ADF4217LBRUZ-RL [ADI]

暂无描述;
ADF4217LBRUZ-RL
型号: ADF4217LBRUZ-RL
厂家: ADI    ADI
描述:

暂无描述

射频
文件: 总20页 (文件大小:220K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
Dual RF PLL Frequency Synthesizers  
ADF4216/ADF4217/ADF4218  
GENERAL DESCRIPTION  
FEATURES  
The ADF4216/ADF4217/ADF4218 are dual frequency synthe-  
sizers that can be used to implement local oscillators (LOs) in  
the upconversion and downconversion sections of wireless  
receivers and transmitters. They can provide the LO for both  
the RF and IF sections. They consist of a low-noise digital PFD  
(Phase Frequency Detector), a precision charge pump, a pro-  
grammable reference divider, programmable A and B counters,  
and a dual-modulus prescaler (P/P+1). The A (6-bit) and B  
(11-bit) counters, in conjunction with the dual modulus prescaler  
(P/P+1), implement an N divider (N = BP + A). In addition,  
the 14-bit reference counter (R Counter), allows selectable  
REFIN frequencies at the PFD input. A complete PLL (Phase-  
Locked Loop) can be implemented if the synthesizers are  
used with an external loop filter and VCOs (Voltage Con-  
trolled Oscillators).  
ADF4216: 550 MHz/1.2 GHz  
ADF4217: 550 MHz/2.0 GHz  
ADF4218: 550 MHz/2.5 GHz  
2.7 V to 5.5 V Power Supply  
Selectable Charge Pump Currents  
Selectable Dual Modulus Prescaler  
IF: 8/9 or 16/17  
RF: 32/33 or 64/65  
3-Wire Serial Interface  
Power-Down Mode  
APPLICATIONS  
Wireless Handsets (GSM, PCS, DCS, CDMA, WCDMA)  
Base Stations for Wireless Radio (GSM, PCS, DCS,  
CDMA, WCDMA)  
Wireless LANS  
Communications Test Equipment  
CATV Equipment  
Control of all the on-chip registers is via a simple 3-wire interface.  
The devices operate with a power supply ranging from 2.7 V  
to 5.5 V and can be powered down when not in use.  
FUNCTIONAL BLOCK DIAGRAM  
V
1
V
2
V 1  
V 2  
P
DD  
DD  
P
ADF4216/ADF4217/ADF4218  
N = BP + A  
11-BIT IF  
B-COUNTER  
PHASE  
COMPARATOR  
IF  
IF  
A
B
IN  
IF  
PRESCALER  
CHARGE  
PUMP  
CP  
IF  
IN  
6-BIT IF  
A-COUNTER  
IF  
LOCK  
DETECT  
REF  
OSCILLATOR  
IN  
14-BIT IF  
R-COUNTER  
OUTPUT  
MUX  
MUXOUT  
CLOCK  
DATA  
LE  
22-BIT  
DATA  
REGISTER  
SDOUT  
14-BIT IF  
R-COUNTER  
RF  
LOCK  
DETECT  
N = BP + A  
11-BIT RF  
B-COUNTER  
RF  
RF  
A
B
IN  
RF  
CHARGE  
PUMP  
PRESCALER  
CP  
RF  
IN  
6-BIT RF  
A-COUNTER  
PHASE  
COMPARATOR  
DGND  
RF  
AGND  
RF  
DGND  
IF  
DGND  
IF  
AGND  
IF  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
ADF4216/ADF4217/ADF4218–SPECIFICATIONS1  
(VDD1 = VDD2 = 3 V ؎ 10%, 5 V ؎ 10%;  
VDD1, VDD2 Յ VP1, VP2 Յ 6.0 V ; AGNDRF = DGNDRF = AGNDIF = DGNDIF = 0 V; TA = TMIN to TMAX unless otherwise noted.)  
P
arameter  
B Version  
B Chips2  
Unit  
Test Conditions/Comments  
RF/IF CHARACTERISTICS (3 V)  
RF Input Frequency (RFIN  
)
See Figure 3 for Input Circuit.  
ADF4216  
ADF4217  
ADF4218  
IF Input Frequency (IFIN  
RF Input Sensitivity  
IF Input Sensitivity  
0.2/1.2  
0.2/2.0  
0.5/2.5  
45/550  
–15/+4  
–10/+4  
0.2/1.2  
0.2/2.0  
0.5/2.5  
45/550  
–15/+4  
–10/+4  
GHz min/max  
GHz min/max  
GHz min/max  
MHz min/max  
dBm min/max  
dBm min/max  
For lower frequency operation (below the  
minimum stated) use a square wave source.  
)
Maximum Allowable  
Prescaler Output Frequency3  
165  
165  
MHz max  
RF/IF CHARACTERISTICS (5 V)  
RF Input Frequency (RFIN  
)
See Figure 3 for Input Circuit.  
ADF4216  
ADF4217  
ADF4218  
IF Input Frequency (IFIN  
RF Input Sensitivity  
IF Input Sensitivity  
0.2/1.2  
0.2/2.0  
0.5/2.5  
25/550  
–15/+4  
–10/+4  
0.2/1.2  
0.2/2.0  
0.5/2.5  
25/550  
–15/+4  
–10/+4  
GHz min/max  
GHz min/max  
GHz min/max  
MHz min/max  
dBm min/max  
dBm min/max  
For lower frequency operation (below the  
minimum stated) use a square wave source.  
)
Maximum Allowable  
Prescaler Output Frequency3  
200  
200  
MHz max  
REFIN CHARACTERISTICS  
REFIN Input Frequency  
5/40  
0.5  
5/40  
0.5  
MHz min/max  
V p-p min  
For f < 5 MHz, use dc-coupled square wave  
(0 to VDD).  
AC-Coupled. When DC-Coupled:  
0 to VDD max (CMOS-Compatible)  
REFIN Input Sensitivity4  
REFIN Input Capacitance  
REFIN Input Current  
10  
100  
10  
100  
pF max  
µA max  
PHASE DETECTOR  
Phase Detector Frequency5  
40  
40  
MHz max  
CHARGE PUMP  
I
CP Sink/Source  
High Value  
Low Value  
Absolute Accuracy  
CP Three-State Leakage Current  
Sink and Source Current Matching  
CP vs. VCP  
4.5  
1.125  
1
1
1
4.5  
1.125  
1
1
1
mA typ  
mA typ  
% typ  
nA typ  
% typ  
I
I
10  
10  
10  
10  
% max  
% typ  
0.5 V Յ VCP Յ VP – 0.5 V  
VCP = VP/2  
ICP vs. Temperature  
LOGIC INPUTS  
V
V
INH, Input High Voltage  
INL, Input Low Voltage  
0.8 × VDD  
0.2 × VDD  
1
10  
0.8 × VDD  
0.2 × VDD  
1
10  
V min  
V max  
µA max  
pF max  
µA max  
I
C
INH/IINL, Input Current  
IN, Input Capacitance  
Oscillator Input Current  
100  
100  
LOGIC OUTPUTS  
V
OH, Output High Voltage  
VDD – 0.4  
0.4  
VDD – 0.4  
0.4  
V min  
V max  
IOH = 500 µA  
IOL = 500 µA  
VOL, Output Low Voltage  
POWER SUPPLIES  
VDD  
DD2  
VP  
1
2.7/5.5  
2.7/5.5  
V min/V max  
V min/V max  
V
VDD1  
VDD1  
VDD1/6.0  
VDD1/6.0  
AVDD Յ VP Յ 6.0 V  
–2–  
REV. 0  
ADF4216/ADF4217/ADF4218  
Parameter  
B Version  
B Chips2  
Unit  
Test Conditions/Comments  
POWER SUPPLIES (Continued)  
I
DD (RF + IF)6  
ADF4216  
ADF4217  
ADF4218  
See TPC 22 and TPC 23  
18  
21  
25  
9
12  
14  
mA max  
mA max  
mA max  
9.0 mA typical at VDD = 3 V and TA = 25°C  
12 mA typical at VDD = 3 V and TA = 25°C  
14 mA typical at VDD = 3 V and TA = 25°C  
IDD (RF Only)  
ADF4216  
ADF4217  
10  
14  
18  
5
7
9
mA max  
mA max  
mA max  
5.0 mA typical at VDD = 3 V and TA = 25°C  
7.0 mA typical at VDD = 3 V and TA = 25°C  
9.0 mA typical at VDD = 3 V and TA = 25°C  
ADF4218  
I
DD (IF Only)  
ADF4216  
ADF4217  
ADF4218  
9
9
9
0.6  
5
4.5  
4.5  
4.5  
0.6  
5
mA max  
mA max  
mA max  
mA max  
µA max  
4.5 mA typical at VDD = 3 V and TA = 25°C  
4.5 mA typical at VDD = 3 V and TA = 25°C  
4.5 mA typical at VDD = 3 V and TA = 25°C  
TA = 25°C  
IP (IP1 + IP2)  
Low-Power Sleep Mode  
0.5 µA typical  
NOISE CHARACTERISTICS  
Phase Noise Floor7  
–171  
–164  
–171  
–164  
dBc/Hz typ  
dBc/Hz typ  
@ 25 kHz PFD Frequency  
@ 200 kHz PFD Frequency  
@ VCO Output  
Phase Noise Performance8  
ADF4216, ADF4217, ADF4218 (IF)9  
ADF4216 (RF): 900 MHz Output10  
ADF4217 (RF): 900 MHz Output10  
ADF4218 (RF): 900 MHz Output10  
ADF4216 (RF): 836 MHz Output11  
ADF4217 (RF): 1750 MHz Output12  
