ADF4212LBCP-REEL7 [ADI]

IC PLL FREQUENCY SYNTHESIZER, 2400 MHz, QCC20, 4 X 4 MM, MO-220VGGD-1, LFCSP-20, PLL or Frequency Synthesis Circuit;
ADF4212LBCP-REEL7
型号: ADF4212LBCP-REEL7
厂家: ADI    ADI
描述:

IC PLL FREQUENCY SYNTHESIZER, 2400 MHz, QCC20, 4 X 4 MM, MO-220VGGD-1, LFCSP-20, PLL or Frequency Synthesis Circuit

文件: 总28页 (文件大小:367K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Low Power PLL  
Frequency Synthesizer  
ADF4212L  
FEATURES  
GENERAL DESCRIPTION  
IDD total: 7.5 mA  
Bandwidth RF/IF: 2.4 GHz/1.0 GHz  
2.7 V to 3.3 V power supply  
Separate VP allows extended tuning voltage  
Programmable dual modulus prescaler  
RF and IF: 8/9, 16/17, 32/33, 64/65  
Programmable charge pump currents  
3-wire serial interface  
The ADF4212L is a dual frequency synthesizer that can be used  
to implement local oscillators (LO) in the up-conversion and  
down-conversion sections of wireless receivers and transmitters.  
It can provide the LO for both the RF and IF sections. It consists  
of a low noise digital phase frequency detector (PFD), a precision  
charge pump, a programmable reference divider, programmable  
A and B counters, and a dual modulus prescaler (P/P + 1). The  
A (6-bit) and B (12-bit) counters, in conjunction with the dual  
modulus prescaler (P/P + 1), implement an N divider (N = BP +  
A). In addition, the 15-bit reference counter (R counter) allows  
selectable REFIN frequencies at the PFD input. A complete phase-  
locked loop (PLL) can be implemented if the synthesizer is used  
with external loop filters and voltage controlled oscillators (VCOs).  
Analog and digital lock detect  
Fastlock mode  
Power-down mode  
20-lead TSSOP and 20-lead LFCSP packages  
APPLICATIONS  
Control of all the on-chip registers is via a simple 3-wire  
interface with 1.8 V compatibility. The devices operate with a  
power supply ranging from 2.7 V to 3.3 V and can be powered  
down when not in use.  
Wireless handsets (GSM, PCS, DCS, DSC1800, CDMA,  
WCDMA)  
Base stations for wireless Radio (GSM, PCS, DCS,  
CDMA, WCDMA)  
Wireless LANS  
Cable TV tuners (CATV)  
Communications test equipment  
FUNCTIONAL BLOCK DIAGRAM  
V
1
V
2
V
1
V
2
R
SET  
DD  
DD  
P
P
ADF4212L  
IF PHASE  
FREQUENCY  
DETECTOR  
REFERENCE  
12-BIT IF  
B-COUNTER  
CHARGE  
PUMP  
CP  
IF  
IF  
IN  
IF  
PRESCALER  
6-BIT IF  
A-COUNTER  
IF CURRENT  
SETTING  
IF  
LOCK  
DETECT  
IFCP3 IFCP2 IFCP1  
REF  
OSCILLATOR  
IN  
15-BIT IF  
R-COUNTER  
OUTPUT  
MUX  
MUXOUT  
CLK  
22-BIT  
DATA  
REGISTER  
DATA  
LE  
SDOUT  
RFCP3 RFCP2 RFCP1  
REFERENCE  
RF  
15-BIT RF  
R-COUNTER  
LOCK  
DETECT  
CHARGE  
PUMP  
12-BIT RF  
B-COUNTER  
CP  
RF  
RF  
IN  
RF  
RF PHASE  
FREQUENCY  
DETECTOR  
PRESCALER  
REFERENCE  
6-BIT RF  
A-COUNTER  
R
SET  
FL SWITCH  
O
FL  
O
DGND  
RF  
AGND  
DGND  
AGND  
RF  
IF  
IF  
Figure 1.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2002–2008 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADF4212L  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
MUXOUT and Lock Detect...................................................... 14  
Lock Detect ................................................................................. 14  
RF/IF Input Shift Register......................................................... 14  
IF R Counter Latch..................................................................... 16  
IF N Counter Latch.................................................................... 17  
RF R Counter Latch ................................................................... 18  
RF N Counter Latch................................................................... 19  
Program Modes .............................................................................. 20  
IF and RF Power-Down............................................................. 20  
IF Section..................................................................................... 20  
RF Section ................................................................................... 21  
Applications Information.............................................................. 22  
Local Oscillator for GSM Handset Receiver............................... 22  
Wideband PLL............................................................................ 23  
Interfacing ................................................................................... 24  
PCB Design Guidelines for Lead Frame Chip Scale Package24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 26  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 9  
Circuit Description......................................................................... 13  
Reference Input Section............................................................. 13  
RF/IF Input Stage........................................................................ 13  
Prescaler (P/P + 1)...................................................................... 13  
RF/IF A and B Counters............................................................ 13  
Pulse Swallow Function............................................................. 13  
RF/IF R Counter......................................................................... 13  
Phase Frequency Detector (PFD) and Charge Pump............ 14  
REVISION HISTORY  
9/08—Rev. A to Rev B  
Changes to Figure 32...................................................................... 23  
Changes to Figure 33 and Figure 34............................................. 24  
Added PCB Design Guidelines for Lead Frame Chip Scale  
Package Section............................................................................... 24  
Updated Outline Dimensions....................................................... 25  
Changes to Ordering Guide.......................................................... 25  
Updated Format..................................................................Universal  
Changes to Figure 1 and General Description Section ............... 1  
Changes to Prescaler Output Frequency Parameter and RF  
Input Frequency (RFIN) Parameter................................................. 3  
Changes to Table 3 and Figure 2..................................................... 5  
Changes to Figure 4.......................................................................... 7  
Changes to Figure 27, RF/IF A and B Counters Section, Pulse  
Swallow Function Section, and RF/IF R Counter Section........ 13  
Changes to RF/IF Input Shift Register Section........................... 14  
Changes to Programmable IF Reference (R) Counter Section,  
IF Program Modes Section, and IF Power-Down Section........ 20  
Changes to Programmable RF Reference (R) Counter Section,  
RF Program Modes Section, Programmable RF N Counter  
Section, and RF Power-Down Section......................................... 21  
3/03—Data Sheet changed from REV. 0 to REV. A  
Changes to General Description .....................................................1  
Changes to Specifications.................................................................3  
Changes to Table 9.......................................................................... 18  
Changes to Table 11 ....................................................................... 20  
Changes to Figure 31...................................................................... 23  
11/02—Revision 0: Initial Version  
Rev. B | Page 2 of 28  
 
