ADF5902WCCPZ-RL7 [ADI]

24 GHz, ISM Band, Multichannel FMCW Radar Transmitter;
ADF5902WCCPZ-RL7
型号: ADF5902WCCPZ-RL7
厂家: ADI    ADI
描述:

24 GHz, ISM Band, Multichannel FMCW Radar Transmitter

ISM频段
文件: 总39页 (文件大小:498K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
24 GHz, ISM Band, Multichannel  
FMCW Radar Transmitter  
Data Sheet  
ADF5902  
FEATURES  
APPLICATIONS  
24 GHz to 24.25 GHz VCO (industrial, scientific, and medical  
(ISM) radio band)  
Automotive radars  
Industrial radars  
2-channel 24 GHz power amplifier with 8 dBm output  
Single-ended outputs  
2-channel muxed outputs with mute function  
Programmable output power  
LO output buffer  
RF frequency range: 24 GHz to 24.25 GHz  
Power control detector  
Auxiliary 8-bit ADC  
High and low speed FMCW ramp generation  
25-bit fixed modulus allows subhertz frequency resolution  
PFD frequencies up to 110 MHz  
Normalized phase noise floor of −222 dBc/Hz  
Programmable charge pump currents  
5ꢀC temperature sensor  
Microwave radar sensors  
GENERAL DESCRIPTION  
The ADF5902 is a 24 GHz transmitter (Tx) monolithic microwave  
integrated circuit (MMIC) with an on-chip, 24 GHz voltage  
controlled oscillator (VCO). The VCO features a fractional-N  
frequency synthesizer with waveform generation capability with  
programmable grid array (PGA) and dual transmitter channels  
for radar systems. The on-chip, 24 GHz VCO generates the  
24 GHz signal for the two transmitter channels and the local  
oscillator (LO) output. Each transmitter channel contains a  
power control circuit. There is also an on-chip temperature  
sensor.  
Control of all the on-chip registers is through a simple, 4-wire  
serial peripheral interface (SPI).  
4-wire SPI  
ESD performance  
HBM: 2000 V  
CDM: 250 V  
The ADF5902 comes in a compact, 32-lead, 5 mm × 5 mm  
LFCSP package.  
Qualified for automotive applications  
FUNCTIONAL BLOCK DIAGRAM  
TX_AHI  
DVDD  
RF_AHI  
AHI  
VCO_AHI  
CP_AHI  
R
SET  
C1  
C2  
VREG  
REGULATOR  
BIAS  
ADF5902  
CLK  
DATA  
LE  
32-BIT  
DATA  
REGISTER  
GND  
DVDD  
RDIV  
MUXOUT  
ADC OUTPUT  
READBACK  
CONTROL  
NDIV  
DOUT  
FREQUENCY COUNTER  
RAMP  
STATUS  
CE  
VCO  
CAL  
ADC  
TX  
TX  
1
2
OUT  
REF  
IN  
+
R DIVIDER  
N DIVIDER  
PHASE  
CHARGE  
PUMP  
FREQUENCY  
DETECTOR  
÷2  
OUT  
ADC  
TEMPERATURE  
THIRD-ORDER  
FRACTIONAL  
INTERPOLATOR  
ATEST  
SENSOR  
ADC  
RAMP  
GENERATION  
TX_DATA  
FMCW RAMP GENERATION PLL  
V
CP  
LO  
TUNE  
GND  
OUT  
OUT  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2018 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADF5902  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Register 6 ..................................................................................... 22  
Register 7 ..................................................................................... 23  
Register 8 ..................................................................................... 24  
Register 9 ..................................................................................... 24  
Register 10................................................................................... 25  
Register 11................................................................................... 25  
Register 12................................................................................... 26  
Register 13................................................................................... 27  
Register 14................................................................................... 28  
Register 15................................................................................... 29  
Register 16................................................................................... 30  
Register 17................................................................................... 30  
Applications Information.............................................................. 31  
Initialization Sequence .............................................................. 31  
Recalibration Sequence ............................................................. 32  
Temperature Sensor ................................................................... 33  
RF Synthesis: a Worked Example............................................. 33  
Reference Doubler...................................................................... 33  
Frequency Measurement Procedure........................................ 34  
Waveform Generation ............................................................... 34  
Waveform Deviations and Timing........................................... 34  
Ramp and Modulation............................................................... 35  
Application of the ADF5902 in FMCW Radar ...................... 37  
Outline Dimensions....................................................................... 39  
Ordering Guide .......................................................................... 39  
Automotive Products................................................................. 39  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 11  
Reference Input Section............................................................. 11  
RF INT Divider........................................................................... 11  
INT, FRAC, and R Relationship ............................................... 11  
R Counter .................................................................................... 11  
PFD and Charge Pump.............................................................. 11  
Input Shift Register..................................................................... 11  
Program Modes .......................................................................... 12  
Register Maps.................................................................................. 13  
Register 0 ..................................................................................... 16  
Register 1 ..................................................................................... 17  
Register 2 ..................................................................................... 18  
Register 3 ..................................................................................... 19  
Register 4 ..................................................................................... 20  
Register 5 ..................................................................................... 21  
REVISION HISTORY  
12/2018—Revision 0: Initial Version  
Rev. 0 | Page 2 of 39  
 