ADF4217 (RF): 1750 MHz Output13  
ADF4218 (RF): 1960 MHz Output14  
Spurious Signals  
–91  
–87  
–88  
–90  
–78  
–85  
–66  
–84  
–91  
–87  
–88  
–90  
–78  
–85  
–66  
–84  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
@ 1 kHz Offset and 200 kHz PFD Frequency  
@ 1 kHz Offset and 200 kHz PFD Frequency  
@ 1 kHz Offset and 200 kHz PFD Frequency  
@ 1 kHz Offset and 200 kHz PFD Frequency  
@ 300 Hz Offset and 30 kHz PFD Frequency  
@ 1 kHz Offset and 200 kHz PFD Frequency  
@ 200 Hz Offset and 10 kHz PFD Frequency  
@ 1 kHz Offset and 200 kHz PFD Frequency  
ADF4216 ADF4217, ADF4218 (IF)9  
ADF4216 (RF): 900 MHz Output10  
ADF4217 (RF): 900 MHz Output10  
ADF4218 (RF): 900 MHz Output10  
ADF4216 (RF): 836 MHz Output11  
ADF4217 (RF): 1750 MHz Output12  
ADF4217 (RF): 1750 MHz Output13  
ADF4218 (RF): 1960 MHz Output14  
–97/–106  
–98/–106  
–91/–100  
–80/–84  
–80/–84  
–88/–90  
–65/–73  
–80/–84  
–97/–106  
–98/–106  
–91/–100  
–80/–84  
–80/–84  
–88/–90  
–65/–73  
–80/–84  
dB typ  
dB typ  
dB typ  
dB typ  
dB typ  
dB typ  
dB typ  
dB typ  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
@ 30 kHz/60 kHz and 30 kHz PFD Frequency  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
@ 10 kHz/20 kHz and 10 kHz PFD Frequency  
@ 200 kHz/400 kHz and 200 kHz PFD Frequency  
NOTES  
1Operating temperature range is as follows: B Version: –40°C to +85°C.  
2The B Chip specifications are given as typical values.  
3This is the maximum operating frequency of the CMOS counters. The prescaler value should be chosen to ensure that the IF/RF input is divided down to a frequency that is  
less than this value.  
4VDD1 = VDD2 = 3 V; For VDD1 = VDD2 = 5 V, use CMOS-compatible levels.  
5Guaranteed by design. Sample tested to ensure compliance.  
6P = 16; RFIN = 900 MHz; IFIN = 540 MHz.  
7The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20 logN (where N is the N divider value).  
8The phase noise is measured with the EVAL-ADF421XEB1 Evaluation Board and the HP8562E Spectrum Analyzer. The spectrum analyzer provides the REFIN for the  
synthesizer (fREFOUT = 10 MHz @ 0 dBm).  
9fREFIN = 10 MHz; fPFD = 200 kHz; Offset frequency = 1 kHz; fIF = 540 MHz; N = 2700; Loop B/W = 20 kHz.  
10  
11  
12  
13  
14  
f
f
f
f
f
= 10 MHz; fPFD = 200 kHz; Offset frequency = 1 kHz; fRF = 900 MHz; N = 4500; Loop B/W = 20 kHz.  
= 10 MHz; fPFD = 30 kHz; Offset frequency = 300 Hz; fRF = 836 MHz; N = 27867; Loop B/W = 3 kHz.  
= 10 MHz; fPFD = 200 kHz; Offset frequency = 1 kHz; fRF = 1750 MHz; N = 8750; Loop B/W = 20 kHz.  
= 10 MHz; fPFD = 10 kHz; Offset frequency = 200 Hz; fRF = 1750 MHz; N = 175000; Loop B/W = 1 kHz.  
= 10 MHz; fPFD = 200 kHz; Offset frequency = 1 kHz; fRF = 1960 MHz; N = 9800; Loop B/W = 20 kHz.  
REFIN  
REFIN  
REFIN  
REFIN  
REFIN  
Specifications subject to change without notice.  
–3–  
REV. 0  
ADF4216/ADF4217/ADF4218  
(VDD1 = VDD2 = 3 V ؎ 10%, 5 V ؎ 10%; VP1, VP2 = VDD , 5 V ؎ 10%; AGND = DGND = 0 V;  
TA = TMIN to TMAX unless otherwise noted.)  
TIMING CHARACTERISTICS  
Limit at  
T
MIN to TMAX  
Parameter  
(B Version)  
Unit  
Test Conditions/Comments  
t1  
t2  
t3  
t4  
t5  
t6  
10  
10  
25  
25  
10  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
DATA to CLOCK Setup Time  
DATA to CLOCK Hold Time  
CLOCK High Duration  
CLOCK Low Duration  
CLOCK to LE Setup Time  
LE Pulsewidth  
NOTES  
Guaranteed by design but not production tested.  
Specification subject to change without notice.  
t
t
4
3
CLOCK  
t
t
2
1
DB1  
(CONTROL BIT C2)  
DB0 (LSB)  
(CONTROL BIT C1)  
DATA  
DB21 (MSB)  
DB20  
DB2  
t
6
LE  
LE  
t
5
Figure 1. Timing Diagram  
Lead Temperature, Soldering  
ABSOLUTE MAXIMUM RATINGS1, 2  
(TA = 25°C unless otherwise noted)  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . 215°C  
VDD1 to GND3 . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
DD1 to VDD2 . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +0.3 V  
VP1, VP2 to GND . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
VP1, VP2 to VDD . . . . . . . . . . . . . . . . . . . . –0.3 V to +5.5 V  
Digital I/O Voltage to GND . . . . . . –0.3 V to DVDD + 0.3 V  
Analog I/O Voltage to GND . . . . . . . . . –0.3 V to VP + 0.3 V  
REFIN, RFINA, RFINB,  
IFINA, IFINB to GND . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Operating Temperature Range  
Industrial (B Version) . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . . 150°C  
TSSOP θJA Thermal Impedance . . . . . . . . . . . . . 150.4°C/W  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C  
V
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2This device is a high-performance RF integrated circuit with an ESD rating of  
< 2 kV and it is ESD sensitive. Proper precautions should be taken for handling  
and assembly.  
1
3GND = AGND = DGND = 0 V.  
TRANSISTOR COUNT  
11749 (CMOS) and 522 (Bipolar).  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option*  
ADF4216BRU  
ADF4217BRU  
ADF4218BRU  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Thin Shrink Small Outline Package (TSSOP)  
Thin Shrink Small Outline Package (TSSOP)  
Thin Shrink Small Outline Package (TSSOP)  
RU-20  
RU-20  
RU-20  
*Contact the factory for chip availability.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADF4216/ADF4217/ADF4218 features proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
ADF4216/ADF4217/ADF4218  
PIN FUNCTION DESCRIPTIONS  
Pin No. Mnemonic Function  
1
V
DD1  
Positive Power Supply for the RF Section. Decoupling capacitors to the analog ground plane should be  
placed as close as possible to this pin. VDD1 should have a value of between 2.7 V and 5.5 V. VDD1 must  
have the same potential as VDD2.  
2
3
VP1  
CPRF  
Power Supply for the RF Charge Pump. This should be greater than or equal to VDD.  
Output from the RF Charge Pump. When enabled this provides ICP to the external loop filter, which in  
turn drives the external VCO.  
4
5
6
DGNDRF  
RFINA  
RFINB  
Ground Pin for the RF Digital Circuitry.  
Input to the RF Prescaler. This low-level input signal is normally ac-coupled to the external VCO.  
Complementary Input to the RF Prescaler. This point should be decoupled to the ground plane with a small  
bypass capacitor, typically 100 pF.  
7
8
AGNDRF  
REFIN  
Ground Pin for the RF Analog Circuitry.  
Reference Input. This is a CMOS input with a nominal threshold of VDD/2 and an equivalent input resis-  
tance of 100 kΩ. This input can be driven from a TTL or CMOS crystal oscillator or it can be ac-coupled.  