ADF4212L  
SPECIFICATIONS  
VDD1 = VDD2 = 2.7 V to 3.3 V; VP1, VP2 = VDD to 5.5 V; AGNDRF = DGNDRF = AGNDIF = DGNDIF = 0 V; TA = TMIN to TMAX, unless  
otherwise noted; dBm referred to 50 Ω.  
Table 1.  
Parameter1  
B Version  
B Chips2  
Unit  
Test Conditions/Comments  
RF/IF CHARACTERISTICS  
RF Input Frequency (RFIN)  
0.2/2.4  
0.2/2.4  
GHz min/max  
For lower frequencies, ensure that slew rate (SR)  
> 140 V/µs  
RF Input Sensitivity  
IF Input Frequency (IFIN)  
IF Input Sensitivity  
−10/0  
100/1000  
−10/0  
−10/0  
100/1000  
−10/0  
dBm min/max  
MHz min/max  
dBm min/max  
VDD = 3 V  
VDD = 3 V  
MAXIMUM ALLOWABLE  
Prescaler Output Frequency3  
REFIN CHARACTERISTICS  
REFIN Input Frequency  
REFIN Input Sensitivity  
188  
188  
MHz max  
See Figure 26 for input circuit  
10/150  
500 mV/VDD  
10/150  
500 mV/VDD  
MHz min/max  
V p-p min/max  
AC-coupled; when dc-coupled, 0 V to VDD  
maximum (CMOS compatible)  
REFIN Input Capacitance  
REFIN Input Current  
PHASE DETECTOR  
Phase Detector Frequency4  
CHARGE PUMP  
10  
100  
10  
100  
pF max  
μA max  
75  
75  
MHz max  
ICP Sink/Source  
Programmable, see Table 10  
With RSET = 2.7 kΩ  
High Value  
Low Value  
5
625  
2
5
625  
2
mA typ  
μA typ  
% typ  
kΩ min/max  
nA max  
% typ  
Absolute Accuracy  
RSET Range  
ICP Three-State Leakage Current  
Sink and Source Current Matching  
ICP vs. VCP  
With RSET = 2.7 kΩ  
1.5/5.6  
1.5/5.6  
1
6
2
2
1
6
2
2
0.5 V < VCP < VP − 0.5 V  
0.5 V < VCP < VP − 0.5 V  
VCP = VP/2  
% typ  
% typ  
ICP vs. Temperature  
LOGIC INPUTS  
VINH, Input High Voltage  
VINL, Input Low Voltage  
IINH/IINL, Input Current  
CIN, Input Capacitance  
LOGIC OUTPUTS  
1.4  
0.6  
1
1.4  
0.6  
1
V min  
V max  
μA max  
pF max  
10  
10  
VOH, Output High Voltage  
VOL, Output Low Voltage  
POWER SUPPLIES  
1.4  
0.4  
1.4  
0.4  
V min  
V max  
Open-drain 1 kΩ pull-up to 1.8 V  
IOL = 500 μA  
VDD  
VDD  
1
2
2.7/3.3  
2.7/3.3  
VDD1  
V min/max  
V min/max  
V min/max  
mA typ/max  
mA typ/max  
mA typ/max  
mA typ  
VDD1  
VP1, VP2  
IDD (RF and IF)5  
RF Only  
IF Only  
VDD1/5.5  
7.5/10  
5.0/6  
2.5/4  
0.6  
VDD1/5.5  
7.5/10  
5.0/6  
2.5/4  
0.6  
IP (IP1 + IP2)  
Low Power Sleep Mode  
1
1
μA typ  
1 Operating temperature range is as follows: B version: −40°C to +85°C.  
2 The B chip specifications are given as typical values.  
3 This is the maximum operating frequency of the CMOS counters. The prescaler value should be chosen to ensure that the RF input is divided down to a frequency less  
than this value.  
4 Guaranteed by design. Sample tested to ensure compliance.  
5 TA = 25°C. RF = 1 GHz; prescaler = 32/33. IF = 500 MHz; prescaler = 16/17.  
Rev. B | Page 3 of 28  
 
 
ADF4212L  
VDD1 = VDD2 = 2.7 V to 3.3 V; VP1, VP2 = VDD to 5.5 V; AGNDRF = DGNDRF = AGNDIF = DGNDIF = 0 V; TA = TMIN to TMAX, unless  
otherwise noted; dBm referred to 50 V.  
Table 2.  
Parameter1  
B Version  
B Chips2  
Unit  
Test Conditions/Comments  
NOISE CHARACTERISTICS  
RF Phase Noise Floor3  
−170  
−162  
−170  
−162  
dBc/Hz typ  
dBc/Hz typ  
25 kHz PFD frequency  
200 kHz PFD frequency  
Phase Noise Performance4  
IF: 540 MHz Output5  
IF: 900 MHz Output6  
RF: 900 MHz Output6  
RF: 1750 MHz Output7  
RF: 2400 MHz Output8  
Spurious Signals  
VCO output  
−89  
−87  
−89  
−84  
−87  
−89  
−87  
−89  
−84  
−87  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
1 kHz offset and 200 kHz PFD frequency  
1 kHz offset and 200 kHz PFD frequency  
1 kHz offset and 200 kHz PFD frequency  
1 kHz offset and 200 kHz PFD frequency  
1 kHz Offset and 1 MHz PFD frequency  
IF: 540 MHz Output5  
IF: 900 MHz Output6  
RF: 900 MHz Output6  
RF: 1750 MHz Output7  
RF: 2400 MHz Output8  
−88/−90  
−90/−94  
−90/−94  
−80/−82  
−80/−82  
−88/−90  
−90/−94  
−90/−94  
−80/−82  
−80/−82  
dB typ  
dB typ  
dB typ  
dB typ  
dB typ  
200 kHz/400 kHz and 200 kHz PFD frequency  
200 kHz/400 kHz and 200 kHz PFD frequency  
200 kHz/400 kHz and 200 kHz PFD frequency  
200 kHz/400 kHz and 200 kHz PFD frequency  
200 kHz/400 kHz and 200 kHz PFD frequency  
1 Operating temperature range is as follows: B version: −40°C to +85°C.  
2 The B Chip specifications are given as typical values.  
3 The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20logN (where N is the N divider value).  
See Figure 9.  
4 The phase noise is measured with the EVAL-ADF4212EB and the HP8562E spectrum analyzer. The spectrum analyzer provides the REFIN for the synthesizer  
(fREFOUT = 10 MHz @ 0 dBm).  
5 fREFIN = 10 MHz; fPFD = 200 kHz; offset frequency = 1 kHz; fIF = 540 MHz; N = 2700; loop B/W = 20 kHz  
6 fREFIN = 10 MHz; fPFD = 200 kHz; offset frequency = 1 kHz; fRF = 900 MHz; N = 4500; loop B/W = 20 kHz  
7 fREFIN = 10 MHz; fPFD = 200 kHz; offset frequency = 1 kHz; fRF = 1750 MHz; N = 8750; loop B/W = 20 kHz  
8 fREFIN = 10 MHz; fPFD = 1 MHz; offset frequency = 1 kHz; fRF = 2400 MHz; N = 9800; loop B/W = 20 kHz  
Rev. B | Page 4 of 28  
ADF4212L  
TIMING CHARACTERISTICS  
VDD1 = VDD2 = 2.6 V to 3.3 V; VP1, VP2 = VDD to 5.5 V; AGNDRF = DGNDRF = AGNDIF = DGNDIF = 0 V; TA = TMIN to TMAX, unless  
otherwise noted; dBm referred to 50 Ω.  
Table 3.  
Parameter1  
Limit at TMIN to TMAX (B Version)  
Unit  
Test Conditions/Comments  
LE setup time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
20  
10  
10  
25  
25  
10  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
Data to clock setup time  
Data to clock hold time  
Clock high duration  
Clock low duration  
Clock to LE setup time  
LE pulse width  
1 Guaranteed by design but not production tested.  
t4  
t5  
CLK  
t2  
t3  
DB1  
DB0 (LSB)  
(CONTROL BIT C1)  
DB23 (MSB)  
DB22  
DB2  
DATA  
LE  
(CONTROL BIT C2)  
t7  
t1  
t6  
LE  
Figure 2. Timing Diagram  
Rev. B | Page 5 of 28  
 
 
ADF4212L  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 4.  
Parameter1, 2  
Rating  
VDD1 to GND  
VDD1 to VDD2  
VP1, VP2 to GND  
−0.3 V to +3.6 V  
−0.3 V to +0.3 V  
−0.3 V to +3.6 V  
−0.3 V to +3.6 V  
−0.3 V to DVDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
VP1, VP2 to VDD1, VDD2  
Digital I/O Voltage to GND  
Analog I/O Voltage to GND  
REFIN, RFIN, IFIN to GND  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Maximum Junction Temperature  
TSSOP θJA Thermal Impedance  
ESD CAUTION  
−40°C to +85°C  
−65°C to +150°C  
150°C  
150.4°C/W  
122°C/W  
LFCSP θJA Thermal Impedance  
(Paddle Soldered)  
LFCSP θJA Thermal Impedance  
(Paddle Not Soldered)  
216°C/W  
Lead Temperature, Soldering  
Vapor Phase (60 sec)  
Infrared (15 sec)  
215°C  
220°C  
1 This device is a high performance RF integrated circuit with an ESD rating of  
<2 kV, and is ESD sensitive. Proper precautions should be taken for handling  
and assembly.  
3 GND = AGND = DGND = 0 V.  
Rev. B | Page 6 of 28  
 
