  
4.5 mA Typical  
4.5 mA Typical  
6.5 mA Typical  
8.5 mA Typical  
TA = 25°C  
IDD6 (AIDD + DIDD  
ADF4110  
ADF4111  
ADF4112  
ADF4113  
IP  
)
5.5  
5.5  
7.5  
11  
0.5  
1
4.5  
4.5  
6.5  
8.5  
0.5  
1
mA max  
mA max  
mA max  
mA max  
mA max  
µA typ  
Low Power Sleep Mode  
–2–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
Parameter  
B Version  
B Chips2  
Unit  
Test Conditions/Comments  
NOISE CHARACTERISTICS  
ADF4113 Phase Noise Floor7  
–171  
–164  
–171  
–164  
dBc/Hz typ  
dBc/Hz typ  
@ 25 kHz PFD Frequency  
@ 200 kHz PFD Frequency  
@ VCO Output  
Phase Noise Performance8  
ADF4110: 540 MHz Output9  
ADF4111: 900 MHz Output10  
ADF4112: 900 MHz Output10  
ADF4113: 900 MHz Output10  
ADF4111: 836 MHz Output11  
ADF4112: 1750 MHz Output12  
ADF4112: 1750 MHz Output13  
ADF4112: 1960 MHz Output14  
ADF4113: 1960 MHz Output14  
ADF4113: 3100 MHz Output15  
Spurious Signals  
–91  
–87  
–90  
–91  
–78  
–86  
–66  
–84  
–85  
–86  
–91  
–87  
–90  
–91  
–78  
–86  
–66  
–84  
–85  
–86  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
@ 1 kHz Offset and 200 kHz PFD Frequency  
@ 1 kHz Offset and 200 kHz PFD Frequency  
@ 1 kHz Offset and 200 kHz PFD Frequency  
@ 1 kHz Offset and 200 kHz PFD Frequency  
@ 300 Hz Offset and 30 kHz PFD Frequency  
@ 1 kHz Offset and 200 kHz PFD Frequency  
@ 200 Hz Offset and 10 kHz PFD Frequency  
@ 1 kHz Offset and 200 kHz PFD Frequency  
@ 1 kHz Offset and 200 kHz PFD Frequency  
@ 1 kHz Offset and 1 MHz PFD Frequency  
ADF4110: 540 MHz Output9  
ADF4111: 900 MHz Output10  
ADF4112: 900 MHz Output10  
ADF4113: 900 MHz Output10  
ADF4111: 836 MHz Output11  
ADF4112: 1750 MHz Output12  
ADF4112: 1750 MHz Output13  
ADF4112: 1960 MHz Output14  
ADF4113: 1960 MHz Output14  
ADF4113: 3100 MHz Output15  
–97/–106  
–98/–110  
–91/–100  
–100/–110  
–81/–84  
–88/–90  
–65/–73  
–80/–84  
–80/–84  
–80/–82  
–97/–106  
–98/–110  
–91/–100  
–100/–110  
–81/–84  
–88/–90  
–65/–73  
–80/–84  
–80/–84  
–82/–82  
dBc typ  
dBc typ  
dBc typ  
dBc typ  
dBc typ  
dBc typ  
dBc typ  
dBc typ  
dBc typ  
dBc typ  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
@ 30 kHz/60 kHz and 30 kHz PFD Frequency  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
@ 10 kHz/20 kHz and 10 kHz PFD Frequency  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
@ 1 MHz/2 MHz and 1 MHz PFD Frequency  
NOTES  
1Operating temperature range is as follows: B Version: –40°C to +85°C.  
2The B Chip specifications are given as typical values.  
3This is the maximum operating frequency of the CMOS counters. The prescaler value should be chosen to ensure that the RF input is divided down to a frequency  
which is less than this value.  
4AVDD = DVDD = 3 V; For AVDD = DVDD = 5 V, use CMOS-compatible levels.  
5Guaranteed by design.  
6TA = 25°C; AVDD = DVDD = 3 V; P = 16; SYNC = 0; DLY = 0; RFIN for ADF4110 = 540 MHz; RFIN for ADF4111, ADF4112, ADF4113 = 900 MHz.  
7The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20 logN (where N is the N divider value).  
8The phase noise is measured with the EVAL-ADF411XEB1 Evaluation Board and the HP8562E Spectrum Analyzer. The spectrum analyzer provides the REFIN for  
the synthesizer (fREFOUT = 10 MHz @ 0 dBm). SYNC = 0; DLY = 0 (See Table III).  
9fREFIN = 10 MHz; fPFD = 200 kHz; Offset frequency = 1 kHz; fRF = 540 MHz; N = 2700; Loop B/W = 20 kHz.  
10  
11  
12  
13  
14  
15  
f
f
f
f
f
f
= 10 MHz; fPFD = 200 kHz; Offset frequency = 1 kHz; fRF = 900 MHz; N = 4500; Loop B/W = 20 kHz.  
= 10 MHz; fPFD = 30 kHz; Offset frequency = 300 Hz; fRF = 836 MHz; N = 27867; Loop B/W = 3 kHz.  
= 10 MHz; fPFD = 200 kHz; Offset frequency = 1 kHz; fRF = 1750 MHz; N = 8750; Loop B/W = 20 kHz.  
= 10 MHz; fPFD = 10 kHz; Offset frequency = 200 Hz; fRF = 1750 MHz; N = 175000; Loop B/W = 1 kHz.  
= 10 MHz; fPFD = 200 kHz; Offset frequency = 1 kHz; fRF = 1960 MHz; N = 9800; Loop B/W = 20 kHz.  
= 10 MHz; fPFD = 1 MHz; Offset frequency = 1 kHz; fRF = 3100 MHz; N = 3100; Loop B/W = 20 kHz.  
REFIN  
REFIN  
REFIN  
REFIN  
REFIN  
REFIN  
Specifications subject to change without notice.  
(AVDD = DVDD = 3 V ؎ 10%, 5 V ؎ 10%; AVDD VP 6.0 V; AGND = DGND = CPGND = 0 V;  
RSET = 4.7 k; TA = TMIN to TMAX unless otherwise noted)  
TIMING CHARACTERISTICS1  
Limit at TMIN to TMAX  
Parameter  
(B Version)  
Unit  
Test Conditions/Comments  
t1  
t2  
t3  
t4  
t5  
t6  
10  
10  
25  
25  
10  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
DATA to CLOCK Setup Time  
DATA to CLOCK Hold Time  
CLOCK High Duration  
CLOCK Low Duration  
CLOCK to LE Setup Time  
LE Pulsewidth  
NOTES  
1Guaranteed by design but not production tested.  
Specifications subject to change without notice.  
–3–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
t3  
t4  
CLOCK  
t1  
t2  
DB1  
DB0 (LSB)  
DB20 (MSB)  
DB19  
DB2  
DATA  
LE  
(CONTROL BIT C2)  
(CONTROL BIT C1)  
t6  
t5  
LE  
Figure 1. Timing Diagram  
ABSOLUTE MAXIMUM RATINGS1, 2  
CSP θJA Thermal Impedance  
(TA = 25°C unless otherwise noted)  
(Paddle Not Soldered) . . . . . . . . . . . . . . . . . . . . . 216°C/W  
Lead Temperature, Soldering  
AVDD to GND3 . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
AVDD to DVDD . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +0.3 V  
VP to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
VP to AVDD . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +5.5 V  
Digital I/O Voltage to GND . . . . . . . . –0.3 V to VDD + 0.3 V  
Analog I/O Voltage to GND . . . . . . . . . –0.3 V to VP + 0.3 V  
REFIN, RFINA, RFINB to GND . . . . . . –0.3 V to VDD + 0.3 V  
Operating Temperature Range  
Industrial (B Version) . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . . 150°C  
TSSOP θJA Thermal Impedance . . . . . . . . . . . . . 150.4°C/W  
CSP θJA Thermal Impedance (Paddle Soldered) . . . 122°C/W  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . 215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2This device is a high-performance RF integrated circuit with an ESD rating of  
< 2 kV and it is ESD sensitive. Proper precautions should be taken for handling  
and assembly.  
3 GND = AGND = DGND = 0 V.  
TRANSISTOR COUNT  
6425 (CMOS) and 303 (Bipolar).  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumu-  
late on the human body and test equipment and can discharge without detection. Although the  
ADF4110/ADF4111/ADF4112/ADF4113 features proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option*  
ADF4110BRU  
ADF4110BCP  
ADF4111BRU  
ADF4111BCP  
ADF4112BRU  
ADF4112BCP  
ADF4113BRU  
ADF4113BCP  
ADF4113BCHIPS  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Thin Shrink Small Outline Package (TSSOP)  
Chip Scale Package (CSP)  
Thin Shrink Small Outline Package (TSSOP)  
Chip Scale Package (CSP)  
Thin Shrink Small Outline Package (TSSOP)  
Chip Scale Package (CSP)  
Thin Shrink Small Outline Package (TSSOP)  
Chip Scale Package (CSP)  
DICE  
RU-16  
CP-20  
RU-16  
CP-20  
RU-16  
CP-20  
RU-16  
CP-20  
DICE  
*Contact the factory for chip availability.  
–4–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
PIN FUNCTION DESCRIPTIONS  
Pin No. Mnemonic  
Function  
1
RSET  
Connecting a resistor between this pin and CPGND sets the maximum charge pump output current. The  
nominal voltage potential at the RSET pin is 0.56 V. The relationship between ICP and RSET is  
23.5  
ICP max  
=
RSET  
So, with RSET = 4.7 k, ICPmax = 5 mA.  
2
CP  
Charge Pump Output. When enabled this provides  
external VCO.  
ICP to the external loop filter, which in turn drives the  
3
4
5
CPGND  
AGND  
RFINB  
Charge Pump Ground. This is the ground return path for the charge pump.  
Analog Ground. This is the ground return path of the prescaler.  
