ADF4355-3 [ADI]

Microwave Wideband Synthesizer with Integrated VCO;
ADF4355-3
型号: ADF4355-3
厂家: ADI    ADI
描述:

Microwave Wideband Synthesizer with Integrated VCO

文件: 总34页 (文件大小:819K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Microwave Wideband Synthesizer  
with Integrated VCO  
Data Sheet  
ADF4355-3  
FEATURES  
GENERAL DESCRIPTION  
RF output frequency range: 51.5625 MHz to 6600 MHz  
Fractional-N synthesizer and integer-N synthesizer  
High resolution 38-bit modulus  
Low phase noise, voltage controlled oscillator (VCO)  
Programmable divide by 1, 2, 4, 8, 16, 32, or 64 output  
All power supplies: 3.3 V  
The ADF4355-3 allows the implementation of fractional-N or  
integer-N phase-locked loop (PLL) frequency synthesizers when  
used with an external loop filter and an external reference  
frequency. A series of frequency dividers at the output provide  
operation from 51.5625 MHz to 6600 MHz.  
The ADF4355-3 has an integrated VCO with a fundamental  
output frequency ranging from 3300 MHz to 6600 MHz. In  
addition, the VCO frequency is connected to divide by 1, 2, 4, 8,  
16, 32, or 64 circuits that allow the user to generate RF output  
frequencies as low as 51.5625 MHz. For applications that require  
isolation, the RF output stage can be muted. The mute function  
is both pin- and software-controllable.  
Logic compatibility: 1.8 V  
Programmable dual modulus prescaler of 4/5 or 8/9  
Programmable output power level  
RF output mute function  
3-wire serial interface  
Analog and digital lock detect  
APPLICATIONS  
Control of all on-chip registers is through a simple 3-wire interface.  
The ADF4355-3 operates with analog, digital, charge pump, and  
VCO power supplies ranging from 3.1515 V to 3.4485 V. The  
ADF4355-3 also contains hardware and software power-down  
modes.  
Wireless infrastructure (W-CDMA, TD-SCDMA,  
WiMAX, GSM, PCS, DCS, DECT)  
Point to point/point to multipoint microwave links  
Satellites/VSATs  
Test equipment/instrumentation  
Clock generation  
FUNCTIONAL BLOCK DIAGRAM  
AV  
DV  
V
R
V
VCO  
V
AV  
DD  
CE  
DD  
DD  
P
SET  
RF  
MULTIPLEXER  
MUXOUT  
10-BIT R  
COUNTER  
÷2  
DIVIDER  
REF  
REF  
A
B
IN  
×2  
DOUBLER  
LOCK  
DETECT  
IN  
C
C
1
2
REG  
REG  
CLK  
DATA  
LE  
DATA REGISTER  
FUNCTION  
LATCH  
CHARGE  
PUMP  
CP  
OUT  
PHASE  
COMPARATOR  
V
V
TUNE  
REF  
V
V
VCO  
CORE  
BIAS  
INTEGER  
REG  
FRACTION  
REG  
MODULUS  
REG  
REGVCO  
RF  
RF  
A+  
A–  
OUT  
OUT  
1/2/4/8  
16/32/64  
OUTPUT  
STAGE  
THIRD-ORDER  
÷
FRACTIONAL  
INTERPOLATOR  
PDB  
RF  
RF  
N COUNTER  
B+  
B–  
OUTPUT  
STAGE  
OUT  
RF  
OUT  
MULTIPLEXER  
SD  
ADF4355-3  
A
CP  
A
GNDVCO  
A
GND  
GND  
GND  
GNDRF  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2015–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADF4355-3  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Register 4 ..................................................................................... 22  
Register 5 ..................................................................................... 23  
Register 6 ..................................................................................... 24  
Register 7 ..................................................................................... 26  
Register 8 ..................................................................................... 27  
Register 9 ..................................................................................... 27  
Register 10................................................................................... 28  
Register 11................................................................................... 28  
Register 12................................................................................... 29  
Register Initialization Sequence ............................................... 29  
Frequency Update Sequence..................................................... 30  
RF Synthesizer—A Worked Example ...................................... 30  
Reference Doubler and Reference Divider ............................. 30  
Spurious Optimization and Fast Lock..................................... 31  
Optimizing Jitter......................................................................... 31  
Spur Mechanisms ....................................................................... 31  
Lock Time.................................................................................... 31  
Applications Information .............................................................. 32  
Direct Conversion Modulator .................................................. 32  
Power Supplies............................................................................ 33  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
Transistor Count........................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 12  
Reference Input Section............................................................. 12  
RF N Divider............................................................................... 12  
Phase Frequency Detector (PFD) and Charge Pump............ 13  
MUXOUT and Lock Detect...................................................... 13  
Input Shift Registers................................................................... 13  
Program Modes .......................................................................... 14  
VCO.............................................................................................. 14  
Output Stage................................................................................ 14  
Loop Filter ................................................................................... 14  
Register Maps.................................................................................. 16  
Register 0 ..................................................................................... 18  
Register 1 ..................................................................................... 19  
Register 2 ..................................................................................... 20  
Register 3 ..................................................................................... 21  
Printed Circuit Board (PCB) Design Guidelines for a Chip-  
Scale Package .............................................................................. 33  
Output Matching........................................................................ 33  
Outline Dimensions....................................................................... 34  
Ordering Guide .......................................................................... 34  
REVISION HISTORY  
8/2017—Rev. A to Rev. B  
Changes to Figure 25...................................................................... 17  
Changes to Reference Mode Section ........................................... 23  
Changes to Negative Bleed Section.............................................. 24  
Changes to Charge Pump Bleed Current Section...................... 25  
Changes to Figure 34, Figure 35, and Register 8 Section.......... 27  
Changes to Figure 37 and Register 11 Section ........................... 28  
Changes to Frequency Update Sequence .................................... 30  
Updated Outline Dimensions....................................................... 34  
Changes to Ordering Guide .......................................................... 34  
1/2016—Rev. 0 to Rev. A  
Change to Integrated RMS Jitter Parameter, Unit Column,  
Table 1 ................................................................................................ 4  
Changes to Reference Input Section ............................................ 12  
Changes to Table 6.......................................................................... 15  
7/2015—Revision 0: Initial Version  
Rev. B | Page 2 of 34  
 
Data Sheet  
ADF4355-3  
SPECIFICATIONS  
AVDD = DVDD = VRF = VP = VVCO = VREGVCO = 3.3 V 4.5%, AGND = CPGND = AGNDVCO = SDGND = AGNDRF = 0 V, RSET = 5.1 kΩ, dBm referred  
to 50 Ω, TA = TMIN to TMAX, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
REFINA/REFINB CHARACTERISTICS  
Input Frequency  
REFIN  
For f < 10 MHz, ensure that the slew rate >  
21 V/µs  
Single-Ended Mode  
Differential Mode  
Doubler Enabled  
Input Sensitivity  
10  
10  
250  
600  
100  
MHz  
MHz  
MHz  
Doubler is set in Register 4, Bit DB26  
Single-Ended Mode  
0.4  
0.4  
AVDD  
1.8  
V p-p  
V p-p  
REFINA biased at AVDD/2; ac coupling  
ensures AVDD/2 bias  
LVDS and LVPECL compatible, REFINA/  
REFINB biased at 2.1 V; ac coupling ensures  
2.1 V bias  
Differential Mode  
Input Capacitance  
Single-Ended Mode  
Differential Mode  
Input Current  
6.9  
1.4  
pF  
pF  
µA  
µA  
MHz  
60  
250  
125  
Single-ended reference programmed  
Differential reference programmed  
Phase Detector Frequency  
CHARGE PUMP (CP)  
Charge Pump Current, Sink/Source  
High  
ICP  
RSET = 5.1 kΩ  
4.8  
0.3  
5.1  
3
3
1.5  
mA  
mA  
kΩ  
%
%
%
Low  
RSET Range  
Fixed  
Current Matching  
0.5 V ≤ VCP1 ≤ VP − 0.5 V  
0.5 V ≤ VCP1 ≤ VP − 0.5 V  
VCP1 = 2.5 V  
1
ICP vs. VCP  
ICP vs. Temperature  
LOGIC INPUTS  
Input Voltage  
High  
1.8 V and 3.3 V compatible  
VINH  
VINL  
IINH/IINL  
CIN  
1.5  
DVDD  
0.6  
1
V
V
µA  
pF  
Low  
Input Current  
Input Capacitance  
LOGIC OUTPUTS  
Output Voltage  
High  
3.0  
1.8  
VOH  
DVDD − 0.4  
1.5  
V
V
V
µA  
3.3 V output selected  
1.8 V output selected  
IOL2 = 500 µA  
Low  
VOL  
IOH  
0.4  
500  
Output High Current  
POWER SUPPLIES  
Analog Power  
AVDD  
3.1515  
3.3  
3.4485  
V
3.3 V 4.5%  
Digital Power, RF Supply, Charge Pump,  
and VCO Supply Voltage  
DVDD, VRF,  
VP, VVCO  
AVDD  
Voltages must equal AVDD  
Charge Pump Supply Current  
DIDD + AIDD  
IP  
3.1  
66  
5
75  
mA  
mA  
3
Supply current drawn by DVDD plus supply  
current drawn by AVDD  
Output Dividers  
See Table 6  
VCO Supply Current  
IVCO  
52  
13/19/  
25/31  
70  
20/27/  
34/41  
mA  
mA  
RFOUTA /RFOUT  
B
Supply Current  
RF output stage is programmable;  
RFOUTB+/RFOUTB− powered off  
I
RFOUT x±  
Low Power Sleep Mode  
1500  
1950  
µA  
µA  
Hardware power-down  
Software power-down  
Rev. B | Page 3 of 34  
 
