ADF4211BRU [ADI]

Dual RF/IF PLL Frequency Synthesizers; 双通道RF / IF PLL频率合成器
ADF4211BRU
型号: ADF4211BRU
厂家: ADI    ADI
描述:

Dual RF/IF PLL Frequency Synthesizers
双通道RF / IF PLL频率合成器

文件: 总20页 (文件大小:252K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
Dual RF/IF PLL Frequency Synthesizers  
ADF4210/ADF4211/ADF4212/ADF4213  
GENERAL DESCRIPTION  
FEATURES  
The ADF4210/ADF4211/ADF4212/ADF4213 is a dual frequency  
synthesizer that can be used to implement local oscillators (LO)  
in the upconversion and downconversion sections of wireless  
receivers and transmitters. They can provide the LO for both  
the RF and IF sections. They consist of a low-noise digital PFD  
(Phase Frequency Detector), a precision charge pump, a pro-  
grammable reference divider, programmable A and B Counters  
and a dual-modulus prescaler (P/P + 1). The A (6-bit) and B  
(12-bit) counters, in conjunction with the dual modulus prescaler  
(P/P + 1), implement an N divider (N = BP + A). In addition,  
the 14-bit reference counter (R Counter), allows selectable  
REFIN frequencies at the PFD input. A complete PLL (Phase-  
Locked Loop) can be implemented if the synthesizer is used with  
an external loop filter and VCO (Voltage Controlled Oscillators).  
ADF4210: 550 MHz/1.2 GHz  
ADF4211: 550 MHz/2.0 GHz  
ADF4212: 1.0 GHz/2.7 GHz  
ADF4213: 1.0 GHz/3 GHz  
2.7 V to 5.5 V Power Supply  
Separate Charge Pump Supply (VP) Allows Extended  
Tuning Voltage in 3 V Systems  
Programmable Dual Modulus Prescaler  
RF and IF: 8/9, 16/17, 32/33, 64/65  
Programmable Charge Pump Currents  
3-Wire Serial Interface  
Analog and Digital Lock Detect  
Fastlock Mode  
Power-Down Mode  
Control of all the on-chip registers is via a simple 3-wire interface.  
The devices operate with a power supply ranging from 2.7 V to  
5 V and can be powered down when not in use.  
APPLICATIONS  
Base Stations for Wireless Radio (GSM, PCS, DCS,  
CDMA, WCDMA)  
Wireless Handsets (GSM, PCS, DCS, CDMA, WCDMA)  
Wireless LANS  
Communications Test Equipment  
CATV Equipment  
FUNCTIONAL BLOCK DIAGRAM  
V
1
V
2
V 1  
V 2  
R
SET  
DD  
DD  
P
P
12-BIT IF  
B-COUNTER  
REFERENCE  
PHASE  
COMPARATOR  
IF  
IN  
IF  
PRESCALER  
CHARGE  
PUMP  
CP  
IF  
8-BIT IF  
A-COUNTER  
IF CURRENT  
SETTING  
IF  
LOCK  
DETECT  
IFCP3 IFCP2 IFCP1  
OSCILLATOR  
REF  
IN  
14-BIT IF  
R-COUNTER  
OUTPUT  
MUX  
MUXOUT  
CLOCK  
DATA  
LE  
24-BIT  
DATA  
REGISTER  
SDOUT  
RFCP3 RFCP2 RFCP1  
14-BIT RF  
R-COUNTER  
RF  
LOCK  
IF CURRENT  
SETTING  
DETECT  
12-BIT RF  
B-COUNTER  
CHARGE  
PUMP  
CP  
FL  
RF  
RF  
IN  
RF  
PRESCALER  
PHASE  
COMPARATOR  
REFERENCE  
6-BIT RF  
A-COUNTER  
R
ADF4210/ADF4211/  
ADF4212/ADF4213  
SET  
FL SWITCH  
O
O
DGND  
RF  
AGND  
RF  
DGND  
IF  
DGND  
IF  
AGND  
IF  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2001  
ADF4210/ADF4211/ADF4212/ADF4213–SPECIFICATIONS1  
(VDD1 = VDD2 = 3 V 10%, 5 V 10%; VDD1, VDD2 VP1, VP2 6.0 V; AGNDRF = DGNDRF = AGNDIF = DGNDIF = 0 V; RSET = 2.7 kdBm to 50 ;  
TA = TMIN to TMAX unless otherwise noted.)  
P
arameter  
B Version  
B Chips2  
Unit  
Test Conditions/Comments  
RF/IF CHARACTERISTICS (3 V)  
RF Input Frequency (RFIN  
)
See Figure 3 for Input Circuit.  
ADF4210  
ADF4211  
ADF4212  
ADF4213  
0.1/1.2  
0.1/2.0  
0.15/2.7  
0.2/3.0  
–10/0  
0.1/1.2  
0.1/2.0  
0.15/2.7  
0.2/3.0  
–10/0  
GHz min/max Use a square wave for frequencies lower than FMIN.  
GHz min/max  
GHz min/max  
GHz min/max  
dBm min/max  
RF Input Sensitivity  
IF Input Frequency (IFIN  
ADF4210  
ADF4211  
ADF4212  
ADF4213  
)
60/550  
60/550  
0.06/1.0  
0.06/1.0  
–10/0  
60/550  
60/550  
0.06/1.0  
0.06/1.0  
–10/0  
MHz min/max  
MHz min/max  
GHz min/max  
GHz min/max  
dBm min/max  
IF Input Sensitivity  
Maximum Allowable  
Prescaler Output Frequency3  
165  
165  
MHz max  
RF/IF CHARACTERISTICS (5 V)  
RF Input Frequency (RFIN  
)
See Figure 3 for Input Circuit.  
ADF4210  
ADF4211  
ADF4212  
ADF4213  
0.18/1.2  
0.18/2.0  
0.2/2.3  
0.2/2.5  
–5/0  
0.18/1.2  
0.18/2.0  
0.2/2.3  
0.2/2.5  
–5/0  
GHz min/max Use a square wave for frequencies lower than FMIN.  
GHz min/max  
GHz min/max  
GHz min/max  
dBm min/max  
RF Input Sensitivity  
IF Input Frequency (IFIN  
ADF4210  
ADF4211  
ADF4212  
ADF4213  
)
100/550  
100/550  
0.1/1.0  
0.1/1.0  
–5/0  
100/550  
100/550  
0.1/1.0  
0.1/1.0  
–5/0  
MHz min/max  
MHz min/max  
GHz min/max  
GHz min/max  
dBm min/max  
IF Input Sensitivity  
Maximum Allowable  
Prescaler Output Frequency3  
200  
200  
MHz max  
REFIN CHARACTERISTICS  
REFIN Input Frequency  
See Figure 2 for Input Circuit.  
MHz min/max For F < 5 MHz, use dc-coupled square wave  
0/115  
–5/0  
0/115  
–5/0  
(0 to VDD ).  
REFIN Input Sensitivity4  
dBm min/max AC-Coupled. When dc-coupled, 0 to VDD max  
(CMOS-Compatible)  
REFIN Input Capacitance  
REFIN Input Current  
10  
100  
10  
100  
pF max  
µA max  
PHASE DETECTOR  
Phase Detector Frequency5  
55  
55  
MHz max  
CHARGE PUMP  
ICP Sink/Source  
High Value  
Programmable: See Table V  
With RSET = 2.7 kΩ  
5
625  
3
5
625  
3
mA typ  
µA typ  
% typ  
k, min/max  
nA typ  
% typ  
Low Value  
Absolute Accuracy  
With RSET = 2.7 kΩ  
R
SET Range  
1.5/5.6  
1.5/5.6  
ICP Three-State Leakage Current  
Sink and Source Current Matching  
ICP vs. VCP  
1
2
2
2
1
2
2
2
0.5 V Յ VCP Յ VP – 0.5 V  
0.5 V Յ VCP Յ VP – 0.5 V  
VCP = VP/2  
% typ  
% typ  
ICP vs. Temperature  
LOGIC INPUTS  
VINH, Input High Voltage  
VINL, Input Low Voltage  
0.8 × DVDD  
0.2 × DVDD  
1
0.8 × DVDD  
0.2 × DVDD  
1
V min  
V max  
µA max  
pF max  
I
INH/IINL, Input Current  
CIN, Input Capacitance  
10  
10  
LOGIC OUTPUTS  
V
OH, Output High Voltage  
DVDD – 0.4  
0.4  
DVDD – 0.4  
0.4  
V min  
V max  
IOH = 500 µA  
IOL = 500 µA  
VOL, Output Low Voltage  
–2–  
REV. A  
ADF4210/ADF4211/ADF4212/ADF4213  
Parameter  
B Version B Chips2 Unit  
Test Conditions/Comments  
POWER SUPPLIES  
V
VDD  
VP  
DD1  
2
2.7/5.5  
VDD  
VDD1/6.0  
2.7/5.5  
VDD  
VDD1/6.0  
V min/V max  
V min/V max VDD1, VDD2 Յ VDD1, VDD2 Յ 6.0 V  
1
1
I
I
I
DD (RF + IF)6  
ADF4210  
ADF4211  
ADF4212  
ADF4213  
DD (RF Only)  
ADF4210  
ADF4211  
ADF4212  
ADF4213  
DD (IF Only)  
ADF4210  
ADF4211  
ADF4212  
ADF4213  
11.5  
15.0  
17.5  
20  
11.5  
15.0  
17.5  
20  
mA max  
mA max  
mA max  
mA max  
9.0 mA typical  
11.0 mA typical  
13.0 mA typical  
15 mA typical  
6.75  
10  
12.5  
15  
6.75  
10  
12.5  
15  
mA max  
mA max  
mA max  
mA max  
5.0 mA typical  
7.0 mA typical  
9.0 mA typical  
11 mA typical  
5.5  
5.5  
5.5  
5.5  
1.0  
1
5.5  
5.5  
5.5  
5.5  
1.0  
1
mA max  
mA max  
mA max  
mA max  
mA max  
µA typ  
4.5 mA typical  
4.5 mA typical  
4.5 mA typical  
4.5 mA typical  
IP (IP1 + IP2)  
Low-Power Sleep Mode  
TA = 25°C, 0.55 mA typical  
NOISE CHARACTERISTICS  
ADF4213 Phase Noise Floor7  
–171  
–164  
–171  
–164  
dBc/Hz typ  
dBc/Hz typ  
@ 25 kHz PFD Frequency  
@ 200 kHz PFD Frequency  
@ VCO Output  
Phase Noise Performance8  
ADF4210/ADF4211, IF: 540 MHz Output9  
ADF4212/ADF4213, IF: 900 MHz Output10  
ADF4210/ADF4211, RF: 900 MHz Output10  
ADF4212/ADF4213, RF: 900 MHz Output10  
–91  
–89  
–89  
–91  
–91  
–89  
–89  
–91  
–85  
–67  
–88  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
@ 1 kHz Offset and 200 kHz PFD Frequency  
See Note 11  
See Note 11  
See Note 11  
See Note 11  