Data Sheet  
ADF5902  
SPECIFICATIONS  
AHI = TX_AHI = RF_AHI = VCO_AHI = DVDD = CP_AHI = 3.3 V 5ꢀ, GND = 0 V, dBm referred to 50 Ω, TA = TMAX to TMIN, unless  
otherwise noted. The operating temperature range is −40°C to +105°C.  
Table 1.  
Parameter  
Min  
24  
Typ  
Max  
24.25  
2.5  
Unit  
Test Conditions/Comments  
OPERATING CONDITIONS  
RF Frequency Range  
VCO CHARACTERISTICS  
VTUNE  
GHz  
0.5  
V
VTUNE Impedance  
VCO Phase Noise Performance  
At 100 kHz Offset  
At 1 MHz Offset  
At 10 MHz Offset  
Amplitude Noise  
Static Pulling VCO Frequency (fVCO) Change vs.  
Load  
Dynamic Pulling Transmitter On or Off Switch  
Change  
Dynamic Pulling Transmitter to Transmitter  
Switch Change  
Pushing fVCO Change vs. AHI Change  
Spurious Level Harmonics  
Spurious Level Nonharmonics  
POWER SUPPLIES  
100  
kΩ  
Closed-loop, 10 kHz loop filter  
−88  
−108  
−128  
−150  
2
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz At 1 MHz offset  
MHz  
MHz  
MHz  
Open-loop into 2:1 voltage standing wave ratio  
(VSWR) load  
Open-loop  
10  
5
Open-loop  
Open-loop  
5
MHz/V  
dBc  
dBc  
−30  
<−70  
AHI, TX_AHI, RF_AHI, VCO_AHI, DVDD, CP_AHI  
3.135  
3.3  
3.465  
12  
V
1
Total Current (ITOTAL  
)
190  
1.2  
mA  
mA  
μA  
Software Power-Down Mode  
Hardware Power-Down Mode  
TRANSMITTER OUTPUT  
Output Power  
Output Impedance  
On to Off Isolation  
Transmitter to Transmitter Isolation  
Power-Up/Power-Down Time  
LO OUTPUT  
200  
2
8
dBm  
Ω
dB  
dB  
ns  
50  
30  
25  
200  
Single transmitter output switched on to off  
Output Power  
Output Impedance  
On to Off Isolation  
−7  
−1  
50  
35  
+5  
dBm  
Ω
dB  
PHASE FREQUENCY DETECTOR (PFD)  
Phase Detector Frequency2  
CHARGE PUMP  
Charge Pump Current (ICP) Sink and Source  
Current  
110  
MHz  
mA  
Programmable  
High Value  
4.48  
RSET = 5.1 kΩ; RSET is a resistor to ground that sets  
the maximum charge pump output current  
Low Value  
Absolute Accuracy  
RSET Range  
ICP Tristate Leakage Current  
Sink and Source Matching  
ICP vs. VCP  
280  
2.5  
5.1  
1
2
2
μA  
%
kΩ  
nA  
%
RSET = 5.1 kΩ  
5.049  
5.151  
Sink and source current  
0.5 V < charge pump voltage (VCP) < CP_AHI − 0.6 V  
0.5 V < VCP < CP_AHI − 0.6 V  
VCP = CP_AHI/2  
%
ICP vs. Temperature  
2
%
Rev. 0 | Page 3 of 39  
 