 
ADF4355-3  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
RF OUTPUT CHARACTERISTICS  
VCO Frequency Range  
RF Output Frequency  
VCO Sensitivity  
Frequency Pushing (Open-Loop)  
Frequency Pulling (Open-Loop)  
Harmonic Content  
3300  
51.5625  
6600  
6600  
MHz  
MHz  
MHz/V  
MHz/V  
MHz  
Fundamental VCO range  
fRF  
KV  
63  
22  
0.54  
Voltage standing wave ratio (VSWR) = 2:1  
Second  
−27  
−22  
−20  
−12  
8
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
Fundamental VCO output (RFOUTA+)  
Divided VCO output (RFOUTA+)  
Fundamental VCO output (RFOUTA+)  
Divided VCO output (RFOUTA+)  
RFOUTA+ = 1 GHz. 7.5 nH inductor to VRF  
RFOUTA+/RFOUTA− = 4.4 GHz. 7.5 nH inductor  
to VRF  
Third  
RF Output Power4  
3
RF Output Power Variation  
Over Frequency  
Level of Signal with Output Disabled  
1
3
−60  
−30  
dB  
dB  
dBm  
dBm  
RFOUTA+/RFOUTA− = 4.4 GHz  
RFOUTA+/RFOUTA− = 1 GHz to 4.4 GHz  
RFOUTA+/RFOUTA− = 1 GHz, VCO = 4 GHz  
RFOUTA+/RFOUTA− = 4.4 GHz, VCO = 4.4 GHz  
NOISE CHARACTERISTICS  
Fundamental VCO Phase Noise  
Performance  
VCO noise in open-loop conditions  
3.3 GHz Carrier  
5.0 GHz Carrier  
6.6 GHz Carrier  
−113  
−133  
−135  
−153  
−110  
−130  
−132  
−151  
−107  
−127  
−129  
−148  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
100 kHz offset from 3.3 GHz carrier  
800 kHz offset from 3.3 GHz carrier  
1 MHz offset from 3.3 GHz carrier  
10 MHz offset from 3.3 GHz carrier  
100 kHz offset from 5.0 GHz carrier  
800 kHz offset from 5.0 GHz carrier  
1 MHz offset from 5.0 GHz carrier  
10 MHz offset from 5.0 GHz carrier  
100 kHz offset from 6.6 GHz carrier  
800 kHz offset from 6.6 GHz carrier  
1 MHz offset from 6.6 GHz carrier  
10 MHz offset from 6.6 GHz carrier  
Normalized In-Band Phase Noise Floor  
Fractional Channel5  
−221  
−223  
−116  
200  
dBc/Hz  
dBc/Hz  
dBc/Hz  
fs  
Integer Channel6  
Normalized 1/f Noise7  
Integrated RMS Jitter  
PN1_f  
10 kHz offset, normalized to 1 GHz  
Spurious Signals due to Phase Frequency  
Detector (PFD) Frequency  
−85  
dBc  
1 VCP is the voltage at the CPOUT pin.  
2 IOL is the output low current.  
3 TA = 25°C; AVDD = DVDD = VRF = VVCO = VP = 3.3 V; prescaler = 4/5; fREF = 122.88 MHz; fPFD = 61.44 MHz; and fRF = 1650 MHz.  
IN  
4 RF output power using the EV-ADF4355-3SD1Z evaluation board measured into a spectrum analyzer, with board and cable losses de-embedded. Unused RF output  
pins are terminated in 50 Ω.  
5 Use this figure to calculate the phase noise for any application. To calculate in-band phase noise performance as seen at the VCO output, use the following formula:  
−221 + 10log(fPFD) + 20logN. The value given is the lowest noise mode for the fractional channel.  
6 Use this figure to calculate the phase noise for any application. To calculate in-band phase noise performance as seen at the VCO output, use the following formula:  
−223 + 10log(fPFD) + 20logN. The value given is the lowest noise mode for the integer channel.  
7 The PLL phase noise is composed of 1/f (flicker) noise plus the normalized PLL noise floor. The formula for calculating the 1/f noise contribution at an RF frequency (fRF  
and at a frequency offset (f) is given by PN = P1_f + 10log(10 kHz/f) + 20log(fRF/1 GHz). Both the normalized phase noise floor and flicker noise are modeled in the  
ADIsimPLLdesign tool.  
)
Rev. B | Page 4 of 34  
Data Sheet  
ADF4355-3  
TIMING CHARACTERISTICS  
AVDD = DVDD =VRF = VP = VVCO = 3.3 V 4.5%, AGND = CPGND = AGNDVCO = SDGND = AGNDRF = 0 V, RSET = 5.1 kΩ, dBm referred to 50 Ω, TA = TMIN  
to TMAX, unless otherwise noted.  
Table 2. Write Timing  
Parameter  
Limit  
Unit  
Description  
fCLK  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
50  
10  
5
5
10  
10  
5
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
SPI CLK frequency  
LE setup time  
DATA to CLK setup time  
DATA to CLK hold time  
CLK high duration  
CLK low duration  
CLK to LE setup time  
LE pulse width  
20 or (2/fPFD), whichever is longer  
Write Timing Diagram  
t4  
t5  
CLK  
t2  
t3  
DB3  
DB2  
(CONTROL BIT C3)  
DB1  
DB0 (LSB)  
(CONTROL BIT C1)  
DB31 (MSB)  
DB30  
DATA  
LE  
(CONTROL BIT C4)  
(CONTROL BIT C2)  
t7  
t1  
t6  
Figure 2. Write Timing Diagram  
Rev. B | Page 5 of 34  
 
 
ADF4355-3  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 3.  
Parameter1  
Rating  
VRF, DVDD, AVDD to GND  
AVDD to DVDD  
VP, VVCO, VREGVCO to GND  
CPOUT to GND1  
Digital Input/Output Voltage to GND  
Analog Input/Output Voltage to GND  
REFINA, REFINB to GND  
−0.3 V to +3.6 V  
−0.3 V to +0.3 V  
−0.3 V to +3.6 V  
−0.3 V to VP + 0.3 V  
−0.3 V to DVDD + 0.3 V  
−0.3 V to AVDD + 0.3 V  
−0.3 V to AVDD + 0.3 V  
2.1 V  
The ADF4355-3 is a high performance RF integrated circuit  
with an ESD rating of 2500 V and is ESD sensitive. Take proper  
precautions for handling and assembly.  
REFINA to REFINB  
TRANSISTOR COUNT  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
−40°C to +105°C  
−65°C to +125°C  
150°C  
The transistor count for the ADF4355-3 is 103,665 (CMOS) and  
3214 (bipolar).  
θJA, Thermal Impedance Pad Soldered  
to GND  
Reflow Soldering  
27.3°C/W  
ESD CAUTION  
Peak Temperature  
260°C  
40 sec  
Time at Peak Temperature  
Electrostatic Discharge (ESD)  
Charged Device Model  
Human Body Model  
500 V  
2500 V  
1 GND = AGND = SDGND = AGNDRF = AGNDVCO = CPGND = 0 V.  
Rev. B | Page 6 of 34  
 
 
 
Data Sheet  
ADF4355-3  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
CLK  
DATA  
LE  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
V
V
BIAS  
REF  
R
A
V
SET  
ADF4355-3  
TOP VIEW  
(Not to Scale)  
CE  
GNDVCO  
TUNE  
AV  
DD  
V
P
OUT  
V
A
V
REGVCO  
CP  
GNDVCO  
VCO  
CP  
GND  
NOTES  
1. THE EXPOSED PAD MUST BE CONNECTED TO A  
.
GND  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
CLK  
DATA  
LE  
Serial Clock Input. Data is clocked into the 32-bit shift register on the CLK rising edge. This input is a high  
impedance CMOS input.  
Serial Data Input. The serial data is loaded most significant bit (MSB) first with the four least significant bits (LSBs)  
as the control bits. This input is a high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift register is loaded into the register that  
is selected by the four LSBs.  
2
3
4
CE  
Chip Enable. A logic low on this pin powers down the device and puts the charge pump into three-state mode. A  
logic high on this pin powers up the device, depending on the status of the power-down bits.  
5, 16  
AVDD  
VP  
Analog Power Supplies. These pins range from 3.1515 V to 3.4485 V. Connect decoupling capacitors to the analog  
ground plane as close to these pins as possible. AVDD must have the same value as DVDD  
.
6
7
Charge Pump Power Supply. VP must have the same value as VVCO. Connect decoupling capacitors to the ground  
plane as close to this pin as possible.  
Charge Pump Output. When enabled, this output provides ICP to the external loop filter. The output of the loop  
filter is connected to VTUNE to drive the internal VCO.  
CPOUT  
8
9
10  
CPGND  
AGND  
VRF  
Charge Pump Ground. This output is the ground return pin for CPOUT  
.
Analog Ground. Ground return pin for AVDD  
.
Power Supply for the RF Output. Connect decoupling capacitors to the analog ground plane as close to this pin  
as possible. VRF must have the same value as AVDD. For optimum spurious performance, VRF and DVDD must  
originate from different regulators.  
11  
12  
RFOUTA+  
RFOUTA−  
VCO Output. The output level is programmable. The VCO fundamental output or a divided down version is available.  
Complementary VCO Output. The output level is programmable. The VCO fundamental output or a divided down  
version is available.  
13  
14  
AGNDRF  
RFOUTB+  
RF Output Stage Ground. This pin is the ground return for the RF output stage.  
Auxiliary VCO Output. The output level is programmable. The VCO fundamental output or a divided down version  
is available.  
15  
17  
RFOUTB−  
VVCO  
Complementary Auxiliary VCO Output. The output level is programmable. The VCO fundamental output or a  
divided down version is available.  
Power Supply for the VCO. The voltage on this pin ranges from 3.1515 V to 3.4485 V. Connect decoupling  
capacitors to the analog ground plane as close to this pin as possible.  
18, 21  
19  
AGNDVCO  
VREGVCO  
VCO Ground. This pin is the ground return path for the VCO.  
VCO Compensation Node. Connect decoupling capacitors to the ground plane as close to this pin as possible.  
Connect this pin directly to VVCO  
.
20  
VTUNE  
Control Input to the VCO. This voltage determines the output frequency and is derived from filtering the CPOUT  
output voltage. The capacitance at this pin (VTUNE input capacitance) is 7 pF.  
Rev. B | Page 7 of 34  
 
ADF4355-3  
Data Sheet  
Pin No. Mnemonic  
Description  
22  
23  
RSET  
VREF  
Bias Current Resistor. Connecting a resistor between this pin and ground sets the charge pump output current.  
Internal Compensation Node. VREF is dc biased at half of the tuning range. Connect decoupling capacitors to the  
ground plane as close to this pin as possible. The recommended capacitor values are 10 pF, 1 nF, and 4.7 µF.  
24  
VBIAS  
Reference Voltage. Connect decoupling capacitors to the ground plane as close to this pin as possible. The  
recommended capacitor values are 10 pF, 1 nF, and 1 µF.  
25, 32  
CREG1, CREG  
2
Outputs from the LDO Regulator. Pin 25 and Pin 32 are the supply voltages to the digital circuits, and have a  
nominal voltage of 1.8 V. Decoupling capacitors of 100 nF connected to AGND are required for these pins.  
26  
27  
PDBRF  
DVDD  
RF Power-Down. A logic low on this pin mutes the RF outputs. This mute function is also software-controllable.  
Digital Power Supply. This pin must be at the same voltage as AVDD. Place decoupling capacitors to the ground  
plane as close to this pin as possible. For optimum spurious performance, VRF and DVDD must originate from  
different regulators.  
28  
29  
30  
REFINB  
REFINA  
MUXOUT  
Complementary Reference Input. If unused, ac-couple this pin to AGND  
Reference Input.  
Multiplexer Output. The multiplexer output allows the digital lock detect, the analog lock detect, scaled RF, or the  
scaled reference frequency to be externally accessible.  
.
31  
SDGND  
EP  
Digital Σ-Δ Modulator Ground. Pin 31 is the ground return path for the Σ-Δ modulator.  
Exposed Pad. The exposed pad must be connected to AGND  
.
Rev. B | Page 8 of 34  
Data Sheet  
ADF4355-3  
TYPICAL PERFORMANCE CHARACTERISTICS  
–50  
–50  
–70  
÷1  
÷2  
÷4  
÷8  
–70  
÷16  
÷32  
÷64  
–90  
–90  
–110  
–130  
–150  
–170  
–110  
–130  
–150  
–170  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 4. Open-Loop VCO Phase Noise, 3.3 GHz  
Figure 7. Closed-Loop Phase Noise, RFOUTA+, Fundamental VCO and Dividers,  
VCO = 3.3 GHz, fPFD = 61.44 MHz, Loop Bandwidth = 35 kHz  
–50  
–50  
–70  
÷1  
÷2  
÷4  
÷8  
÷16  
÷32  
–70  
÷64  
–90  
–90  
–110  
–130  
–150  
–170  
–110  
–130  
–150  
–170  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 5. Open-Loop VCO Phase Noise, 5.0 GHz  
Figure 8. Closed-Loop Phase Noise, RFOUTA+, Fundamental VCO and Dividers,  
VCO = 5.0 GHz, fPFD = 61.44 MHz, Loop Bandwidth = 35 kHz  
–50  
–70  
–50  
÷1  
÷2  
÷4  
–70  
÷8  
÷16  
÷32  
÷64  
–90  
–90  
–110  
–130  
–150  
–170  
–110  
–130  
–150  
–170  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 6. Open-Loop VCO Phase Noise, 6.6 GHz  
Figure 9. Closed-Loop Phase Noise, RFOUTA+, Fundamental VCO and Dividers,  
VCO = 6.6 GHz, fPFD = 61.44 MHz, Loop Bandwidth = 35 kHz  
Rev. B | Page 9 of 34  
 