ADF4211/ADF4212, RF: 1750 MHz Output12 –85  
ADF4211/ADF4212, RF: 1750 MHz Output13 –67  
ADF4212/ADF4213, RF: 2400 MHz Output14 –88  
Spurious Signals  
@ 200 Hz Offset and 10 kHz PFD Frequency  
@ 1 kHz Offset and 1 MHz PFD Frequency  
ADF4210/ADF4211, IF: 540 MHz Output9  
ADF4212/ADF4213, IF: 900 MHz Output10  
ADF4210/ADF4211, RF: 900 MHz Output10  
ADF4212/ADF4213, RF: 900 MHz Output10  
–88/–90  
–88/–90  
–90/–94  
–90/–94  
–90/–94  
–80/–82  
–65/–70  
–80/–82  
dB typ  
dB typ  
dB typ  
dB typ  
dB typ  
dB typ  
dB typ  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
See Note 11  
See Note 11  
See Note 11  
–90/–94  
–90/–94  
–90/–94  
ADF4211/ADF4212, RF: 1750 MHz Output12 –80/–82  
ADF4211/ADF4212, RF: 1750 MHz Output13 –65/–70  
ADF4212/ADF4213, RF: 2400 MHz Output14 –80/–82  
See Note 11  
@ 10 kHz/20 kHz and 10 kHz PFD Frequency  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
NOTES  
1Operating temperature range is as follows: B Version: –40°C to +85°C.  
2The B Chip specifications are given as typical values.  
3This is the maximum operating frequency of the CMOS counters. The prescaler value should be chosen to ensure that the IF/RF input is divided down to a frequency that is  
less than this value.  
4VDD1 = VDD2 = 3 V; For VDD1 = VDD2 = 5 V, use CMOS-compatible levels, TA = 25°C.  
5Guaranteed by design. Sample tested to ensure compliance.  
6VDD = 3 V; P = 16; RFIN = 900 MHz; IFIN = 540 MHz, TA = 25°C.  
7The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20 logN (where N is the N divider value). See  
TPC 16.  
8The phase noise is measured with the EVAL-ADF4210/ADF4212/ADF4213EB Evaluation Board and the HP8562E Spectrum Analyzer. The spectrum analyzer provides the  
REFIN for the synthesizer (fREFOUT = 10 MHz @ 0 dBm).  
9fREFIN = 10 MHz; fPFD = 200 kHz; Offset frequency = 1 kHz; fIF = 540 MHz; N = 2700; Loop B/W = 20 kHz.  
10  
f
= 10 MHz; fPFD = 200 kHz; Offset frequency = 1 kHz; fRF = 900 MHz; N = 4500; Loop B/W = 20 kHz.  
REFIN  
11Same conditions as listed in Note 10.  
12  
f
f
f
= 10 MHz; fPFD = 200 kHz; Offset frequency = 1 kHz; fRF = 1750 MHz; N = 8750; Loop B/W = 20 kHz.  
= 10 MHz; fPFD = 10 kHz; Offset frequency = 200 Hz; fRF = 1750 MHz; N = 175000; Loop B/W = 1 kHz.  
= 10 MHz; fPFD = 1 MHz; Offset frequency = 1 kHz; fRF = 1960 MHz; N = 9800; Loop B/W = 20 kHz.  
REFIN  
REFIN  
REFIN  
13  
14  
Specifications subject to change without notice.  
–3–  
REV. A  
ADF4210/ADF4211/ADF4212/ADF4213  
(VDD1 = VDD2 = 3 V 10%, 5 V 10%; VDD1, VDD2 VP1, VP2 6 V 10%; AGNDRF = DGNDRF  
= AGNDIF = DGNDIF = 0 V; TA = TMIN to TMAX unless otherwise noted.)  
TIMING CHARACTERISTICS  
Limit at  
TMIN to TMAX  
(B Version)  
Parameter  
Unit  
Test Conditions/Comments  
t1  
t2  
t3  
t4  
t5  
t6  
10  
10  
25  
25  
10  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
DATA to CLOCK Set-Up Time  
DATA to CLOCK Hold Time  
CLOCK High Duration  
CLOCK Low Duration  
CLOCK to LE Set-Up Time  
LE Pulsewidth  
NOTES  
Guaranteed by design but not production tested.  
Specifications subject to change without notice.  
t3  
t4  
CLOCK  
t1  
t2  
DB1  
DB0 (LSB)  
(CONTROL BIT C1)  
DB20  
DB19  
DB2  
DATA  
(MSB)  
(CONTROL BIT C2)  
t6  
LE  
LE  
t5  
Figure 1. Timing Diagram  
ABSOLUTE MAXIMUM RATINGS1, 2  
(TA = 25°C unless otherwise noted)  
CSP θJA (Paddle Not Soldered) . . . . . . . . . . . . . . . . 216°C/W  
Lead Temperature, Soldering  
VDD1 to GND3 . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
VDD1 to VDD2 . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +0.3 V  
VP1, VP2 to GND . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . 215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C  
VP1, VP2 to VDD  
1 . . . . . . . . . . . . . . . . . . . . –0.3 V to +5.5 V  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
Digital I/O Voltage to GND . . . . . . –0.3 V to DVDD + 0.3 V  
Analog I/O Voltage to GND . . . . . . . . . –0.3 V to VP + 0.3 V  
REFIN, RFINA, RFINB,  
IFINA, IFINB to GND . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Operating Temperature Range  
2This device is a high-performance RF integrated circuit with an ESD rating of  
< 2 kV and it is ESD sensitive. Proper precautions should be taken for handling  
Industrial (B Version) . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . . 150°C  
TSSOP θJA Thermal Impedance . . . . . . . . . . . . . 150.4°C/W  
CSP θJA (Paddle Soldered) . . . . . . . . . . . . . . . . . . . 122°C/W  
and assembly.  
3GND = AGND = DGND = 0 V.  
TRANSISTOR COUNT  
11749 (CMOS) and 522 (Bipolar).  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADF4210/ADF4211/ADF4212/ADF4213 features proprietary ESD protection circuitry, per-  
manent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore,  
proper ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option*  
ADF4210BRU  
ADF4210BCP  
ADF4211BRU  
ADF4211BCP  
ADF4212BRU  
ADF4212BCP  
ADF4213BRU  
ADF4213BCP  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Thin Shrink Small Outline Package (TSSOP)  
Chip Scale Package  
Thin Shrink Small Outline Package (TSSOP)  
Chip Scale Package  
Thin Shrink Small Outline Package (TSSOP)  
Chip Scale Package  
RU-20  
CP-20  
RU-20  
CP-20  
RU-20  
CP-20  
RU-20  
CP-20  
Thin Shrink Small Outline Package (TSSOP)  
Chip Scale Package  
*Contact the factory for chip availability.  
–4–  
REV. A  
ADF4210/ADF4211/ADF4212/ADF4213  
PIN FUNCTION DESCRIPTIONS  
Pin Number  
TSSOP  
Mnemonic  
DD1  
Function  
1
V
Power Supply for the RF Section. Decoupling capacitors to the ground plane should be placed as  
close as possible to this pin. VDD1 should have a value of between 2.7 V and 5.5 V. VDD1 must have  
the same potential as VDD2.  
2
3
VP1  
Power Supply for the RF Charge Pump. This should be greater than or equal to VDD1. In systems where  
V
DD1 is 3 V, it can be set to 6 V and used to drive a VCO with a tuning range up to 6 V.  
CPRF  
Output from the RF Charge Pump. This is normally connected to a loop filter which drives the input  
to an external VCO.  
4
5
6
7
8
DGNDRF  
RFIN  
AGNDRF  
FLO  
Ground Pin for the RF Digital Circuitry.  
Input to the RF Prescaler. This low level input signal is ac-coupled from the RF VCO.  
Ground Pin for the RF Analog Circuitry.  
RF/IF Fastlock Mode.  
REFIN  
Reference Input. This is a CMOS input with a nominal threshold of VDD/2 and an equivalent input  
resistance of 100 kΩ. This input can be driven from a TTL or CMOS crystal oscillator.  
9
DGNDIF  
Digital Ground for the IF Digital, Interface and Control Circuitry.  
10  
MUXOUT  
This multiplexer output allows either the IF/RF Lock Detect, the scaled RF, scaled IF or the scaled  
Reference Frequency to be accessed externally.  
11  
CLK  
Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is  
latched into the 24-bit shift register on the CLK rising edge. This input is a high impedance  
CMOS input.  
12  
13  
14  
DATA  
LE  
Serial Data Input. The serial data is loaded MSB first with the two LSBs being the control bits. This  
input is a high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into  
one of the four latches, the latch being selected using the control bits.  
RSET  
Connecting a resistor between this pin and ground sets the maximum RF and IF charge pump output  
current. The nominal voltage potential at the RSET pin is 0.66 V. The relationship between ICP and RSET is  