Complementary Input to the RF Prescaler. This point should be decoupled to the ground plane with  
a small bypass capacitor, typically 100 pF. See Figure 25.  
6
7
RFINA  
AVDD  
Input to the RF Prescaler. This small signal input is normally ac-coupled from the VCO.  
Analog Power Supply. This may range from 2.7 V to 5.5 V. Decoupling capacitors to the analog ground  
plane should be placed as close as possible to this pin. AVDD must be the same value as DVDD  
.
8
REFIN  
Reference Input. This is a CMOS input with a nominal threshold of VDD/2 and an equivalent input resis-  
tance of 100 k. See Figure 24. This input can be driven from a TTL or CMOS crystal oscillator or  
it can be ac-coupled.  
9
10  
DGND  
CE  
Digital Ground.  
Chip Enable. A logic low on this pin powers down the device and puts the charge pump output into three-  
state mode. Taking the pin high will power up the device depending on the status of the power-down bit F2.  
11  
12  
13  
14  
15  
16  
CLK  
Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is latched into  
the 24-bit shift register on the CLK rising edge. This input is a high impedance CMOS input.  
Serial Data Input. The serial data is loaded MSB rst with the two LSBs being the control bits. This  
input is a high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into one  
of the four latches, the latch being selected using the control bits.  
This multiplexer output allows either the Lock Detect, the scaled RF or the scaled Reference Frequency  
to be accessed externally.  
Digital Power Supply. This may range from 2.7 V to 5.5 V. Decoupling capacitors to the digital ground  
DATA  
LE  
MUXOUT  
DVDD  
VP  
plane should be placed as close as possible to this pin. DVDD must be the same value as AVDD  
.
Charge Pump Power Supply. This should be greater than or equal to VDD. In systems where VDD is 3 V,  
it can be set to 6 V and used to drive a VCO with a tuning range of up to 6 V.  
PIN CONFIGURATIONS  
TSSOP  
CHIP SCALE PACKAGE  
1
2
3
4
5
6
7
8
V
P
R
16  
SET  
15 DV  
DD  
CP  
ADF4110  
ADF4111  
ADF4112  
ADF4113  
14 MUXOUT  
13 LE  
CPGND  
AGND  
1
2
3
4
5
15  
14  
13  
12  
11  
CPGND  
AGND  
AGND  
MUXOUT  
LE  
ADF4110  
ADF4111  
ADF4112  
ADF4113  
TOP VIEW 12  
(Not to Scale)  
11  
DATA  
CLK  
RF  
B
A
IN  
IN  
DATA  
CLK  
TOP VIEW  
RF  
RF  
IN  
B
(Not to Scale)  
10  
9
CE  
AV  
DD  
RF  
IN  
A
CE  
DGND  
REF  
IN  
5–  
REV. 0  
Typical Performance Characteristics  
ADF4110/ADF4111/ADF4112/ADF4113  
0
V
= 3V, V = 5V  
P
FREQ-UNIT PARAM-TYPE DATA-FORMAT KEYWORD IMPEDANCE – OHMS  
DD  
REFERENCE  
LEVEL = 4.2dBm  
GHz  
S
MA  
R
50  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
ICP = 5mA  
FREQ  
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0.40  
0.45  
0.50  
0.55  
0.60  
0.65  
0.70  
0.75  
0.80  
0.85  
0.90  
0.95  
1.00  
MAGS11  
0.89207  
0.8886  
ANGS11  
–2.0571  
–4.4427  
–6.3212  
–2.1393  
–12.13  
FREQ  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
MAGS11  
ANGS11  
–40.134  
–43.747  
–44.393  
–46.937  
–49.6  
–51.884  
–51.21  
–53.55  
–56.786  
–58.781  
–60.545  
–61.43  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 19  
0.9512  
0.93458  
0.94782  
0.96875  
0.92216  
0.93755  
0.96178  
0.94354  
0.95189  
0.97647  
0.98619  
0.95459  
0.97945  
0.98864  
0.97399  
0.97216  
0.89022  
0.96323  
0.90566  
0.90307  
0.89318  
0.89806  
0.89565  
0.88538  
0.89699  
0.89927  
0.87797  
0.90765  
0.88526  
0.81267  
0.90357  
0.92954  
0.92087  
0.93788  
–13.52  
–15.746  
–18.056  
–19.693  
–22.246  
–24.336  
–25.948  
–28.457  
–29.735  
–31.879  
–32.681  
–31.522  
–34.222  
–36.961  
–39.343  
–61.241  
–64.051  
–66.19  
92.5dBc/Hz  
–63.775  
2kHz  
1kHz  
900MHz  
+1kHz  
+2kHz  
Figure 5. ADF4113 Phase Noise (900 MHz, 200 kHz,  
20 kHz) with DLY and SYNC Enabled  
Figure 2. S-Parameter Data for the ADF4113 RF Input (Up  
to 1.8 GHz)  
10dB/DIVISION  
40  
R
= 40dBc/Hz  
RMS NOISE = 0.52؇  
L
0
50  
60  
V
V
= 3V  
DD  
= 3V  
5  
10  
15  
20  
25  
30  
35  
P
0.52؇ rms  
70  
80  
90  
T
= +85؇C  
A
100  
110  
120  
130  
T
= +25؇C  
A
T
= 40؇C  
A
140  
100Hz  
5
3
4
0
1
2
FREQUENCY OFFSET FROM 900MHz CARRIER  
1MHz  
RF INPUT FREQUENCY GHz  
Figure 3. Input Sensitivity (ADF4113)  
Figure 6. ADF4113 Integrated Phase Noise (900 MHz,  
200 kHz, 20 kHz, Typical Lock Time: 400 µs)  
10dB/DIVISION  
40  
R
= 40dBc/Hz  
RMS NOISE = 0.62؇  
L
0
V
= 3V, V = 5V  
P
DD  
REFERENCE  
LEVEL = 4.2dBm  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
50  
60  
ICP = 5mA  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 19  
0.62؇ rms  
70  
80  
90  
100  
110  
120  
130  
91.0dBc/Hz  
140  
100Hz  
2kHz  
1kHz  
900MHz  
+1kHz  
+2kHz  
FREQUENCY OFFSET FROM 900MHz CARRIER  
1MHz  
Figure 4. ADF4113 Phase Noise (900 MHz, 200 kHz, 20 kHz)  
Figure 7. ADF4113 Integrated Phase Noise (900 MHz,  
200 kHz, 35 kHz, Typical Lock Time: 200 µs)  
6–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
10dB/DIVISION  
RL = 40dBc/Hz  
RMS NOISE = 1.6؇  
40  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
REFERENCE  
V
= 3V, V = 5V  
P
DD  
50  
60  
LEVEL = 4.2dBm  
I
= 5mA  
CP  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 2.5 SECONDS  
AVERAGES = 30  
70  
1.6؇ rms  
80  
90  
100  
110  
120  
130  
90.2dBc  
140  
100Hz  
400kHz  
200kHz  
900MHz  
+200kHz  
+400kHz  
FREQUENCY OFFSET FROM 1750MHz CARRIER  
1MHz  
Figure 8. ADF4113 Reference Spurs (900 MHz, 200 kHz,  
20 kHz)  
Figure 11. ADF4113 Integrated Phase Noise (1750 MHz,  
30 kHz, 3 kHz)  
0
0
V
I
= 3V, V = 5V  
P
DD  
V
= 3V, V = 5V  
P
DD  
REFERENCE  
REFERENCE  
10  
20  
30  
40  
50  
60  
70  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
= 5mA  
LEVEL = 5.7dBm  
CP  
LEVEL = 4.2dBm  
I
= 5mA  
CP  
PFD FREQUENCY = 30kHz  
LOOP BANDWIDTH = 3kHz  
RES. BANDWIDTH = 3Hz  
VIDEO BANDWIDTH = 3Hz  
SWEEP = 255 SECONDS  
POSITIVE PEAK DETECT  
MODE  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 35kHz  
RES. BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 2.5 SECONDS  
AVERAGES = 30  
79.6dBc  
80  
90  
89.3dBc  
100  
80kHz  
40kHz  
1750MHz  
+40kHz  
+80kHz  
400kHz  
200kHz  
900MHz  
+200kHz  
+400kHz  
Figure 9. ADF4113 Reference Spurs (900 MHz, 200 kHz,  
35 kHz)  
Figure 12. ADF4113 Reference Spurs (1750 MHz, 30 kHz,  
3 kHz)  
0
0
V
= 3V, V = 5V  
V
= 3V, V = 5V  
P
DD  
P
DD  
I = 5mA  
CP  
REFERENCE  
REFERENCE  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
LEVEL = 8.0dBm  
LEVEL = 4.2dBm  
I
= 5mA  
CP  
PFD FREQUENCY = 30kHz  
LOOP BANDWIDTH = 3kHz  
RES. BANDWIDTH = 10kHz  
VIDEO BANDWIDTH = 10kHz  
SWEEP = 477ms  
PFD FREQUENCY = 1MHz  
LOOP BANDWIDTH = 100kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 45  
AVERAGES = 10  
86.6dBc/Hz  
75.2dBc/Hz  
400Hz  
200Hz  
1750MHz  
+200Hz  
+400Hz  
2kHz  
1kHz  
3100MHz  
+1kHz  
+2kHz  
Figure 10. ADF4113 Phase Noise (1750 MHz, 30 kHz,  
3 kHz)  
Figure 13. ADF4113 Phase Noise (3100 MHz, 1 MHz,  
100 kHz)  
7–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
10dB/DIVISION  
R
= 40dBc/Hz  
RMS NOISE = 1.7؇  
L
40  
60  
70  
50  
60  
V
V
= 3V  
= 3V  
DD  
P
1.7؇ rms  
70  
80  
90  
80  
100  
110  
120  
130  
90  
140  
100Hz  
100  
40  
20  
0
20  
40  
60  
80  
100  
FREQUENCY OFFSET FROM 3100MHz CARRIER  
1MHz  
TEMPERATURE ؇C  
Figure 14. ADF4113 Integrated Phase Noise (3100 MHz,  
1 MHz, 100 kHz)  
Figure 17. ADF4113 Phase Noise vs. Temperature  
(900 MHz, 200 kHz, 20 kHz)  
0
60  
V
I
= 3V, V = 5V  
P
DD  
= 5mA  
REFERENCE  
LEVEL = 17.2dBm  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
CP  
V
V
= 3V  
= 5V  
DD  
PFD FREQUENCY = 1MHz  