ADF4355-3  
Data Sheet  
10  
–40  
–50  
PFD = 61.44MHz  
PFD = 30.72MHz  
PFD = 15.36MHz  
5
0
–60  
–5  
–70  
–10  
–15  
–20  
–25  
–30  
–80  
–90  
–40°C  
+25°C  
+105°C  
–100  
–110  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 10. Output Power vs. Frequency, RFOUTA+/RFOUTA− (7.5 nH Inductors,  
10 pF Bypass Capacitors, Board Losses De-Embedded)  
Figure 13. Worst Case PFD Spur vs. Frequency, fPFD = 15.36 MHz, 30.72 MHz,  
and 61.44 MHz, Loop Filter = 35 kHz  
10  
–80  
–90  
SECOND HARMONIC  
THIRD HARMONIC  
0
–10  
–20  
–30  
–40  
–50  
–60  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
0
1
2
3
4
5
6
7
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (GHz)  
Figure 11. RFOUTA+/RFOUTA− Harmonics vs. Frequency (7.5 nH Inductors,  
10 pF Bypass Capacitors, Board Losses De-Embedded)  
Figure 14. Spur Performance, GSM1800 Band, RFOUTA+ = 1550.2 MHz, REFIN  
122.88 MHz, fPFD = 61.44 MHz, Output Divide by 4 Selected, Loop Filter  
Bandwidth = 35 kHz, Channel Spacing = 20 kHz  
=
1.2  
1kHz - 20MHz  
12kHz - 20MHz  
–80  
–90  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–100  
–110  
–120  
–130  
–140  
–150  
–160  
0
1
2
3
4
5
6
7
OUTPUT FREQUENCY (GHz)  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 12. RMS Jitter vs. Output Frequency, fPFD = 61.44 MHz, Loop Filter = 35 kHz  
Figure 15. Spur Performance, W-CDMA Band, RFOUTA+ = 2113.5 MHz, REFIN  
122.88 MHz, fPFD = 61.44 MHz, Output Divide by 2 Selected, Loop Filter  
Bandwidth = 35 kHz, Channel Spacing = 20 kHz  
=
Rev. B | Page 10 of 34  
Data Sheet  
ADF4355-3  
–80  
5
4
–90  
3
–100  
–110  
–120  
–130  
–140  
–150  
2
1
0
–1  
–2  
–3  
–4  
–5  
–160  
1k  
10k  
100k  
1M  
10M  
100M  
–150  
0
150  
300 450 600 750 900 1050 1200 1350  
TIME (µs)  
FREQUENCY (Hz)  
Figure 17. Lock Time for 100 MHz Jump from 3300 MHz to 6600 MHz, Loop  
Bandwidth = 3 kHz  
Figure 16. Spur Performance, RFOUTA+ = 2.591 GHz,  
REFIN = 122.88 MHz, fPFD = 61.44 MHz, Output Divide-by-2 Selected,  
Loop Filter Bandwidth = 35 kHz, Channel Spacing = 20 kHz  
Rev. B | Page 11 of 34  
ADF4355-3  
Data Sheet  
THEORY OF OPERATION  
INT, FRACx, MODx, and R Counter Relationship  
REFERENCE INPUT SECTION  
The INT, FRAC1, FRAC2, MOD1, and MOD2 values, in  
conjunction with the R counter, make it possible to generate  
output frequencies that are spaced by fractions of the PFD  
frequency (fPFD). For more information, see the RF Synthesizer—  
A Worked Example section.  
Figure 18 shows the reference input section of the ADF4355-3.  
The reference input can accept both single-ended and differential  
signals. Use the reference mode bit (Register 4, Bit DB9) to select  
the signal. To use a differential signal on the reference input, program  
this bit high. In this case, SW1 and SW2 are open, SW3 and SW4  
are closed, and the current source that drives the differential pair  
of transistors switches on. The differential signal is buffered, and  
it is provided to an emitter coupled logic (ECL) to a CMOS  
converter. When a single-ended signal is the reference, connect  
the reference signal to REFINA and program Bit DB9 in Register 4  
to 0. In this case, SW1 and SW2 are closed, SW3 and SW4 are  
open, and the current source that drives the differential pair of  
transistors switches off. Single-ended mode results in lower integer  
boundary spurs.  
Calculate the RF VCO frequency (VCOOUT) by  
VCOOUT = fPFD × N  
where:  
(1)  
VCOOUT is the output frequency of the VCO (without using the  
output divider).  
f
PFD is the frequency of the phase frequency detector.  
N is the desired value of the feedback counter, N.  
Calculate fPFD by  
REFERENCE  
INPUT MODE  
f
PFD = REFIN × ((1 + D)/(R × (1 + T)))  
(2)  
where:  
85k  
REFIN is the reference input frequency.  
D is the REFIN doubler bit.  
R is the preset divide ratio of the binary 10-bit programmable  
reference counter (1 to 1023).  
SW2  
BUFFER  
SW1  
SW3  
TO  
R COUNTER  
MULTIPLEXER  
T is the REFIN divide by 2 bit (0 or 1).  
AV  
DD  
N comprises  
ECL TO CMOS  
BUFFER  
FRAC2  
MOD2  
MOD1  
FRAC1  
REF  
REF  
A
IN  
N INT   
(3)  
B
IN  
where:  
2.5kΩ  
2.5kΩ  
INT is the 16-bit integer value (23 to 32,767 for the 4/5  
prescaler, and 75 to 65,535 for the 8/9 prescaler).  
SW4  
BIAS  
GENERATOR  
FRAC1 is the numerator of the primary modulus (0 to 16,777,215).  
FRAC2 is the numerator of the 14-bit auxiliary modulus  
(0 to 16,383).  
Figure 18. Reference Input Stage  
RF N DIVIDER  
MOD2 is the programmable, 14-bit auxiliary fractional  
modulus (2 to 16,383).  
The RF N divider allows a division ratio in the PLL feedback path.  
Determine the division ratio by the INT, FRAC1, FRAC2, and  
MOD2 values that this divider comprises.  
MOD1 is a 24-bit primary modulus with a fixed value of 224 =  
16,777,216.  
FRAC2  
RF N COUNTER  
Equation 3 results in a very fine frequency resolution with no resid-  
ual frequency error. Apply this formula using the following steps:  
FRAC1 +  
MOD2  
N = INT +  
TO  
PFD  
MOD1  
FROM  
VCO OUTPUT/  
OUTPUT DIVIDERS  
1. Calculate N by dividing VCOOUT/fPFD. The integer value of  
this number forms INT.  
2. Subtract the INT value from the full N value.  
3. Multiply the remainder by 224. The integer value of this  
number forms FRAC1.  
N COUNTER  
THIRD-ORDER  
FRACTIONAL  
INTERPOLATOR  
INT  
REG  
FRAC1  
REG  
FRAC2  
VALUE  
MOD2  
VALUE  
4. Calculate the MOD2 based on the channel spacing (fCHSP) by  
MOD2 = fPFD /GCD(fPFD, fCHSP  
where:  
CHSP is the desired channel spacing.  
)
(4)  
f
Figure 19. RF N Divider  
GCD(fPFD, fCHSP) is the greatest common divider of the PFD  
frequency and the channel spacing frequency.  
Rev. B | Page 12 of 34  
 
 
 
 
Data Sheet  
ADF4355-3  
SD  
GND  
5. Calculate FRAC2 by the following equation:  
FRAC2 = ((N INT) × 224 FRAC1)) × MOD2  
(5)  
(6)  
THREE-STATE OUTPUT  
SD  
The FRAC2 and MOD2 fraction results in outputs with zero  
frequency error for channel spacings when  
GND  
DGND  
f
PFD/GCD(fPFD/fCHSP) < 16,383  
where:  
PFD is the frequency of the phase frequency detector.  
GCD is a greatest common divider function.  
CHSP is the desired channel spacing.  
R DIVIDER OUTPUT  
N DIVIDER OUTPUT  
MUX  
CONTROL  
MUXOUT  
SD  
to DV  
DD  
GND  
f
DIGITAL LOCK DETECT  
RESERVED  
f
If zero frequency error is not required, the MOD1 and MOD2  
denominators operate together to create a 38-bit resolution  
modulus.  
DGND  
Figure 21. MUXOUT Block Diagram  
If negative bleed is enabled, lock detect is not reliable for low  
PFD frequencies.  
INT N Mode  
When FRAC1 and FRAC2 = 0, the synthesizer operates in  
integer-N mode.  
INPUT SHIFT REGISTERS  
The ADF4355-3 digital section includes a 10-bit R counter, a  
16-bit RF integer-N counter, a 24-bit FRAC1 counter, a 14-bit  
auxiliary fractional counter, and a 14-bit auxiliary modulus  
counter. Data clocks into the 32-bit shift register on each rising  
edge of CLK. The data clocks in MSB first. Data transfers from  
the shift register to one of 13 latches on the rising edge of LE.  
The state of the four control bits (C4, C3, C2, and C1) in the  
shift register determines the destination latch. As shown in  
Figure 2, the four least significant bits (LSBs) are DB3, DB2,  
DB1, and DB0. The truth table for these bits is shown in Table 5.  
Figure 24 and Figure 25 summarize the programing of the latches.  
R Counter  
The 10-bit R counter allows the input reference frequency  
(REFIN) to be divided down to produce the reference clock to  
the PFD. Division ratios from 1 to 1023 are allowed.  
PHASE FREQUENCY DETECTOR (PFD) AND  
CHARGE PUMP  
The PFD takes inputs from the R counter and N counter and  
produces an output proportional to the phase and frequency  
difference between them. Figure 20 is a simplified schematic of  
the phase frequency detector. The PFD includes a fixed delay  
element that sets the width of the antibacklash pulse. This pulse  
ensures that there is no dead zone in the PFD transfer function  
and provides a consistent reference spur level. Set the phase  
detector polarity to positive on this device because of the  
positive tuning of the VCO.  
Table 5. Truth Table for the C4, C3, C2, and C1 Control Bits  
Control Bits  
C4  
0
0
0
0
0
0
0
0
1
1
1
1
1
C3  
0
0
0
0
1
1
1
1
0
0
0
0
1
C2  
0
0
1
1
0
0
1
1
0
0
1
1
0
C1  
0
1
0
1
0
1
0
1
0
1
0
1
0
Register  
Register 0  
Register 1  
Register 2  
Register 3  
Register 4  
Register 5  
Register 6  
Register 7  
Register 8  
Register 9  
Register 10  
Register 11  
Register 12  
UP  
HIGH  
D1  
Q1  
U1  
CLR1  
+IN  
CHARGE  
PUMP  
CP  
U3  
DELAY  
DOWN  
CLR2  
D2 Q2  
HIGH  
U2  
–IN  
Figure 20. PFD Simplified Schematic  
MUXOUT AND LOCK DETECT  
The output multiplexer on the ADF4355-3 allows the user to access  
various internal points on the chip. The M3, M2, and M1 bits in  
Register 4 control the state of MUXOUT. Figure 21 shows the  
MUXOUT section in block diagram form.  
Rev. B | Page 13 of 34  
 
 
 
 
 