9
DGNDIF  
Ground Pin for the IF Digital (Interface and Control Circuitry).  
10  
MUXOUT This multiplexer output allows either the IF/RF lock detect, the scaled RF, or the scaled Reference Fre-  
quency to be accessed externally. See Table V.  
11  
12  
13  
CLK  
DATA  
LE  
Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is latched  
into the 22-bit shift register on the CLK rising edge. This input is a high impedance CMOS input.  
Serial Data Input. The serial data is loaded MSB first with the two LSBs being the control bits. This input is  
a high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into one of  
the four latches, the latch being selected using the control bits.  
14  
15  
AGNDIF  
IFINB  
Ground Pin for the IF Analog Circuitry.  
Complementary Input to the IF Prescaler. This point should be decoupled to the ground plane with a small  
bypass capacitor, typically 100 pF.  
16  
17  
18  
IFINA  
DGNDIF  
CPIF  
Input to the IF Prescaler. This low-level input signal is normally ac-coupled to the external VCO.  
Ground Pin for the IF Digital, Interface, and Control Circuitry.  
Output from the IF Charge Pump. When enabled this provides ICP to the external loop filter, which in turn  
drives the external VCO.  
19  
20  
VP2  
Power Supply for the IF Charge Pump. This should be greater than or equal to VDD.  
V
DD2  
Positive Power Supply for the IF, Interface, and Oscillator Sections. Decoupling capacitors to the analog  
ground plane should be placed as close as possible to this pin. VDD2 should have a value of between 2.7 V  
and 5.5 V. VDD2 must have the same potential as VDD1.  
PIN CONFIGURATION  
V
1
V
2
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
DD  
V 1  
DD  
V 2  
P
P
CP  
RF  
CP  
3
IF  
DGND  
RF  
DGND  
4
RF  
A
TSSOP  
IF  
IF  
IN  
A
B
5
IN  
ADF4216/  
ADF4217/  
ADF4218  
RF  
IN  
B
IF  
IN  
6
AGND  
AGND  
7
RF  
IF  
REF  
8
LE  
IN  
DGND  
9
DATA  
CLK  
IF  
10  
MUXOUT  
–5–  
REV. 0  
Typical Performance Characteristics  
ADF4216/ADF4217/ADF4218  
0
FREQ-UNIT PARAM-TYPE DATA-FORMAT KEYWORD IMPEDANCE – OHMS  
REFERENCE  
V
= 3V, V = 5V  
P
DD  
GHz  
S
MA  
R
50  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
LEVEL = 4.2dBm  
I
= 4.375mA  
CP  
FREQ MAGS11  
ANGS11  
FREQ MAGS11  
ANGS11  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 2.5 SECONDS  
AVERAGES = 30  
0.0  
0.957111193 3.130429321 1.35  
0.963546793 6.686426265 1.45  
0.953621785 11.19913586 1.55  
0.953757706 15.35637483 1.65  
0.816886959 51.80711782  
0.825983016 56.20373378  
0.791737125 61.21554647  
0.770543186 61.88187496  
0.793897072 65.39516615  
0.745765233 69.24884474  
0.15  
0.25  
0.35  
0.45  
0.55  
0.65  
0.75  
0.85  
0.95  
1.05  
1.15  
1.25  
0.929831379 20.3793432  
1.75  
0.908459709 22.69144845 1.85  
0.897303634 27.07001443 1.95  
0.876862863 31.32240763 2.05  
0.849338092 33.68058163 2.15  
0.858403269 38.57674885 2.25  
0.841888714 41.48606772 2.35  
0.840354983 45.97597958 2.45  
0.822165839 49.19163116 2.55  
0.7517547  
71.21608147  
0.745594889 75.93169947  
0.713387801 78.8391674  
0.711578577 81.71934806  
0.698487131 85.49067481  
0.669871818 88.41958754  
0.668353367 91.70921678  
90dBc  
400kHz  
200kHz  
900MHz  
+200kHz  
+400kHz  
TPC 1. S-Parameter Data for the AD4218 RF Input  
(Up to 2.5 GHz)  
TPC 4. ADF4218 RF Reference Spurs (900 MHz, 200 kHz,  
20 kHz)  
10dB/DIVISION  
40  
R
= 40dBc/Hz  
RMS NOISE = 0.55؇  
L
0
V
V
= 3.3V  
= 3.3V  
DD  
50  
60  
P
5  
10  
15  
20  
25  
30  
35  
0.55؇ rms  
70  
T
= +85؇C  
A
80  
90  
T
= 40؇C  
A
100  
110  
120  
130  
T
= +25؇C  
A
140  
100Hz  
1.5  
2
2.5  
3
0
0.5  
1
FREQUENCY OFFSET FROM 900MHz CARRIER  
1MHz  
RF INPUT FREQUENCY GHz  
TPC 2. Input Sensitivity for the ADF4218 (RF)  
TPC 5. ADF4218 RF Integrated Phase Noise (900 MHz,  
200 kHz, 20 kHz)  
10dB/DIVISION  
40  
R
= 40dBc/Hz  
RMS NOISE = 0.65؇  
L
0
V
= 3V, V = 5V  
P
DD  
I = 4.375mA  
CP  
REFERENCE  
LEVEL = 4.2dBm  
50  
60  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 19  
0.65؇ rms  
70  
80  
90  
100  
110  
120  
130  
90dBc/Hz  
140  
100Hz  
2kHz  
1kHz  
900MHz  
+1kHz  
+2kHz  
FREQUENCY OFFSET FROM 900MHz CARRIER  
1MHz  
TPC 3. ADF4218 RF Phase Noise (900 MHz, 200 kHz, 20 kHz)  
TPC 6. ADF4218 RF Integrated Phase Noise (900 MHz,  
200 kHz, 35 kHz)  
–6–  
REV. 0  
ADF4216/ADF4217/ADF4218  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
V
I
= 3V, V = 5V  
P
V
I
= 3V, V = 5V  
P
DD  
= 4.375mA  
DD  
REFERENCE  
REFERENCE  
LEVEL = 5.7dBm  
LEVEL = 4.2dBm  
= 4.375mA  
CP  
CP  
PFD FREQUENCY = 30kHz  
LOOP BANDWIDTH = 3kHz  
RES. BANDWIDTH = 3Hz  
VIDEO BANDWIDTH = 3Hz  
SWEEP = 255 SECONDS  
POSITIVE PEAK DETECT  
MODE  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 35kHz  
RES. BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 2.5 SECONDS  
AVERAGES = 30  
78dBc/Hz  
89dBc  
80  
90  
100  
400kHz  
200kHz  
900MHz  
+200kHz  
+400kHz  
80kHz  
40kHz  
1750MHz  
+40kHz  
+80kHz  
TPC 7. ADF4218 RF Reference Spurs (900 MHz, 200 kHz,  
35 kHz)  
TPC 10. ADF4218 RF Reference Spurs (1750 MHz,  
30 kHz, 3 kHz)  
120  
0
V
= 3V, V = 5V  
P
V
V
= 3V  
= 5V  
DD  
DD  
REFERENCE  
LEVEL = 8.0dBm  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
P
I
= 4.375mA  
CP  
130  
140  
150  
160  
170  
180  
PFD FREQUENCY = 30kHz  
LOOP BANDWIDTH = 3kHz  
RES. BANDWIDTH = 10kHz  
VIDEO BANDWIDTH = 10kHz  
SWEEP = 477ms  
AVERAGES = 10  
74dBc/Hz  
1
10  
100  
1000  
10000  
400Hz  
200Hz  
1750MHz  
+200Hz  
+400Hz  
PHASE DETECTOR FREQUENCY kHz  
TPC 8. ADF4218 RF Phase Noise (1750 MHz, 30 kHz, 3 kHz)  
TPC 11. ADF4218 RF Phase Noise vs. PFD Frequency  
10dB/DIVISION  
40  
R
= 40dBc/Hz  
RMS NOISE = 1.8؇  
L
60  
50  
60  
V
V
= 3V  
= 3V  
DD  
P
70  
80  
70  
1.8؇ rms  
80  
90  
100  
110  
120  
130  
90  
140  
100Hz  
100  
40  
20  
0
20  
40  
60  
80  
100  
FREQUENCY OFFSET FROM 1750MHz CARRIER  
1MHz  
TEMPERATURE ؇C  
TPC 9. ADF4218 RF Integrated Phase Noise (1750 MHz,  
30 kHz, 3 kHz)  
TPC 12. ADF4218 RF Phase Noise vs. Temperature  
(900 MHz, 200 kHz, 20 kHz)  
–7–  
REV. 0  
ADF4216/ADF4217/ADF4218  
10dB/DIVISION  
40  
R
= 40dBc/Hz  
RMS NOISE = 0.52؇  
L
60  
50  
60  
V
V
= 3V  
= 5V  
DD  
P
0.60؇ rms  
70  
80  
70  
80  
90  
100  
110  
120  
130  
90  
140  
100Hz  
100  
40  
20  
0
20  
40  
60  
80  
100  
FREQUENCY OFFSET FROM 900MHz CARRIER  
1MHz  
TEMPERATURE ؇C  
TPC 13. ADF4218 RF Reference Spurs vs. Temperature  
(900 MHz, 200 kHz, 20 kHz)  