ADF5902  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
NOISE CHARACTERISTICS  
Normalized Phase Noise Floor, Fractional-N  
−222  
−120  
dBc/Hz PLL loop bandwidth (BW) = 1 MHz  
Mode3  
4
Normalized 1/f Noise (PN1_f  
TEMPERATURE SENSOR  
Analog Accuracy  
)
dBc/Hz Measured at 10 kHz offset, normalized to 1 GHz  
5
5
°C  
°C  
Following one point calibration  
Following one point calibration  
Digital Accuracy  
Sensitivity  
6.4  
mV/°C  
ANALOG-TO-DIGITAL CONVERTER (ADC)  
Resolution  
8
Bits  
LSB  
LSB  
mV  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Least Significant Bit (LSB)  
REFIN CHARACTERISITICS  
REFIN Input Frequency  
1
1
7.4  
10  
260  
MHz  
−5 dBm minimum to +9 dBm maximum biased  
at AHI/2 (ac coupling ensures 1.8 ÷ 2 bias); for  
frequencies < 10 MHz, use a dc-coupled, CMOS-  
compatible square wave with a slew rate > 25 V/μs  
REFIN Input Capacitance2  
REFIN Input Current  
LOGIC INPUTS  
Input Voltage  
1.2  
100  
pF  
μA  
High (VIH)  
1.4  
V
Low (VIL)  
Input Current (IINH, IINL  
Input Capacitance (CIN)2  
0.6  
1
10  
V
μA  
pF  
)
LOGIC OUTPUTS  
Output Voltage  
5
High (VOH  
)
DVDD −  
0.4  
V
V
Low (VOL  
Output Current  
High (IOH  
Low (IOL  
)
0.4  
)
500  
500  
μA  
μA  
)
1 Following the initialization sequence described in the Initialization Sequence section, TA = 25°C, AHI = 3.3 V, fREFIN = 100 MHz, and RF = 24.025 GHz.  
2 Guaranteed by design. Sample tested to ensure compliance.  
3 This specification can be used to calculate phase noise for any application. Use the formula ((Normalized Phase Noise Floor) + 10 log(fPFD) + 20 logN) to calculate  
in-band phase noise performance as seen at the VCO output.  
4 The PLL phase noise is composed of flicker (1/f) noise plus the normalized PLL noise floor. The formula for calculating the 1/f noise contribution at an RF frequency (fRF)  
and at an offset frequency (f) is given by PN = PN1_f + 10 log(10 kHz/f) + 20 log(fRF/1 GHz). Both the normalized phase noise floor and flicker noise are modeled in ADIsimPLL.  
5 DVDD selected from the IO level bit (Bit DB11 in Register 3).  
Rev. 0 | Page 4 of 39  
Data Sheet  
ADF5902  
TIMING SPECIFICATIONS  
Write Timing Specifications  
AHI = TX_AHI = RF_AHI = VCO_AHI = DVDD = CP_AHI = 3.3 V 5ꢀ, GND = 0 V, dBm referred to 50 Ω, TA = TMIN to TMAX, unless  
otherwise noted. The operating temperature range is −40°C to +105°C.  
Table 2.  
Parameter  
Limit at TMIN to TMAX  
Unit  
Description  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
20  
10  
10  
25  
25  
10  
20  
10  
15  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns max  
LE setup time  
DATA to CLK setup time  
DATA to CLK hold time  
CLK high duration  
CLK low duration  
CLK to LE setup time  
LE pulse width  
LE setup time to DOUT  
CLK setup time to DOUT  
t4  
t5  
CLK  
t2  
t3  
DB2  
(CONTROL BIT C3)  
DB1  
(CONTROL BIT C2)  
DB0 (LSB)  
(CONTRO BIT C1)  
DB30  
DATA  
LE  
DB31 (MSB)  
7
1
6
DB31  
(MSB)  
DOUT  
DB30  
DB1  
DB0  
8
9
Figure 2. Write Timing Diagram  
500µA  
I
OL  
TO DOUT AND  
MUXOUT PINS  
DVDD/2  
C
L
10pF  
500µA  
I
OH  
Figure 3. Load Circuit for DOUT/MUXOUT Timing, CL = 10 pF  
Rev. 0 | Page 5 of 39  
 
 
 