13.5  
ICP MAX  
=
RSET  
So, with RSET = 2.7 k, ICP MAX = 5 mA for both the RF and IF Charge Pumps.  
15  
16  
17  
18  
AGNDIF  
IFIN  
DGNDIF  
CPIF  
Ground Pin for the IF Analog Circuitry.  
Input to the RF Prescaler. This low-level input signal is ac-coupled from the IF VCO.  
Ground Pin for the IF Digital, Interface, and Control Circuitry.  
Output from the IF Charge Pump. This is normally connected to a loop lter which drives the input  
to an external VCO.  
19  
20  
VP2  
Power Supply for the IF Charge Pump. This should be greater than or equal to VDD2. In systems where  
VDD2 is 3 V, it can be set to 6 V and used to drive a VCO with a tuning range up to 6 V.  
Power Supply for the IF, Digital and Interface Section. Decoupling capacitors to the ground plane should  
VDD  
2
be placed as close as possible to this pin. VDD2 should have a value of between 2.7 V and 5.5 V. VDD  
2
must have the same potential as VDD1.  
PIN CONFIGURATIONS  
CP-20  
TSSOP  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
2
V
1
1
2
DD  
DD  
20 19 18 17 16  
V 1  
V 2  
P
P
ADF4210/  
ADF4211/  
ADF4212/  
ADF4213  
CP  
CP  
3
RF  
RF  
CP  
IF  
1
2
3
4
5
15  
14  
13  
12  
11  
RF  
DGND  
ADF4210/  
ADF4211/  
ADF4212/  
ADF4213  
TOP VIEW  
(Not to Scale)  
IF  
DGND  
DGND  
DGND  
4
IF  
IN  
RF  
IF  
RF  
IN  
AGND  
RF  
IF  
5
IF  
IN  
IN  
AGND  
RF  
R
SET  
TOP VIEW  
(Not to Scale)  
AGND  
AGND  
6
RF  
IF  
FL  
O
LE  
R
7
FL  
SET  
O
LE  
REF  
8
6
7
8
9
10  
IN  
DGND  
IF  
DATA  
CLK  
9
10  
MUXOUT  
–5–  
REV. A  
Typical Performance Characteristics  
ADF4210/ADF4211/ADF4212/ADF4213  
0
FREQUENCY  
S
REAL  
S
IMAG FREQUENCY  
S
REAL  
S
IMAG  
11  
11  
11  
11  
V
V
= 3V  
DD  
= 3V  
5  
P
50000000.0 0.955683 –0.052267 2150000000.0  
150000000.0 0.956993 –0.112191 2250000000.0  
250000000.0 0.935463 –0.185212 2350000000.0  
350000000.0 0.919706 –0.252576 2450000000.0  
0.138086 –0.699896  
0.102483 –0.704160  
0.054916 –0.696325  
0.018475 –0.669617  
10  
15  
450000000.0 0.871631 –0.323799 2550000000.0 –0.019935 –0.668056  
550000000.0 0.838141 –0.350455 2650000000.0 –0.054445 –0.666995  
650000000.0 0.799005 –0.408344 2750000000.0 –0.083716 –0.634725  
750000000.0 0.749065 –0.455840 2850000000.0 –0.129543 –0.615246  
850000000.0 0.706770 –0.471011 2950000000.0 –0.154974 –0.610398  
950000000.0 0.671007 –0.535268  
T
= +85C  
A
T
= +25C  
A
1050000000.0 0.630673 –0.557699  
20  
1150000000.0 0.584013 –0.604256  
T
= 40C  
A
1250000000.0 0.537311 –0.622297  
1350000000.0 0.505090 –0.642019  
1450000000.0 0.459446 –0.686409  
25  
30  
1550000000.0 0.381234 –0.693908  
1650000000.0 0.363150 –0.679602  
1750000000.0 0.330545 –0.721812  
1850000000.0 0.264232 –0.697386  
1950000000.0 0.242065 –0.711716  
2050000000.0 0.181238 –0.723232  
35  
0
1
2
3
RF INPUT FREQUENCY GHz  
TPC 4. Input Sensitivity (ADF4213)  
TPC 1. S-Parameter Data for the ADF4213 RF Input  
(Up to 3.0 GHz)  
10dB/DIVISION  
R
= 40dBc/Hz  
RMS NOISE = 0.5421ꢂ  
0.54rms  
L
40  
0
V
= 3V, V = 5V  
P
REFERENCE  
LEVEL = 5.2dBm  
DD  
= 5mA  
50  
60  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
I
CP  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 19  
70  
80  
90  
100  
110  
120  
130  
91.2dBc/Hz  
140  
2kHz  
1kHz  
900MHz  
+1kHz  
+2kHz  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
FREQUENCY OFFSET FROM 900MHz CARRIER  
TPC 5. ADF4213 Integrated Phase Noise (900 MHz, 200 kHz,  
TPC 2. ADF4213 Phase Noise (900 MHz, 200 kHz, 20 kHz)  
20 kHz, Typical Lock Time: 400 µs)  
10dB/DIVISION  
R
= 40dBc/Hz  
RMS NOISE = 0.6522ꢂ  
0.65rms  
L
0
40  
V
= 3V, V = 5V  
P
REFERENCE  
LEVEL = 5.7dBm  
DD  
= 5mA  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
50  
60  
I
CP  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 4.2 SECONDS  
AVERAGES = 20  
70  
80  
90  
100  
110  
120  
130  
91.0dBc/Hz  
140  
900MHz  
400kHz  
200kHz  
200kHz  
400kHz  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
FREQUENCY OFFSET FROM 900MHz CARRIER  
TPC 3. ADF4213 Integrated Phase Noise (900 MHz,  
TPC 6. ADF4213 Reference Spurs (900 MHz, 200 kHz, 20 kHz)  
200 kHz, 35 kHz, Typical Lock Time: 200 µs)  
–6–  
REV. A  
ADF4210/ADF4211/ADF4212/ADF4213  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
V
= 3V, V = 5V  
V
= 3V, V = 5V  
P
DD  
P
DD  
I = 5mA  
CP  
REFERENCE  
REFERENCE  
LEVEL = 8.0dBm  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
LEVEL = 5.7dBm  
I
= 5mA  
CP  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 35kHz  
RES. BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 4.2 SECONDS  
AVERAGES = 25  
PFD FREQUENCY = 30kHz  
LOOP BANDWIDTH = 3kHz  
RES. BANDWIDTH = 10kHz  
VIDEO BANDWIDTH = 10kHz  
SWEEP = 477ms  
AVERAGES = 10  
90.5dBc/Hz  
75.2dBc/Hz  
400kHz  
200kHz  
900MHz  
+200kHz  
+400kHz  
400Hz  
200Hz  
1750MHz  
+200Hz  
+400Hz  
TPC 7. ADF4213 Reference Spurs (900 MHz,  
200 kHz, 35 kHz)  
TPC 10. ADF4213 Phase Noise (1750 MHz, 30 kHz, 3 kHz)  
10dB/DIVISION  
R
= 40dBc/Hz  
RMS NOISE = 1.6ꢂ  
L
40  
0
V
I
= 3V, V = 5V  
P
DD  
REFERENCE  
LEVEL = 5.7dBm  
50  
60  
10  
20  
30  
40  
50  
60  
70  
= 5mA  
CP  
PFD FREQUENCY = 30kHz  
LOOP BANDWIDTH = 3kHz  
RES. BANDWIDTH = 3Hz  
VIDEO BANDWIDTH = 3Hz  
SWEEP = 255 SECONDS  
POSITIVE PEAK DETECT  
MODE  
70  
1.6rms  
80  
90  
100  
110  
120  
130  
79.6dBc  
80  
90  
140  
100Hz  
100  
FREQUENCY OFFSET FROM 1750MHz CARRIER  
1MHz  
80kHz  
40kHz  
1750MHz  
+40kHz  
+80kHz  
TPC 8. ADF4213 Integrated Phase Noise (1750 MHz,  
30 kHz, 3 kHz)  
TPC 11. ADF4213 Reference Spurs (1750 MHz,  
30 kHz, 3 kHz)  
10dB/DIVISION  
R
= 40dBc/Hz  
RMS NOISE = 1.7ꢂ  
L
0
40  
V
= 3V, V = 5V  
P
DD  
REFERENCE  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
50  
60  
LEVEL = 4.2dBm  
I
= 5mA  
CP  
PFD FREQUENCY = 1MHz  
LOOP BANDWIDTH = 100kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 45  
1.7rms  
70  
80  
90  
100  
110  
120  
130  
86.6dBc/Hz  
140  
100Hz  
2kHz  
1kHz  
3100MHz  
+1kHz  
+2kHz  
FREQUENCY OFFSET FROM 3100MHz CARRIER  
1MHz  
TPC 9. ADF4213 Phase Noise (2800 MHz, 1 MHz, 100 kHz)  
TPC 12. ADF4213 Integrated Phase Noise (2800 MHz,  
1 MHz, 100 kHz)  
–7–  
REV. A  
ADF4210/ADF4211/ADF4212/ADF4213  
120  
130  
140  
150  
160  
170  
180  
0
V
V
= 3V  
= 5V  
V
I
= 3V, V = 5V  
P
DD  
DD  
= 5mA  
REFERENCE  
P
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
LEVEL = 17.2dBm  
CP  
PFD FREQUENCY = 1MHz  
LOOP BANDWIDTH = 100kHz  
RES. BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 13 SECONDS  
AVERAGES = 1  
80.6dBc  
1
10  
100  
1000  
10000  
2MHz  
1MHz  
3100MHz  
+1MHz  
+2MHz  
PHASE DETECTOR FREQUENCY kHz  
TPC 13. ADF4213 Reference Spurs (2800 MHz, 1 MHz,  
100 kHz)  
TPC 16. ADF4213 Phase Noise (Referred to CP Output)  
vs. PFD Frequency  
60  
60  
V
V
= 3V  
= 3V  
V
V
= 3V  
= 5V  
DD  
DD  
P
P
70  
80  
70  
80  
90  
90  
100  
100  
40  
20  
0
20  
40  
60  
80  
100  
40  
20  
0
20  
40  
60  
80  
100  
TEMPERATURE C  
TEMPERATURE C  
TPC 14. ADF4213 Phase Noise vs. Temperature (900 MHz,  
200 kHz, 20 kHz)  
TPC 17. ADF4213 Reference Spurs vs. Temperature  
(900 MHz, 200 kHz, 20 kHz)  
5  
60  
15  
V
V
= 3V  
DD  
= 5V  
V
V
= 3V  
= 5V  
DD  
P
P
25  
35  
70  
80  
45  
55  
65  
75  
85  
95  
105  
90  
100  
0
1
2
3
4
5
40  
20  
0
20  
40  
60  
80  
100  
TUNING VOLTAGE Volts  