 
ADF4355-3  
Data Sheet  
130  
120  
110  
100  
90  
PROGRAM MODES  
Table 5 and Figure 24 through Figure 38 show the program  
modes that must be set up in the ADF4355-3.  
The following settings in the ADF4355-3 are double buffered:  
main fractional value (FRAC1), auxiliary modulus value (MOD2),  
auxiliary fractional value (FRAC2), reference doubler, reference  
divide by 2 (RDIV2), phase value, R counter value, and charge  
pump current setting. Two events must occur before the  
ADF4355-3 uses a new value for any of the double buffered  
settings. First, the new value must latch into the device by writing  
to the appropriate register, and second, a new write to Register 0  
must be performed.  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.3  
3.8  
4.3  
4.8  
5.3  
5.8  
6.3  
FREQUENCY (GHz)  
For example, to ensure that the modulus value loads correctly,  
every time the modulus value updates, Register 0 must be  
written to. The RF divider select in Register 6 is also double  
buffered, but only when DB14 of Register 4 is high.  
Figure 22. KV vs. VCO Frequency  
OUTPUT STAGE  
The RFOUTA+ and RFOUTA− pins of the ADF4355-3 connect to  
the collectors of an NPN differential pair driven by buffered  
outputs of the VCO, as shown in Figure 23. In this scheme, the  
ADF4355-3 contains internal 50 Ω resistors connected to the  
VCO  
The VCO core in the ADF4355-3 consists of four separate VCOs,  
each of which uses 256 overlapping bands, which allows covering  
a wide frequency range without a large VCO sensitivity (KV) and  
without resulting poor phase noise and spurious performance.  
V
RF pin. To optimize the power dissipation vs. the output  
power requirements, the tail current of the differential pair is  
programmable using Bits[DB5:DB4] in Register 6. Four current  
levels can be set. These levels give the approximate output power  
levels of −4 dBm, −1 dBm, +2 dBm, and +5 dBm, respectively,  
using a 50 Ω resistor to VRF and ac coupling into a 50 Ω load. For  
accurate power levels, see the Typical Performance Characteristics  
section. Add an external shunt inductor to provide higher power  
levels; however, this is less wideband than the internal bias only.  
Terminate the unused complementary output with a similar  
circuit to the used output.  
The correct VCO and band are chosen automatically by the VCO  
and band select logic when Register 0 is updated and autocalibra-  
tion is enabled. The VCO VTUNE is disconnected from the output of  
the loop filter and is connected to an internal reference voltage.  
The R counter output is the clock for the band select logic. After  
band selection, normal PLL action resumes. The nominal value  
of KV is 63 MHz/V when the N divider is driven from the VCO  
output, or the KV value is divided by D. D is the output divider  
value if the N divider is driven from the RF output divider  
(chosen by programming Bits[D23:D21] in Register 6).  
V
V
RF  
RF  
50Ω  
A+  
50Ω  
RF  
RF  
A–  
The VCO shows the variation of KV as the tuning voltage, VTUNE  
varies within the band and from band to band. For wideband  
applications covering a wide frequency range (and changing  
output dividers), a value of 63 MHz/V provides the most accurate  
KV, because this value is closest to the average value. Figure 22  
,
OUT  
OUT  
BUFFER/  
DIVIDE BY  
1/2/4/8/  
VCO  
16/32/64  
shows how KV varies with fundamental VCO frequency along with  
an average value for the frequency band. Users may prefer this  
figure when using narrow-band designs.  
Figure 23. Output Stage  
Another feature of the ADF4355-3 is that the supply current to  
the output stages can shut down until the ADF4355-3 achieves  
lock as measured by the digital lock detect circuitry. The mute until  
lock detect (MTLD) bit (Bit DB11) in Register 6 enables this  
function.  
The RFOUTB+/RFOUTB− pins are duplicate outputs that can be  
used independently or in addition to the RFOUTA+/RFOUTA− pins.  
LOOP FILTER  
Use only passive loop filters. For information on designing a  
loop filter, use the ADIsimPLL design tool.  
Rev. B | Page 14 of 34  
 
 
 
 
 
 
Data Sheet  
ADF4355-3  
Table 6. Total IDD (RFOUT  
Divide By  
A
Refers to RFOUTA+/RFOUTA−)  
RFOUT Off RFOUT = −4 dBm  
49.4 mA  
A
A
RFOUTA  
= −1 dBm  
RFOUTA  
= +2 dBm  
RFOUTA = +5 dBm  
IVCO and IP  
49.4 mA  
49.4 mA  
49.4 mA  
49.4 mA  
AIDD, DIDD, IRF  
1
2
4
8
16  
32  
64  
91.8 mA  
103.3 mA  
113.6 mA  
123.9 mA  
132.1 mA  
137.3 mA  
141.4 mA  
144.0 mA  
106.5 mA  
117.0 mA  
127.5 mA  
135.6 mA  
140.8 mA  
144.9 mA  
147.4 mA  
111.7 mA  
122.8 mA  
133.6 mA  
141.8 mA  
147.0 mA  
151.1 mA  
153.6 mA  
116.9 mA  
128.4 mA  
139.8 mA  
148.0 mA  
153.3 mA  
157.5 mA  
160.0 mA  
100.9 mA  
110.8 mA  
118.9 mA  
124.0 mA  
128.0 mA  
130.4 mA  
Rev. B | Page 15 of 34  
 
ADF4355-3  
Data Sheet  
REGISTER MAPS  
REGISTER 0  
CONTROL  
BITS  
16-BIT INTEGER VALUE (INT)  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
DB1  
DB0  
N15 N14 N13 N12 N11 N10  
N9  
N8  
N7  
N6  
N5  
N4  
N3  
N2  
N1 C4(0) C3(0) C2(0) C1(0)  
0
0
0
0
0
0
0
0
0
0
AC1  
PR1  
N16  
REGISTER 1  
CONTROL  
BITS  
DBR1  
RESERVED  
24-BIT MAIN FRACTIONAL VALUE (FRAC1)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
F24  
F23  
F22  
F21  
F20  
F19  
F18  
F17  
F16  
F15  
F14  
F13  
F12  
F11  
F10  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
0
0
0
C3(0) C2(0) C1(1)  
C4(0)  
0
REGISTER 2  
CONTROL  
BITS  
DBR1  
1
14-BIT AUXILIARY FRACTIONAL VALUE (FRAC2)  
DBR  
14-BIT AUXILIARY MODULUS VALUE (MOD2)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
M14 M13 M12 M11 M10 M9  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
F14  
F13  
F12  
F11  
F10  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
C3(0) C2(1) C1(0)  
C4(0)  
REGISTER 3  
CONTROL  
BITS  
24-BIT PHASE VALUE (PHASE)  
DBR1  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C3(0) C2(1) C1(1)  
P1 C4(0)  
0
SD1  
PR1 PA1 P24  
P23 P22  
P21  
P20  
P19  
P18  
P17  
P16 P15  
P14 P13  
P12  
P11 P10  
P9  
P8  
P7  
P6  
P5  
P4  
P3  
P2  
REGISTER 4  
CONTROL  
BITS  
CURRENT  
SETTING  
DBR1  
RESERVED  
MUXOUT  
10-BIT R COUNTER  
DBR1  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C3(1) C2(0) C1(0)  
U1 C4(0)  
0
0
M3  
M2  
M1  
RD2 RD1  
R10  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
D1  
CP4  
CP3 CP2 CP1 U6  
U5  
U4  
U3  
U2  
REGISTER 5  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
C4(0) C3(1) C2(0)  
C1(1)  
REGISTER 6  
AUX RF  
OUTPUT  
POWER  
RF  
OUTPUT  
POWER  
RF DIVIDER  
SELECT2  
CONTROL  
BITS  
RESERVED  
CHARGE PUMP BLEED CURRENT  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
BL2  
BL3  
0
BL10 BL9  
1
0
1
0
D13 D12 D11  
D10  
BL7  
BL4  
BL1  
0
D8  
0
D6  
D5  
D4  
D3  
D2  
D1  
BL8  
BL6  
BL5  
C4(0) C3(1) C2(1) C1(0)  
1
2
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY THE WRITE TO REGISTER 0.  
DBB = DOUBLE BUFFERED BITS—BUFFERED BY A WRITE TO REGISTER 0 WHEN BIT DB14 OF REGISTER 4 IS HIGH.  
Figure 24. Register Summary (Register 0 to Register 6)  
Rev. B | Page 16 of 34  
 
 
Data Sheet  
ADF4355-3  
REGISTER 7  
LD  
CYCLE  
COUNT  
CONTROL  
BITS  
RESERVED  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
LD4  
LD3 LD2 LD1 C4(0) C3(1) C2(1) C1(1)  
0
0
0
1
0
0
LE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LD5  
LOL  
REGISTER 8  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
1
0
0
1
1
0
1
0
1
1
0
1
0
0
1
1
0
0
1
1
0
1
1
1
0
0
C4(1) C3(0) C2(0) C1(0)  
REGISTER 9  
SYNTHESIZER  
LOCK TIMEOUT  
CONTROL  
BITS  
VCO BAND DIVISION  
TIMEOUT  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
VC8 VC7 VC6  
VC5 VC4 VC3 VC2 VC1 TL10 TL9  
TL8  
TL7  
TL6  
TL5  
TL4  
TL3  
TL2  
TL1  
1
1
1
1
1
SL5 SL4 SL3 SL2 SL1 C4(1) C3(0) C2(0) C1(1)  
REGISTER 10  
ADC  
CLOCK DIVIDER  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AD8 AD7 AD6  
AD5 AD4 AD3 AD2 AD1 AE2 AE1 C4(1) C3(0) C2(1) C1(0)  
REGISTER 11  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
C4(1) C3(0) C2(1) C1(1)  
0
REGISTER 12  
CONTROL  
BITS  
RESERVED  
RESYNC CLOCK  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
P13 P12  
P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1  
0
0
0
0
0
1
0
1
0
0
0
0
P16 P15  
C4(1) C3(1) C2(0) C1(0)  
P14  
Figure 25. Register Summary (Register 7 to Register 12)  
Rev. B | Page 17 of 34  
 
ADF4355-3  
Data Sheet  
CONTROL  
BITS  
16-BIT INTEGER VALUE (INT)  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C4(0) C3(0) C2(0)  
C1(0)  
N15 N14 N13 N12 N11 N10  
N9  
N8  
N7  
N6  
N5  
N4  
N3  
N2  
N1  
0
0
0
0
0
0
0
0
0
0
AC1  
PR1  
N16  
N16  
0
N15  
0
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
N5  
N4  
N3  
N2  
N1  
0
1
0
.
INTEGER VALUE (INT)  
PR1 PRESCALER  
0
0
0
.
0
0
0
.
0
0
0
.
0
0
1
.
NOT ALLOWED  
0
1
4/5  
8/9  
0
0
NOT ALLOWED  
0
0
NOT ALLOWED  
.
.
...  
0
0
1
1
1
.
0
0
1
.
1
1
0
.
1
1
0
.
0
1
0
.
NOT ALLOWED  
0
0
23  
0
0
24  
VCO  
AUTOCAL  
AC1  
.
.
...  
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
65533  
65534  
65535  
0
1
DISABLED  
ENABLED  
1
1
1
1
INT  
= 75 WITH PRESCALER = 8/9  
MIN  
Figure 26. Register 0  
Prescaler Value  
The dual modulus prescaler (P/P + 1), along with the INT,  
REGISTER 0  
Control Bits  
FRACx, and MODx counters, determines the overall division  
ratio from the VCO output to the PFD input. The PR1 bit  
(Bit DB20) in Register 0 sets the prescaler value.  
With Bits[C4:C1] set to 0000, Register 0 is programmed. Figure 26  
shows the input data format for programming this register.  
Reserved  
Operating at CML levels, the prescaler takes the clock from the  
VCO output and divides it down for the counters. It is based on  
a synchronous 4/5 core. The prescaler limits the INT value;  
therefore, if P is 4/5, INTMIN is 23, and if P is 8/9, INTMIN is 75.  
Bits[DB31:DB22] are reserved and must be set to 0.  
Automatic Calibration (Autocal)  
Write to Register 0 to enact (by default) the VCO automatic  
calibration, and to choose the appropriate VCO and VCO  
subband. Write 1 to the AC1 bit (Bit DB21) to enable the  
automatic calibration, which is the recommended mode of  
operation.  
16-Bit Integer Value  
The 16 INT bits (Bits[DB19:DB4]) set the INT value, which  
determines the integer part of the feedback division factor. The  
INT value is used in Equation 3 (see the RF Synthesizer—A  
Worked Example section). All integer values from 23 to 32,767  
are allowed for the 4/5 prescaler. For the 8/9 prescaler, the  
minimum integer value is 75, and the maximum value is 65,535.  
Set the AC1 bit to 0 to disable the automatic calibration, which  
leaves the ADF4355-3 in the same band it is already in when  
Register 0 is updated.  
Disable the automatic calibration only for fixed frequency  
applications, phase adjust applications, or very small (<10 kHz)  
frequency jumps.  
Rev. B | Page 18 of 34  
 