ADF5902  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
The ADF5902 is a high performance RF integrated circuit with  
an ESD rating of 2 kV and is ESD sensitive. Take proper  
precautions for handling and assembly.  
Parameter  
Rating  
AHI to GND  
AHI to TX_AHI  
AHI to RF_AHI  
AHI to VCO_AHI  
AHI to DVDD  
AHI to CP_AHI  
VTUNE to GND  
Digital Input/Output Voltage to GND  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Reflow Soldering  
−0.3 V to +3.9 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +3.6 V  
−0.3 V to DVDD + 0.3 V  
−40°C to +105°C  
−65°C to +150°C  
150°C  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Table 4. Thermal Resistance  
1
2
Package Type  
CP-32-123  
θJA  
θJC  
26.86  
Unit  
48.18  
°C/W  
1 θJA is the natural convection junction-to-ambient thermal resistance  
measured in a one cubic foot sealed enclosure.  
2 θJC is the junction-to-case thermal resistance.  
3 Test Condition 1: thermal impedance simulated values are based on use of a  
PCB with the thermal impedance pad soldered to GND.  
Peak Temperature  
260°C  
40 sec  
Time at Peak Temperature  
Electrostatic Discharge (ESD)  
Charged Device Model (CDM)  
Human Body Model (HBM)  
ESD CAUTION  
250 V  
2000 V  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 6 of 39  
 
 
 
Data Sheet  
ADF5902  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND  
1
2
3
4
5
6
7
8
24 DOUT  
23  
22 DATA  
21 CLK  
20 CE  
TX  
1
LE  
OUT  
GND  
ADF5902  
TOP VIEW  
(Not to Scale)  
TX_AHI  
TX_AHI  
GND  
19  
TX_DATA  
TX  
2
18 VREG  
17 DVDD  
OUT  
GND  
NOTES  
1. THE EXPOSED PAD MUST BE CONNECTED TO GND.  
Figure 4. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic Description  
1, 3, 6, 8, 10, GND  
12, 13  
RF Ground. Tie all GND pins together.  
2
TXOUT  
1
24 GHz Transmitter Output 1.  
4, 5  
TX_AHI  
Voltage Supply for the Transmitter Section. Connect decoupling capacitors (0.1 ꢀF, 1 nF, and 10 pF) to the  
ground plane as close as possible to this pin. TX_AHI must be the same value as AHI.  
7
9
11  
14  
TXOUT  
ATEST  
LOOUT  
2
24 GHz Transmitter Output 2.  
Analog Test Output Pin.  
LO Output.  
Voltage Supply for the RF Section. Connect decoupling capacitors (0.1 ꢀF, 1 nF, and 10 pF) to the ground  
plane as close as possible to this pin. RF_AHI must be the same value as AHI.  
RF_AHI  
15  
REFIN  
Reference Input. This pin is a CMOS input with a nominal threshold of DVDD/2 and a dc equivalent input  
resistance of 100 kΩ. See Figure 17. This input can be driven from a TTL or CMOS crystal oscillator, or it can  
be ac-coupled.  
16  
17  
AHI  
Voltage Supply for the Analog Section. Connect decoupling capacitors (0.1 ꢀF, 1 nF, and 10 pF) to the  
ground plane as close as possible to this pin.  
Digital Power Supply. This supply may range from 3.135 V to 3.465 V. Place decoupling capacitors (0.1 ꢀF,  
1 nF, and 10 pF) to the ground plane as close as possible to this pin. DVDD must be the same value as AHI.  
DVDD  
18  
19  
VREG  
TX_DATA  
Internal 1.8 V Regulator Output. Connect a 220 nF capacitor to ground as close as possible to this pin.  
Transmit Data Pin. This pin controls some of the ramping functionality. Synchronize the rising edge of the  
TX_DATA signal to the rising edge of REFIN.  
20  
21  
CE  
CLK  
Chip Enable. A logic low on this pin powers down the device. Taking the pin high powers up the device.  
Serial Clock Input. This serial clock input clocks in the serial data to the registers. The data is latched into the  
32-bit shift register on the CLK rising edge. This input is a high impedance CMOS input.  
22  
23  
DATA  
LE  
Serial Data Input. The serial data is loaded MSB first with the four LSBs as the control bits. This input is a  
high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded to one of the  
18 latches with the latch selected via the control bits.  
24  
25  
26  
DOUT  
MUXOUT  
RSET  
Serial Data Output.  
Multiplexer Output. This multiplexer output allows various internal signals to be accessed externally.  
Resistor Setting Pin. Connecting a 5.1 kΩ resistor between this pin and GND sets an internal current. The  
nominal voltage potential at the RSET pin is 0.62 V.  
27  
28  
CP_AHI  
CPOUT  
Charge Pump Power Supply. This supply may range from 3.135 V to 3.465 V. Place decoupling capacitors  
(0.1 ꢀF, 1 nF, and 10 pF) to the ground plane as close as possible to this pin. CP_AHI must be the same value  
as AHI.  
Charge Pump Output. When the charge pump is enabled, this output provides ICP to the external loop  
filter, which, in turn, drives the VCO.  
Rev. 0 | Page 7 of 39  
 