 
ADF4212L  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
CP  
DGND  
RF  
AGND  
1
2
3
4
5
15 DGND  
RF  
RF  
IF  
14 IF  
IN  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
1
1
V
2
DD  
ADF4212L  
TOP VIEW  
(Not to Scale)  
DD  
13 AGND  
IN  
IF  
V
CP  
V 2  
P
12 R  
P
RF  
SET  
FL  
11 LE  
O
3
CP  
RF  
RF  
IF  
ADF4212L  
TOP VIEW  
(Not to Scale)  
4
DGND  
DGND  
IF  
IF  
5
RF  
IF  
IN  
IN  
6
AGND  
AGND  
RF  
7
FL  
R
SET  
O
8
REF  
LE  
NOTES  
IN  
1. IT IS RECOMMENDED THAT THE EXPOSED PAD  
BE THERMALLY CONNECTED TO A COPPER PLANE  
FOR ENHANCED THERMAL PERFORMANCE. THE PAD  
SHOULD BE GROUNDED AS WELL.  
9
DGND  
DATA  
CLK  
IF  
10  
MUXOUT  
Figure 4. LFCSP Pin Configuration  
Figure 3. TSSOP Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic TSSOP LFCSP  
Description  
CPRF  
3
1
RF Charge Pump Output. When enabled, this provides ICP to the external RF loop filter, which in turn  
drives the external RF VCO.  
DGNDRF  
RFIN  
AGNDRF  
FLO  
4
5
6
7
8
2
3
4
5
6
Digital Ground Pin for the RF Digital Circuitry.  
Input to the RF Prescaler. This small signal input is normally ac-coupled from the RF VCO.  
Ground Pin for the RF Analog Circuitry.  
Multiplexed Output of RF/IF Programmable or Reference Dividers, RF/IF Fastlock Mode. CMOS output.  
REFIN  
Reference Input. This is a CMOS input with a nominal threshold of VDD/2 and an equivalent input  
resistance of 100 kΩ. See Figure 26. This input can be driven from a TTL or CMOS crystal oscillator, or can  
be ac-coupled.  
DGNDIF  
MUXOUT  
9, 17  
10  
7, 15  
8
Digital Ground Pin for the IF Digital, Interface, and Control Circuitry.  
This multiplexer output allows either the IF/RF lock detect, the scaled RF, the scaled IF, or the scaled  
reference frequency to be accessed externally.  
CLK  
DATA  
LE  
11  
12  
13  
14  
9
Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is latched  
into the 24-bit shift register on the CLK rising edge. This input is a high impedance CMOS input.  
Serial Data Input. The serial data is loaded MSB first with the two LSBs being the control bits. This input is  
a high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into one of  
the four latches, with the latch selected using the control bits.  
Connecting a resistor between this pin and ground sets the maximum RF and IF charge pump output  
current. The nominal voltage potential at the RSET pin is 0.66 V. The relationship between ICP and RSET is,  
therefore,  
10  
11  
12  
RSET  
13.5  
RSET  
ICP MAX  
=
where RSET = 2.7 kΩ and ICP MAX = 5 mA for both the RF and IF charge pumps.  
Ground Pin for the IF Analog Circuitry.  
Input to the IF Prescaler. This small signal input is normally ac-coupled from the IF VCO.  
Output from the IF Charge Pump. This is normally connected to a loop filter that drives the input to an  
external VCO.  
AGNDIF  
IFIN  
CPIF  
15  
16  
18  
13  
14  
16  
VP2  
19  
17  
Power Supply for the IF Charge Pump. This should be greater than or equal to VDD2. In systems where  
VDD2 is 3 V, it can be set to 5.5 V and used to drive a VCO with a tuning range up to 5.5 V.  
Rev. B | Page 7 of 28  
 
ADF4212L  
Pin No.  
Mnemonic TSSOP LFCSP  
Description  
VDD2  
20  
18  
19  
20  
Power Supply for the IF, Digital, and Interface Section. Decoupling capacitors to the ground plane  
should be placed as close as possible to this pin. VDD2 should have a value of between 2.6 V and 3.3 V.  
VDD2 must have the same potential as VDD1.  
Power Supply for the RF Section. Decoupling capacitors to the ground plane should be placed as close  
as possible to this pin. VDD1 should have a value of between 2.6 V and 3.3 V. VDD1 must have the same  
potential as VDD2.  
VDD1  
1
VP1  
EP  
2
Power Supply for the RF Charge Pump. This should be greater than or equal to VDD1. In systems where  
VDD1 is 3 V, it can be set to 5.5 V and used to drive a VCO with a tuning range up to 5.5 V.  
Exposed It is recommended that the exposed pad be thermally connected to a copper plane for enhanced  
Pad  
thermal performance. The pad should be grounded as well.  
Rev. B | Page 8 of 28  
ADF4212L  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
V
V
= 3V  
DD  
= 5V  
V
I
= 3V, V = 5V  
P
REFERENCE  
LEVEL = –3.0dBm  
DD  
= 5mA  
P
CP  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 1Hz  
VIDEO BANDWIDTH = 1Hz  
SWEEP = 2.5 SECONDS  
AVERAGES = 20  
–5  
–10  
–15  
–20  
–25  
–30  
–85.9dB  
0
500  
1000  
1500  
2000  
2500  
3000  
–400k  
–200k  
1.75G  
FREQUENCY (Hz)  
200k  
400k  
FREQUENCY (MHz)  
Figure 5. Input Sensitivity (RF Input)  
Figure 8. Reference Spurs, RF Side (1750 MHz, 200 kHz, 20 kHz)  
RMS NOISE = 1.38 DEGREES  
1.38° RMS  
10dB/DIV  
R = –50dBc/Hz  
L
–50  
–60  
0
–5  
V
= 3V  
DD  
V
= 5V  
P
–70  
–80  
–10  
–90  
–15  
–20  
–25  
–30  
–35  
–100  
–110  
–120  
–130  
–140  
–150  
100Hz  
1MHz  
0
500  
1000  
1500  
FREQUENCY OFFSET  
FROM 1.75GHz CARRIER  
FREQUENCY (MHz)  
Figure 6. Input Sensitivity (IF Input)  
Figure 9. Integrated Phase Noise (1750 MHz, 200 kHz/20 kHz)  
0
0
V
= 3V, V = 5V  
P
= 5mA  
DD  
REFERENCE  
LEVEL = –4.3dBm  
REFERENCE  
LEVEL = –3.2dBm  
V
= 3V, V = 5V  
P
DD  
= 5mA  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
I
CP  
I
CP  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 22  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 22  
–84.2dBc/Hz  
1k 2k  
–88.8dBc/Hz  
–2k  
–1k  
1.75G  
FREQUENCY (Hz)  
–2k  
–1k  
540M  
FREQUENCY (Hz)  
1k  
2k  
Figure 7. Phase Noise, RF Side (1750 MHz, 200 kHz, 20 kHz)  
Figure 10. Phase Noise, IF Side (540 MHz, 200 kHz/20 kHz)  
Rev. B | Page 9 of 28  
 