LOOP BANDWIDTH = 100kHz  
RES. BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 13 SECONDS  
AVERAGES = 1  
P
70  
80  
80.6dBc  
90  
100  
2MHz  
1MHz  
3100MHz  
+1MHz  
+2MHz  
40  
20  
0
20  
40  
60  
80  
100  
TEMPERATURE ؇C  
Figure 15. ADF4113 Reference Spurs (3100 MHz, 1 MHz,  
100 kHz)  
Figure 18. ADF4113 Reference Spurs vs. Temperature  
(900 MHz, 200 kHz, 20 kHz)  
5  
120  
V
V
= 3V  
= 5V  
DD  
15  
P
V
V
= 3V  
= 5V  
DD  
130  
140  
150  
160  
170  
180  
P
25  
35  
45  
55  
65  
75  
85  
95  
105  
1
10  
100  
1000  
10000  
0
1
2
3
4
5
PHASE DETECTOR FREQUENCY kHz  
TUNING VOLTAGE Volts  
Figure 16. ADF4113 Phase Noise (Referred to CP Output)  
vs. PFD Frequency  
Figure 19. ADF4113 Reference Spurs (200 kHz) vs.  
VTUNE (900 MHz, 200 kHz, 20 kHz)  
8–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
10  
60  
70  
9
V
V
= 3V  
= 5V  
DD  
P
8
7
6
5
4
3
2
1
0
ADF4113  
80  
ADF4112  
90  
ADF4110  
ADF4111  
100  
0
8/9  
16/17  
PRESCALER VALUE  
32/33  
64/65  
40  
20  
0
20  
40  
60  
80  
100  
TEMPERATURE ؇C  
Figure 20. ADF4113 Phase Noise vs. Temperature  
(836 MHz, 30 kHz, 3 kHz)  
Figure 22. AIDD vs. Prescaler Value  
60  
3.0  
V
V
= 3V  
= 3V  
DD  
P
V
V
= 3V  
= 5V  
DD  
2.5  
P
70  
80  
2.0  
1.5  
1.0  
0.5  
0
90  
100  
40  
20  
0
20  
40  
60  
80  
100  
0
50  
100  
150  
200  
TEMPERATURE ؇C  
PRESCALER OUTPUT FREQUENCY MHz  
Figure 21. ADF4113 Reference Spurs vs. Temperature  
(836 MHz, 30 kHz, 3 kHz)  
Figure 23. DIDD vs. Prescaler Output Frequency  
(ADF4110, ADF4111, ADF4112, ADF4113)  
9–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
Pulse Swallow Function  
CIRCUIT DESCRIPTION  
The A and B counters, in conjunction with the dual modulus  
prescaler, make it possible to generate output frequencies that  
are spaced only by the Reference Frequency divided by R. The  
equation for the VCO frequency is as follows:  
REFERENCE INPUT SECTION  
The reference input stage is shown in Figure 24. SW1 and SW2  
are normally-closed switches. SW3 is normally-open. When  
power-down is initiated, SW3 is closed and SW1 and SW2 are  
opened. This ensures that there is no loading of the REFIN pin  
on power-down.  
f
VCO = [(P × B) + A] × fREFIN/R  
fVCO  
Output frequency of external voltage controlled oscilla-  
tor (VCO).  
POWER-DOWN  
CONTROL  
P
Preset modulus of dual modulus prescaler  
100k  
B
A
Preset Divide Ratio of binary 13-bit counter (3 to 8191).  
NC  
SW2  
Preset Divide Ratio of binary 6-bit swallow counter (0 to  
63).  
TO R COUNTER  
REF  
IN  
NC  
SW1  
BUFFER  
SW3  
fREFIN Output frequency of the external reference frequency  
NO  
oscillator.  
Figure 24. Reference Input Stage  
RF INPUT STAGE  
R
Preset divide ratio of binary 14-bit programmable refer-  
ence counter (1 to 16383).  
The RF input stage is shown in Figure 25. It is followed by a  
2-stage limiting amplier to generate the CML (Current Mode  
Logic) clock levels needed for the prescaler.  
R COUNTER  
The 14-bit R counter allows the input reference frequency to be  
divided down to produce the reference clock to the phase fre-  
quency detector (PFD). Division ratios from 1 to 16,383 are  
allowed.  
1.6V  
BIAS  
GENERATOR  
AV  
DD  
500  
500⍀  
N = BP + A  
TO PFD  
13-BIT B  
COUNTER  
RF  
RF  
A
B
IN  
FROM RF  
INPUT STAGE  
LOAD  
LOAD  
PRESCALER  
P/P + 1  
IN  
6-BIT A  
COUNTER  
MODULUS  
CONTROL  
AGND  
Figure 25. RF Input Stage  
Figure 26. A and B Counters  
PRESCALER (P/P+1)  
PHASE FREQUENCY DETECTOR (PFD) AND CHARGE  
PUMP  
The dual-modulus prescaler (P/P+1), along with the A and B  
counters, enables the large division ratio, N, to be realized  
(N = BP + A). The dual-modulus prescaler, operating at CML  
levels, takes the clock from the RF input stage and divides it  
down to a manageable frequency for the CMOS A and B counters.  
The prescaler is programmable. It can be set in software to 8/9,  
16/17, 32/33, or 64/65. It is based on a synchronous 4/5 core.  
The PFD takes inputs from the R counter and N counter  
(N = BP + A) and produces an output proportional to the phase  
and frequency difference between them. Figure 27 is a simpli-  
ed schematic. The PFD includes a programmable delay element  
which controls the width of the antibacklash pulse. This pulse  
ensures that there is no dead zone in the PFD transfer function  
and minimizes phase noise and reference spurs. Two bits in the  
Reference Counter Latch, ABP2 and ABP1 control the width  
of the pulse. See Table III.  
A AND B COUNTERS  
The A and B CMOS counters combine with the dual modulus  
prescaler to allow a wide ranging division ratio in the PLL feed-  
back counter. The counters are specified to work when the  
prescaler output is 200 MHz or less. Thus, with an RF input  
frequency of 2.5 GHz, a prescaler value of 16/17 is valid but a  
value of 8/9 is not valid.  
10–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
The N-channel open-drain analog lock detect should be oper-  
ated with an external pull-up resistor of 10 knominal. When  
lock has been detected this output will be high with narrow low-  
going pulses.  
V
P
CHARGE  
PUMP  
UP  
HI  
D1  
Q1  
U1  
DV  
DD  
R DIVIDER  
CLR1  
ANALOG LOCK DETECT  
DIGITAL LOCK DETECT  
R COUNTER OUTPUT  
N COUNTER OUTPUT  
SDOUT  
PROGRAMMABLE  
DELAY  
CP  
U3  
MUX  
CONTROL  
MUXOUT  
ABP1  
ABP2  
CLR2  
U2  
DOWN  
HI  
D2  
Q2  
DGND  
Figure 28. MUXOUT Circuit  
INPUT SHIFT REGISTER  
N DIVIDER  
CPGND  
The ADF4110 family digital section includes a 24-bit input shift  
register, a 14-bit R counter and a 19-bit N counter, comprising  
a 6-bit A counter and a 13-bit B counter. Data is clocked into  
the 24-bit shift register on each rising edge of CLK. The data is  
clocked in MSB rst. Data is transferred from the shift register  
to one of four latches on the rising edge of LE. The destination  
latch is determined by the state of the two control bits (C2, C1)  
in the shift register. These are the two LSBs DB1, DB0 as  
shown in the timing diagram of Figure 1. The truth table for  
these bits is shown in Table VI. Table I shows a summary of  
how the latches are programmed.  
R DIVIDER  
N DIVIDER  
CP OUTPUT  
Figure 27. PFD Simplied Schematic and Timing  
(In Lock)  
MUXOUT AND LOCK DETECT  
The output multiplexer on the ADF4110 family allows the  
Table I. C2, C1 Truth Table  
Control Bits  
user to access various internal points on the chip. The state of  
MUXOUT is controlled by M3, M2 and M1 in the function  
latch. Table V shows the full truth table. Figure 28 shows the  
MUXOUT section in block diagram form.  
C2  
C1  
Data Latch  
0
0
1
1
0
1
0
1
R Counter  
Lock Detect  
N Counter (A and B)  
Function Latch (Including Prescaler)  
Initialization Latch  
MUXOUT can be programmed for two types of lock detect:  
digital lock detect and analog lock detect.  
Digital lock detect is active high. When LDP in the R counter  
latch is set to 0, digital lock detect is set high when the phase  
error on three consecutive Phase Detector cycles is less than 15 ns.  
With LDP set to 1, five consecutive cycles of less than 15 ns  
are required to set the lock detect. It will stay set high until a  
phase error of greater than 25 ns is detected on any subsequent  
PD cycle.  
11–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
Table II. ADF4110 Family Latch Summary  
REFERENCE COUNTER LATCH  
ANTI-  
BACKLASH  
WIDTH  
TEST  
CONTROL  
BITS  
SYNC  
MODE BITS  
14-BIT REFERENCE COUNTER, R  
DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7  
R13 R12 R11 R10 R9 R8 R7 R6  
DLY  
DB17  
DB15  
DB5  
R4  
DB4  
R3  
DB2  
R1  
DB23 DB22 DB21 DB20 DB19 DB18  
DB16  
DB6  
R5  
DB3  
R2  
DB1 DB0  