ADF5902  
Data Sheet  
Pin No.  
29  
Mnemonic  
VTUNE  
Description  
Control Input to the VCO. This voltage determines the output.  
30  
VCO_AHI  
Voltage Supply for the VCO Section. Connect decoupling capacitors (0.1 ꢀF, 1 nF, and 10 pF) to the ground  
plane as close as possible to this pin. VCO_AHI must be the same value as AHI.  
31  
32  
C1  
C2  
EP  
Decoupling Capacitor 1. Place a 47 nF capacitor to ground as close as possible to this pin.  
Decoupling Capacitor 2. Place a 220 nF capacitor to ground as close as possible to this pin.  
Exposed Pad. The exposed pad must be connected to GND.  
Rev. 0 | Page 8 of 39  
Data Sheet  
ADF5902  
TYPICAL PERFORMANCE CHARACTERISTICS  
12  
6
4
10  
8
2
0
6
–2  
–4  
–6  
–8  
–40°C  
+25°C  
+105°C  
–40°C  
+25°C  
+105°C  
Tx1  
4
Tx2  
OUTSIDE OF SPECIFIED RANGE  
2
OUTSIDE OF SPECIFIED RANGE  
0
23.95  
24.00  
24.05  
24.10  
24.15  
24.20  
24.25  
24.30  
23.95  
24.00  
24.05  
24.10  
24.15  
24.20  
24.25  
24.30  
OUTPUT FREQUENCY (GHz)  
OUTPUT FREQUENCY (GHz)  
Figure 5. Transmitter (Tx) Output Power vs. Output Frequency  
Figure 8. LO Output Power vs. Output Frequency  
12  
10  
8
24.250  
24.200  
24.150  
24.100  
24.050  
24.000  
6
4
3.135V  
3.300V  
3.465V  
–40°C  
+25°C  
+105°C  
2
OUTSIDE OF SPECIFIED RANGE  
0
23.95  
24.00  
24.05  
24.10  
24.15  
24.20  
24.25  
24.30  
0
100  
200  
300  
400  
500  
600  
OUTPUT FREQUENCY (GHz)  
TIME (µs)  
Figure 6. Transmitter 1 (Tx1) Output Power Variation vs. Output Frequency  
with Temperature and Supply  
Figure 9. Triangular Ramp with Delay  
24.250  
24.200  
24.150  
24.100  
24.050  
24.000  
15  
–40°C  
10  
+25°C  
+105°C  
5
0
–5  
–10  
–15  
–20  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
100  
200  
300  
400  
500  
600  
TIME (µs)  
Tx AMPLITUDE CALIBRATION REFERENCE CODE  
Figure 7. Transmitter (Tx) Output Power vs. Transmitter (Tx) Amplitude  
Calibration Reference Code  
Figure 10. Dual Triangular Ramp  
Rev. 0 | Page 9 of 39  
 