 
ADF4212L  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–130  
–140  
–150  
V
I
= 3V, V = 5V  
P
REFERENCE  
LEVEL = –7.0dBm  
DD  
= 5mA  
V
V
= 3V  
DD  
= 5V  
CP  
P
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 1Hz  
VIDEO BANDWIDTH = 1Hz  
SWEEP = 2.5 SECONDS  
AVERAGES = 20  
–160  
–170  
–180  
–89.3dBc  
–400k  
–200k  
200k  
400k  
540M  
FREQUENCY (Hz)  
10  
100  
1k  
10k  
PHASE DETECTOR FREQUENCY (kHz)  
Figure 11. Reference Spurs, IF Side (540 MHz, 200 kHz, 20 kHz)  
Figure 14. Phase Noise Referred to CP Output vs. PFD Frequency, IF Side  
RMS NOISE =  
0.83 DEGREES  
10dB/DIV  
R = –50dBc/Hz  
L
–50  
–60  
6
4
0.83° RMS  
–70  
–80  
2
–90  
–100  
–110  
–120  
–130  
–140  
–150  
0
–2  
–4  
–6  
100Hz  
1MHz  
0
1
2
3
4
5
FREQUENCY OFFSET  
FROM 540MHz CARRIER  
V
(V)  
CP  
Figure 12. Integrated Phase Noise (540 MHz, 200 kHz/20 kHz)  
Figure 15. RF Charge Pump Output Characteristics  
6
4
–130  
–140  
–150  
V
V
= 3V  
DD  
= 5V  
P
V
V
= 3V  
DD  
2 = 5.5V  
P
2
0
–160  
–170  
–180  
–2  
–4  
–6  
0
1
2
3
4
5
10  
100  
1k  
10k  
V
(V)  
PHASE DETECTOR FREQUENCY (kHz)  
CP  
Figure 13. Phase Noise Referred to CP Output vs. PFD Frequency, RF Side  
Figure 16. IF Charge Pump Output Characteristics  
Rev. B | Page 10 of 28  
ADF4212L  
0
0
–20  
–40  
–60  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–80  
–90  
–100  
–100  
–40  
–20  
0
20  
40  
60  
80  
100  
0
1
2
3
4
5
TEMPERATURE (°C)  
TUNING VOLTAGE (V)  
Figure 20. IF Phase Noise vs. Temperature (540 MHz, 200 kHz, 20 kHz)  
Figure 17. RF Reference Spurs (200 kHz) vs. VTUNE (1750 MHz, 200 kHz, 20 kHz)  
0
0
–20  
–40  
–60  
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–100  
–120  
–90  
–100  
0
1
2
3
4
5
0
1
2
3
4
5
TUNING VOLTAGE (V)  
TUNING VOLTAGE (V)  
Figure 21. RF Noise vs. VTUNE  
Figure 18. IF Reference Spurs (200 kHz) vs. VTUNE (1750 MHz, 200 kHz, 20 kHz)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–90  
–100  
–100  
0
1
2
3
4
5
–40  
–20  
0
20  
40  
60  
80  
100  
TUNING VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 22. IF Noise vs. VTUNE  
Figure 19. RF Phase Noise vs. Temperature (1750 MHz, 200 kHz, 20 kHz)  
Rev. B | Page 11 of 28  
ADF4212L  
0
–20  
–40  
–60  
–80  
FREQUENCY  
(MHz)  
FREQUENCY  
(MHz)  
s11.REAL s11.IMAG  
s11.REAL s11.IMAG  
50  
0.97692  
–0.021077 1550  
–0.110459 1650  
0.561872  
0.529742  
0.514244  
0.405754  
0.379354  
0.312959  
0.322646  
0.288881  
0.199294  
0.206914  
0.168344  
0.092764  
0.036125  
0.037007  
–0.646879  
–0.668172  
–0.702192  
–0.714541  
–0.703593  
–0.802878  
–0.803970  
–0.807055  
–0.758619  
–0.725029  
–0.770837  
–0.776619  
–0.706197  
–0.716939  
150  
250  
350  
450  
550  
650  
750  
850  
950  
1050  
1150  
1250  
1350  
1450  
0.942115  
0.961217  
0.920667  
0.897441  
0.888164  
0.850012  
0.760189  
0.767363  
0.779511  
0.761034  
0.624825  
0.635364  
0.630242  
0.634506  
–0.085802 1750  
–0.185830 1850  
–0.245482 1950  
–0.282399 2050  
–0.305457 2150  
–0.358884 2250  
–0.541032 2350  
–0.585687 2450  
–0.482539 2550  
–0.530106 2650  
–0.590526 2750  
–0.592498 2850  
–0.655932 2950  
–100  
–120  
–40  
–20  
0
20  
40  
60  
80  
100  
–0.053842 –0.736527  
TEMPERATURE (°C)  
Figure 23. RF Spurs vs. Temperature  
Figure 25. S Parameter Data for the RF Input  
0
–20  
–40  
–60  
–80  
–100  
–120  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
Figure 24. IF Spurs vs. Temperature  
Rev. B | Page 12 of 28  
ADF4212L  
CIRCUIT DESCRIPTION  
REFERENCE INPUT SECTION  
RF/IF A AND B COUNTERS  
The reference input stage is shown in Figure 26. SW1 and SW2  
are normally closed switches. SW3 is normally open. When  
power-down is initiated, SW3 is closed and SW1 and SW2 are  
opened. This ensures that there is no loading of the REFIN pin  
on power-down.  
The A and B CMOS counters combine with the dual modulus  
prescaler to allow a wide ranging division ratio in the PLL  
feedback counter. The counters are specified to work when the  
prescaler output is 188 MHz or less. Thus, with an RF input  
frequency of 2.5 GHz, a prescaler value of 16/17 is valid, but a  
value of 8/9 is not valid.  
POWER-DOWN  
CONTROL  
PULSE SWALLOW FUNCTION  
The A and B CMOS counters, in conjunction with the dual  
modulus prescaler, make it possible to generate output  
frequencies that are spaced only by the reference frequency  
divided by R. The equation for the VCO frequency is as follows:  
100k  
NC  
SW2  
REF  
TO R COUNTER  
IN  
NC  
BUFFER  
SW1  
SW3  
NC = NO CONNECT  
f
VCO = [(P × B) + A] × fREFIN/R  
where:  
VCO is the output frequency of external voltage controlled  
NO  
Figure 26. Reference Input Stage  
f
RF/IF INPUT STAGE  
oscillator (VCO).  
P is the preset modulus of the dual modulus prescaler (8/9,  
16/17, and so on).  
B is the preset divide ratio of the binary 12-bit counter (3 to 4095).  
A is the preset divide ratio of the binary 6-bit swallow counter  
(0 to 63).  
The RF/IF input stage is shown in Figure 27. It is followed by a  
two-stage limiting amplifier to generate the current mode logic  
(CML) clock levels needed for the prescaler.  
1.6V  
BIAS  
GENERATOR  
AV  
DD  
fREFIN is the external reference oscillator frequency.  
2k  
2kΩ  
R is the preset divide ratio of the binary 15-bit programmable  
reference counter (1 to 32,767).  
RF  
IN  
N = BP + A  
12-BIT B  
TO PFD  
COUNTER  
100pF  
AGND  
LOAD  
FROM RF  
INPUT STAGE  
PRESCALER  
P/P + 1  
LOAD  
AGND  
6-BIT A  
COUNTER  
Figure 27. RF/IF Input Stage  
MODULUS  
CONTROL  
PRESCALER (P/P + 1)  
The dual-modulus prescaler (P/P + 1), along with the A and B  
counters, enables the large division ratio, N, to be realized (N =  
PB + A). The dual modulus prescaler, operating at CML levels,  
takes the clock from the RF/IF input stage and divides it down  
to a manageable frequency for the A and B CMOS counters in the  
RF and IF sections. The prescaler in both sections is programma-  
ble. It can be set in software to 8/9, 16/17, 32/33, or 64/65 (see  
Table 9 and Table 10). It is based on a synchronous 4/5 core.  
Figure 28. RF/IF A and B Counters  
RF/IF R COUNTER  
The 15-bit RF/IF R counter allows the input reference frequency to  
be divided down to produce the input clock to the phase frequency  
detector (PFD). Division ratios from 1 to 16,383 are allowed.  
Rev. B | Page 13 of 28  
 
 
 
 
 
 
 
 
 