TPC 16. ADF4218 IF Integrated Phase Noise (540 MHz,  
200 kHz, 20 kHz)  
5  
0
REFERENCE  
V
= 3V, V = 5V  
P
DD  
15  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
LEVEL = 4.2dBm  
V
V
= 3V  
DD  
= 5V  
I
= 5mA  
CP  
P
25  
35  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 2.5 SECONDS  
AVERAGES = 30  
45  
55  
65  
75  
85  
95  
105  
88.0dBc  
0
1
2
3
4
5
400kHz  
200kHz  
900MHz  
+200kHz  
+400kHz  
TUNING VOLTAGE Volts  
TPC 14. ADF4218 RF Reference Spurs vs. VTUNE (900 MHz,  
200 kHz, 20 kHz)  
TPC 17. ADF4218 IF Reference Spurs (540 MHz, 200 kHz,  
20 kHz)  
120  
0
V
V
= 3V  
= 5V  
DD  
V
I
= 3V, V = 5V  
P
DD  
REFERENCE  
LEVEL = 4.2dBm  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
P
= 4.375mA  
CP  
130  
140  
150  
160  
170  
180  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 19  
89dBc/Hz  
1
10  
100  
1000  
10000  
2kHz  
1kHz  
900MHz  
+1kHz  
+2kHz  
PHASE DETECTOR FREQUENCY kHz  
TPC 15. ADF4218 IF Phase Noise (540 MHz, 200 kHz, 20 kHz)  
TPC 18. ADF4218 IF Phase Noise vs. PFD Frequency  
–8–  
REV. 0  
ADF4216/ADF4217/ADF4218  
60  
70  
3.0  
2.5  
V
V
= 3V  
= 3V  
DD  
P
V
V
= 3V  
= 3V  
DD  
P
2.0  
1.5  
80  
1.0  
0.5  
0
90  
100  
40  
20  
0
20  
40  
60  
80  
100  
0
50  
100  
150  
200  
TEMPERATURE ؇C  
PRESCALER OUTPUT FREQUENCY MHz  
TPC 19. ADF4218 IF Phase Noise vs. Temperature  
(540 MHz, 200 kHz, 20 kHz)  
TPC 22. DIDD vs. Prescaler Output Frequency (ADF4218,  
RF Only)  
10  
60  
9
V
V
= 3V  
= 5V  
DD  
ADF4218  
P
8
70  
80  
7
ADF4217  
6
5
ADF4216  
4
3
2
1
0
90  
100  
64/65  
32/33  
40  
20  
0
20  
40  
60  
80  
100  
PRESCALER VALUE  
TEMPERATURE ؇C  
TPC 20. ADF4218 IF Reference Spurs vs. Temperature  
(540 MHz, 200 kHz, 20 kHz)  
TPC 23. ADF4218 AIDD vs. Prescaler Value (RF)  
5  
15  
V
V
= 3V  
DD  
= 5V  
P
25  
35  
45  
55  
65  
75  
85  
95  
105  
0
1
2
3
4
5
TUNING VOLTAGE Volts  
TPC 21. ADF4218 IF Reference Spurs vs. VTUNE (900 MHz,  
200 kHz, 20 kHz)  
–9–  
REV. 0  
ADF4216/ADF4217/ADF4218  
Pulse Swallow Function  
CIRCUIT DESCRIPTION  
The A and B counters, in conjunction with the dual modulus  
prescaler make it possible to generate output frequencies which  
are spaced only by the Reference Frequency divided by R. The  
equation for the VCO frequency is as follows:  
REFERENCE INPUT SECTION  
The reference input stage is shown below in Figure 2. SW1 and  
SW2 are normally closed switches. SW3 is normally open. When  
power-down is initiated, SW3 is closed and SW1 and SW2 are  
opened. This ensures that there is no loading of the REFIN pin  
on power-down.  
f
VCO = [(P × B) + A] × fREFIN/R  
fVCO = Output frequency of external voltage controlled oscilla-  
POWER-DOWN  
CONTROL  
tor (VCO).  
P
= Preset modulus of dual modulus prescaler (8/9, 16/17,  
etc.).  
B
A
= Preset Divide Ratio of binary 11-bit counter (1 to  
2047).  
NC  
100k⍀  
SW2  
TO  
= Preset Divide Ratio of binary 6-bit A counter (0 to  
63).  
R COUNTER  
REF  
IN  
NC  
BUFFER  
SW1  
fREFIN = Output frequency of the external reference frequency  
SW3  
oscillator.  
NO  
R
= Preset divide ratio of binary 14-bit programmable  
reference counter (1 to 16383).  
Figure 2. Reference Input Stage  
IF/RF INPUT STAGE  
The IF/RF input stage is shown in Figure 3. It is followed by a  
2-stage limiting amplifier to generate the CML clock levels  
needed for the prescaler.  
R COUNTER  
The 14-bit R counter allows the input reference frequency to be  
divided down to produce the reference clock to the phase fre-  
quency detector (PFD). Division ratios from 1 to 16,383 are  
allowed.  
BIAS  
GENERATOR  
AV  
DD  
N = BP+A  
2k⍀  
2k⍀  
TO PFD  
11-BIT B  
COUNTER  
LOAD  
RF  
RF  
A
B
FROM IF/RF  
INPUT STAGE  
PRESCALER  
P/P+1  
IN  
LOAD  
6-BIT A  
MODULUS  
CONTROL  
IN  
COUNTER  
N
DIVIDER  
AGND  
Figure 3. IF/RF Input Stage  
Figure 4. A and B Counters  
PRESCALER  
PHASE FREQUENCY DETECTOR (PFD) AND CHARGE  
PUMP  
The PFD takes inputs from the R counter and N counter and  
produces an output proportional to the phase and frequency  
difference between them. Figure 5 is a simplified schematic.  
The dual modulus prescaler (P/P+1), along with the A and B  
counters, enables the large division ratio, N, to be realized  
(N = BP + A). This prescaler, operating at CML levels, takes  
the clock from the IF/RF input stage and divides it down to a  
manageable frequency for the CMOS A and B counters. It is  
based on a synchronous 4/5 core.  
UP  
HI  
D1  
Q1  
The prescaler is selectable. On the IF side it can be set to  
either 8/9 (DB20 of the IF AB Counter Latch set to 0) or 16/17  
(DB20 set to 1). On the RF side it can be set to 64/65 (DB20 of  
the RF AB Counter Latch set to 0) or 32/33 (DB20 set to 1).  
See Tables IV and VI.  
U1  
؉ IN  
CLR1  
DELAY  
ELEMENT  
CHARGE  
PUMP  
U3  
CP  
A AND B COUNTERS  
CLR2  
DOWN  
The A and B CMOS counters combine with the dual modulus  
prescaler to allow a wide ranging division ratio in the PLL feed-  
back counter. The devices are guaranteed to work when the  
prescaler output is 165 MHz or less. Typically they will work  
with 200 MHz output from the prescaler.  
HI  
D1  
Q1  
U1  
IN  
Figure 5. PFD Simplified Schematic  
–10–  
REV. 0  
ADF4216/ADF4217/ADF4218  
MUXOUT AND LOCK DETECT  
2. The IF Counter Reset mode resets the R and N counters in  
the IF section and also puts the IF charge pump into three-  
state. The RF Counter Reset mode resets the R and N counters  
in the RF section and also puts the RF charge pump into  
three-state. The IF and RF Counter Reset mode does both  
of the above.  
The output multiplexer on the ADF4216 family allows the  
user to access various internal points on the chip. The state of  
MUXOUT is controlled by P3, P4, P11 and P12. See Tables  
III and V. Figure 6 shows the MUXOUT section in block dia-  
gram form.  
Upon removal of the reset bits, the N counter resumes counting  
in close alignment with the R counter (maximum error is one  
prescaler output cycle).  
DV  
DO  
3. The Fastlock mode uses MUXOUT to switch a second loop  
filter damping resistor to ground during Fastlock operation.  
Activation of Fastlock occurs whenever RF CP Gain in the  
RF Reference counter is set to one.  
IF ANALOG LOCK DETECT  
IF R COUNTER OUTPUT  
IF N COUNTER OUTPUT  
IF/RF ANALOG LOCK DETECT  
RF R COUNTER OUTPUT  
RF N COUNTER OUTPUT  
RF ANALOG LOCK DETECT  
MUX  
CONTROL  
MUXOUT  
POWER-DOWN  
It is possible to program the ADF4216 family for either synchro-  