TEMPERATURE C  
TPC 15. ADF4213 Reference Spurs (200 kHz) vs. V TUNE  
(900 MHz, 200 kHz, 20 kHz)  
TPC 18. ADF4213 Phase Noise vs. Temperature  
(836 MHz, 30 kHz, 3 kHz)  
–8–  
REV. A  
ADF4210/ADF4211/ADF4212/ADF4213  
60  
70  
PRESCALER (P/P + 1)  
The dual modulus prescaler (P/P + 1), along with the A and  
B counters, enables the large division ratio, N, to be realized  
(N = PB + A). The dual-modulus prescaler, operating at CML  
levels, takes the clock from the RF/IF input stage and divides  
it down to a manageable frequency for the CMOS A and B  
counters in the RF and If sections. The prescaler in both  
sections is programmable. It can be set in software to 8/9, 16/17,  
32/33, or 64/65. See Tables IV and VI. It is based on a syn-  
chronous 4/5 core.  
V
V
= 3V  
= 5V  
DD  
P
80  
90  
RF/IF A AND B COUNTERS  
The A and B CMOS counters combine with the dual modulus  
prescaler to allow a wide ranging division ratio in the PLL  
feedback counter. The counters are specied to work when the  
prescaler output is 200 MHz or less, when VDD = 5 V. Typically,  
they will work with 250 MHz output from the prescaler. Thus,  
with an RF input frequency of 2.5 GHz, a prescaler value of  
16/17 is valid, but a value of 8/9 is not valid.  
100  
40  
20  
0
20  
40  
60  
80  
100  
TEMPERATURE C  
TPC 19. ADF4213 Reference Spurs vs. Temperature  
(836 MHz, 30 kHz, 3 kHz)  
Pulse Swallow Function  
CIRCUIT DESCRIPTION  
REFERENCE INPUT SECTION  
The reference input stage is shown below in Figure 2. SW1 and  
SW2 are normally-closed switches. SW3 is normally-open. When  
power-down is initiated, SW3 is closed and SW1 and SW2 are  
opened. This ensures that there is no loading of the REFIN pin  
on power-down.  
The A and B counters, in conjunction with the dual modulus  
prescaler make it possible to generate output frequencies which  
are spaced only by the Reference Frequency divided by R. The  
equation for the VCO frequency is as follows:  
f
VCO = [(P × B) + A] × fREFIN/R  
fVCO = Output Frequency of external voltage controlled  
oscillator (VCO).  
POWER-DOWN  
CONTROL  
P
= Preset modulus of dual modulus prescaler (8/9,  
16/17, etc.).  
100kꢁ  
SW2  
NC  
B
A
= Preset Divide Ratio of binary 13-bit counter  
(3 to 8191).  
TO R COUNTER  
REF  
IN  
NC  
SW1  
BUFFER  
= Preset Divide Ratio of binary 6-bit A counter  
(0 to 63).  
SW3  
NO  
NC = NO CONNECT  
fREFIN = External reference frequency oscillator.  
Figure 2. Reference Input Stage  
RF/IF INPUT STAGE  
R
= Preset divide ratio of binary 15-bit programmable refer-  
ence counter (1 to 32767).  
The RF/IF input stage is shown in Figure 3. It is followed by a  
2-stage limiting amplier to generate the CML (Current Mode  
Logic) clock levels needed for the prescaler.  
N = BP + A  
TO PFD  
13-BIT B-  
COUNTER  
LOAD  
FROM RF  
INPUT STAGE  
PRESCALER  
P/P + 1  
1.6V  
BIAS  
GENERATOR  
LOAD  
5-BIT A-  
AV  
DD  
MODULUS  
CONTROL  
COUNTER  
2kꢁ  
2kꢁ  
RF  
RF  
A
B
IN  
Figure 4. RF/IF A and B Counters  
RF/IF COUNTER  
IN  
The 15-bit RF/IF R counter allows the input reference fre-  
quency to be divided down to product the input clock to the  
phase frequency detector (PFD). Division ratios from 1 to  
32767 are allowed.  
AGND  
Figure 3. RF/IF Input Stage  
–9–  
REV. A  
ADF4210/ADF4211/ADF4212/ADF4213  
PHASE FREQUENCY DETECTOR (PFD) AND CHARGE  
PUMP  
Lock Detect  
MUXOUT can be programmed for two types of lock detect:  
Digital Lock Detect and Analog Lock Detect. Digital Lock  
Detect is active high. It is set high when the phase error on three  
consecutive Phase Detector cycles is less than 15 ns. It will stay  
set high until a phase error of greater than 25 ns is detected on  
any subsequent PD cycle. The N-channel open-drain analog  
lock detect should be operated with an external pull-up resistor  
of 10 knominal. When lock has been detected, it is high with  
narrow low-going pulses.  
The PFD takes inputs from the R counter and N counter and  
produces an output proportional to the phase and frequency  
difference between them. Figure 5 is a simplied schematic.  
The PFD includes a xed-delay element that sets the width of  
the antibacklash pulse. This is typically 3 ns. This pulse ensures  
that there is no deadzone in the PFD transfer function and gives  
a consistent reference spur level.  
V
P
CHARGE  
PUMP  
RF/IF INPUT SHIFT REGISTER  
UP  
The ADF421x family digital section includes a 24-bit input shift  
register, a 14-bit IF R counter and a 18-bit IF N counter, com-  
prising a 6-bit IF A counter and a 12-bit IF B counter. Also  
present is a 14-bit RF R counter and an 18-bit RF N counter,  
comprising a 6-bit RF A counter and a 12-bit RF B counter.  
Data is clocked into the 24-bit shift register on each rising edge  
of CLK. The data is clocked in MSB rst. Data is transferred  
from the shift register to one of four latches on the rising edge of  
LE. The destination latch is determined by the state of the two  
control bits (C2, C1) in the shift register. These are the two LSBs  
DB1, DB0 as shown in the timing diagram of Figure 1. The  
truth table for these bits is shown in Table VI. Table I shows a  
summary of how the latches are programmed.  
HI  
D1  
Q1  
U1  
R DIVIDER  
CLR1  
CP  
DELAY  
U3  
CLR2  
U2  
DOWN  
HI  
D2  
Q2  
Table I. C2, C1 Truth Table  
Control Bits  
N DIVIDER  
CPGND  
R DIVIDER  
N DIVIDER  
C2  
C1  
Data Latch  
0
0
1
1
0
1
0
1
IF R Counter  
IF AB Counter (A and B)  
RF R Counter  
RF AB Counter (A and B)  
CP OUTPUT  
Figure 5. RF/IF PFD Simplified Schematic and Timing  
(In Lock)  
MUXOUT AND LOCK DETECT  
The output multiplexer on the ADF421x family allows the  
user to access various internal points on the chip. The state of  
MUXOUT is controlled by P3, P4, P11, and P12. See Tables  
III and V. Figure 6 shows the MUXOUT section in block dia-  
gram form.  
DV  
DD  
IF ANALOG LOCK DETECT  
IF R COUNTER OUTPUT  
IF N COUNTER OUTPUT  
IF/RF ANALOG LOCK DETECT  
RF R COUNTER OUTPUT  
RF N COUNTER OUTPUT  
RF ANALOG LOCK DETECT  
DIGITAL LOCK DETECT  
MUXOUT  
MUX  
CONTROL  
DGND  
Figure 6. MUXOUT Circuit  
–10–  
REV. A  
ADF4210/ADF4211/ADF4212/ADF4213  
Table II. ADF421x Family Latch Summary  
IF R COUNTER LATCH  
CONTROL  
BITS  
IF CP CURRENT  
SETTING  
15-BIT REFERENCE COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
R7  
DB7  
R6  
DB6 DB5 DB4 DB3 DB2  
R5 R4 R3 R2 R1  
DB1  
DB0  
IF  
IF  
CP1  
IF  
CP0  
R15  
P4  
P3  
P2  
P1  
R14  
R13  
R12  
R11  
R10  
R9  
R8  
C2 (0) C1 (0)  
CP2  
IF N COUNTER LATCH  
IF  
PRESCALER  
CONTROL  
BITS  
6-BIT A COUNTER  
12-BIT B COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
P8 P7 P6 P5 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2  
DB8  
B1  
DB7  
A6  
DB6 DB5 DB4 DB3 DB2  
A5 A4 A3 A2 A1  
DB1  
DB0  
C2 (0)  
C1 (1)  
RF R COUNTER LATCH  
CONTROL  
BITS  
RF CP CURRENT  
SETTING  
15-BIT REFERENCE COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
R7  
DB7  
R6  
DB6 DB5 DB4 DB3 DB2  
R5 R4 R3 R2 R1  
DB1  
DB0  
RF  
RF  
CP1  
RF  
CP0  
R15  
P12 P11  
P10  
P9  
R14  
R13  
R12  
R11  
R10  
R9  
R8  
C2 (1) C1 (0)  
CP2  
RF N COUNTER LATCH  
RF  
PRESCALER  
CONTROL  
BITS  
12-BIT B COUNTER  
6-BIT A COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
B1  
DB7  
A6  
DB6 DB5 DB4 DB3 DB2  
A5 A4 A3 A2 A1  
DB1  
DB0  
P17  
P16  
P15  