 
Data Sheet  
ADF4355-3  
CONTROL  
BITS  
1
RESERVED  
24-BIT MAIN FRACTIONAL VALUE (FRAC1)  
DBR  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
F24 F23 F22 F21 F20 F19 F18 F17 F16 F15 F14 F13 F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1  
C1(1)  
C3(0) C2(0)  
0
0
0
C4(0)  
0
F24  
F23  
.......... F2  
F1  
MAIN FRACTIONAL VALUE (FRAC1)  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
16777212  
16777213  
16777214  
16777215  
1
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY THE WRITE TO REGISTER 0.  
Figure 27. Register 1  
24-Bit Main Fractional Value  
REGISTER 1  
The 24 FRAC1 bits (Bits[DB27:DB4]) set the numerator of the  
fraction that is input to the Σ-Δ modulator. This fraction, along  
with the INT value, specifies the new frequency channel that  
the synthesizer locks to, as shown in the RF Synthesizer—A  
Worked Example section. FRAC1 values from 0 to (MOD1 − 1)  
cover channels over a frequency range equal to the PFD  
reference frequency.  
Control Bits  
With Bits[C4:C1] set to 0001, Register 1 is programmed. Figure 27  
shows the input data format for programming this register.  
Reserved  
Bits[DB31:DB28] are reserved and must be set to 0.  
Rev. B | Page 19 of 34  
 
 
ADF4355-3  
Data Sheet  
CONTROL  
BITS  
14-BIT AUXILIARY FRACTIONAL VALUE (FRAC2) DBR1  
14-BIT AUXILIARY MODULUS VALUE (MOD2) DBR1  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
M14 M13 M12 M11 M10 M9  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
F14  
F13  
F12  
F11  
F10  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
C3(0) C2(1) C1(0)  
C4(0)  
M14 M13 .......... M2  
M1  
0
1
0
1
.
MODULUS VALUE (MOD2)  
F14  
F13  
.......... F2  
F1  
0
1
0
1
.
FRAC2 WORD  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
NOT ALLOWED  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
0
NOT ALLOWED  
1
2
2
3
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
16380  
16381  
16382  
16383  
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
16381  
16382  
16382  
16383  
1
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY THE WRITE TO REGISTER 0.  
Figure 28. Register 2  
14-Bit Auxiliary Modulus Value (MOD2)  
REGISTER 2  
The 14-bit auxiliary modulus value (Bits[DB17:DB4]) sets the  
auxiliary fractional modulus. Use MOD2 to correct any residual  
error due to the main fractional modulus.  
Control Bits  
With Bits[C4:C1] set to 0010, Register 2 is programmed. Figure 28  
shows the input data format for programming this register.  
14-Bit Auxiliary Fractional Value (FRAC2)  
The 14-bit auxiliary fractional value (Bits[DB31:DB18]) controls  
the auxiliary fractional word. FRAC2 must be less than the  
MOD2 value programmed in Register 2.  
Rev. B | Page 20 of 34  
 
 
Data Sheet  
ADF4355-3  
CONTROL  
BITS  
24-BIT PHASE VALUE (PHASE)  
DBR1  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C3(0) C2(1) C1(1)  
0
SD1  
PR1 PA1 P24  
P23 P22  
P21  
P20  
P19  
P18  
P17  
P16 P15  
P14 P13  
P12  
P11 P10  
P9  
P8  
P7  
P6  
P5  
P4  
P3  
P2  
P1 C4(0)  
PHASE  
ADJUST  
PA1  
P24  
P23  
0
0
0
0
.
.......... P2  
P1  
PHASE VALUE (PHASE)  
0
1
DISABLED  
ENABLED  
0
0
0
0
.
..........  
0
0
1
1
.
0
1
0
1
.
0
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
1
2
3
PHASE  
PR1  
.
RESYNC  
.
.
.
.
.
0
1
DISABLED  
ENABLED  
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
16777212  
16777213  
16777214  
16777215  
SD LOAD  
RESET  
SD1  
0
1
ON REGISTER 0 UPDATE  
DISABLED  
1
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY THE WRITE TO REGISTER 0.  
Figure 29. Register 3  
For resync applications, enable the Σ-Δ modulator load reset in  
Register 3 by setting DB30 to 0. Phase resync functions only  
when FRAC2 = 0.  
REGISTER 3  
Control Bits  
With Bits[C4:C1] set to 0011, Register 3 is programmed. Figure 29  
shows the input data format for programming this register.  
Phase Adjustment  
To adjust the relative output phase of the ADF4355-3 on each  
Register 0 update, set the PA1 bit (Bit DB28) to 1. This feature  
differs from the resynchronization feature in that it is useful when  
adjustments to phase are made continually in an application.  
For this function, disable the VCO automatic calibration by  
setting the AC1 bit (Bit DB21) in Register 0 to 1, and disable the  
SD load reset by setting the SD1 bit (Bit DB30) in Register 3 to  
1. Note that phase resync and phase adjustment cannot be used  
simultaneously.  
Reserved  
Bit DB31 is reserved and must be set to 0.  
SD Load Reset  
When writing to Register 0, the Σ-Δ (SD) modulator resets. For  
applications in which the phase is continually adjusted, this  
reset may not be desirable; therefore, in these cases, the Σ-Δ  
reset can be disabled by writing a 1 to the SD1 bit (Bit DB30).  
Phase Resync  
24-Bit Phase Value  
To use the phase resynchronization feature, the PR1 bit (Bit DB29)  
must be set to 1. If unused, the bit can be programmed to 0. The  
phase resync timer must also be used in Register 12 to ensure  
that the resynchronization feature is applied after the PLL settles to  
the final frequency. If the PLL has not settled to the final frequency,  
phase resync may not function correctly. Resynchronization is  
useful in phased array and beam forming applications. It ensures  
repeatability of output phase when programming the same  
frequency. In phase critical applications that use frequencies  
requiring the output divider (<3300 MHz), it is necessary to  
feed the N divider with the divided VCO frequency as distinct  
from the fundamental VCO frequency, which is achieved by  
programming the D13 bit (Bit DB24) in Register 6 to 0, which  
ensures divided feedback to the N divider.  
The phase of the RF output frequency can be adjusted in 24-bit  
steps; from 0° (0) to 360° (224 − 1). For phase adjustment  
applications, the phase is set by  
(Phase Value/16,777,216) × 360°  
(7)  
When the phase value is programmed to Register 3, each  
subsequent adjustment of Register 0 increments the phase by  
the value in this equation.  
Rev. B | Page 21 of 34  
 
 
ADF4355-3  
Data Sheet  
CURRENT  
SETTING  
CONTROL  
BITS  
MUXOUT  
10-BIT R COUNTER  
DBR1  
DBR1  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB0  
0
0
M3  
M2  
M1 RD2 RD1 R10  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
D1  
CP4 CP3 CP2 CP1 U6  
U5  
U4  
U3  
U2  
U1  
C3(1) C2(0) C1(0)  
C4(0)  
REFERENCE  
RD2  
COUNTER  
RESET  
DOUBLE BUFFERED  
REGISTER 6, BITS[DB23:DB21]  
U1  
D1  
U6  
0
REFIN  
SINGLE  
DIFF  
DOUBLER  
0
1
DISABLED  
ENABLED  
0
1
DISABLED  
ENABLED  
0
1
DISABLED  
1
ENABLED  
RD1 REFERENCE DIVIDE BY 2  
CP  
I
(mA)  
CP  
U2  
U5  
LDP  
THREE-STATE  
CP4  
CP3  
CP2  
CP1  
5.1k  
0
1
DISABLED  
ENABLED  
0
1
1.8V  
3.3V  
0
1
DISABLED  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.31  
0.63  
0.94  
1.25  
1.56  
1.88  
2.19  
2.50  
2.81  
3.13  
3.44  
3.75  
4.06  
4.38  
4.69  
5.00  
ENABLED  
R10  
R9  
..........  
R2  
R1  
R DIVIDER (R)  
U4  
0
PD POLARITY  
NEGATIVE  
POSITIVE  
U3  
POWER DOWN  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
0
1
DISABLED  
ENABLED  
2
1
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
1020  
1021  
1022  
1023  
M3  
0
M2  
0
M1  
0
OUTPUT  
THREE-STATE OUTPUT  
DVDD  
0
0
1
0
1
0
SD  
GND  
0
1
1
R DIVIDER OUTPUT  
N DIVIDER OUTPUT  
RESERVED  
1
0
0
1
0
1
1
1
0
DIGITAL LOCK DETECT  
RESERVED  
1
1
1
1
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY THE WRITE TO REGISTER 0.  
Figure 30. Register 4  
The maximum allowable reference frequency when the doubler  
is enabled is 100 MHz.  
REGISTER 4  
Control Bits  
RDIV2  
With Bits[C4:C1] set to 0100, Register 4 is programmed. Figure 30  
shows the input data format for programming this register.  
Setting the RDIV2 bit (Bit DB25) to 1 inserts a divide by 2  
toggle flip-flop between the R counter and PFD, which halves  
the reference frequency to the PFD. This function provides a  
50% duty cycle signal at the PFD input.  
Reserved  
Bits[DB31:DB30] are reserved and must be set to 0.  
MUXOUT  
10-Bit R Counter  
The on-chip multiplexer (MUXOUT) is controlled by  
Bits[DB29:DB27]. For additional details, see Figure 30.  
The 10-bit R counter divides the input reference frequency  
(REFIN) to produce the reference clock to the PFD. Division  
ratios range from 1 to 1023.  
When changing frequency, that is, writing R0, MUXOUT must  
not be set to the N divider output or the R divider output. If  
needed, enable these functions after locking to the new frequency.  
Double Buffer  
The D1 bit (Bit DB14) enables or disables double buffering of  
the RF divider select bits (Bits[DB23:DB21]) in Register 6. The  
Program Modes section explains double buffering further.  
Reference Doubler  
Setting the RD2 bit (Bit DB26) to 0 feeds the REFIN signal directly  
to the 10-bit R counter, disabling the doubler. Setting this bit to  
1 multiplies the reference frequency by a factor of 2 before feeding  
it into the 10-bit R counter. When the doubler is disabled, the  
REFIN falling edge is the active edge at the PFD input to the  
fractional synthesizer. When the doubler is enabled, both the rising  
and falling edges of the reference frequency become active edges  
at the PFD input.  
Charge Pump Current Setting  
The CP4 to CP1 bits (Bits[DB13:DB10]) set the charge pump  
current. Set this value to the charge pump current that the loop  
filter is designed with (see Figure 30). For the lowest spurs, the  
0.9 mA setting is recommended.  
Rev. B | Page 22 of 34  
 
 
Data Sheet  
ADF4355-3  
Reference Mode  
When power-down activates, the following events occur:  
The ADF4355-3 permits the use of either differential or single-  
ended reference sources. For differential sources, set the reference  
mode bit (Bit DB9) to 1, and for single-ended sources, set it to 0.  
Single-ended mode results in lower integer boundary spurs. If  
only a differential signal is available, REFINB can be left floating  
to get the integer boundary spur improvements (provided that  
the frequency and power meets the single-ended requirements  
shown in Table 1).  
The synthesizer counters are forced to their load state  
conditions.  
The VCO powers down.  
The charge pump is forced into three-state mode.  
The digital lock detect circuitry resets.  
The RFOUTA+/RFOUTA− and RFOUTB+/RFOUTB− output  
stages are disabled.  
The input registers remain active and capable of loading  
and latching data.  
Level Select  
To assist with logic compatibility, MUXOUT is programmable to  
two logic levels. Set the U5 bit (Bit DB8) to 0 to select 1.8 V  
logic, and set it to 1 to select 3.3 V logic.  
Charge Pump Three-State  
Setting the U2 bit (Bit DB5) to 1 puts the charge pump into  
three-state mode. Set DB5 to 0 for normal operation.  
Phase Detector Polarity  
Counter Reset  
The U4 bit (Bit DB7) sets the phase detector polarity. Set DB7  
to 1. Active filters are not supported.  
The U1 bit (Bit DB4) resets the R counter, N counter, and VCO  
band selection of the ADF4355-3. When DB4 is set to 1, the RF  
synthesizer N counter and R counter and the VCO band  
selection are reset. For normal operation, set DB4 to 0.  
Power-Down  
The U3 bit (Bit DB6) sets the programmable power-down mode.  
Setting DB6 to 1 performs a power-down. Setting DB6 to 0 returns  
the synthesizer to normal operation. In software power-down  
mode, the ADF4355-3 retains all information in its registers. The  
register contents are lost only if the supply voltages are removed.  
REGISTER 5  
The bits in Register 5 are reserved and must be programmed as  
described in Figure 31, using a hexadecimal word of 0x00800005.  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C4(0) C3(1) C2(0)  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
C1(1)  
Figure 31. Register 5 (0x00800005)  
Rev. B | Page 23 of 34  
 