nous or asynchronous power-down on either the IF or RF side.  
DGND  
Synchronous IF Power-Down  
Programming a “1” to P7 of the ADF4216 family will initiate a  
power-down. If P2 of the ADF4216 family has been set to “0”  
(normal operation), a synchronous power-down is conducted.  
The device will automatically put the charge pump into three-  
State and then complete the power-down.  
Figure 6. MUXOUT Circuit  
Lock Detect  
MUXOUT can be programmed for analog lock detect. The N-  
channel open-drain analog lock detect should be operated with  
an external pull-up resistor of 10 knominal. When lock has  
been detected it is high with narrow low-going pulses.  
Asynchronous IF Power-Down  
If P2 of the ADF4216 family has been set to “1” (three-state the  
IF charge pump), and P7 is subsequently set to “1,” then an  
asynchronous power-down is conducted. The device will go into  
power-down on the rising edge of LE, which latches the “1” to  
the IF power-down bit (P7).  
INPUT SHIFT REGISTER  
The functional block diagram for the ADF4216 family is shown  
on Page 1. The main blocks include a 22-bit input shift register,  
a 14-bit R counter and an 17-bit N counter, comprising a 6-bit  
A counter and an 11-bit B counter. Data is clocked into the 22-  
bit shift register on each rising edge of CLK. The data is clocked in  
MSB first. Data is transferred from the shift register to one of  
four latches on the rising edge of LE. The destination latch is  
determined by the state of the two control bits (C2, C1) in the  
shift register. These are the two LSBs DB1, DB0 as shown in  
the timing diagram of Figure 1. The truth table for these bits is  
shown in Table I.  
Synchronous RF Power-Down  
Programming a “1” to P16 of the ADF4216 family will initiate a  
power-down. If P10 of the ADF4216 family has been set to “0”  
(normal operation), a synchronous power-down is conducted. The  
device will automatically put the charge pump into three-state  
and then complete the power-down.  
Asynchronous RF Power-Down  
If P10 of the ADF4216 families has been set to “1” (three-state  
the RF charge pump), and P16 is subsequently set to “1,” an  
asynchronous power-down is conducted. The device will go into  
power-down on the rising edge of LE, which latches the “1” to  
the RF power-down bit (P16).  
Table I. C2, C1 Truth Table  
Control Bits  
C2  
C1  
Data Latch  
Activation of either synchronous or asynchronous power-down  
forces the IF/RF loop’s R and N dividers to their load state  
conditions and the IF/RF input section is debiased to a high  
impedance state.  
0
0
1
1
0
1
0
1
IF R Counter  
IF AB Counter (and Prescaler Select)  
RF R Counter  
RF AB Counter (and Prescaler Select)  
The REFIN oscillator circuit is only disabled if both the IF and  
RF power-downs are set.  
PROGRAM MODES  
Table III and Table V show how to set up the Program Modes  
in the ADF4216 family. The following should be noted:  
The input register and latches remain active and are capable of  
loading and latching data during all the power-down modes.  
The IF/RF section of the devices will return to normal powered  
up operation immediately upon LE latching a “0” to the appro-  
priate power-down bit.  
1. IF and RF Analog Lock Detect indicate when the PLL is in  
lock. When the loop is locked and either IF or RF Analog  
Lock Detect is selected, the MUXOUT pin will show a logic  
high with narrow low-going pulses. When the IF/RF Analog  
Lock Detect is chosen, the locked condition is indicated only  
when both IF and RF loops are locked.  
–11–  
REV. 0  
ADF4216/ADF4217/ADF4218  
Table II. ADF4216 Family Latch Summary  
IF REFERENCE COUNTER LATCH  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER, R  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10  
DB9  
R8  
DB8  
R7  
DB7  
R6  
DB6  
R5  
DB5  
R4  
DB4  
R3  
DB3  
R2  
DB2  
R1  
DB1  
DB0  
P4  
P3  
P2  
P5  
P1  
R14  
R13  
R12  
R11  
R10  
R9  
C2 (0) C1 (0)  
IF AB COUNTER LATCH  
CONTROL  
BITS  
11-BIT B COUNTER  
6-BIT A COUNTER  
DB21  
P7  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10  
P6 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2  
DB9  
B1  
DB8  
DB7  
A6  
DB6  
DB5  
A4  
DB4  
A3  
DB3  
A2  
DB2  
A1  
DB1  
DB0  
A5  
C2 (0) C1 (1)  
RF REFERENCE COUNTER LATCH  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER, R  
DB21  
P4  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10  
P3 P2 P5 P1 R14 R13 R12 R11 R10 R9  
DB9  
R8  
DB8  
R7  
DB7  
R6  
DB6  
R5  
DB5  
R4  
DB4  
R3  
DB3  
R2  
DB2  
R1  
DB1  
DB0  
C2 (1) C1 (0)  
RF AB COUNTER LATCH  
CONTROL  
BITS  
11-BIT B COUNTER  
6-BIT A COUNTER  
DB21  
P7  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10  
P6 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2  
DB9  
B1  
DB8  
DB7  
A6  
DB6  
A5  
DB5  
A4  
DB4  
A3  
DB3  
A2  
DB2  
A1  
DB1  
DB0  
C2 (1) C1 (1)  
–12–  
REV. 0  
ADF4216/ADF4217/ADF4218  
Table III. IF Reference Counter Latch Map  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER, R  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
R7  
DB7  
R6  
DB6  
R5  
DB5  
R4  
DB4  
R3  
DB3  
R2  
DB2  
R1  
DB1  
DB0  
P4  
P3  
P2  
P5  
P1  
R14  
R13  
R12  
R11  
R10  
R9  
R8  
C2 (0) C1 (0)  
R14  
R13  
R12  
..........  
R3  
R2  
R1  
DIVIDE RATIO  
0
0
0
0
.
.
.
1
1
1
1
0
0
0
0
.
.
.
1
1
1
1
0
0
0
0
.
.
.
1
1
1
1
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
1
.
.
.
1
1
1
1
0
1
1
0
.
.
.
0
0
1
1
1
0
1
0
.
.
.
0
1
0
1
1
2
3
4
.
.
.
16380  
16381  
16382  
16383  
P1  
PHASE DETECTOR POLARITY  
0
1
NEGATIVE  
POSITIVE  
P5  
I
CP  
0
1
1.25mA  
4.375mA  
P2  
CHARGE PUMP  
OUTPUT  
0
1
NORMAL  
THREE-STATE  
FROM RFR LATCH  
P12  
P11  
P4  
P3  
MUXOUT  
0
0
0
0
0
0
1
1
1
0
0
X
X
1
1
X
X
0
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
LOGIC LOW STATE  
IF ANALOG LOCK DETECT  
IF REFERENCE DIVIDER OUTPUT  
IF N DIVIDER OUTPUT  
RF ANALOG LOCK DETECT  
RF/IF ANALOG LOCK DETECT  
RF REFERENCE DIVIDER  
RF N DIVIDER  
FASTLOCK OUTPUT SWITCH ON  
AND CONNECTED TO MUXOUT  
IF COUNTER RESET  
1
1
1
0
1
1
1
1
1
1
0
1
RF COUNTER RESET  
IF AND RF COUNTER RESET  
–13–  
REV. 0  
ADF4216/ADF4217/ADF4218  
Table IV. IF AB Counter Latch Map  
CONTROL  
BITS  
11-BIT B COUNTER  
6-BIT A COUNTER  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
DB7  
A6  
DB6  
A5  
DB5  
A4  
DB4  
A3  
DB3  
A2  
DB2  
A1  
DB1  
C2 (0)  
DB0  
P7  
P6  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