DLY SYNC LDP  
T2  
T1  
ABP2 ABP1 R14  
C2 (0) C1 (0)  
X
X = DON'T CARE  
N COUNTER LATCH  
CONTROL  
BITS  
RESERVED  
13-BIT B COUNTER  
6-BIT A COUNTER  
DB23  
X
DB19  
DB13  
B6  
DB5  
A4  
DB0  
DB22 DB21 DB20  
G1 B13  
DB18 DB17 DB16 DB15 DB14  
DB12 DB11 DB10 DB9 DB8  
B5 B4 B3 B2 B1  
DB7 DB6  
DB4  
A3  
DB3 DB2  
DB1  
B12 B11  
B10  
B9  
B8  
B7  
A6  
A5  
A2  
A1  
C2 (0) C1 (1)  
X
X = DON'T CARE  
FUNCTION LATCH  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
CONTROL  
BITS  
PRESCALER  
VALUE  
DB21  
DB6  
M3  
DB2  
F1  
DB1  
DB23 DB22  
P2 P1  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8  
DB7  
F2  
DB5 DB4  
DB3  
PD1  
DB0  
PD2 CPI6 CPI5 CPI4 CPI3 CPI2 CPI1 TC4 TC3 TC2 TC1 F5 F4 F3  
M2  
M1  
C2 (1) C1 (0)  
INITIALIZATION LATCH  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
PRESCALER  
VALUE  
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
CONTROL  
BITS  
DB19  
DB17  
DB15  
DB5 DB4  
M2 M1  
DB23 DB22 DB21 DB20  
DB18  
DB16  
DB14 DB13 DB12 DB11 DB10 DB9 DB8  
TC3 TC2 TC1 F5 F4 F3  
DB7 DB6  
F2 M3  
DB3 DB2  
PD1 F1  
DB1 DB0  
P2  
P1  
PD2  
CPI6 CPI5 CPI4 CPI3 CPI2 CPI1 TC4  
C2 (1) C1 (1)  
12–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
Table III. Reference Counter Latch Map  
ANTI-  
BACKLASH  
WIDTH  
TEST  
CONTROL  
BITS  
DLY  
SYNC  
DB21  
MODE BITS  
14-BIT REFERENCE COUNTER  
DB23 DB22  
DB20 DB19 DB18  
DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7  
DB5  
R4  
DB0  
DB17  
DB6  
R5  
DB4 DB3 DB2 DB1  
X
DLY SYNC LDP  
T2  
T1  
ABP2 ABP1 R14  
R13 R12  
R11 R10  
R9  
R8  
R7  
R6  
R3  
R2  
R1 C2 (0) C1 (0)  
X = DON'T  
CARE  
R14  
0
R13  
0
R12  
••••••••••  
••••••••••  
R3  
R2  
R1  
DIVIDE RATIO  
1
0
0
0
0
0
0
0
1
0
1
1
0
1
0
1
0
0
0
0
0
0
0
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
2
3
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
16380  
16381  
16382  
16383  
ABP2 ABP1 ANTIBACKLASH PULSEWIDTH  
0
0
1
1
0
1
0
1
3.0ns  
1.5ns  
6.0ns  
3.0ns  
TEST MODE BITS SHOULD  
BE SET TO 00 FOR NORMAL  
OPERATION  
OPERATION  
LDP  
0
THREE CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN  
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.  
FIVE CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN  
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.  
1
DLY SYNC  
OPERATION  
0
0
0
1
NORMAL OPERATION  
OUTPUT OF PRESCALER IS RESYNCHRONIZED  
WITH NONDELAYED VERSION OF RF INPUT  
1
1
0
1
NORMAL OPERATION  
OUTPUT OF PRESCALER IS RESYNCHRONIZED  
WITH DELAYED VERSION OF RF INPUT  
13–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
Table IV. AB Counter Latch Map  
CONTROL  
BITS  
RESERVED  
DB23 DB22  
13-BIT B COUNTER  
6-BIT A COUNTER  
DB6  
A5  
DB21  
G1  
DB17  
DB2 DB1  
DB20 DB19 DB18  
DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7  
DB5 DB4 DB3  
DB0  
X
X
B13  
B12  
B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
A6  
A4  
A3  
A2  
A1 C2 (0) C1 (1)  
X = DON'T CARE  
A COUNTER  
A6  
0
0
0
0
A5  
A2  
0
0
1
1
A1  
0
1
0
1
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
DIVIDE RATIO  
0
0
0
0
0
1
2
3
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
60  
61  
62  
63  
B13  
0
B12  
0
B11  
0
••••••••••  
••••••••••  
B3  
B2  
B1  
B COUNTER DIVIDE RATIO  
NOT ALLOWED  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
••••••••••  
NOT ALLOWED  
NOT ALLOWED  
3
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
8188  
8189  
8190  
8191  
F4 (FUNCTION LATCH)  
FASTLOCK ENABLE*  
CP GAIN  
OPERATION  
0
0
1
1
0
1
0
1
CHARGE PUMP CURRENT  
SETTTING 1 IS PERMANENTLY USED  
CHARGE PUMP CURRENT SETTING  
2 IS PERMANENTLY USED  
CHARGE PUMP CURRENT SETTING  
1 IS USED  
CHARGE PUMP CURRENT IS SWITCHED  
TO SETTING 2. THE TIME SPENT IN  
SETTING 2 IS DEPENDENT UPON WHICH  
FASTLOCK MODE IS USED. SEE FUNCTION  
LATCH DESCRIPTION  
N = BP + A, P IS PRESCALER VALUE SET IN THE  
FUNCTION LATCH B MUST BE GREATER THAN OR  
EQUAL TO A. FOR CONTINUOUSLY ADJACENT VALUES  
*SEE TABLE 5  
2
OF (N  
F
), AT THE OUTPUT, N IS (P -P).  
MIN  
X
REF  
THESE BITS ARE NOT USED  
BY THE DEVICE AND ARE  
DON'T CARE BITS  
14–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
Table V. Function Latch Map  
CURRENT  
SETTTING  
2
CURRENT  
SETTTING  
1
TIMER COUNTER  
CONTROL  
CONTROL  
BITS  
MUXOUT  
CONTROL  
PRESCALER  
VALUE  
DB21  
DB17  
DB6  
M3  
DB2 DB1  
DB23 DB22  
DB20 DB19 DB18  
DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7  
DB5 DB4 DB3  
DB0  
P2  
P1  
PD2 CPI6 CPI5 CPI4 CPI3 CPI2 CPI1 TC4  
TC3  
TC2 TC1  
F5  
F4  
F3  
F2  
M2  
M1  
PD1  
F1  
C2 (1) C1 (0)  
COUNTER  
F1  
0
OPERATION  
NORMAL  
F2  
PD POLARITY  
NEGATIVE  
POSITIVE  
1
R, A, B COUNTERS  
HELD IN RESET  
0
1
F3  
0
CHARGE PUMP OUTPUT  
NORMAL  
1
THREE-STATE  
F4  
F5  
FASTLOCK MODE  
FASTLOCK DISABLED  
FASTLOCK MODE 1  
FASTLOCK MODE2  
0
1
1
X
0
1
TIMEOUT  
TC4  
TC3  
TC2  
TC1  
(PFD CYCLES)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
3
7
11  
15  
19  
23  
27  
31  
M3  
M2  
M1  
35  
39  
43  
47  
51  
55  
59  
63  
OUTPUT  
THREE-STATE OUTPUT  
0
0
0
0
0
DIGITAL LOCK DETECT  
(ACTIVE HIGH)  
1
N DIVIDER OUTPUT  
0
0
1
1
1
1
0
0
0
DV  
DD  
1
0
1
R DIVIDER OUTPUT  
ANALOG LOCK DETECT  
(N-CHANNEL OPEN-DRAIN)  
SEE PAGE 17  
CPI6  
CPI5  
CPI4  
I
(mA)  
CP  
SERIAL DATA OUTPUT  
DGND  
1
1
1
1
0
1
2.7k  
4.7k⍀  
10k⍀  
CPI3  
0
CPI2  
0
CPI1  
0
1.09  
2.18  
3.26  
4.35  
5.44  
6.53  
7.62  
8.70  
0.63  
0.29  
0.59  
0.88  
1.76  
1.47  
1.76  
2.06  
2.35  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
1.25  
1.88  
2.50  
3.13  
3.75  
4.38  
5.00  
CE PIN PD2 PD1  
MODE  
0
1
1
1
X
X
0
1
X
0
1
1
ASYNCHRONOUS POWER-DOWN  
NORMAL OPERATION  
ASYNCHRONOUS POWER-DOWN  
SYNCHRONOUS POWER-DOWN  
P2  
0
P1  
0
PRESCALER VALUE  
8/9  
16/17  
32/33  
64/65  
0
1
1
0
1
1
15–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
Table VI. Initialization Latch Map  
CURRENT  
SETTTING  
2
CURRENT  
SETTTING  
1
PRESCALER  
VALUE  
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
CONTROL  
BITS  
DB18  
DB16  
DB9 DB8 DB7  
F4 F3 F2  
DB23 DB22 DB21 DB20 DB19  
DB17  
DB15 DB14 DB13 DB12 DB11 DB10  
DB6 DB5 DB4 DB3  
DB2 DB1  
DB0  
P2  
P1  
PD2 CPI6 CPI5 CPI4 CPI3 CPI2 CPI1 TC4  
TC3  
TC2 TC1  
F5  
M3  
M2  
M1  
PD1  
F1  
C2 (1) C1 (1)  
COUNTER  
F1  
0
OPERATION  
NORMAL  
F2  
PD POLARITY  
NEGATIVE  
POSITIVE  
1
R, A, B  
COUNTERS  
HELD IN RESET  
0
1
F3  
0
CHARGE PUMP  
OUTPUT NORMAL  
THREE-STATE  
1
F4  
0
F5  
FASTLOCK MODE  
FASTLOCK DISABLED  
FASTLOCK MODE 1  
FASTLOCK MODE2  
X
0
1
1
1
TIMEOUT  
TC4  
TC3  
TC2  
TC1  
(PFD CYCLES)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
3
7
11  
15  
19  
23  
27  
31  
35  
39  
43  
47  
51  
55  
59  
63  
M3  
0
M2  
0
M1  
0
OUTPUT  
THREE-STATE OUTPUT  
0
0
1
DIGITAL LOCK DETECT  
(ACTIVE HIGH)  
0
0
1
1
1
1
0
0
0
1
0
1
N DIVIDER OUTPUT  
DV  
DD  
R DIVIDER OUTPUT  
ANALOG LOCK DETECT  
(N-CHANNEL OPEN-DRAIN)  
SEE PAGE 17  
CPI6  
CPI5  
CPI4  
I
(mA)  
CP  
SERIAL DATA OUTPUT  
DGND  
1
1
1
1
0
1
2.7k  
4.7k⍀  
10k⍀  
CPI3  
0
CPI2  
0
CPI1  
0
1.09  
2.18  
3.27  
4.35  
5.44  
6.53  
7.62  
8.70  
0.63  
0.29  
0.59  
0.88  
1.76  
1.47  
1.76  
2.06  
2.35  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
1.25  
1.88  
2.50  
3.13  
3.75  
4.38  
5.00  
CE PIN PD2 PD1  
MODE  
ASYNCHRONOUS POWER-  
DOWN  
NORMAL OPERATION  
0
1
1
1
X
X
0
1
X
0
1
1
ASYNCHRONOUS POWER-  
DOWN  
SYNCHRONOUS POWER-DOWN  
P2  
P1  
0
PRESCALER VALUE  
8/9  
0
0
1
1
16/17  
32/33  
64/65  
1
0
1
16–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
THE FUNCTION LATCH  
Fastlock Mode 2  
With C2, C1 set to 1, 0, the on-chip function latch will be pro-  