ADF4212L  
DV  
DD  
PHASE FREQUENCY DETECTOR (PFD) AND  
CHARGE PUMP  
The PFD takes inputs from the R counter and N counter and  
produces an output proportional to the phase and frequency  
difference between them. Figure 29 is a simplified schematic.  
The PFD includes a fixed delay element that sets the width of  
the antibacklash pulse. This is typically 3 ns. This pulse ensures  
that there is no dead zone in the PFD transfer function and  
gives a consistent reference spur level.  
IF ANALOG LOCK DETECT  
IF R COUNTER OUTPUT  
IF N COUNTER OUTPUT  
MUXOUT  
MUX  
CONTROL  
IF/RF ANALOG LOCK DETECT  
RF R COUNTER OUTPUT  
RF N COUNTER OUTPUT  
RF ANALOG LOCK DETECT  
UP  
HI  
D1  
Q1  
DGND  
U1  
CLR1  
Figure 30. MUXOUT Schematic  
+IN  
RF/IF INPUT SHIFT REGISTER  
The ADF4212L digital section includes a 24-bit input shift  
register, a 15-bit IF R counter, and an 18-bit IF N counter  
(comprising a 6-bit IF A counter and a 12-bit IF B counter).  
Also present is a 15-bit RF R counter and an 18-bit RF N  
counter (comprising a 6-bit RF A counter and a 12-bit RF B  
counter). Data is clocked into the 24-bit shift register on each  
rising edge of CLK. The data is clocked in MSB first. Data is  
transferred from the shift register to one of four latches on the  
rising edge of LE. The destination latch is determined by the  
state of the two control bits (C2, C1) in the shift register. These  
are the two LSBs, DB1 and DB0, as shown in the timing diagram  
of Figure 2. The truth table for these bits is shown in Table 6.  
CHARGE  
PUMP  
CP  
U3  
DELAY  
DOWN  
CLR2  
D2 Q2  
HI  
U2  
–IN  
Figure 29. RF/IF PFD Simplified Schematic  
MUXOUT AND LOCK DETECT  
The output multiplexer on the ADF4212L allows the user to  
access various internal points on the chip. The state of MUXOUT  
is controlled by P3, P4, P11, and P12 (see Table 8 and Table 10).  
Figure 30 shows the MUXOUT section in block diagram form.  
Table 7 shows a summary of how the latches are programmed.  
Table 6. C2, C1 Truth Table  
LOCK DETECT  
Control Bits  
MUXOUT can be programmed for two types of lock detect: digital  
lock detect and analog lock detect. Digital lock detect is active  
high. It is set high when the phase error on three consecutive phase  
detector cycles is less than 15 ns. It stays set high until a phase  
error of greater than 25 ns is detected on any subsequent PD cycle.  
C2  
0
C1  
0
Data Latch  
IF R counter  
0
1
1
0
IF N counter (A and B)  
RF R counter  
1
1
RF N counter (A and B)  
The N-channel open-drain analog lock detect should be operated  
with an external pull-up resistor of 10 kΩ nominal. When lock  
has been detected, it is high with narrow, low-going pulses.  
Rev. B | Page 14 of 28  
 
 
 
 
 
 
 
ADF4212L  
Table 7. Latch Summary  
IF R COUNTER LATCH  
IF CP CURRENT  
SETTING  
CONTROL  
BITS  
15-BIT REFERENCE COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3  
IFCP2 IFCP1 IFCP0 P4 P3 P2 P1 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2  
DB2 DB1  
DB0  
R1 C2 (0) C1 (0)  
IF N COUNTER LATCH  
IF  
PRESCALER  
CONTROL  
BITS  
12-BIT B COUNTER  
6-BIT A COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3  
P8 P7 P6 P5 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 A6 A5 A4 A3 A2  
DB2 DB1  
DB0  
A1 C2 (0) C1 (1)  
RF R COUNTER LATCH  
RF CP CURRENT  
SETTING  
CONTROL  
BITS  
15-BIT RF REFERENCE COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3  
DB2 DB1  
DB0  
RFCP2 RFCP1 RFCP0 P12  
P11  
P10  
P9  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1 C2 (1) C1 (0)  
RF N COUNTER LATCH  
RF  
CONTROL  
BITS  
12-BIT B COUNTER  
6-BIT A COUNTER  
PRESCALER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3  
P17 P16 P15 P14 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 A6 A5 A4 A3 A2  
DB2 DB1  
DB0  
A1 C2 (1) C1 (1)  
Rev. B | Page 15 of 28  
ADF4212L  
IF R COUNTER LATCH  
Table 8. IF R Counter Latch Map  
IF CP CURRENT  
SETTING  
CONTROL  
BITS  
15-BIT IF REFERENCE COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3  
DB2 DB1  
DB0  
IFCP2 IFCP1 IFCP0  
P4  
P3  
P2  
P1  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1 C2 (0) C1 (0)  
R15  
R14  
R13  
..........  
R3  
R2  
R1  
DIVIDE RATIO  
0
0
0
0
.
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
0
0
0
1
.
0
1
1
0
.
1
0
1
0
.
1
2
3
4
.
.
.
.
..........  
..........  
..........  
.
.
.
.
.
1
.
1
.
1
.
1
.
0
.
0
.
32764  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
32765  
32766  
32767  
P1  
IF PD POLARITY  
0
1
NEGATIVE  
POSITIVE  
CHARGE PUMP  
OUTPUT  
P2  
0
1
NORMAL  
THREE-STATE  
P12  
P11  
P4  
P3  
FROM RF R LATCH  
MUXOUT  
LOGIC LOW STATE  
IF ANALOG LOCK DETECT  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
IF REFERENCE DIVIDER OUTPUT  
IF N DIVIDER OUTPUT  
RF ANALOG LOCK DETECT  
RF/IF ANALOG LOCK DETECT  
IF DIGITAL LOCK DETECT  
LOGIC HIGH STATE  
RF REFERENCE DIVIDER OUTPUT  
RF N DIVIDER OUTPUT  
THREE-STATE OUTPUT  
IF COUNTER RESET  
RF DIGITAL LOCK DETECT  
RF/IF DIGITAL LOCK DETECT  
RF COUNTER RESET  
IF AND RF COUNTER RESET  
I
(mA)  
CP  
IFCP2 IFCP1 IFCP0  
1.5k  
2.7kΩ  
0.625  
1.250  
1.875  
2.500  
3.125  
3.750  
4.375  
5.000  
5.6kΩ  
0.301  
0.602  
0.904  
1.205  
1.506  
1.808  
2.109  
2.411  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1.1250  
2.2500  
3.3750  
4.5000  
5.6250  
6.7500  
7.7875  
9.0000  
Rev. B | Page 16 of 28  
 
 
ADF4212L  
IF N COUNTER LATCH  
Table 9. IF N Counter Latch Map  
IF  
CONTROL  
BITS  
12-BIT B COUNTER  
6-BIT A COUNTER  
PRESCALER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3  
DB2 DB1  
DB0  
P8  
P7  
P6  
P5  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
A6  
A5  
A4  
A3  
A2  
A1 C2 (0) C1 (1)  
A COUNTER  
DIVIDE RATIO  
A6  
0
0
0
0
.
A5  
..........  
..........  
..........  
..........  
..........  
..........  
A2  
0
0
1
0
.
A1  
P6 P5 PRESCALER VALUE  
0
0
0
0
.
0
1
0
1
.
0
0
0
1
1
0
1
0
1
8/9  
16/17  
32/33  
64/65  
1
2
3
.
P7 IF POWER-DOWN  
0
1
DISABLED  
ENABLED  
.
.
..........  
..........  
..........  
.
.
.
.
1
.
1
.
0
.
0
.
60  
1
1
1
1
1
1
..........  
..........  
..........  
0
1
1
1
0
1
61  
62  
63  
P8 IF CP GAIN  
0
1
DISABLED  
ENABLED  
B12  
B11  
B10  
B3  
B2  
B1  
B COUNTER DIVIDE RATIO  
0
0
.
0
0
.
0
0
.
..........  
..........  
..........  
0
1
.
1
0
.
1
0
.
3
4
.
.
.
.
..........  
..........  
..........  
.
.
.
.
.
1
.
1
.
1
.
1
.
0
.
0
.
4092  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
4093  
4094  
4095  
N = BP + A, P IS PRESCALER VALUE SET IN THE FUNCTION LATCH.  
B MUST BE GREATER THAN OR EQUAL TO A.  
2
FOR CONTIGUOUS VALUES OF N, N  
IS (p – P).  
MIN  
Rev. B | Page 17 of 28  
 