 
ADF4355-3  
Data Sheet  
AUX RF  
OUTPUT  
POWER  
RF  
OUTPUT  
POWER  
RF DIVIDER  
SELECT1  
CONTROL  
BITS  
RESERVED  
CHARGE PUMP BLEED CURRENT  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
BL2  
BL3  
0
BL10 BL9  
1
0
1
0
D13 D12 D11  
D10  
BL7  
BL4  
BL1  
0
D8  
0
D6  
D5  
D4  
D3  
D2  
D1  
BL8  
BL6 BL5  
C4(0) C3(1) C2(1) C1(0)  
FEEDBACK  
SELECT  
D13  
D2  
D1  
OUTPUT POWER  
–4dBm  
0
0
1
1
0
0
1
DIVIDED  
1
0
1
–1dBm  
FUNDAMENTAL  
+2dBm  
+5dBm  
BLEED CURRENT  
BL9  
D12  
D11  
D10 RF DIVIDER SELECT  
D3  
0
RF OUT  
0
1
DISABLED  
ENABLED  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
÷1  
DISABLED  
ENABLED  
÷2  
MUTE TILL  
LOCK DETECT  
1
D8  
÷4  
0
1
MUTE DISABLED  
MUTE ENABLED  
÷8  
GATED BLEED  
BL10  
D5  
0
D4  
0
AUXILARY OUTPUT POWER  
÷16  
÷32  
÷64  
–4dBm  
–1dBm  
+2dBm  
+5dBm  
0
1
DISABLED  
ENABLED  
0
1
1
0
1
1
D6  
0
AUXILARY OUT  
DISABLED  
1
ENABLED  
BL8  
BL7  
..........  
BL2  
BL1 BLEED CURRENT  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
2
.
(3.75µA)  
(7.5µA)  
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
252 (945µA)  
253 (948.75µA)  
254 (952.5µA)  
255 (956.25µA)  
1
BITS[DB23:DB21] ARE BUFFERED BY A WRITE TO REGISTER 0 WHEN THE DOUBLE BUFFER BIT IS ENABLED, BIT DB14 OF REGISTER 4.  
Figure 32. Register 6  
Reserved  
REGISTER 6  
Bits[DB28:DB25] are reserved and must be set to 1010.  
Control Bits  
With Bits[C4:C1] set to 0110, Register 6 is programmed. Figure 32  
shows the input data format for programming this register.  
Feedback Select  
D13 (Bit DB24) selects the feedback from the output of the  
VCO to the N counter. When D13 is set to 1, the signal is taken  
directly from the VCO. When this bit is set to 0, the signal is  
taken from the output of the output dividers. The dividers  
enable coverage of the wide frequency band (51.5625 MHz to  
6.6 GHz). When the divider is enabled and the feedback signal is  
taken from the output, the RF output signals of two separately  
configured PLLs are in phase. Divided feedback is useful in  
some applications where the positive interference of signals is  
required to increase the power.  
Reserved  
Bit DB31 is reserved and must be set to 0.  
Gated Bleed  
Bleed currents can improve phase noise and spurs. However,  
due to a potential impact on lock time, the gated bleed bit, BL10  
(Bit DB30), if set to 1, ensures bleed currents are not switched  
on until the digital lock detect asserts logic high. Note that this  
function requires digital lock detection to be enabled.  
Negative Bleed  
Divider Select  
Use of constant negative bleed is recommended for most  
applications because it improves the linearity of the charge  
pump, leading to lower noise and spurious performance than  
leaving constant negative bleed off. To enable negative bleed,  
write 1 to BL9 (Bit DB29), and to disable negative bleed, write 0  
to BL9 (Bit DB29). Use negative bleed only when operating in  
fractional-N mode, that is, FRAC1 or FRAC2 not equal to 0.  
D12 to D10 (Bits[DB23:DB21]) select the value of the RF output  
divider (see Figure 32). These bits are buffered by a write to  
Register 0 when Bit DB14 of Register 4 is high.  
Rev. B | Page 24 of 34  
 
 
Data Sheet  
ADF4355-3  
Charge Pump Bleed Current  
Reserved  
BL8 to BL1 (Bits[DB20:DB13]) control the level of the bleed  
current added to the charge pump output. This current  
optimizes the phase noise and spurious levels from the device.  
Bit DB10 is reserved and must be set to 0.  
Auxiliary RF Output Enable  
Bit DB9 enables or disables the auxiliary frequency RF output  
(RFOUTB+/RFOUTB−). When DB9 is set to 1, the auxiliary  
frequency RF output is enabled. When DB9 is set to 0, the  
auxiliary RF output is disabled.  
Calculate the optimal bleed setting using Equation 8 and  
Equation 9.  
If fPFD ≤ 80 MHz,  
Auxiliary RF Output Power  
Bleed Value = Floor(39 × (fPFD/61.44 MHz) × (ICP/0.9 mA)) (8)  
If fPFD > 80 MHz and ≤ 100 MHz,  
Bits[DB8:DB7] set the value of the auxiliary RF output power  
level.  
Bleed Value = Floor(42 × (ICP/0.9 mA))  
If fPFD > 100 MHz, disable bleed current using DB29.  
where:  
(9)  
RF Output Enable  
Bit DB6 enables or disables the primary RF output (RFOUTA+/  
RFOUTA−). When DB6 is set to 0, the primary RF output is  
disabled; when DB6 is set to 1, the primary RF output is  
enabled.  
Floor() is a function to round down to the nearest integer value.  
Bleed Value is the value programmed to Bits[DB20:DB13].  
fPFD is the PFD frequency.  
Output Power  
ICP is the value of charge pump current setting, Bits[DB13:DB10] of  
Register 4.  
Bits[DB5:DB4] set the value of the primary RF output power level.  
Reserved  
Bit DB12 is reserved and must be set to 0.  
Mute Till Lock Detect  
When D8 (Bit DB11) is set to 1, the supply current to the RF  
output stage is shut down until the device achieves lock, as  
determined by the digital lock detect circuitry.  
Rev. B | Page 25 of 34  
ADF4355-3  
Data Sheet  
LD  
CYCLE  
COUNT  
CONTROL  
BITS  
RESERVED  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
LD4  
LD3 LD2 LD1 C4(0) C3(1) C2(1) C1(1)  
0
0
0
1
0
0
LE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LD5  
LOL  
LOCK DETECT MODE  
LD1  
FRACTIONAL-N  
0
1
INTEGER-N (2.9ns)  
LD3 LD2  
FRACTIONAL-N LD PRECISION  
0
0
1
1
0
1
0
1
5.0ns  
6.0ns  
8.0ns  
12.0ns  
LE  
LE SYNCHRONIZATION  
LOL LOSS OF LOCK MODE  
DISABLED  
DISABLED  
ENABLED  
0
1
0
1
LE SYNCED TO REFIN  
LD5 LD4  
LOCK DETECT CYCLE COUNT  
0
0
1
1
0
1
0
1
1024  
2048  
4096  
8192  
Figure 33. Register 7  
Loss of Lock (LOL) Mode  
REGISTER 7  
Set LOL (Bit DB7) to 1 when the application is a fixed frequency  
application in which the reference (REFIN) is likely to be removed,  
such as a clocking application. The standard lock detect circuit  
assumes that REFIN is always present; however, this may not be  
the case with clocking applications. To enable this functionality,  
set Bit DB7 to 1. Loss of lock mode does not function reliably  
when using differential REFIN mode.  
Control Bits  
With Bits[C4:C1] set to 0111, Register 7 is programmed. Figure 33  
shows the input data format for programming this register.  
Reserved  
Bits[DB31:DB29] and Bits[DB27:DB26] are reserved and must  
be set to 0. Bit DB28 is reserved and must be set to 1.  
LE Sync  
Fractional-N Lock Detect Precision (LDP)  
When set to 1, Bit DB25 ensures that the load enable (LE) edge  
is synchronized internally with the rising edge of the reference  
input frequency. This synchronization prevents the rare event of  
reference and RF dividers loading at the same time as a falling  
edge of reference frequency, which can lead to longer lock times.  
LD3 and LD2 (Bits[DB6:DB5]) set the precision of the lock detect  
circuitry in fractional-N mode. LDP is available at 5.0 ns, 6.0 ns,  
8.0 ns, or 12.0 ns. If bleed currents are used, use 12.0 ns.  
Lock Detect Mode (LDM)  
If LD1 (Bit DB4) is set to 0, each reference cycle is set by the  
fractional-N lock detect precision as described in the  
Fractional-N Lock Detect Count (LDC) section. If DB4 is  
set to 1, each reference cycle is 2.9 ns long, which is more  
appropriate for integer-N applications.  
Reserved  
Bits[DB24:DB10] are reserved and must be set to 0.  
Fractional-N Lock Detect Count (LDC)  
LD5 and LD4 (Bits[DB9:DB8]) set the number of consecutive  
cycles counted by the lock detect circuitry before asserting lock  
detect high. See Figure 33 for details.  
Rev. B | Page 26 of 34  
 
 
 
Data Sheet  
ADF4355-3  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
1
0
0
1
1
0
1
0
1
1
0
1
0
0
1
1
0
0
1
1
0
1
1
1
0
0
C4(1) C3(0) C2(0) C1(0)  
Figure 34. Register 8 (0x1A69A6B8)  
SYNTHESIZER  
LOCK TIMEOUT  
CONTROL  
BITS  
VCO BAND DIVISION  
TIMEOUT  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
VC8 VC7 VC6  
VC5 VC4 VC3 VC2 VC1 TL10 TL9  
TL8  
TL7  
TL6  
TL5  
TL4  
TL3  
TL2  
TL1  
1
1
1
1
1
SL5 SL4 SL3 SL2 SL1 C4(1) C3(0) C2(0) C1(1)  
SL5  
SL4  
..........  
SL2  
SL1 SLC WAIT  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
TL10  
TL9  
..........  
TL2  
TL1 TIMEOUT  
2
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
.
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
28  
29  
30  
31  
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
1020  
1021  
1022  
1023  
VC8  
VC7  
..........  
VC2  
VC1 VCO BAND DIV  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
2
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
252  
253  
254  
255  
Figure 35. Register 9  
VCO Band Division  
REGISTER 8  
VC8 to VC1 (Bits[DB31:DB24]) set the value of the VCO band  
division clock. Determine the value of this clock by  
The bits in this register are reserved and must be programmed as  
shown in Figure 34, using a hexadecimal word of 0x1A69A6B8.  
VCO Band Div = ceiling(fPFD/2,400,000)  
REGISTER 9  
Timeout  
For a worked example and more information, see the Lock  
Time section.  
TL10 to TL1 (Bits[DB23:DB14]) set the timeout value for the  
VCO band selection.  
Control Bits  
Synthesizer Lock Timeout  
With Bits[C4:C1] set to 1001, Register 9 is programmed. Figure 35  
shows the input data format for programming this register.  
SL5 to SL1 (Bits[DB8:DB4]) set the synthesizer lock timeout  
value. This value allows the VTUNE force to settle on the VTUNE pin.  
The value must be 20 μs. Calculate the value using Equation 10:  
Reserved Bits  
Bits[DB13:DB9]) are reserved and must be set to 0b11111.  
Synthesizer Lock Timeout > (20 ꢀs × fPFD)/Timeout  
(10)  
Rev. B | Page 27 of 34  
 