P14 B12 B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
C2 (1) C1 (1)  
–11–  
REV. A  
ADF4210/ADF4211/ADF4212/ADF4213  
Table III. IF R Counter Latch Map  
IF R COUNTER LATCH  
CONTROL  
BITS  
IF CP CURRENT  
SETTING  
15-BIT REFERENCE COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
R7  
DB7  
R6  
DB6 DB5 DB4 DB3 DB2  
R5 R4 R3 R2 R1  
DB1  
DB0  
IF  
IF  
IF  
P4  
P3  
P2  
P1  
R14  
R13  
R12  
R11  
R10  
R9  
R8  
C2 (0) C1 (0)  
R15  
CP2  
CP1 CP0  
R15  
R14  
R13  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
R3  
R2  
0
1
1
0
.
.
.
0
R1  
DIVIDE RATIO  
1
2
3
4
.
.
.
0
0
0
0
.
.
.
1
0
0
0
0
.
.
.
1
0
0
0
0
.
.
.
1
0
0
0
1
.
.
.
1
1
0
1
0
.
.
.
0
32764  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
32765  
32766  
32767  
P1  
IF PD POLARITY  
0
1
NEGATIVE  
POSITIVE  
P2  
CHARGE PUMP OUTPUT  
0
1
NORMAL  
THREE-STATE  
P12  
P11  
FROM RF R LATCH  
P4  
P3  
MUXOUT  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
LOGIC LOW STATE  
IF ANALOG LOCK DETECT  
IF REFERENCE DIVIDER OUTPUT  
IF N DIVIDER OUTPUT  
RF ANALOG LOCK DETECT  
RF/IF ANALOG LOCK DETECT  
IF DIGITAL LOCK DETECT  
LOGIC HIGH STATE  
RF REFERENCE DIVIDER OUTPUT  
RF N DIVIDER OUTPUT  
THREE-STATE OUTPUT  
IF COUNTER RESET  
RF DIGITAL LOCK DETECT  
RF/IF DIGITAL LOCK DETECT  
RF COUNTER RESET  
IF AND RF COUNTER RESET  
I
(mA)  
CP  
IF CP2  
IF CP1  
IF CP0  
1.5kꢁ  
1.088  
2.176  
3.264  
4.352  
5.44  
6.528  
7.616  
8.704  
2.7kꢁ  
0.625  
1.25  
1.875  
2.5  
3.125  
3.75  
4.375  
5.0  
5.6kꢁ  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0.294  
0.588  
0.882  
1.176  
1.47  
1.764  
2.058  
2.352  
–12–  
REV. A  
ADF4210/ADF4211/ADF4212/ADF4213  
Table IV. IF N Counter Latch Map  
IF N COUNTER LATCH  
IF  
CONTROL  
BITS  
6-BIT A COUNTER  
12-BIT B COUNTER  
PRESCALER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
B1  
DB7  
A6  
DB6 DB5 DB4 DB3 DB2  
DB1  
C2 (0)  
DB0  
P8  
P7  
P6  
P5  
B12 B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
A5  
A4  
A3  
A2  
A1  
C1 (1)  
A COUNTER  
DIVIDE RATIO  
P6  
P5  
IF PRESCALER  
A6  
A5  
..........  
A2  
A1  
0
0
1
1
0
1
0
1
8/9  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
1
0
.
1
0
1
0
.
1
16/17  
32/33  
64/65  
2
3
4
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
60  
61  
62  
63  
P7  
IF POWER-DOWN  
0
1
DISABLE  
ENABLE  
B12  
0
B11  
0
B10  
0
B3  
0
B2  
1
B1  
1
B COUNTER DIVIDE RATIO  
3
..........  
0
.
.
.
1
0
.
.
.
1
0
.
.
.
1
..........  
..........  
..........  
..........  
..........  
1
.
.
.
1
0
.
.
.
0
0
.
.
.
0
4
.
.
.
4092  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
4093  
4094  
4095  
P8  
IF CP GAIN  
0
1
DISABLE  
ENABLE  
N = BP + A, P IS PRESCALER VALUE SET IN THE FUNCTION LATCH.  
B MUST BE GREATER THAN OR EQUAL TO A. FOR CONTIGUOUS  
2
VALUES OF N F  
, N  
is (P P).  
REF  
MIN  
–13–  
REV. A  
ADF4210/ADF4211/ADF4212/ADF4213  
Table V. RF R Latch Map  
RF R COUNTER LATCH  
CONTROL  
BITS  
RF CP CURRENT  
SETTING  
15-BIT REFERENCE COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
R7  
DB7  
R6  
DB6 DB5 DB4 DB3 DB2  
R5 R4 R3 R2 R1  
DB1  
DB0  
RF  
RF  
RF  
R15  
P12 P11  
P10  
P9  
R14  
R13  
R12  
R11  
R10  
R9  
R8  
C2 (1) C1 (0)  
CP2  
CP1 CP0  
R15  
R14  
R13  
..........  
R3  
R2  
0
1
1
0
.
.
.
0
R1  
DIVIDE RATIO  
1
2
3
4
.
.
.
0
0
0
0
.
.
.
1
0
0
0
0
.
.
.
1
0
0
0
0
.
.
.
1
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
1
.
.
.
1
1
0
1
0
.
.
.
0
32764  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
32765  
32766  
32767  
P9  
RF PD POLARITY  
0
1
NEGATIVE  
POSITIVE  
P10  
CHARGE PUMP OUTPUT  
0
1
NORMAL  
THREE-STATE  
FROM IF R LATCH  
P11  
P4  
P3  
MUXOUT  
LOGIC LOW STATE  
IF ANALOG LOCK DETECT  
IF REFERENCE DIVIDER OUTPUT  
IF N DIVIDER OUTPUT  
RF ANALOG LOCK DETECT  
RF/IF ANALOG LOCK DETECT  
IF DIGITAL LOCK DETECT  
LOGIC HIGH STATE  
RF REFERENCE DIVIDER OUTPUT  
RF N DIVIDER OUTPUT  
THREE-STATE OUTPUT  
IF COUNTER RESET  
RF DIGITAL LOCK DETECT  
RF/IF DIGITAL LOCK DETECT  
RF COUNTER RESET  
P12  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
IF AND RF COUNTER RESET  
I
(mA)  
CP  
RF CP2  
RF CP1  
RF CP0  
1.5kꢁ  
1.125  
2.25  
3.375  
4.5  
5.625  
6.75  
7.7875  
9.0  
2.7kꢁ  
0.625  
1.25  
1.875  
2.5  
3.125  
3.75  
4.375  
5.0  
5.6kꢁ  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0.301  
0.602  
0.904  
1.205  
1.506  
1.808  
2.109  
2.411  
–14–  
REV. A  
ADF4210/ADF4211/ADF4212/ADF4213  
Table VI. RF N Counter Latch Map  
RF N COUNTER LATCH  
RF  
CONTROL  
BITS  
12-BIT B COUNTER  
6-BIT A COUNTER  
PRESCALER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
B1  
DB7  
A6  
DB6 DB5 DB4 DB3 DB2  
DB1  
DB0  
P17  
P16  
P15  
P14 B12 B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
A5  
A4  
A3  
A2  
A1  
C2 (1) C1 (1)  
A COUNTER  
DIVIDE RATIO  
P15  
P14  
PRESCALER  
A6  
A5  
..........  
A2  
A1  
0
0
1
1
0
1
0
1
8/9  
0
0
0
0
.
.
.
1
1
1
1
0
0
0
0
.
.
.
1
1
1
1
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
1
0
.
.
.
0
0
1
1
1
0
1
0
.
.
.
0
1
0
1
1
2
3
4
.
.
.
60  
61  
62  
63  
16/17  
32/33  
64/65  
P16  
RF POWER-DOWN  
0
1
DISABLE  
ENABLE  
B12  
0
B11  
0
B10  
0
B3  
0
B2  
1
B1  
1
B COUNTER DIVIDE RATIO  
3
..........  
0
.
.
.
1
0
.
.
.
1
0
.
.
.
1
..........  
..........  
..........  
..........  
..........  
1
.
.
.
1
0
.
.
.
0
0
.
.
.
0
4
.
.
.
4092  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
4093  
4094  
4095  
P17  
RF CP GAIN  
0
1
DISABLE  
ENABLE  
N = BP + A, P IS PRESCALER VALUE SET IN THE FUNCTION LATCH. B  
MUST BE GREATER THAN OR EQUAL TO A. FOR CONTIGUOUS  
2
VALUES OF N F  
, N  
is (P P).  
REF  
MIN  
–15–  
REV. A  
ADF4210/ADF4211/ADF4212/ADF4213  
PROGRAM MODES  
Table III and Table V show how to set up the Program Modes  
in the ADF421x family. The following should be noted:  
IF SECTION  
PROGRAMMABLE IF REFERENCE (R) COUNTER  
If control bits C2, C1 are 0, 0, the data is transferred from the  
input shift register to the 14-bit IFR counter. Table III shows  
the input shift register data format for the IFR counter and the  
divide ratios possible.  
1. IF and RF Analog Lock Detect indicate when the PLL is in  
lock. When the loop is locked and either IF or RF Analog  
Lock Detect is selected, the MUXOUT pin will show a logic  
high with narrow low-going pulses. When the IF/RF Analog  
Lock Detect is chosen, the locked condition is indicated only  
when both IF and RF loops are locked.  
2. The IF Counter Reset mode resets the R and AB counters in  
the IF section and also puts the IF charge pump into three-  
state. The RF Counter Reset mode resets the R and AB  
counters in the RF section and also puts the RF charge  
pump into three-state. The IF and RF Counter Reset mode  
does both of the above. Upon removal of the reset bits, the  
AB counter resumes counting in close alignment with the R  
counter (maximum error is one prescaler output cycle).  
IF Phase Detector Polarity  
P1 sets the IF Phase Detector Polarity. When the IF VCO char-  
acteristics are positive this should be set to 1.When they are  
negative it should be set to 0.See Table III.  
IF Charge Pump Three-State  
P2 puts the IF charge pump into three-state mode when pro-  
grammed to a 1.It should be set to 0for normal operation.  
See Table III.  
IF PROGRAM MODES  