 
ADF4212L  
RF R COUNTER LATCH  
Table 10. RF R Counter Latch Map  
RF CP CURRENT  
SETTING  
CONTROL  
BITS  
15-BIT RF REFERENCE COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3  
DB2 DB1  
DB0  
RFCP2 RFCP1 RFCP0 P12  
P11  
P10  
P9  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1 C2 (0) C1 (0)  
R15  
R14  
R13  
..........  
R3  
R2  
R1  
DIVIDE RATIO  
0
0
0
0
.
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
0
0
0
1
.
0
1
1
0
.
1
0
1
0
.
1
2
3
4
.
.
.
.
..........  
..........  
..........  
.
.
.
.
.
1
.
1
.
1
.
1
.
0
.
0
.
32764  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
32765  
32766  
32767  
P9  
RF PD POLARITY  
0
1
NEGATIVE  
POSITIVE  
CHARGE PUMP  
OUTPUT  
P10  
0
1
NORMAL  
THREE-STATE  
P12  
P11  
P4  
P3  
MUXOUT  
FROM IF R LATCH  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
LOGIC LOW STATE  
IF ANALOG LOCK DETECT  
IF REFERENCE DIVIDER OUTPUT  
IF N DIVIDER OUTPUT  
RF ANALOG LOCK DETECT  
RF/IF ANALOG LOCK DETECT  
IF DIGITAL LOCK DETECT  
LOGIC HIGH STATE  
RF REFERENCE DIVIDER OUTPUT  
RF N DIVIDER OUTPUT  
THREE-STATE OUTPUT  
IF COUNTER RESET  
RF DIGITAL LOCK DETECT  
RF/IF DIGITAL LOCK DETECT  
RF COUNTER RESET  
IF AND RF COUNTER RESET  
I
(mA)  
CP  
RFCP2 RFCP1 RFCP0  
1.5kΩ  
2.7kΩ  
0.625  
1.250  
1.875  
2.500  
3.125  
3.750  
4.375  
5.000  
5.6kΩ  
0.301  
0.602  
0.904  
1.205  
1.506  
1.808  
2.109  
2.411  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1.1250  
2.2500  
3.3750  
4.5000  
5.6250  
6.7500  
7.7875  
9.0000  
Rev. B | Page 18 of 28  
 
 
ADF4212L  
RF N COUNTER LATCH  
Table 11. RF N Counter Latch Map  
RF  
CONTROL  
BITS  
12-BIT B COUNTER  
6-BIT A COUNTER  
PRESCALER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3  
DB2 DB1  
DB0  
P17  
P16  
P15  
P14 B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
A6  
A5  
A4  
A3  
A2  
A1 C2 (1) C1 (1)  
A6  
A5  
..........  
A2  
A1  
A COUNTER  
DIVIDE RATIO  
P15 P14 PRESCALER VALUE  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
0
0
1
0
.
0
1
0
1
.
0
1
2
3
.
0
0
1
1
0
1
0
1
8/9  
16/17  
32/33  
64/65  
P16 RF POWER-DOWN  
0
1
DISABLED  
ENABLED  
.
.
..........  
..........  
..........  
.
.
.
.
1
.
1
.
0
.
0
.
60  
1
1
1
1
1
1
..........  
..........  
..........  
0
1
1
1
0
1
61  
62  
63  
P17 RF CP GAIN  
0
1
DISABLED  
ENABLED  
B12  
B11  
B10  
B3  
B2  
B1  
B COUNTER DIVIDE RATIO  
0
0
.
0
0
.
0
0
.
..........  
..........  
..........  
0
1
.
1
0
.
1
0
.
3
4
.
.
.
.
..........  
..........  
..........  
.
.
.
.
.
1
.
1
.
1
.
1
.
0
.
0
.
4092  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
4093  
4094  
4095  
N = BP + A, P IS PRESCALER VALUE SET IN THE FUNCTION LATCH  
B MUST BE GREATER THAN OR EQUAL TO A  
2
FOR CONTIGUOUS VALUES OF N, N  
IS (P – P)  
MIN  
Rev. B | Page 19 of 28  
 
 
ADF4212L  
PROGRAM MODES  
Table 8 and Table 10 show how to set up the program modes in  
the ADF4212L. The following should be noted:  
conditions, and the IF/RF input section is debiased to a high  
impedance state.  
The REFIN oscillator circuit is disabled only if both the IF and  
RF power-downs are set.  
IF and RF analog lock detect indicate when the PLL is in  
lock. When the loop is locked and either IF or RF analog  
lock detect is selected, the MUXOUT pin shows a logic  
high with narrow, low-going pulses. When the IF/RF  
analog lock detect is chosen, the locked condition is  
indicated only when both IF and RF loops are locked.  
The IF counter reset mode resets the R, A, and B counters  
in the IF section and puts the IF charge pump into three-  
state mode. The RF counter reset mode resets the R, A, and  
B counters in the RF section and puts the RF charge pump  
into three-state. The IF and RF counter reset mode does  
both of the above. Upon removal of the reset bits, the A  
and B counters resume counting in close alignment with  
the R counter. (Maximum error is one prescaler output cycle.)  
The fastlock mode uses MUXOUT to switch a second loop  
filter damping resistor to ground during fastlock operation.  
Activation of fastlock occurs whenever RF CP gain in the  
RF reference counter is set to 1.  
The input register and latches remain active and are capable of  
loading and latching data during all power-down modes.  
The IF/RF section of the device returns to normal powered-up  
operation immediately upon LE latching a 0 to the appropriate  
power-down bit.  
IF SECTION  
Programmable IF Reference (R) Counter  
If Control Bits[C2:C1] = 00, the data is transferred from the  
input shift register to the 15-bit IF R counter. Table 8 shows the  
input shift register data format for the IF R counter and the  
divide ratios that are possible.  
IF Phase Detector Polarity  
P1 sets the IF phase detector polarity. When the IF VCO  
characteristics are positive, P1 should be set to 1. When  
the IF VCO characteristics are negative, it should be set to 0.  
See Table 8.  
IF AND RF POWER-DOWN  
It is possible to program the ADF4210 family for either synchron-  
ous or asynchronous power-down on either the IF or RF side.  
IF Charge Pump Three-State  
P2 puts the IF charge pump into three-state mode when  
programmed to a 1. It should be set to 0 for normal operation.  
See Table 8.  
Synchronous IF Power-Down  
Programming a 1 to P7 of the ADF4212L initiates a power-  
down. If P2 of the ADF4212L has been set to 0 (normal  
operation), a synchronous power-down is conducted. The  
device automatically puts the charge pump into three-state  
mode and completes the power-down.  
IF Program Modes  
Table 8 shows how to set up the program modes in the  
ADF4212L.  
IF Charge Pump Currents  
Asynchronous IF Power-Down  
IFCP2, IFCP1, and IFCP0 program the current setting for the  
IF charge pump. See Table 8.  
If P2 of the ADF4212L has been set to 1 (the IF charge pump in  
three-state mode) and P7 is subsequently set to 1, an asynchronous  
power-down is conducted. The device goes into power-down on  
the rising edge of LE, which latches the 1 to the IF power-down  
bit (P7).  
Programmable IF N Counter  
If Control Bits[C2:C1] = 01, the data in the input register is  
used to program the IF N (A + B) counter. The N counter  
consists of a 6-bit swallow counter (A counter) and 12-bit  
programmable counter (B counter). Table 9 shows the input  
register data format for programming the IF A and B counters  
and the divide ratios possible.  
Synchronous RF Power-Down  
Programming a 1 to P16 of the ADF4212L initiates a power-  
down. If P10 of the ADF4212L has been set to 0 (normal  
operation), a synchronous power-down is conducted. The  
device automatically puts the charge pump into three-state  
mode and then completes the power-down.  
IF Prescaler Value  
P5 and P6 in the IF N counter latch set the IF prescaler values.  
See Table 9.  
Asynchronous RF Power-Down  
If P10 of the ADF4212L has been set to 1 (the RF charge pump in  
three-state mode) and P16 is subsequently set to 1, an asynchron-  
ous power-down is conducted. The device goes into power-down  
on the rising edge of LE, which latches the 1 to the RF power-down  
bit (P16).  
IF Power-Down  
Table 9 shows the power-down bits in the ADF4212L.  
IF Fastlock  
The IF CP gain bit (P8) of the IF N counter latch register in the  
ADF4212L is the fastlock enable bit. Only when P8 is set to 1 is  
IF fastlock enabled. When fastlock is enabled, the IF CP current  
Activation of either synchronous or asynchronous power-down  
forces the IF/RF loop’s R and A/B dividers to their load state  
Rev. B | Page 20 of 28  
 