 
 
 
ADF4355-3  
Data Sheet  
ADC  
CLOCK DIVIDER  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AE2 AE1 C4(1) C3(0) C2(1) C1(0)  
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AE1 ADC  
0
1
DISABLED  
ENABLED  
AE2 ADC CONVERSION  
0
1
DISABLED  
ENABLED  
AD8  
AD7  
..........  
AD2 AD1 ADC CLK DIV  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
2
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
252  
253  
254  
255  
Figure 36. Register 10  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
C4(1) C3(0) C2(1) C1(1)  
0
Figure 37. Register 11 (0x0081200B)  
Choose the ADC_CLK_DIV value such that  
ADC_CLK_DIV = ceiling(((fPFD/100,000) − 2)/4)  
REGISTER 10  
Control Bits  
(11)  
With Bits[C4:C1] set to 1010, Register 10 is programmed.  
Figure 36 shows the input data format for programming this  
register.  
where ceiling() is a function to round up to the nearest integer.  
For example, for fPFD = 61.44 MHz, set ADC_CLK_DIV = 154  
so that the ADC clock frequency is 99.417 kHz. If ADC_CLK_DIV  
is greater than 255, set it to 255.  
Reserved  
Bits[DB31:DB14] are reserved. Bits[DB23:DB22] must be set to  
11, and all other bits in this range must be set to 0.  
ADC Conversion Enable  
AE2 (Bit DB5) ensures that the ADC performs a conversion  
when a write to Register 10 is performed. It is recommended to  
enable this mode.  
ADC Conversion Clock (ADC_CLK_DIV)  
An on-board analog-to-digital converter (ADC) is connected to  
a temperature sensor. It determines the VTUNE setpoint relative  
to the ambient temperature of the ADF4355-3 environment.  
The ADC ensures that the initial tuning voltage in any application  
is chosen correctly to avoid any temperature drift issues.  
ADC Enable  
AE1 (Bit DB4), when set to 1, powers up the ADC for the  
temperature dependent VTUNE calibration. It is recommended to  
always use this function.  
The ADC uses a clock that is equal to the output of the R  
counter (or the PFD frequency) divided by ADC_CLK_DIV.  
REGISTER 11  
The bits in this register are reserved and must be programmed  
as described in Figure 37, using a hexadecimal word of  
0x0081200B.  
AD8 to AD1 (Bits[DB13:DB6]) set the value of this divider. On  
power-up, the R counter is not programmed; however, in these  
power-up cases, it defaults to R = 1.  
Rev. B | Page 28 of 34  
 
 
 
 
Data Sheet  
ADF4355-3  
CONTROL  
BITS  
RESERVED  
RESYNC CLOCK  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
P13 P12  
P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1  
C1(0)  
C3(1) C2(0)  
0
0
0
0
0
1
0
1
0
0
0
0
P16 P15  
C4(1)  
P14  
P16  
0
0
0
.
P15  
...  
P5  
P4  
P3  
P2  
P1  
RESYNC CLOCK  
0
0
0
.
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
0
0
0
.
0
0
0
.
0
0
0
.
0
0
1
.
0
1
0
.
NOT ALLOWED  
1
2
...  
0
0
0
.
0
0
0
.
1
1
1
.
0
0
1
.
1
1
0
.
1
1
0
.
0
1
0
.
22  
23  
24  
...  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
65533  
65534  
65535  
Figure 38. Register 12  
14. Register 0.  
REGISTER 12  
Control Bits  
For fPFD > 75 MHz (initially lock with halved fPFD), use the  
following sequence:  
With Bits[C4:C1] set to 1100, Register 12 is programmed. Figure 38  
shows the input data format for programming this register.  
1. Register 12.  
2. Register 11.  
Phase Resync Clock Divider Value  
3. Register 10.  
4. Register 4 (with the R divider doubled to halve fPFD).  
5. Register 9.  
6. Register 8.  
7. Register 7.  
P16 to P1 (Bits[DB31:DB16]) set the timeout counter for  
activation of phase resync. This value must be set such that a  
the resync happens immediately after (and not before) the PLL  
achieves lock after reprogramming.  
Calculate the timeout value using the following equation:  
8. Register 6.  
Timeout Value = Phase Resync Clock/fPFD  
Reserved  
(12)  
9. Register 5.  
10. Register 4 (with the R divider doubled to halve fPFD).  
11. Register 3.  
12. Register 2 (for halved fPFD).  
13. Register 1 (for halved fPFD).  
14. Wait >16 ADC_CLK cycles. For example, if ADC_CLK =  
Bits[DB15:DB4] are reserved. Bit DB10 and Bit DB8 must be set  
to 1, but all other bits in this range must be set to 0.  
REGISTER INITIALIZATION SEQUENCE  
99.417 kHz, wait 16/99,417 sec = 161 μs. See the Register 10  
section for more information.  
15. Register 0 (for halved fPFD; autocalibration enabled).  
16. Register 4 (with the R divider set for desired fPFD).  
17. Register 2 (for desired fPFD).  
At initial power-up, after the correct application of voltages to  
the supply pins, the ADF4355-3 registers must be programmed  
in sequence. For f ≤ 75 MHz, use the following sequence:  
1. Register 12.  
2. Register 11.  
3. Register 10.  
4. Register 9.  
18. Register 1 (for desired fPFD).  
19. Register 0 (for desired fPFD; autocalibration disabled).  
5. Register 8.  
6. Register 7.  
7. Register 6.  
8. Register 5.  
9. Register 4.  
10. Register 3.  
11. Register 2.  
12. Register 1.  
13. Wait >16 ADC_CLK cycles. For example, if ADC_CLK =  
99.417 kHz, wait 16/99,417 sec = 161 μs. See the Register 10  
section for more information.  
Rev. B | Page 29 of 34  
 
 
 
ADF4355-3  
Data Sheet  
For example, in a universal mobile telecommunication system  
(UMTS) where 2112.8 MHz RF frequency output (RFOUT) is  
required, a 122.88 MHz reference frequency input (REFIN) is  
available. Note that the ADF4355-3 VCO operates in the  
frequency range of 3.3 GHz to 6.6 GHz. Therefore, RF divider  
FREQUENCY UPDATE SEQUENCE  
Frequency updates require updating the auxiliary modulator  
(MOD2) in Register 2, the fractional value (FRAC1) in Register 1,  
and the integer value (INT) in Register 0. It is recommended to  
perform a temperature dependent VTUNE calibration by updating  
Register 10 first. Therefore, for fPFD ≤ 75 MHz, the sequence  
must be as follows:  
of 2 must be used (VCO frequency = 4225.6 MHz, RFOUT  
=
VCO frequency/RF divider = 4225.6 MHz/2 = 2112.8 MHz).  
The feedback path is also important. In this example, the VCO  
output is fed back before the output divider (see Figure 39).  
1. Register 10.  
2. Register 2.  
In this example, the 122.88 MHz reference signal is divided by 2  
3. Register 1.  
to generate an fPFD value of 61.44 MHz. The desired channel  
spacing is 200 kHz.  
4. Wait >16 ADC_CLK cycles. For example, if ADC_CLK =  
99.417 kHz, wait 16/99,417 sec = 161 μs. See the Register 10  
section for more information.  
5. Register 0.  
fPFD  
RF  
OUT  
PFD  
VCO  
÷2  
For fPFD > 75 MHz (initially lock with halved fPFD), the sequence  
must be as follows:  
N
DIVIDER  
1. Register 10.  
Figure 39. Loop Closed Before Output Divider  
2. Register 4 (RDivider doubled for halved fPFD).  
3. Register 2 (for halved fPFD).  
The worked example is as follows:  
4. Register 1 (for halved fPFD).  
N = VCOOUT/fPFD = 4225.6 MHz/61.44 MHz =  
68.7760416666666667  
INT = int(VCO frequency/fPFD) = 68  
FRAC = 0.7760416666666667  
5. Wait >16 ADC_CLK cycles. For example, if ADC_CLK =  
99.417 kHz, wait 16/99,417 sec = 161 μs. See the Register 10  
section for more information.  
6. Register 0 (for halved fPFD; autocalibration enabled).  
7. Register 4 (RDivider set for desired fPFD).  
8. Register 2 (for desired fPFD).  
MOD1 = 16,777,216  
FRAC1 = int(MOD1 × FRAC) = 13,019,817  
Remainder = 0.6666666667 or 2/3  
MOD2 = fPFD/GCD(fPFD/fCHSP) = 61.44 MHz/GCD(61.44 MHz/  
200 kHz) = 1536  
9. Register 1 (for desired fPFD).  
10. Register 0 (for desired fPFD; autocalibration disabled).  
FRAC2 = remainder × 1536 = 1024  
The frequency change occurs only when writing to Register 0.  
RF SYNTHESIZER—A WORKED EXAMPLE  
From Equation 14,  
Use the following equations to program the ADF4355-3  
synthesizer:  
f
PFD = (122.88 MHz × (1 + 0)/2) = 61.44 MHz  
(15)  
(16)  
2112.8 MHz = 61.44 MHz × ((INT + (FRAC1 +  
FRAC2/MOD2)/224))/2  
FRAC2  
MOD2  
MOD1  
FRAC1+  
where:  
INT = 68  
FRAC1 = 13,019,817  
FRAC2 = 1024  
MOD2 = 1536  
INT +  
RFOUT  
where:  
=
× (fPFD)/RF Divider  
(13)  
RFOUT is the RF frequency output.  
INT is the integer division factor.  
FRAC1 is the fractionality.  
FRAC2 is the auxiliary fractionality.  
MOD2 is the auxiliary modulus.  
MOD1 is the fixed 24-bit modulus.  
RF Divider is the output divider that divides down the VCO  
frequency.  
REFERENCE DOUBLER AND REFERENCE DIVIDER  
The on-chip reference doubler allows the input reference signal  
to be doubled. The doubler is useful for increasing the PFD  
comparison frequency. To improve the noise performance of  
the system, increase the PFD frequency. Doubling the PFD  
frequency typically improves noise performance by 3 dB.  
f
PFD = REFIN × ((1 + D)/(R × (1 + T)))  
(14)  
The reference divide by 2 divides the reference signal by 2,  
resulting in a 50% duty cycle PFD frequency.  
where:  
REFIN is the reference frequency input.  
D is the RF REFIN doubler bit.  
R is the RF reference division factor.  
T is the reference divide by 2 bit (0 or 1).  
Rev. B | Page 30 of 34  
 
 
 