grammed. Table V shows the input data format for programming  
the Function Latch.  
The charge pump current is switched to the contents of Current  
Setting 2.  
The device enters Fastlock by having a 1written to the CP  
Gain bit in the AB counter latch. The device exits Fastlock under  
the control of the Timer Counter. After the timeout period deter-  
mined by the value in TC4TC1, the CP Gain bit in the AB  
counter latch is automatically reset to 0and the device reverts  
to normal mode instead of Fastlock. See Table V for the time-  
out periods.  
Counter Reset  
DB2 (F1) is the counter reset bit. When this is 1,the R counter  
and the A, B counters are reset. For normal operation this bit  
should be 0.Upon powering up, the F1 bit needs to be disabled,  
the N counter resumes counting in “close” alignment with the R counter.  
(The maximum error is one prescaler cycle.)  
Power-Down  
Timer Counter Control  
DB3 (PD1) and DB21 (PD2) on the ADF4110 family, provide  
programmable power-down modes. They are enabled by the  
CE pin.  
The user has the option of programming two charge pump cur-  
rents. The intent is that the Current Setting 1 is used when the  
RF output is stable and the system is in a static state. Current  
Setting 2 is meant to be used when the system is dynamic  
and in a state of change (i.e., when a new output frequency is  
programmed).  
When the CE pin is low, the device is immediately disabled  
regardless of the states of PD2, PD1.  
In the programmed asynchronous power-down, the device pow-  
ers down immediately after latching a 1into bit PD1, with the  
condition that PD2 has been loaded with a 0.”  
The normal sequence of events is as follows:  
The user initially decides what the preferred charge pump cur-  
rents are going to be. For example, they may choose 2.5 mA as  
Current Setting 1 and 5 mA as the Current Setting 2.  
In the programmed synchronous power-down, the device power-  
down is gated by the charge pump to prevent unwanted frequency  
jumps. Once the power-down is enabled by writing a 1into  
bit PD1 (on condition that a 1has also been loaded to PD2),  
the device will go into power-down on the occurrence of the next  
charge pump event.  
At the same time, they must also decide how long they want the  
secondary current to stay active before reverting to the primary  
current. This is controlled by the Timer Counter Control Bits  
DB14 to DB11 (TC4TC1) in the Function Latch. The truth  
table is given in Table V.  
When a power-down is activated (either synchronous or asynchro-  
nous mode including CE-pin-activated power-down), the  
following events occur:  
When the user wishes to program a new output frequency, he  
can simply program the AB counter latch with new values for A  
and B. At the same time, he can set the CP Gain bit to a 1,”  
which sets the charge pump with the value in CPI6CPI4 for a  
period of time determined by TC4TC1. When this time is up,  
the charge pump current reverts to the value set by CPI3CPI1.  
At the same time the CP Gain bit in the A, B Counter latch is  
reset to 0 and is now ready for the next time the user wishes  
to change the frequency again.  
All active dc current paths are removed.  
The R, N, and timeout counters are forced to their load state  
conditions.  
The charge pump is forced into three-state mode.  
The digital clock detect circuitry is reset.  
The RFIN input is debiased.  
Note that there is an enable feature on the Timer Counter. It is  
enabled when Fastlock Mode 2 is chosen by setting the Fastlock  
Mode bit (DB10) in the Function Latch to 1.”  
The reference input buffer circuitry is disabled.  
The input register remains active and capable of loading and  
latching data.  
Charge Pump Currents  
CPI3, CPI2, CPI1 program Current Setting 1 for the charge  
pump. CPI6, CPI5, CPI4 program Current Setting 2 for the  
charge pump. The truth table is given in Table V.  
MUXOUT Control  
The on-chip multiplexer is controlled by M3, M2, M1 on the  
ADF4110 family. Table V shows the truth table.  
Prescaler Value  
Fastlock Enable Bit  
P2 and P1 in the Function Latch set the prescaler values. The  
prescaler value should be chosen so that the prescaler output  
frequency is always less than or equal to 200 MHz. Thus, with  
an RF frequency of 2 GHz, a prescaler value of 16/17 is valid  
but a value of 8/9 is not.  
DB9 of the Function Latch is the Fastlock Enable Bit. Only  
when this is 1is Fastlock enabled.  
Fastlock Mode Bit  
DB10 of the Function Latch is the Fastlock Enable bit. When  
Fastlock is enabled, this bit determines which Fastlock Mode is  
used. If the Fastlock Mode bit is 0then Fastlock Mode 1  
is selected and if the Fastlock Mode bit is 1,then Fastlock  
Mode 2 is selected.  
PD Polarity  
This bit sets the PD Polarity Bit. See Table V.  
CP Three-State  
This bit the CP output pin. With the bit set high, the CP output  
is put into three-state. With the bit set low, the CP output is  
enabled.  
Fastlock Mode 1  
The charge pump current is switched to the contents of Current  
Setting 2.  
The device enters Fastlock by having a 1written to the CP  
Gain bit in the AB counter latch. The device exits Fastlock by  
having a 0written to the CP Gain bit in the AB counter latch.  
17–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
THE INITIALIZATION LATCH  
CE can be used to power the device up and down in order to  
check for channel activity. The input register does not need to  
be reprogrammed each time the device is disabled and enabled  
as long as it has been programmed at least once after VDD was  
initially applied.  
When C2, C1 = 1, 1, the Initialization Latch is programmed.  
This is essentially the same as the Function Latch (programmed  
when C2, C1 = 1, 0).  
However, when the Initialization Latch is programmed an addi-  
tional internal reset pulse is applied to the R and AB counters.  
This pulse ensures that the AB counter is at load point when the  
AB counter data is latched and the device will begin counting in  
close phase alignment.  
The Counter Reset Method  
Apply VDD  
.
Do a Function Latch Load (10in 2 LSBs). As part of this, load  
1to the F1 bit. This enables the counter reset.  
If the Latch is programmed for synchronous power-down (CE  
pin is High; PD1 bit is High; PD2 bit is Low), the internal pulse  
also triggers this power-down. The prescaler reference and the  
oscillator input buffer are unaffected by the internal reset pulse and  
so close phase alignment is maintained when counting resumes.  
Do an R Counter Load (00in 2 LSBs) Do an AB Counter Load  
(01in 2 LSBs). Do a Function Latch Load (10in 2 LSBs).  
As part of this, load 0to the F1 bit. This disables the counter  
reset.  
This sequence provides the same close alignment as the initial-  
ization method. It offers direct control over the internal reset.  
Note that counter reset holds the counters at load point and three-  
states the charge pump, but does not trigger synchronous power-  
down. The counter reset method requires an extra function latch  
load compared to the initialization latch method.  
When the rst AB counter data is latched after initialization, the  
internal reset pulse is again activated. However, successive AB  
counter loads after this will not trigger the internal reset pulse.  
DEVICE PROGRAMMING AFTER INITIAL POWER-UP  
After initially powering up the device, there are three ways to  
program the device.  
RESYNCHRONIZING THE PRESCALER OUTPUT  
Table III (the Reference Counter Latch Map) shows two bits,  
DB22 and DB21 that are labelled DLY and SYNC respectively.  
These bits affect the operation of the prescaler.  
Initialization Latch Method  