 
 
ADF4212L  
is set to the maximum value. Also, an extra loop filter damping  
resistor to ground is switched in using the FLO pin, thus  
compensating for the change in loop characteristics while in  
fastlock. Because the IF CP gain bit is contained in the IF N  
counter, only one write is needed to both program a new output  
frequency and initiate fastlock. To come out of fastlock, the IF  
CP gain bit on the IF N counter latch register must be set to 0  
(see Table 9).  
RF Charge Pump Currents  
RFCP2, RFCP1, and RFCP0 program the current setting for the  
RF charge pump. See Table 10.  
Programmable RF N Counter  
If Control Bits[C2:C1] = 11, the data in the input register is  
used to program the RF N (A + B) counter. The N counter  
consists of a 6-bit swallow counter (A counter) and a 12-bit  
programmable counter (B counter). Table 11 shows the input  
register data format for programming the RF N counter and the  
divide ratios that are possible.  
RF SECTION  
Programmable RF Reference (R) Counter  
If Control Bits[C2: C1] = 10, the data is transferred from the  
input shift register to the 15-bit RF R counter. Table 10 shows  
the input shift register data format for the RF R counter and the  
divide ratios possible.  
RF Prescaler Value  
P14 and P15 in the RF N counter latch set the RF prescaler  
values. See Table 11.  
RF Power-Down  
RF Phase Detector Polarity  
Table 11 shows the power-down bits in the ADF4212L.  
P9 sets the IF phase detector polarity. When the RF VCO  
characteristics are positive, P9 should be set to 1. When they are  
negative, it should be set to 0 (see Table 10).  
RF Fastlock  
The RF CP gain bit (P17) of the RF N counter latch register in  
the ADF4212L is the fastlock enable bit. Only when P17 is set to  
1 is IF fastlock enabled. When fastlock is enabled, the RF CP  
current is set to the maximum value. Also, an extra loop filter  
damping resistor to ground is switched in using the FLO pin,  
thus compensating for the change in loop characteristics while  
in fastlock. Because the RF CP gain bit is contained in the RF N  
counter, only one write is needed to both program a new output  
frequency and initiate fastlock. To come out of fastlock, the RF  
CP gain bit on the RF N counter latch register must be set to 0.  
See Table 11.  
RF Charge Pump Three-State  
P10 puts the RF charge pump into three-state mode when  
programmed to a 1. It should be set to 0 for normal operation  
(see Table 10).  
RF Program Modes  
Table 10 shows how to set up the program modes in the  
ADF4212L.  
Rev. B | Page 21 of 28  
 
ADF4212L  
APPLICATIONS INFORMATION  
200 kHz (the GSM standard), the reference input must be  
divided by 65, using the on-chip reference.  
LOCAL OSCILLATOR FOR GSM HANDSET RECEIVER  
Figure 31 shows the ADF4212L being used with a VCO to pro-  
duce the required LOs for a GSM base station transmitter or  
receiver. The reference input signal is applied to the circuit at  
FREFIN and, in this case, is terminated in 50 Ω. Typical GSM  
systems have a 13 MHz TCXO driving the reference input  
without any 50 Ω termination. To have a channel spacing of  
The RF output frequency range is 880 MHz to 915 MHz. The  
loop filter is designed to give a 20 kHz loop bandwidth. The  
filter is set up for a 5 mA charge pump current, and the VCO  
sensitivity is 12 MHz/V. The IF output is fixed at 540 MHz. The  
filter is again designed to have a bandwidth of 20 kHz, and the  
system is programmed to give channel steps of 200 kHz.  
RF  
IFOUT  
OUT  
V
V
V
V
P
DD  
P
100pF  
100pF  
18  
18Ω  
18Ω  
V 2  
2
V
1
DD  
V 1  
P
100pF  
DD  
P
100pF  
3.3kΩ  
3.3kΩ  
18Ω  
18Ω  
V
V
CC  
CC  
CP  
CP  
RF  
IF  
VCO190-540T  
VCO190-902U  
18Ω  
620pF  
1.3nF  
620pF  
1nF  
1.7kΩ  
5.6kΩ  
ADF4212L  
8.2nF  
13nF  
R
SET  
2.7kΩ  
LOCK  
DETECT  
MUXOUT  
RF  
100pF  
100pF  
IF  
IN  
IN  
51Ω  
51V  
CLK  
DATA  
LE  
100pF 100pF  
SPI-COMPATIBLE SERIAL BUS  
FREF  
IN  
REF  
IN  
51Ω  
DECOUPLING CAPACITORS (22µF/10pF) ON V , V OF THE ADF4212L AND ON V OF THE VCOs  
DD CC  
P
HAVE BEEN OMITTED FROM THE DIAGRAM TO AID CLARITY.  
Figure 31. GSM Handset Receiver Local Oscillator Using the ADF4212L  
Rev. B | Page 22 of 28  
 
 
 
ADF4212L  
MHz, ICP of 10 mA (2.5 mA synthesizer ICP multiplied by the gain  
factor of 4), VCO KD of 80 MHz/V (sensitivity of the M3500-1324  
at an output of 2100 MHz), and a phase margin of 45 degrees.  
WIDEBAND PLL  
Many of the wireless applications for synthesizers and VCOs in  
PLLs are narrow band in nature. These applications include the  
various wireless standards such as GSM, DSC1800, CDMA, or  
WCDMA. In each of these cases, the total tuning range for the  
LO is less than 100 MHz. However, there are also wideband  
applications where the LO can have up to an octave tuning  
range. For example, cable television tuners have a total range  
of about 400 MHz. Figure 32 shows an application where the  
ADF4212L is used to control and program the Micronetics  
M3500-1324. The loop filter was designed for an RF output of  
2100 MHz, a loop bandwidth of 40 kHz, a PFD frequency of 1  
In narrow-band applications, there is generally a small variation  
in output frequency (generally less than 10%) and a small variation  
in VCO sensitivity over the range (typically <10%). However, in  
wideband applications, both of these parameters have a much  
greater variation, which changes the loop bandwidth. This, in turn,  
can affect stability and lock time. By changing the programma-  
ble ICP, it is possible to obtain compensation for these varying loop  
conditions and to ensure that the loop is always operating close  
to optimal conditions.  
RF  
OUT  
12V  
V
V
20V  
DD  
P
100pF  
V
3k  
AD820  
CC  
1kΩ  
100pF  
18Ω  
18Ω  
18Ω  
V 1 V 2  
V
1
V
DD  
2
DD  
P
P
V_TUNE  
M3500-1324  
GND  
OUT  
20kΩ  
CP  
RF  
1000pF 1000pF  
FREF  
IN  
REF  
IN  
3.9nF  
27nF  
130pF  
R
SET  
51Ω  
2.7kΩ  
470Ω  
ADF4212L  
CLK  
DATA  
LE  
LOCK  
DETECT  
SPI-COMPATIBLE SERIAL BUS  
MUXOUT  
100pF  
RF  
IN  
51Ω  
DECOUPLING CAPACITORS ON V  
DDx  
AND V OF THE ADF4212L, ON +V OF THE AD820,  
Px  
S
AND ON V  
OF THE M3500-1324 HAVE BEEN OMITTED FROM THE DIAGRAM TO AID CLARITY.  
CC  
THE IF SECTION OF THE CIRCUIT HAS ALSO BEEN OMITTED TO SIMPLIFY THE SCHEMATIC.  
Figure 32. Wideband PLL Circuit  
Rev. B | Page 23 of 28  
 