 
Data Sheet  
ADF4355-3  
SPURIOUS OPTIMIZATION AND FAST LOCK  
LOCK TIME  
Narrow loop bandwidths can filter unwanted spurious signals,  
but these bandwidths usually have a long lock time. A wider  
loop bandwidth achieves faster lock times but may lead to  
increased spurious signals inside the loop bandwidth.  
The PLL lock time divides into a number of settings. All of  
these settings are modeled in the ADIsimPLL design tool.  
Much faster lock times than those detailed in this data sheet are  
possible; contact Analog Devices, Inc., for more information.  
OPTIMIZING JITTER  
Synthesizer Lock Timeout  
For lowest jitter applications, use the highest possible PFD  
frequency to minimize the contribution of in-band noise from  
the PLL. Set the PLL filter bandwidth such that the in-band noise  
of the PLL intersects with the open-loop noise of the VCO,  
minimizing the contribution of both to the overall noise.  
The synthesizer lock timeout ensures that the VCO calibration  
DAC, which forces VTUNE, settles to a steady value for the band  
select circuitry.  
The timeout and synthesizer lock timeout variables programmed  
in Register 9 select the length of time the DAC is allowed to  
settle to the final voltage before the VCO calibration process  
continues to the next phase, which is VCO band selection. The  
PFD frequency is used as the clock for this logic, and the  
duration is set by  
Use the ADIsimPLL design tool for this task.  
SPUR MECHANISMS  
This section describes the two different spur mechanisms that  
arise with a fractional-N synthesizer and how to minimize them  
in the ADF4355-3.  
(Timeout × Synthesizer Lock Timeout)/fPFD  
The calculated time must be greater than or equal to 20 µs.  
VCO Band Selection  
(17)  
Integer Boundary Spurs  
One mechanism for fractional spur creation is the interactions  
between the RF VCO frequency and the reference frequency.  
When these frequencies are not integer related (the purpose of a  
fractional-N synthesizer), spur sidebands appear on the VCO  
output spectrum at an offset frequency that corresponds to the  
beat note or the difference in frequency between an integer  
multiple of the reference and the VCO frequency. These spurs  
are attenuated by the loop filter and are more noticeable on  
channels close to integer multiples of the reference where the  
difference frequency can be inside the loop bandwidth (thus  
the name, integer boundary spurs).  
Use the PFD frequency again as the clock for the band selection  
process. Calculate this value by  
fPFD/(VCO Band Selection × 16) < 150 kHz  
(18)  
The band selection takes 11 cycles of the previously calculated  
value. Calculate the duration by  
11 × (VCO Band Selection × 16)/fPFD  
(19)  
PLL Low-Pass Filter Settling Time  
The time taken for the loop to settle is inversely proportional to  
the low-pass filter bandwidth. The settling time is also modeled  
in the ADIsimPLL design tool.  
Reference Spurs  
Reference spurs are generally not a problem in fractional-N  
synthesizers because the reference offset is far outside the loop  
bandwidth. However, any reference feedthrough mechanism  
that bypasses the loop may cause a problem. Feedthrough of  
low levels of on-chip reference switching noise, through the  
prescaler back to the VCO, can result in reference spur levels  
as high as −80 dBc.  
The total lock time for changing frequencies is the sum of the  
three separate times (synthesizer lock, VCO band selection, and  
PLL settling time), all of which are modeled in the ADIsimPLL  
design tool.  
Rev. B | Page 31 of 34  
 
 
 
 
ADF4355-3  
Data Sheet  
APPLICATIONS INFORMATION  
The LO ports of the ADL5375 can be driven differentially from  
the complementary RFOUTA+/RFOUTA− outputs of the ADF4355-3.  
A differential drive gives better second-order distortion perfor-  
mance than a single-ended LO driver and eliminates the use of  
a balun to convert from a single-ended LO input to the more  
desirable differential LO input for the ADL5375.  
DIRECT CONVERSION MODULATOR  
Direct conversion architectures are used to implement base station  
transmitters. Figure 40 shows how to use Analog Devices devices to  
implement such a system.  
The circuit block diagram shows the AD9761 TxDAC® being  
used with the ADL5375. The use of a dual integrated DAC, such  
as the AD9761, ensures minimum error contribution (over  
temperature) from this portion of the signal chain.  
The ADL5375 accepts LO drive levels from −6 dBm to +6 dBm.  
The optimum LO power can be software programmed on the  
ADF4355-3, which allows levels from −4 dBm to +5 dBm from  
each output.  
The local oscillator (LO) is implemented using the ADF4355-3.  
The low-pass filter was designed using the ADIsimPLL design  
tool for a PFD of 61.44 MHz and a closed-loop bandwidth of  
20 kHz.  
The RF output is designed to drive a 50 Ω load; however, it  
must be ac-coupled, as shown in Figure 40. If the I and Q inputs  
are driven in quadrature by 2 V p-p signals, the resulting output  
power from the ADL5375 modulator is approximately 2 dBm.  
51  
51Ω  
REFIO  
IOUTA  
IOUTB  
LOW-PASS  
FILTER  
MODULATED  
DIGITAL  
DATA  
AD9761  
TxDAC  
QOUTA  
QOUTB  
LOW-PASS  
FILTER  
FSADJ  
51Ω  
51Ω  
2kΩ  
VVCO  
LOCK  
DETECT  
VDD  
16  
100nF  
25  
100nF  
2
32  
17  
26 10  
6
5
27  
4
30  
C
REG1  
CREG  
VVCO  
PDBRF VRF  
MUXOUT  
VP AV DD DVDD AV DD CE  
1nF 1nF  
1nF 1nF  
ADL5375  
IBBP  
FREFIN  
29  
REFIN  
A
B
RFOUTB+ 14  
IBBN  
VOUT  
RFOUTB–  
FREFIN  
15  
28  
REFIN  
7.5nH  
7.5nH  
1
2
3
CLK  
DATA  
LE  
1nF  
1nF  
LOIP  
LOIN  
11  
12  
RFOUTA+  
RFOUTA–  
QUADRATURE  
PHASE  
SPLITTER  
LPF  
LPF  
ADF4355-3  
RFOUT  
DSOP  
VTUNE 20  
CPOUT  
3.3kΩ  
QBBP  
QBBN  
22 RSET  
7
5.1kΩ  
33nF  
1500pF  
390pF  
1kΩ  
VREGVCO  
VBIAS  
24  
CPGND SDGND AGND AGNDRF AGNDVCO  
31 13 18 21  
VREF  
23  
8
9
19  
10pF  
0.1µF 10pF  
10pF  
0.1µF  
0.1µF  
Figure 40. Direct Conversion Modulator  
Rev. B | Page 32 of 34  
 
 
 
Data Sheet  
ADF4355-3  
Take care with the RF output traces to minimize discontinuities  
and ensure the best signal integrity. Via placement and grounding  
are critical.  
POWER SUPPLIES  
The ADF4355-3 contains four multiband VCOs that together cover  
an octave range of frequencies. To ensure best performance, it is  
vital to connect a low noise regulator, such as the ADM7150, to  
the VVCO pin. Connect the same regulator to VVCO, VREGVCO, VRF,  
and VP.  
OUTPUT MATCHING  
The low frequency output can simply be ac-coupled to the next  
circuit, if desired; however, if higher output power is required,  
use a pull-up inductor to increase the output power level.  
For the 3.3 V supply pins, use one or two ADM7150 regulators.  
Figure 42 shows the recommended connections.  
V
RF  
7.5nH  
100pF  
PRINTED CIRCUIT BOARD (PCB) DESIGN  
GUIDELINES FOR A CHIP-SCALE PACKAGE  
RF  
A+  
OUT  
50Ω  
The lands on the 32-lead lead frame chip-scale package are rectan-  
gular. The PCB pad for these lands must be 0.1 mm longer than the  
package land length and 0.05 mm wider than the package land  
width. Center each land on the pad to maximize the solder joint size.  
Figure 41. Optimum Output Stage  
When differential outputs are not needed, terminate the unused  
output or combine it with both outputs using a balun.  
The bottom of the chip-scale package has a central exposed thermal  
pad. The thermal pad on the PCB must be at least as large as the  
exposed pad. On the PCB, there must be a minimum clearance of  
0.25 mm between the thermal pad and the inner edges of the  
pad pattern. This clearance ensures the avoidance of shorting.  
For lower frequencies below 2 GHz, it is recommended to use a  
100 nH inductor on the RFOUTA+/RFOUTA− pins.  
The RFOUTA+/RFOUTA− pins are a differential circuit. Provide  
each output with the same (or similar) components where  
possible, such as the same shunt inductor value, bypass  
capacitor, and termination.  
To improve the thermal performance of the package, use thermal  
vias on the PCB thermal pad. If vias are used, incorporate them  
into the thermal pad at the 1.2 mm pitch grid. The via diameter  
must be between 0.3 mm and 0.33 mm, and the via barrel must  
be plated with 1 oz. of copper to plug the via.  
The auxiliary frequency output, RFOUTB+/RFOUTB−, can be  
treated the same as the RFOUTA+/RFOUTA− output. If unused,  
leave both RFOUTB+/RFOUTB− pins open.  
For a microwave PLL and VCO synthesizer, such as the ADF4355-3,  
take care with the board stack-up and layout. Do not use FR4  
material because it is too lossy above 3 GHz. Instead, Rogers 4350,  
Rogers 4003, or Rogers 3003 dielectric material is suitable.  
V
= 6.0V  
V
= 3.3V  
OUT  
IN  
OUT  
VIN  
EN  
VOUT  
C
IN  
C
ADM7150  
1µF  
ON  
1µF  
LOCK  
DETECT  
100nF  
100nF  
OFF  
REF  
BYP  
25  
CREG  
10  
VVCO VP VRF  
5
26  
17  
6
27  
4
32  
CREG  
16  
30  
C
BYP  
VREG  
REF_SENSE  
2
1
MUXOUT  
DVDD AVDD CE PDBRF  
AVDD  
1µF  
1nF 1nF  
1nF 1nF  
C
10µF  
REG  
FREFIN  
FREFIN  
GND  
29  
REFIN  
A
RFOUTB+ 14  
VOUT  
RFOUTB–  
15  
28 REFINB  
7.5nH  
7.5nH  
1
2
3
CLK  
DATA  
LE  
1nF  
1nF  
11  
12  
RFOUTA+  
RFOUTA–  
ADF4355-3  
V
= 6.0V  
V
= 3.3V  
IN  
OUT  
VIN  
VOUT  
VTUNE  
20  
7
C
1µF  
IN  
C
1µF  
OUT  
ADM7150  
1kΩ  
ON  
EN  
CPOUT  
22 RSET  
OFF  
5.1kΩ  
47nF  
REF  
2700pF  
680pF  
BYP  
C
1µF  
BYP  
360kΩ  
VREG  
REF_SENSE  
CPGND SDGND AGND AGNDRF AGNDVCO  
31 13 18 21  
VREGVCO VREF VBIAS  
19 23 24  
C
10µF  
REG  
8
9
GND  
10pF  
0.1µF 10pF  
0.1µF 10pF  
0.1µF  
Figure 42. Power Supplies  
Rev. B | Page 33 of 34  
 
 
 
 
ADF4355-3  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
S
INDIC ATOR AREA OPTION  
(SEE DETAIL A)  
25  
32  
24  
1
0.50  
BSC  
3.75  
3.60 SQ  
3.55  
EXPOSED  
PAD  
17  
8
16  
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5.  
Figure 43. 32-Lead Lead Frame Chip Scale Package [LFCSP]  
5 mm × 5 mm Body and 0.75 mm Package Height  
(CP-32-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADF4355-3BCPZ  
ADF4355-3BCPZ-RL7  
EV-ADF4355-3SD1Z  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
CP-32-12  
CP-32-12  
1 Z = RoHS Compliant Part.  
©2015–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13345-0-8/17(B)  
Rev. B | Page 34 of 34  
 
 

相关型号:

ADF4355-3BCPZ

Microwave Wideband Synthesizer with Integrated VCO
ADI

ADF4355-3BCPZ-RL7

Microwave Wideband Synthesizer with Integrated VCO
ADI

ADF4355-3_17

Microwave Wideband Synthesizer with Integrated VCO
ADI

ADF4355BCPZ

Microwave Wideband Synthesizer with Integrated VCO
ADI

ADF4355BCPZ-RL7

Microwave Wideband Synthesizer with Integrated VCO
ADI

ADF4355_17

Microwave Wideband Synthesizer with Integrated VCO
ADI

ADF4356

6.8 GHz Wideband Synthesizer with Integrated VCO
ADI

ADF4356BCPZ

6.8 GHz Wideband Synthesizer with Integrated VCO
ADI

ADF4356BCPZ-RL7

6.8 GHz Wideband Synthesizer with Integrated VCO
ADI

ADF4356_17

6.8 GHz Wideband Synthesizer with Integrated VCO
ADI

ADF4360-0

Integrated Synthesizer and VCO
ADI

ADF4360-0BCP

Integrated Synthesizer and VCO
ADI