Apply VDD. Program the Initialization Latch (11in 2 LSBs  
of input word). Make sure that F1 bit is programmed to 0.”  
Then do an R load (00in 2 LSBs). Then do an AB load (01”  
in 2 LSBs).  
With SYNC = 1,the prescaler output is resynchronized with  
the RF input. This has the effect of reducing jitter due to the  
prescaler and can lead to an overall improvement in synthesizer  
phase noise performance. Typically, a 1 dB to 2 dB improve-  
ment is seen in the ADF4113. The lower bandwidth devices can  
show an even greater improvement. For example, the ADF4110  
phase noise is typically improved by 3 dB when SYNC is enabled.  
When the Initialization Latch is loaded, the following occurs:  
1. The function latch contents are loaded.  
2. An internal pulse resets the R, A, B, and timeout counters  
to load state conditions and also three-states the charge pump.  
Note that the prescaler bandgap reference and the oscillator  
input buffer are unaffected by the internal reset pulse, allow-  
ing close phase alignment when counting resumes.  
With DLY = 1,the prescaler output is resynchronized with a  
delayed version of the RF input.  
If the SYNC feature is used on the synthesizer, some care must  
be taken. At some point, (at certain temperatures and output  
frequencies), the delay through the prescaler will coincide with  
the active edge on RF input and this will cause the SYNC fea-  
ture to break down. So, it is important when using the SYNC  
feature to be aware of this. Adding a delay to the RF signal, by  
programming DLY = 1,will extend the operating frequency  
and temperature somewhat. Using the SYNC feature will also  
increase the value of the AIDD for the device. With a 900 MHz  
output, the ADF4113 AIDD increases by about 1.3 mA when  
SYNC is enabled and a further 0.3 mA if DLY is enabled.  
3. Latching the rst AB counter data after the initialization word  
will activate the same internal reset pulse. Successive AB loads  
will not trigger the internal reset pulse unless there is another  
initialization.  
The CE Pin Method  
Apply VDD  
.
Bring CE low to put the device into power-down. This is an  
asynchronous power-down in that it happens immediately.  
Program the Function Latch (10). Program the R Counter Latch  
(00). Program the AB Counter Latch (01).  
All the typical performance plots on the data sheet except for  
Figure 5 apply for DLY and SYNC = 0,i.e., no resynchroniza-  
tion or delay enabled.  
Bring CE high to take the device out of power-down. The R  
and AB counters will now resume counting in close alignment.  
Note that after CE goes high, a duration of 1 µs may be required  
for the prescaler bandgap voltage and oscillator input buffer bias  
to reach steady state.  
18–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
APPLICATIONS SECTION  
KD = 5 mA  
Local Oscillator for GSM Base Station Transmitter  
The following diagram shows the ADF4111/ADF4112/ADF4113  
being used with a VCO to produce the LO for a GSM base station  
transmitter.  
KV = 12 MHz/V  
Loop Bandwidth = 20 kHz  
FREF = 200 kHz  
N = 4500  
Extra Reference Spur Attenuation = 10 dB  
The reference input signal is applied to the circuit at FREFIN  
and, in this case, is terminated in 50 . Typical GSM system  
would have a 13 MHz TCXO driving the Reference Input  
without any 50 termination. In order to have a channel  
spacing of 200 kHz (the GSM standard), the reference input  
must be divided by 65, using the on-chip reference divider of  
the ADF4111/ADF4112/ADF4113.  
All of these specifications are needed and used to come up with  
the loop filter components values shown in Figure 29.  
The loop filter output drives the VCO, which, in turn, is fed  
back to the RF input of the PLL synthesizer and also drives  
the RF Output terminal. A T-circuit configuration provides  
50 matching between the VCO output, the RF output and  
the RFIN terminal of the synthesizer.  
The charge pump output of the ADF4111/ADF4112/ADF4113  
(Pin 2) drives the loop filter. In calculating the loop filter com-  
ponent values, a number of items need to be considered. In this  
example, the loop filter was designed so that the overall phase  
margin for the system would be 45 degrees. Other PLL system  
specifications are:  
In a PLL system, it is important to know when the system is in  
lock. In Figure 29, this is accomplished by using the MUXOUT  
signal from the synthesizer. The MUXOUT pin can be pro-  
grammed to monitor various internal signals in the synthesizer.  
One of these is the LD or lock-detect signal.  
V
V
DD  
P
RF  
OUT  
100pF  
7
15  
DV  
16  
18  
18⍀  
B
AV  
DD  
V
P
DD  
100pF  
V
1000pF  
1000pF  
18⍀  
3.3k⍀  
5.6k⍀  
8.2nF  
CC  
2
C
FREF  
IN  
CP  
REF  
IN  
P
8
VCO190-902T  
51⍀  
1nF  
620pF  
ADF4111  
ADF4112  
ADF4113  
CE  
14  
CLK  
DATA  
LE  
LOCK  
DETECT  
MUXOUT  
100pF  
6
5
RF  
IN  
A
1
R
SET  
RF  
B
51⍀  
IN  
4.7k⍀  
100pF  
3
4
9
DECOUPLING CAPACITORS ON AV , DV , V OF THE ADF411  
AND ON THE POSITIVE SUPPLY OF THE VCO190-902T HAVE  
BEEN OMITTED FROM THE DIAGRAM TO AID CLARITY.  
X
DD  
DD  
P
Figure 29. Local Oscillator for GSM Base Station  
19–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
RF  
OUT  
100pF  
18  
18⍀  
100pF  
18⍀  
2
LOOP  
OUTPUT  
VCO  
INPUT  
CP  
8
FILTER  
FREF  
IN  
REF  
IN  
R
ADF4111SET  
ADF4112  
GND  
CE ADF4113  
CLK  
14  
LOCK  
DATA  
MUXOUT  
DETECT  
LE  
1
R
SET  
100pF  
6
5
RF  
IN  
A
B
2.7k⍀  
RF  
IN  
51⍀  
100pF  
AD5320  
12-BIT  
V-OUT DAC  
POWER SUPPLY CONNECTIONS AND DECOUPLING  
CAPACITORS ARE OMITTED FOR CLARITY.  
SPI COMPATIBLE SERIAL BUS  
Figure 30. Driving the RSET Pin with a D/A Converter  
USING A D/A CONVERTER TO DRIVE RSET PIN  
You can use a D/A converter to drive the RSET pin of the  
ADF4110 family and thus increase the level of control over the  
charge pump current ICP. This can be advantageous in wideband  
applications where the sensitivity of the VCO varies over the  
tuning range. To compensate for this, the ICP may be varied to  
maintain good phase margin and ensure loop stability. See  
Figure 30.  
wide band applications where the local oscillator could have up  
to an octave tuning range. For example, cable TV tuners have a  
total range of about 400 MHz. Figure 32 shows an applica-  
tion where the ADF4113 is used to control and program the  
Micronetics M3500-2235. The loop filter was designed for an  
RF output of 2900 MHz, a loop bandwidth of 40 kHz, a PFD  
frequency of 1 MHz, ICP of 10 mA (2.5 mA synthesizer ICP  
multiplied by the gain factor of 4), VCO KD of 90 MHz/V (sen-  
sitivity of the M3500-2235 at an output of 2900 MHz) and a  
phase margin of 45°C.  
SHUTDOWN CIRCUIT  
The attached circuit in Figure 31 shows how to shut down both  
the ADF4110 family and the accompanying VCO. The ADG701  
switch goes closed circuit when a Logic 1 is applied to the IN  
input. The low-cost switch is available in both SOT-23 and  
micro SO packages.  
In narrow-band applications, there is generally a small variation  
in output frequency (generally less than 10%) and also a small  
variation in VCO sensitivity over the range (typically 10% to 15%).  
However, in wide band applications both of these parameters  
have a much greater variation. In Figure 32, for example, we have  
25% and +17% variation in the RF output from the nominal  
2.9 GHz. The sensitivity of the VCO can vary from 120 MHz/V  
at 2750 MHz to 75 MHz/V at 3400 MHz (+33%, 17%).  
Variations in these parameters will change the loop bandwidth.  
This in turn can affect stability and lock time. By changing the  
programmable ICP, it is possible to get compensation for these  
varying loop conditions and ensure that the loop is always operat-  