 
ADF4212L  
three 8-bit bytes, enable the autobuffered mode, and then write  
to the transmit register of the DSP. This last operation initiates  
the autobuffer transfer.  
INTERFACING  
The ADF4212L has a simple SPI-compatible interface for  
writing to the device. CLK, DATA, and LE control the data  
transfer. When latch enable (LE) goes high, the 22 bits that have  
been clocked into the input register on each rising edge of CLK are  
transferred to the appropriate latch. See Figure 2 for the timing  
diagram and Table 6 for the latch truth table.  
ADuC812  
SCLOCK  
MOSI  
ADF4212L  
CLK  
DATA  
LE  
I/O PORTS  
The maximum allowable serial clock rate is 20 MHz. This means  
that the maximum update rate possible for the device is 909 kHz or  
one update every 1.1 μs, which is more than adequate for systems  
that have typical lock times in hundreds of microseconds.  
MUXOUT  
(LOCK DETECT)  
Figure 33. ADuC812 to ADF4212L Interface  
ADuC812 Interface  
ADSP-21xx  
ADF4212L  
Figure 33 shows the interface between the ADF4212L and the  
ADuC812 MicroConverter®. Because the ADuC812 is based on  
an 8051 core, this interface can be used with any 8051-based  
microcontroller. The microconverter is set up for SPI (serial  
port interface) master mode with CPHA = 0. To initiate the  
operation, the I/O port driving LE is brought low. Each latch of  
the ADF4212L needs a 24-bit word. This is accomplished by  
writing three 8-bit bytes from the microconverter to the device.  
When the third byte has been written, the LE input should be  
brought high to complete the transfer.  
SCLOCK  
DT  
CLK  
DATA  
LE  
TFS  
MUXOUT  
(LOCK DETECT)  
I/O FLAGS  
Figure 34. ADSP-21xx to ADF4212L Interface  
PCB DESIGN GUIDELINES FOR LEAD FRAME CHIP  
SCALE PACKAGE  
When first applying power to the ADF4212L, four writes (one  
each to the R counter latch and the N counter latch for both the  
IF and RF sides) are required for the output to become active.  
The lands on the LFCSP (CP-20-1) are rectangular. The printed  
circuit board (PCB) pad for these should be 0.1 mm longer than  
the package land length and 0.05 mm wider than the package  
land width. The land should be centered on the pad. This ensures  
that the solder joint size is maximized. The bottom of the LFCSP  
has a central thermal pad.  
When operating in the mode described, the maximum SCLOCK  
rate of the ADuC812 is 4 MHz. This means that the maximum  
rate at which the output frequency can be changed is 180 kHz.  
The thermal pad on the PCB should be at least as large as the  
exposed pad. On the PCB, there should be a clearance of at least  
0.25 mm between the thermal pad and the inner edges of the  
pad pattern. This ensures that shorting is avoided.  
ADSP-2181 Interface  
Figure 34 shows the interface between the ADF4212L and the  
ADSP-21xx digital signal processor. As previously described,  
the ADF4212L needs a 24-bit serial word for each latch write.  
The easiest way to accomplish this with the ADSP-21xx family  
is to use the autobuffered transmit mode of operation with  
alternate framing. This provides a means for transmitting an  
entire block of serial data before an interrupt is generated. Set  
up the word length for eight bits and use three memory locations  
for each 24-bit word. To program each 24-bit latch, store the  
Thermal vias can be used on the PCB thermal pad to improve  
thermal performance of the package. If vias are used, they  
should be incorporated in the thermal pad at 1.2 mm pitch grid.  
The via diameter should be between 0.3 mm and 0.33 mm, and  
the via barrel should be plated with 1 oz copper to plug the via.  
The user should connect the PCB thermal pad to PCB ground.  
Rev. B | Page 24 of 28  
 
 
 
 
ADF4212L  
OUTLINE DIMENSIONS  
6.60  
6.50  
6.40  
20  
11  
10  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-153-AC  
Figure 35. 20-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-20)  
Dimensions shown in millimeters  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
15  
16  
20  
1
5
0.50  
BSC  
PIN 1  
INDICATOR  
2.25  
2.10 SQ  
1.95  
3.75  
BCS SQ  
EXPOSED  
PAD  
(BOTTOM VIEW)  
10  
6
11  
0.75  
0.60  
0.50  
0.25 MIN  
TOP VIEW  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.20 REF  
SECTION OF THIS DATA SHEET.  
0.30  
0.23  
0.18  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-1  
Figure 36. 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-20-1)  
Dimensions shown in millimeters  
Rev. B | Page 25 of 28  
 
ADF4212L  
ORDERING GUIDE  
Model  
ADF4212LBRU  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead TSSOP  
Package Option  
RU-20  
RU-20  
RU-20  
RU-20  
ADF4212LBRU-REEL  
ADF4212LBRU-REEL7  
ADF4212LBRUZ1  
ADF4212LBRUZ-RL1  
ADF4212LBRUZ-RL71  
ADF4212LBCP  
ADF4212LBCP-REEL  
ADF4212LBCP-REEL7  
ADF4212LBCPZ1  
20-Lead TSSOP  
20-Lead TSSOP  
RU-20  
RU-20  
20-Lead LFCSP_VQ  
20-Lead LFCSP_VQ  
20-Lead LFCSP_VQ  
20-Lead LFCSP_VQ  
20-Lead LFCSP_VQ  
20-Lead LFCSP_VQ  
CP-20-1  
CP-20-1  
CP-20-1  
CP-20-1  
CP-20-1  
CP-20-1  
ADF4212LBCPZ-RL1  
ADF4212LBCPZ-RL71  
1 Z = RoHS Compliant Part.  
Rev. B | Page 26 of 28  
 
 
ADF4212L  
NOTES  
Rev. B | Page 27 of 28  
ADF4212L  
NOTES  
©2002–2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02774-0-9/08(B)  
Rev. B | Page 28 of 28  

相关型号:

ADF4212LBCPZ-REEL

IC PLL FREQUENCY SYNTHESIZER, 2400 MHz, QCC20, 4 X 4 MM, MO-220VGGD-1, LFCSP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4212LBCPZ-REEL7

IC PLL FREQUENCY SYNTHESIZER, 2400 MHz, QCC20, 4 X 4 MM, MO-220VGGD-1, LFCSP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4212LBCPZ-RL7

Dual Power PLL Frequency Synthesizer
ADI

ADF4212LBRU

Dual Low Power PLL Frequency Synthesizer
ADI

ADF4212LBRU-REEL

IC PLL FREQUENCY SYNTHESIZER, 2400 MHz, PDSO20, MO-153AC, TSSOP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4212LBRU-REEL7

IC PLL FREQUENCY SYNTHESIZER, 2400 MHz, PDSO20, MO-153AC, TSSOP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4212LBRUZ

Dual Power PLL Frequency Synthesizer
ADI

ADF4212LBRUZ-REEL

IC PLL FREQUENCY SYNTHESIZER, 2400 MHz, PDSO20, MO-153AC, TSSOP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4212LBRUZ-REEL7

IC PLL FREQUENCY SYNTHESIZER, 2400 MHz, PDSO20, MO-153AC, TSSOP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4212LBRUZ-RL

Dual Power PLL Frequency Synthesizer
ADI

ADF4212LBRUZ-RL7

Dual Power PLL Frequency Synthesizer
ADI

ADF4212_15

Dual RF/IF PLL Frequency Synthesizers
ADI