C1 (1)  
A COUNTER  
A6  
A5  
A4  
A3  
A2  
A1  
DIVIDE RATIO  
X
X
X
X
.
X
X
X
X
.
0
0
0
0
.
0
0
0
0
.
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
.
.
.
.
.
X
X
X
X
1
1
1
1
1
1
0
1
14  
15  
B11  
B10  
B9  
B3  
B2  
B1  
B COUNTER DIVIDER RATIO  
0
0
0
0
.
.
.
1
1
1
1
0
0
0
0
.
.
.
1
1
1
1
0
0
0
0
.
.
.
1
1
1
1
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
0
.
.
.
1
1
1
1
0
0
1
1
.
.
.
0
0
1
1
0
1
0
1
.
.
.
0
1
0
1
NOT ALLOWED  
NOT ALLOWED  
NOT ALLOWED  
3
.
.
.
2044  
2045  
2046  
2047  
P6  
IF PRESCALER  
0
1
8/9  
16/17  
P7  
IF SECTION  
N = BP + A, P IS PRESCALER VALUE SET BY P6. B MUST BE  
0
1
NORMAL OPERATION  
POWER-DOWN  
GREATER THAN OR EQUAL TO A. TO ENSURE CONTINUOUSLY  
2
ADJACENT VALUES OF N, N  
IS (P P).  
MIN  
–14–  
REV. 0  
ADF4216/ADF4217/ADF4218  
Table V. RF Reference Counter Latch Map  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER, R  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10  
DB9  
R8  
DB8  
R7  
DB7 DB6  
DB5  
R4  
DB4  
R3  
DB3  
R2  
DB2  
R1  
DB1  
C2 (1)  
DB0  
P12  
P11  
P10  
P13  
P9  
R14  
R13  
R12  
R11  
R10  
R9  
R6  
R5  
C1 (0)  
R14  
R13  
R12  
..........  
R3  
R2  
R1  
DIVIDE RATIO  
0
0
0
0
.
.
.
1
1
1
1
0
0
0
0
.
.
.
1
1
1
1
0
0
0
0
.
.
.
1
1
1
1
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
1
.
.
.
1
1
1
1
0
1
1
0
.
.
.
0
0
1
1
1
0
1
0
.
.
.
0
1
0
1
1
2
3
4
.
.
.
16380  
16381  
16382  
16383  
P9  
0
PHASE DETECTOR POLARITY  
NEGATIVE  
1
POSITIVE  
P13  
I
CP  
0
1
1.25mA  
4.375mA  
P10  
CHARGE PUMP  
OUTPUT  
0
1
NORMAL  
THREE-STATE  
FROM IFR LATCH  
P4 P3  
P12  
P11  
MUXOUT  
0
0
0
0
0
X
0
0
1
0
1
0
LOGIC LOW STATE  
IF ANALOG LOCK DETECT  
IF REFERENCE DIVIDER OUTPUT  
0
0
0
X
1
1
1
0
0
1
0
1
IF N DIVIDER OUTPUT  
RF ANALOG LOCK DETECT  
RF/IF ANALOG LOCK DETECT  
1
1
1
X
X
0
0
0
1
0
1
0
RF REFERENCE DIVIDER  
RF N DIVIDER  
FASTLOCK OUTPUT SWITCH ON AND CONNECTED TO MUXOUT  
1
1
1
0
1
1
1
1
1
1
0
1
IF COUNTER RESET  
RF COUNTER RESET  
IF AND RF COUNTER RESET  
–15–  
REV. 0  
ADF4216/ADF4217/ADF4218  
Table VI. RF AB Counter Latch Map  
CONTROL  
BITS  
11-BIT B COUNTER  
6-BIT A COUNTER  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
DB7  
A6  
DB6  
A5  
DB5  
A4  
DB4  
A3  
DB3  
A2  
DB2  
A1  
DB1  
C2 (1)  
DB0  
P16  
P14  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
C1 (1)  
A COUNTER  
A6  
A5  
A4  
A3  
A2  
A1  
DIVIDE RATIO  
X
X
X
X
.
X
X
X
X
.
0
0
0
0
.
0
0
0
0
.
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
.
.
.
.
.
X
X
X
X
1
1
1
1
1
1
0
1
14  
15  
B11  
B10  
B9  
B3  
B2  
B1  
B COUNTER DIVIDE RATIO  
0
0
0
0
.
.
.
1
1
1
1
0
0
0
0
.
.
.
1
1
1
1
0
0
0
0
.
.
.
1
1
1
1
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
0
.
.
.
1
1
1
1
0
0
1
1
.
.
.
0
0
1
1
0
1
0
1
.
.
.
0
1
0
1
NOT ALLOWED  
NOT ALLOWED  
NOT ALLOWED  
3
.
.
.
2044  
2045  
2046  
2047  
P14  
RF PRESCALER  
0
1
64/65  
32/33  
P16  
RF SECTION  
N = BP + A, P IS PRESCALER VALUE SET BY P6. B MUST BE  
0
1
NORMAL OPERATION  
POWER-DOWN  
GREATER THAN OR EQUAL TO A. FOR ENSURE CONTINUOUSLY  
2
ADJACENT VALUES OF N, N  
IS (P P).  
MIN  
–16–  
REV. 0  
ADF4216/ADF4217/ADF4218  
IF SECTION  
programmable counter (B Counter). Table VI shows the input  
register data format for programming the RF N counter and the  
divide ratios possible.  
Programmable IF Reference (R) Counter  
If control bits C2, C1 are 0, 0 then the data is transferred from  
the input shift register to the 14 Bit IF R counter. Table III  
shows the input shift register data format for the IF R counter  
and the divide ratios possible.  
RF Prescaler Value  
P14 in the RF AB Counter Latch sets the RF prescaler value.  
Either 32/33 or 64/65 is available. See Table VI.  
IF Phase Detector Polarity  
RF Power-Down  
Table IV and Table VI show the power-down bits in the ADF4216  
family. See Power-Down section for functional description.  
P1 sets the IF Phase Detector Polarity. When the IF VCO char-  
acteristics are positive, this should be set to “1.” When they are  
negative, it should be set to “0.” See Table III.  
RF Fastlock  
IF Charge Pump Three-State  
The RF CP Gain bit (P17) of the RF N register in the ADF4210  
family is the Fastlock Enable Bit. Only when this is “1” is IF  
Fastlock enabled. When Fastlock is enabled, the RF CP current  
is set to its maximum value. Also an extra loop filter damping  
resistor to ground is switched in using the FLO pin, thus com-  
pensating for the change in loop characteristics while in Fastlock.  
Since the RF CP Gain bit is contained in the RF N Counter,  
only one write is needed both to program a new output fre-  
quency and to initiate Fastlock. To come out of Fastlock, the  
RF CP Gain bit on the RF N register must be set to “0.” See  
Table VI.  
P2 puts the IF charge pump into three-state mode when pro-  
grammed to a “1.” It should be set to “0” for normal operation.  
See Table III.  
IF Charge Pump Currents  
P5 sets the IF Charge Pump current. With P5 set to “0,” ICP is  
1.25 mA. With P5 set to “1,” ICP is 4.375 mA. See Table III.  
Programmable IF AB Counter  
If control bits C2, C1 are 0, 1, the data in the input register is  
used to program the IF AB counter. The AB counter consists of  
a 6-bit swallow counter (A counter) and 11-bit programmable  
counter (B counter). Table IV shows the input register data  
format for programming the IF AB counter and the divide ratios  
possible.  
APPLICATIONS SECTION  
Local Oscillator for GSM Handset Receiver  
Figure 7 shows the ADF4216 being used in a classic superhet-  
erodyne receiver to provide the required LOs (Local Oscillators).  
IF Prescaler Value  
P6 in the IF AB Counter Latch sets the IF prescaler value.  
Either 8/9 or 16/17 is available. See Table IV.  
In this circuit, the reference input signal is applied to the circuit  
at REFIN and is being generated by a 13 MHz TCXO (Tempera-  
ture Controlled Crystal Oscillator).  
IF Power-Down  
Table III and Table V show the power-down bits in the  
ADF4216 family. See Power-Down section for functional  
description.  
In order to have a channel spacing of 200 kHz (the GSM stan-  
dard), the reference input must be divided by 65, using the  
on-chip reference counter.  
RF SECTION  
The RF output frequency range is 1050 MHz to 1085 MHz. Loop  
filter component values are chosen so that the loop bandwidth is  
20 kHz. The synthesizer is set up for a charge pump current of  
4.375 mA and the VCO sensitivity is 15.6 MHz/V.  