Table III and Table V show how to set up the Program Modes  
in the ADF421x family.  
3. The Fastlock mode uses MUXOUT to switch a second loop  
lter damping resistor to ground during Fastlock operation.  
Activation of Fastlock occurs whenever RF CP Gain in the  
RF Reference counter is set to one.  
IF Charge Pump Currents  
IFCP2, IFCP1, IFCP0 program current setting for the IF  
charge pump. See Table III.  
IF Power-Down  
It is possible to program the ADF421x family for either synchro-  
nous or asynchronous power-down on either the IF or RF side.  
PROGRAMMABLE IF AB COUNTER  
If control bits C2, C1 are 0, 1, the data in the input register is used  
to program the IF AB counter. The N counter consists of a 6-bit  
swallow counter (A counter) and 12-bit programmable counter  
(B counter). Table IV shows the input register data format for  
programming the IF AB counter and the possible divide ratios.  
Synchronous IF Power-Down  
Programming a 1to P7 of the ADF421x family will initiate a  
power-down. If P2 of the ADF421x family has been set to 0”  
(normal operation), a synchronous power-down is conducted.  
The device will automatically put the charge pump into three-  
state and then complete the power-down.  
IF Prescaler Value  
P5 and P6 in the IF A, B Counter Latch sets the IF prescaler  
value. See Table IV.  
Asynchronous IF Power-Down  
IF Power-Down  
Table III and Table V show the power-down bits in the  
ADF421x family.  
If P2 of the ADF421x family has been set to 1(three-state the  
IF charge pump), and P7 is subsequently set to 1,an asyn-  
chronous power-down is conducted. The device will go into  
power-down on the rising edge of LE, which latches the 1to  
the IF power-down bit (P7).  
IF Fastlock  
The IF CP Gain bit (P8) of the IF N register in the ADF421x  
family is the Fastlock Enable Bit. Only when this is 1is IF  
Fastlock enabled. When Fastlock is enabled, the IF CP current  
is set to its maximum value. Since the IF CP Gain bit is con-  
tained in the IF N Counter, only one write is needed to both  
program a new output frequency and also initiate Fastlock. To  
come out of Fastlock, the IF CP Gain bit on the IF N register  
must be set to 0.See Table IV.  
Synchronous RF Power-Down  
Programming a 1to P16 of the ADF421x family will initiate a  
power-down. If P10 of the ADF421x family has been set to 0”  
(normal operation), a synchronous power-down is conducted. The  
device will automatically put the charge pump into three-state  
and then complete the power-down.  
Asynchronous RF Power-Down  
RF SECTION  
If P10 of the ADF421x family has been set to 1(three-state  
the RF charge pump), and P16 is subsequently set to 1,an  
asynchronous power-down is conducted. The device will go into  
power down on the rising edge of LE, which latches the 1to  
the RF power-down bit (P16).  
PROGRAMMABLE RF REFERENCE (R) COUNTER  
If control bits C2, C1 are 1, 0, the data is transferred from the  
input shift register to the 14-bit RFR counter. Table V shows  
the input shift register data format for the RFR counter and the  
possible divide ratios.  
Activation of either synchronous or asynchronous power-down  
forces the IF/RF loops R and AB dividers to their load state  
conditions and the IF/RF input section is debiased to a high-  
impedance state.  
RF Phase Detector Polarity  
P9 sets the IF Phase Detector Polarity. When the RF VCO  
characteristics are positive this should be set to 1.When they  
are negative it should be set to 0.See Table V.  
The REFIN oscillator circuit is only disabled if both the IF and  
RF power-downs are set.  
RF Charge Pump Three-State  
P10 puts the RF charge pump into three-state mode when pro-  
grammed to a 1.It should be set to 0for normal operation.  
See Table V.  
The input register and latches remain active and are capable of  
loading and latching data during all the power-down modes.  
The IF/RF section of the devices will return to normal powered  
up operation immediately upon LE latching a 0to the  
appropriate power-down bit.  
–16–  
REV. A  
ADF4210/ADF4211/ADF4212/ADF4213  
RF PROGRAM MODES  
APPLICATIONS SECTION  
Table III and Table V show how to set up the Program Modes  
in the ADF421x family.  
Local Oscillator for GSM Handset Receiver  
Figure 7 shows the ADF4210/ADF4211/ADF4212/ADF4213  
being used with a VCO to produce the LO for a GSM base  
station transmitter.  
RF Charge Pump Currents  
RFCP2, RFCP1, RFCP0 program current setting for the RF  
charge pump. See Table V.  
The reference input signal is applied to the circuit at FREFIN  
and, in this case, is terminated in 50 . A typical GSM system  
would have a 13 MHz TCXO driving the reference input with-  
out any 50 termination. In order to have a channel spacing of  
200 kHz (the GSM standard), the reference input must be  
divided by 65, using the on-chip reference.  
PROGRAMMABLE RF N COUNTER  
If control bits C2, C1 are 1, 1, the data in the input register is  
used to program the RF N (A + B) counter. The N counter  
consists of a 6-bit swallow counter (A Counter) and 12-bit  
programmable counter (B Counter). Table IV shows the input  
register data format for programming the RF N counter and the  
possible divide ratios.  
WIDEBAND PLL  
Many of the wireless applications for synthesizers and VCOs in  
PLLs are narrowband in nature. These applications include  
various wireless standards such as GSM, DSC1800, CDMA, or  
WCDMA. In each of these cases, the total tuning range for the  
local oscillator is less than 100 MHz. However, there are also  
wideband applications where the local oscillator could have up  
to an octave tuning range. For example, cable TV tuners have  
a total range of about 400 MHz. Figure 8 shows an applica-  
tion where the ADF4213 is used to control and program the  
Micronetics M35001324. The loop lter was designed for an  
RF output of 2100 MHz, a loop bandwidth of 40 kHz, a PFD  
frequency of 1 MHz, ICP of 10 mA (2.5 mA synthesizer ICP  
multiplied by the gain factor of 4), VCO KD of 80 MHz/V (sen-  
sitivity of the M35001324 at an output of 2100 MHz) and a  
phase margin of 45°C.  
RF Prescaler Value  
P14 and P15 in the RF A, B Counter Latch sets the RF pres-  
caler value. See Table VI.  
RF Power-Down  
Table III and Table V show the power-down bits in the  
ADF421x family.  
RF Fastlock  
The RF CP Gain bit (P17) of the RF N register in the ADF421x  
family is the Fastlock Enable Bit. Only when this is 1is IF  
Fastlock enabled. When Fastlock is enabled, the RF CP current  
is set to its maximum value. Also an extra loop lter damping  
resistor to ground is switched in using the FLO pin, thus com-  
pensating for the change in loop characteristics while in Fastlock.  
Since the RF CP Gain bit is contained in the RF N Counter, only  
one write is needed to both program a new output frequency and  
also initiate Fastlock. To come out of Fastlock, the RF CP Gain bit  
on the RF N register must be set to 0.See Table VI.  
In narrowband applications, there is generally a small variation  
(less than 10%) in output frequency and also a small variation  
(typically < 10%) in VCO sensitivity over the range. However,  
RF  
IF  
OUT  
OUT  
V
V
V
P
DD  
P
100pF  
100pF  
18ꢁ  
18ꢁ  
18ꢁ  
V 2  
V
2
V
1
V 1  
P
P
DD  
DD  
V
V
CC  
3.3kꢁ  
3.3kꢁ  
CC  
18ꢁ  
CP  
CP  
REF  
IF  
RF  
IN  
VCO190-  
540T  
VCO190-  
902T  
100pF  
100pF  