ing close to optimal conditions.  
WIDEBAND PLL  
Many of the wireless applications for synthesizers and VCOs in  
PLLs are narrowband in nature. These applications include  
the various wireless standards like GSM, DSC1800, CDMA or  
WCDMA. In each of these cases, the total tuning range for the  
local oscillator is less than 100 MHz. However, there are also  
20–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
V
P
POWER-DOWN CONTROL  
V
S
DD  
RF  
OUT  
IN  
V
ADG701  
GND  
DD  
D
100pF  
7
AV  
15 16  
18  
18⍀  
DV  
V
V
CC  
100pF  
CE  
CP  
DD  
DD  
P
18⍀  
2
1
LOOP  
FILTER  
8
FREF  
REF  
IN  
IN  
VCO  
R
SET  
GND  
4.7k⍀  
ADF4110  
ADF4111  
ADF4112  
ADF4113  
100pF  
6
5
RF  
A
B
IN  
RF  
51⍀  
IN  
100pF  
3
4
9
DECOUPLING CAPACITORS AND INTERFACE SIGNALS HAVE  
BEEN OMITTED FROM THE DIAGRAM TO AID CLARITY.  
Figure 31. Local Oscillator Shutdown Circuit  
RF  
OUT  
20V  
12V  
V
V
P
DD  
3k  
100pF  
1k⍀  
V
18⍀  
18⍀  
CC  
100pF  
15  
16  
7
18⍀  
OUT  
V_TUNE  
AV  
DD  
DV  
V
AD820  
DD P  
3.3k⍀  
2
CP  
1000pF  
1000pF  
M3500-2235  
GND  
REF  
FREF  
IN  
IN  
2.8nF  
19nF  
680⍀  
130pF  
8
R
SET  
51⍀  
4.7k⍀  
ADF4113  
CE  
14  
LOCK  
DETECT  
CLK  
DATA  
LE  
MUXOUT  
100pF  
6
5
RF  
IN  
A
B
RF  
IN  
51⍀  
100pF  
3
9
4
DECOUPLING CAPACITORS ON AV , DV , V OF THE ADF4113  
DD DD  
P
AND ON VCC OF THE M3500-2250 HAVE BEEN OMITTED FROM  
THE DIAGRAM TO AID CLARITY.  
Figure 32. Wideband Phase Locked Loop  
21–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
DIRECT CONVERSION MODULATOR  
The target application is a WCDMA base station transmitter.  
Typical phase noise performance from this LO is 85 dBc/Hz at  
a 1 kHz offset.  
In some applications a direct conversion architecture can be used  
in base station transmitters. Figure 33 shows the combination  
available from ADI to implement this solution.  
The LO port of the AD8346 is driven in single-ended fashion.  
LOIN is ac-coupled to ground with the 100 pF capacitor and  
LOIP is driven through the ac coupling capacitor from a 50 Ω  
source. An LO drive level of between 6 dBm and 12 dBm is  
required. The circuit of Figure 33 gives a typical level of 8 dBm.  
The circuit diagram shows the AD9761 being used with the  
AD8346. The use of dual integrated DACs such as the AD9761  
with specified 0.02 dB and 0.004 dB gain and offset match-  
ing characteristics ensures minimum error contribution (over  
temperature) from this portion of the signal chain.  
The RF output is designed to drive a 50 load but must be  
ac-coupled as shown in Figure 33. If the I and Q inputs are  
driven in quadrature by 2 V p-p signals, the resulting output  
power will be around 10 dBm.  
The Local Oscillator (LO) is implemented using the ADF4113.  
In this case, the OSC 3B1-13M0 provides the stable 13 MHz  
reference frequency. The system is designed for a 200 kHz  
channel spacing and an output center frequency of 1960 MHz.  
REFIO  
IOUTA  
IBBP  
IBBN  
100pF  
LOW-PASS  
FILTER  
RF  
OUT  
VOUT  
IOUTB  
MODULATED  
DIGITAL  
DATA  
AD9761  
TxDAC  
AD8346  
QOUTA  
QOUTB  
QBBP  
QBBN  
LOW-PASS  
FILTER  
FS ADJ  
2k  
LOIN  
LOIP  
100pF  
4.7k⍀  
100pF  
OSC 3B1-13M0  
TCXO  
18⍀  
R
SET  
100pF  
18⍀  
3.3k⍀  
REF  
IN  
CP  
3.9k⍀  
VCO190-1960T  
910pF  
ADF4113  
620pF  
SERIAL  
DIGITAL  
NTERFACE  
9.1nF  
18⍀  
RF  
IN  
B
RF A  
IN  
100pF  
100pF  
51⍀  
POWER SUPPLY CONNECTIONS AND DECOUPLING  
CAPACITORS ARE OMITTED FROM DIAGRAM FOR CLARITY.  
Figure 33. Direct Conversion Transmitter Solution  
22–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
INTERFACING  
ADSP-2181 Interface  
The ADF4110 family has a simple SPI-compatible serial inter-  
face for writing to the device. SCLK, SDATA and LE control  
the data transfer. When LE (Latch Enable) goes high, the 24 bits  
which have been clocked into the input register on each rising  
edge of SCLK will get transferred to the appropriate latch. See  
Figure 1 for the Timing Diagram and Table I for the Latch  
Truth Table.  
Figure 35 shows the interface between the ADF4110 family and  
the ADSP-21xx Digital Signal Processor. The ADF4110 family  
needs a 24-bit serial word for each latch write. The easiest way  
to accomplish this using the ADSP-21xx family is to use the  
Autobuffered Transmit Mode of operation with Alternate  
Framing. This provides a means for transmitting an entire  
block of serial data before an interrupt is generated.  
The maximum allowable serial clock rate is 20 MHz. This means  
that the maximum update rate possible for the device is 833 kHz or  
one update every 1.2 microseconds. This is certainly more than  
adequate for systems that will have typical lock times in hundreds  
of microseconds.  
SCLK  
SCLK  
DT  
SDATA  
ADSP-21xx  
ADF4110  
ADF4111  
ADF4112  
ADF4113  
TFS  
LE  
ADuC812 Interface  
CE  
I/O FLAGS  
Figure 34 shows the interface between the ADF4110 family and  
the ADuC812 microconverter. Since the ADuC812 is based on  
an 8051 core, this interface can be used with any 8051-based  
microcontroller. The microconverter is set up for SPI Master  
Mode with CPHA = 0. To initiate the operation, the I/O port  
driving LE is brought low. Each latch of the ADF4110 family  
needs a 24-bit word. This is accomplished by writing three 8-bit  
bytes from the microconverter to the device. When the third  
byte has been written the LE input should be brought high to  
complete the transfer.  
MUXOUT  
(LOCK DETECT)  
Figure 35. ADSP-21xx to ADF4110 Family Interface  
Set up the word length for 8 bits and use three memory loca-  
tions for each 24-bit word. To program each 24-bit latch, store  
the three 8-bit bytes, enable the Autobuffered mode and then  
write to the transmit register of the DSP. This last operation  
initiates the autobuffer transfer.  
On first applying power to the ADF4110 family, it needs three  
writes (one each to the R counter latch, the N counter latch and  
the initialization latch) for the output to become active.  
I/O port lines on the ADuC812 are also used to control power-  
down (CE input) and to detect lock (MUXOUT configured as  
lock detect and polled by the port input).  
When operating in the mode described, the maximum SCLOCK  
rate of the ADuC812 is 4 MHz. This means that the maximum  
rate at which the output frequency can be changed will be  
166 kHz.  
SCLK  
SDATA  
LE  
SCLOCK  
MOSI  
ADuC812  
ADF4110  
ADF4111  
ADF4112  
ADF4113  
I/O PORTS  
CE  
MUXOUT  
(LOCK DETECT)  
Figure 34. ADuC812 to ADF4110 Family Interface  
23–  
REV. 0  
ADF4110/ADF4111/ADF4112/ADF4113  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Chip Scale  
(CP-20)  
0.159 (4.05)  
0.157 (4.00)  
0.156 (3.95)  
0.079 (2.0) REF  
0.014 (0.35) 
؋
45°  
0.018 (0.45)  
0.016 (0.40)  
0.014 (0.35)  
16  
20  
15  
1
0.159 (4.05)  
0.157 (4.00)  
0.156 (3.95)  
0.079  
(2.0)  
REF  
DETAIL E  
TOP VIEW  
0.020 (0.5) REF  
LEAD PITCH  
11  
10  
5
6
0.039 (1.00)  
0.035 (0.90)  
0.031 (0.80)  
BOTTOM VIEW  
(ROTATED 180؇)  
0.0083 (0.211)  
0.0079 (0.200)  
0.0077 (0.195)  
0.0079 (0.20)  
REF  
SEATING  
PLANE  
LEAD OPTION  
DETAIL E  
0.011 (0.275)  
0.010 (0.250)  
0.009 (0.225)  
0.018 (0.45)  
0.016 (0.40)  
0.014 (0.35)  
0.0059  
(0.15)  
REF  
0.0059 (0.15)  
REF  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS  
Thin Shrink Small Outline  
(RU-16)  
0.201 (5.10)  
0.193 (4.90)  
16  
9
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
1
8
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
8؇  
0؇  
0.0256 (0.65) 0.0118 (0.30)  
0.028 (0.70)  
0.020 (0.50)  
0.0079 (0.20)  
0.0035 (0.090)  
SEATING  
PLANE  
BSC  
0.0075 (0.19)  
24–  
REV. 0  