Programmable RF Reference (R) Counter  
If control bits C2, C1 are 1, 0, the data is transferred from the  
input shift register to the 14-bit RFR counter. Table V shows  
the input shift register data format for the RFR counter and the  
divide ratios possible.  
The IF output is fixed at 125 MHz. The IF loop bandwidth is  
chosen to be 20 kHz with a channel spacing of 200 kHz. Loop  
filter component values are chosen accordingly.  
RF Phase Detector Polarity  
P9 sets the IF Phase Detector Polarity. When the RF VCO  
characteristics are positive this should be set to “1.” When they  
are negative it should be set to “0.” See Table V.  
Local Oscillator for WCDMA Receiver  
Figure 8 shows the ADF4217 being used to generate the local  
oscillator frequencies for a Wideband CDMA (WCDMA) system.  
RF Charge Pump Three-State  
The RF output range needed is 1720 MHz to 1780 MHz. The  
VCO190–1750T will accomplish this. Channel spacing is 200 kHz  
with a 20 kHz loop bandwidth. VCO sensitivity is 32 MHz/V.  
Charge pump current of 4.375 mA is used and the desired phase  
margin for the loop is 45°.  
P10 puts the RF charge pump into three-state mode when pro-  
grammed to a “1.” It should be set to “0” for normal operation.  
See Table V.  
RF Program Modes  
Table III and Table V show how to set up the Program Modes  
in the ADF4216 family.  
The IF output is fixed at 200 MHz. The VCO190–200T is  
used. It has a sensitivity of 11.5 MHz/V. Channel spacing and  
loop bandwidth is chosen to be the same as the RF side.  
RF Charge Pump Currents  
P13 sets the RF Charge Pump current. With P13 set to “0,” ICP  
is 1.25 mA. With P5 set to “1,” ICP is 4.375 mA. See Table V.  
Programmable RF AB Counter  
If control bits C2, C1 are 1, 1, the data in the input register is  
used to program the RF N (AB) counter. The AB counter con-  
sists of a 6-bit swallow counter (A Counter) and an 11-bit  
–17–  
REV. 0  
ADF4216/ADF4217/ADF4218  
RF  
IF  
OUT  
OUT  
V
V
P
V
P
DD  
100pF  
18⍀  
100pF  
18⍀  
V 2  
P
V
2
V
1
V 1  
P
DD  
DD  
100pF  
100pF  
V
V
3.3k⍀  
18⍀  
18⍀  
3.3k⍀  
CC  
CC  
CP  
CP  
RF  
IF  
VCO190-1068U  
VCO190-125T  
620pF  
400pF  
620pF  
9k⍀  
620pF  
18⍀  
18⍀  
5.8k⍀  
3.9nF  
6nF  
ADF4216  
LOCK  
DETECT  
MUXOUT  
1nF  
100pF  
IF  
RF  
IN  
IN  
51⍀  
51⍀  
V
REF  
DD  
IN  
CLK  
DATA  
LE  
13MHz  
TCXO  
DECOUPLING CAPACITORS (22F/10pF) ON V 1, V OF THE ADF4216, THE TCXO, AND  
DD  
P,  
ON V OF THE VCOs, HAVE BEEN OMITTED FROM THE DIAGRAM TO AID CLARITY.  
CC  
Figure 7. GSM Handset Receiver Local Oscillator Using the ADF4216  
IF  
RF  
OUT  
OUT  
V
V
V
P
P
DD  
100pF  
100pF  
18  
18⍀  
18⍀  
V 2  
P
V
2
V
1
V 1  
DD  
DD  
100pF  
P
100pF  
V
V
18⍀  
3.3k⍀  
3.3k⍀  
18⍀  
CC  
CC  
CP  
CP  
RF  
IF  
VCO190-200T  
VCO190-1750T  
450pF  
2.4nF  
1.5k⍀  
690pF  
760pF  
18⍀  
4.7k⍀  
7.5nF  
24nF  
ADF4217  
LOCK  
DETECT  
MUXOUT  
1nF  
100pF  
RF  
IN  
IF  
IN  
51⍀  
51⍀  
V
REF  
IN  
DD  
CLK  
DATA  
LE  
10MHz  
TCXO  
DECOUPLING CAPACITORS (22F/10pF) ON V 1, V OF THE ADF4217, THE TCXO, AND  
DD  
P,  
ON V OF THE VCOs, HAVE BEEN OMITTED FROM THE DIAGRAM TO AID CLARITY.  
CC  
Figure 8. Local Oscillator for WCDMA Receiver Using the ADF4217  
–18–  
REV. 0  
ADF4216/ADF4217/ADF4218  
INTERFACING  
ADSP-2181 Interface  
The ADF4216/ADF4217/ADF4218 family has a simple SPI-  
compatible serial interface for writing to the device. SCLK,  
SDATA, and LE (Latch Enable) control the data transfer. When  
LE goes high, the 22 bits that have been clocked into the input  
register on each rising edge of SCLK will be transferred to the  
appropriate latch. See Figure 1 for the Timing Diagram and  
Table I for the Latch Truth Table.  
Figure 10 shows the interface between the ADF421x family and  
the ADSP-21xx Digital Signal Processor. As previously noted,  
the ADF421x family needs a 22-bit serial word for each latch  
write. The easiest way to accomplish this using the ADSP-21xx  
family is to use the Autobuffered Transmit Mode of operation  
with Alternate Framing. This provides a means for transmitting  
an entire block of serial data before an interrupt is generated.  
Set up the word length for eight bits and use three memory  
locations for each 22-bit word. To program each 22-bit latch,  
store the three 8-bit bytes, enable the Autobuffered mode and  
then write to the transmit register of the DSP. This last opera-  
tion initiates the autobuffer transfer.  
The maximum allowable serial clock rate is 20 MHz. This  
means that the maximum update rate possible for the device is  
909 kHz or one update every 1.1 ms. This is certainly more than  
adequate for systems that will have typical lock times in hun-  
dreds of microseconds.  
ADuC812 Interface  
Figure 9 shows the interface between the ADF421x family and  
the ADuC812 microconverter. Since the ADuC812 is based on  
an 8051 core, this interface can be used with any 8051-based  
microcontroller. The microconverter is set up for SPI Master  
Mode with CPHA = 0. To initiate the operation, the I/O port  
driving LE is brought low. Each latch of the ADF421x family  
needs a 22-bit word. This is accomplished by writing three 8-bit  
bytes from the microconverter to the device. When the third  
byte has been written, the LE input should be brought high to  
complete the transfer.  
SCLK  
SCLK  
DT  
SDATA  
LE  
ADF4216/  
ADF4217/  
ADF4218  
ADSP-21xx  
TFS  
MUXOUT  
(LOCK DETECT)  
I/O FLAG  
Figure 10. ADSP-21xx to ADF421x Family Interface  
On first applying power to the ADF421x family, it requires four  
writes (one each to the R counter latch and the AB counter latch  
for both RF1 and RF2 side) for the output to become active.  
When operating in the mode described, the maximum SCLOCK  
rate of the ADuC812 is 4 MHz. This means that the maximum  
rate at which the output frequency can be changed will be about  
180 kHz.  
SCLOCK  
MOSI  
SCLK  
SDATA  
LE  
ADF4216/  
ADF4217/  
ADF4218  
ADuC812  
I/O PORTS  
MUXOUT  
(LOCK DETECT)  
Figure 9. ADuC812 to ADF421x Family Interface  
–19–  
REV. 0  
ADF4216/ADF4217/ADF4218  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Thin Shrink Small Outline Package (TSSOP)  
(RU-20)  
0.260 (6.60)  
0.252 (6.40)  
20  
11  
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
10  
1
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
8؇  
0؇  
0.0256 (0.65)  
BSC  
0.0118 (0.30)  
0.0075 (0.19)  
0.028 (0.70)  
0.020 (0.50)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
–20–  
REV. 0  