18ꢁ  
18ꢁ  
620pF  
1.3nF  
1.3nF  
620pF  
5.6kꢁ  
5.6kꢁ  
ADF4210/  
ADF4211/  
ADF4212/  
ADF4213  
8.2nF  
8.2nF  
R
SET  
2.7kꢁ  
LOCK  
DETECT  
100pF  
MUXOUT  
100pF  
RF  
IN  
51ꢁ  
1000pF 1000pF  
CLK  
DATA  
LE  
51ꢁ  
FREF  
RF  
B
IN  
IN  
51ꢁ  
DECOUPLING CAPACITORS (22F/10PF) ON V , V OF THE  
DD  
P
ADF4211/ADF4212/ADF4213 AND ON V OF THE VCOS HAVE  
CC  
BEEN OMITTED FROM THE DIAGRAM TO AID CLARITY.  
Figure 7. GSM Handset Receiver Local Oscillator Using the ADF4210/ADF4211/ADF4212/ADF4213  
–17–  
REV. A  
ADF4210/ADF4211/ADF4212/ADF4213  
RF  
OUT  
20V  
12V  
V
V
P
DD  
3kꢁ  
100pF  
1kꢁ  
V
18ꢁ  
18ꢁ  
CC  
100pF  
18ꢁ  
V
1 V 2 V 1 V 2  
DD P P  
OUT  
1000pF  
V_TUNE  
1000pF  
DD  
AD820  
20kꢁ  
FREF  
IN  
REF  
CP  
IN  
RF  
M3500-1324  
GND  
51ꢁ  
R
3.9nF  
27nF  
470ꢁ  
130pF  
SET  
CE  
CLK  
2.7kꢁ  
DATA  
LE  
LOCK  
DETECT  
MUXOUT  
RF  
IN  
100pF  
51ꢁ  
ADF4213  
DECOUPLING CAPACITORS ON V , V OF THE ADF4213,  
DD  
P
ON V OF THE AD820 AND ON THE V OF THE M3500-1324  
CC  
CC  
HAVE BEEN OMITTED FROM THE DIAGRAM TO AID CLARITY.  
THE IF SECTION OF THE CIRCUIT HAS ALSO BEEN OMITTED TO  
SIMPLIFY THE SCHEMATIC.  
Figure 8. Wideband PLL Circuit  
in wide-band applications both of these parameters have a much  
greater variation. In Figure 8, for example, we have 25% and  
+30% variation in the RF output from the nominal 1.8 GHz.  
The sensitivity of the VCO can vary from 130 MHz/V at  
1900 MHz to 30 MHz/V at 2400 MHz. Variations in these  
parameters will change the loop bandwidth. This in turn can  
affect stability and lock time. By changing the programmable  
ICP, it is possible to obtain compensation for these varying  
loop conditions and ensure that the loop is always operating  
close to optimal conditions.  
When operating in the mode described, the maximum SCLOCK  
rate of the ADuC812 is 4 MHz. This means that the maximum  
rate at which the output frequency can be changed will be about  
180 kHz.  
SCLK  
SDATA  
LE  
SCLOCK  
MOSI  
ADF4210/  
ADF4211/  
ADF4212/  
ADF4213  
ADuC812  
I/O PORTS  
CE  
INTERFACING  
MUXOUT  
The ADF4210/ADF4211/ADF4212/ADF4213 family has a  
simple SPI-compatible serial interface for writing to the device.  
SCLK, SDATA, and LE control the data transfer. When LE  
(Latch Enable) goes high, the 22 bits that have been clocked  
into the input register on each rising edge of SCLK will be  
transferred to the appropriate latch. See Figure 1 for the Timing  
Diagram and Table I for the Latch Truth Table.  
(LOCK DETECT)  
Figure 9. ADuC812 to ADF421x Family Interface  
ADSP-21xx to ADF421x Family Interface  
Figure 10 shows the interface between the ADF421x family and  
the ADSP-21xx Digital Signal Processor. As previously discussed,  
the ADF421x family needs a 24-bit serial word for each latch  
write. The easiest way to accomplish this, using the ADSP-21xx  
family, is to use the Autobuffered Transmit Mode of operation  
with Alternate Framing. This provides a means for transmitting  
an entire block of serial data before an interrupt is generated.  
Set up the word length for eight bits and use three memory  
locations for each 24-bit word. To program each 24-bit latch,  
store the three 8-bit bytes, enable the Autobuffered mode, and  
write to the transmit register of the DSP. This last operation  
initiates the autobuffer transfer.  
The maximum allowable serial clock rate is 20 MHz. This  
means that the maximum update rate possible for the device is  
909 kHz, or one update every 1.1 ms. This is certainly more  
than adequate for systems that will have typical lock times in  
hundreds of microseconds.  
ADuC812 to ADF421x Family Interface  
Figure 9 shows the interface between the ADF421x family and  
the ADuC812 microconverter. Since the ADuC812 is based on  
an 8051 core, this interface can be used with any 8051-based  
microcontroller. The microconverter is set up for SPI Master  
Mode with CPHA = 0. To initiate the operation, the I/O port  
driving LE is brought low. Each latch of the ADF421x family  
needs a 24-bit word. This is accomplished by writing three 8-bit  
bytes from the microconverter to the device. When the third  
byte has been written, the LE input should be brought high to  
complete the transfer.  
SCLK  
SDATA  
LE  
SCLK  
DT  
ADF4210/  
ADF4211/  
ADF4212/  
ADF4213  
ADSP-21xx  
TFS  
CE  
I/O FLAGS  
MUXOUT  
(LOCK DETECT)  
On rst applying power to the ADF421x family, it needs four  
writes (one each to the R counter latch and the AB counter latch  
for both RF1 and RF2 sides) for the output to become active.  
Figure 10. ADSP-21xx to ADF421x Family Interface  
–18–  
REV. A  
ADF4210/ADF4211/ADF4212/ADF4213  
Thermal vias may be used on the printed circuit board thermal  
pad to improve thermal performance of the package. If vias are  
used, they should be incorporated in the thermal pad at 1.2 mm  
grid pitch. The via diameter should be between 0.3 mm and  
0.33 mm and the via barrel should be plated with 1 oz. copper  
to plug the via. The user should connect the printed circuit  
board pad to AGND.  
PCB Guidelines for Chip Scale Package  
The lands on the chip scale package (CP-20), are rectangular.  
The printed circuit board pad for these should be 0.1 mm  
longer than the package land length and 0.05 mm wider than  
the package land width. The land should be centered on the  
pad. This will ensure that the solder joint size is maximized.  
The bottom of the chip scale package has a central thermal pad.  
The thermal pad on the printed circuit board should be at least  
as large as this exposed pad. On the printed circuit board, there  
should be clearance of at least 0.25 mm between the thermal  
pad and inner edges of the pad pattern. This will ensure that  
shorting is avoided.  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Thin Shrink Small Outline Package (TSSOP)  
(RU-20)  
0.260 (6.60)  
0.252 (6.40)  
20  
11  
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
1
10  
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
8ꢂ  
0ꢂ  
0.0256 (0.65)  
BSC  
0.0118 (0.30)  
0.0075 (0.19)  
0.028 (0.70)  
0.020 (0.50)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
Chip Scale Package  
(CP-20)  
0.024 (0.60)  
0.017 (0.42)  
0.009 (0.24)  
0.010 (0.25)  
MIN  
0.157 (4.0)  
BSC SQ  
0.024 (0.60)  
0.017 (0.42)  
0.009 (0.24)  
16  
15  
20  
1
PIN 1  
0.012 (0.30)  
0.009 (0.23)  
0.007 (0.18)  
0.030 (0.75)  
0.022 (0.60)  
0.014 (0.50)  
0.080 (2.25)  
0.083 (2.10) SQ  
0.077 (1.95)  
INDICATOR  
0.148 (3.75)  
BSC SQ  
TOP  
VIEW  
BOTTOM  
VIEW  
11  
10  
5
6
0.031 (0.80) MAX  
0.026 (0.65) NOM  
0.080 (2.00)  
REF  
12MAX  
0.035 (0.90) MAX  
0.033 (0.85) NOM  
0.002 (0.05)  
0.0004 (0.01)  
0.0 (0.0)  
SEATING  
PLANE  
0.020 (0.50)  
BSC  
0.008 (0.20)  
REF  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS  
–19–  
REV. A  
ADF4210/ADF4211/ADF4212/ADF4213Revision History  
Location  
Page  
Data Sheet changed from REV. 0 to REV. A.  
Changes to Test Conditions/Comments section of Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edit to RFIN and IFIN Function text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
PCB Guidelines for Chip Scale Package section added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
CP-20 Package replaced by CP-20[2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
–20–  
REV. A  