相关型号:

ADF4111BCP-REEL

IC PLL FREQUENCY SYNTHESIZER, 1400 MHz, CQCC20, MO-220-VGGD, LFCSP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4111BCP-REEL7

IC PLL FREQUENCY SYNTHESIZER, 1400 MHz, CQCC20, MO-220-VGGD, LFCSP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4111BCPZ

RF PLL Frequency Synthesizers
ADI

ADF4111BCPZ-REEL

IC PLL FREQUENCY SYNTHESIZER, 1400 MHz, CQCC20, MO-220-VGGD, LFCSP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4111BCPZ-REEL7

IC PLL FREQUENCY SYNTHESIZER, 1400 MHz, CQCC20, MO-220-VGGD, LFCSP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4111BCPZ-RL

RF PLL Frequency Synthesizers
ADI

ADF4111BCPZ-RL7

RF PLL Frequency Synthesizers
ADI

ADF4111BRU

RF PLL Frequency Synthesizers
ADI

ADF4111BRU-REEL

暂无描述
ADI

ADF4111BRU-REEL7

IC PLL FREQUENCY SYNTHESIZER, 1400 MHz, PDSO16, MO-153AB, TSSOP-16, PLL or Frequency Synthesis Circuit
ADI

ADF4111BRUZ

RF PLL Frequency Synthesizers
ADI

ADF4111BRUZ-REEL

PLL FREQUENCY SYNTHESIZER, 1400MHz, PDSO16, MO-153AB, TSSOP-16
ADI