相关型号:

ADF4217LBRUZ-RL7

IC PLL FREQUENCY SYNTHESIZER, 3000 MHz, PDSO20, MO-153AC, TSSOP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4217L_15

Dual Low Power Frequency Synthesizers
ADI

ADF4218

Dual RF PLL Frequency Synthesizers
ADI

ADF4218BCHIPS

IC PLL FREQUENCY SYNTHESIZER, 2500 MHz, UUC, DIE, PLL or Frequency Synthesis Circuit
ADI

ADF4218BRU

Dual RF PLL Frequency Synthesizers
ADI

ADF4218BRU-REEL

IC PLL FREQUENCY SYNTHESIZER, 2500 MHz, PDSO20, TSSOP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4218BRU-REEL7

IC PLL FREQUENCY SYNTHESIZER, 2500 MHz, PDSO20, TSSOP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4218L

Dual Low Power Frequency Synthesizers
ADI

ADF4218LBCC

暂无描述
ADI

ADF4218LBRU

PLL FREQUENCY SYNTHESIZER, 3000 MHz, PDSO20, MO-153AC, TSSOP-20
ROCHESTER

ADF4218LBRU-REEL

IC PLL FREQUENCY SYNTHESIZER, 3000 MHz, PDSO20, MO-153AC, TSSOP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4218LBRU-REEL7

PLL FREQUENCY SYNTHESIZER, 3000 MHz, PDSO20, MO-153AC, TSSOP-20
ROCHESTER