相关型号:

ADF4211BRU-REEL

IC PLL FREQUENCY SYNTHESIZER, 2000 MHz, PDSO20, TSSOP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4211BRU-REEL7

IC PLL FREQUENCY SYNTHESIZER, 2000 MHz, PDSO20, TSSOP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4211_15

Dual RF/IF PLL Frequency Synthesizers
ADI

ADF4212

Dual RF/IF PLL Frequency Synthesizers
ADI

ADF4212BCHIPS

IC PHASE DETECTOR, 3000 MHz, UUC, DIE, PLL or Frequency Synthesis Circuit
ADI

ADF4212BCP

Dual RF/IF PLL Frequency Synthesizers
ADI

ADF4212BRU

Dual RF/IF PLL Frequency Synthesizers
ADI

ADF4212BRU-REEL

IC PLL FREQUENCY SYNTHESIZER, 2700 MHz, PDSO20, TSSOP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4212BRU-REEL7

IC PLL FREQUENCY SYNTHESIZER, 2700 MHz, PDSO20, TSSOP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4212BRUZ

Dual, Integer-N 0.5 GHz / 3.0 GHz PLL
ADI

ADF4212BRUZ-RL

Dual, Integer-N 0.5 GHz / 3.0 GHz PLL
ADI

ADF4212BRUZ-RL7

Dual, Integer-N 0.5 GHz / 3.0 GHz PLL
ADI