 
ADF5902  
Data Sheet  
4
3
24.300  
24.250  
24.200  
24.150  
24.100  
24.050  
2
1
0
PUMP UP SETTING 7  
PUMP DOWN SETTING 7  
–1  
–2  
–3  
–4  
–5  
OUTSIDE OF SPECIFIED RANGE  
24.000  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
100  
200  
300  
400  
500  
600  
CHARGE PUMP VOLTAGE (V)  
TIME (µs)  
Figure 14. Charge Pump Output Characteristics, CP_AHI = 3.3 V, at 25°C  
Figure 11. Sawtooth Ramp  
–40  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
25°C,AHI = 3.3V, I = 2.24mA  
CP  
300kHz LOOP BW FILTER, fPFD = 100MHz  
–60  
–80  
–100  
–120  
–140  
–160  
–40°C  
+25°C  
+105°C  
0
100  
1k  
10k  
100k  
1M  
10M  
100M  
24.00  
24.05  
24.10  
24.15  
24.20  
24.25  
FREQUENCY OFFET (Hz)  
OUTPUT FREQUENCY (MHz)  
Figure 15. Closed-Loop Phase Noise on Transmitter 1 at 24.125 GHz  
Figure 12. VTUNE Frequency Range  
250  
0
–10  
1.8  
–20  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
200  
150  
100  
50  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
1k  
0
10k  
100k  
1M  
10M  
FREQUENCY OFFSET (Hz)  
TEMPERATURE (ºC)  
Figure 13. Open-Loop Phase Noise on Transmitter 1 Output at 24.125 GHz  
Figure 16. ATEST Voltage and ADC Code vs. Temperature  
Rev. 0 | Page 10 of 39  
Data Sheet  
ADF5902  
THEORY OF OPERATION  
R DIVIDER  
REFERENCE INPUT SECTION  
The reference input stage is shown in Figure 17. SW1 and SW2  
are normally closed switches. SW3 is normally open. When  
power-down is initiated, SW3 is closed and SW1 and SW2 are  
opened. This configuration ensures that there is no loading of  
the REFIN pin on power-down.  
5-BIT  
R
REF  
IN  
×2  
DOUBLER  
TO PFD/  
CAL BLOCK  
COUNTER  
÷2  
DIVIDER  
Figure 19. Reference Divider  
POWER-DOWN  
CONTROL  
R COUNTER  
1
100k  
NC  
The 5-bit R counter allows the input reference frequency (REFIN)  
to be divided down to supply the reference clock to the PFD  
and VCO calibration block. Division ratios from 1 to 32 are  
allowed.  
SW2  
1
NC  
REF  
IN  
TO R COUNTER  
BUFFER  
SW1  
SW3  
2
NO  
PFD AND CHARGE PUMP  
1
2
NC = NORMALLY CLOSED  
NO = NORMALLY OPEN  
The PFD receives inputs from the R counter and N counter and  
produces an output proportional to the phase and frequency  
difference between them. Figure 20 shows a simplified sche-  
matic of the PFD.  
Figure 17. Reference Input Stage  
RF INT DIVIDER  
The RF INT counter allows a division ratio in the RF feedback  
counter. Division ratios from 75 to 4095 are allowed.  
UP  
HIGH  
D1  
Q1  
U1  
CLR1  
INT, FRAC, AND R RELATIONSHIP  
+IN  
Generate the RF VCO frequency (RFOUT) using the INT and  
FRAC values in conjunction with the R counter, as follows:  
CHARGE  
PUMP  
CP  
U3  
DELAY  
DOWN  
RFOUT = fPFD × (INT + (FRAC/225)) × 2  
where:  
RFOUT is the output frequency of the internal VCO.  
PFD is the phase frequency detector (PFD) frequency.  
(1)  
CLR2  
D2 Q2  
HIGH  
–IN  
f
U2  
INT is the preset divide ratio of the binary 12-bit counter  
(75 to 4095).  
Figure 20. PFD Simplified Schematic  
FRAC is the numerator of the fractional division (0 to 225 − 1).  
The PFD includes a fixed delay element that sets the width of the  
antibacklash pulse, which is typically 1 ns. This pulse ensures that  
there is no dead zone in the PFD transfer function and provides  
a consistent reference spur level.  
f
PFD = REFIN × ((1 + D)/(R × (1 + T)))  
(2)  
where:  
REFIN is the reference input frequency.  
D is the REFIN doubler bit (0 or 1).  
R is the preset divide ratio of the binary, 5-bit, programmable  
reference counter (1 to 32).  
INPUT SHIFT REGISTER  
The ADF5902 digital section includes a 5-bit RF R counter,  
a 12-bit RF N counter, and a 25-bit FRAC counter. Data is  
clocked to the 32-bit input shift register on each rising edge of  
CLK. The data is clocked in MSB first. Data is transferred from  
the input shift register to one of 18 latches on the rising edge of  
LE. The destination latch is determined by the state of the five  
control bits (C5, C4, C3, C2, and C1) in the input shift register.  
These are the five LSBs (DB4, DB3, DB2, DB1, and DB0,  
respectively), as shown in Figure 2. Table 6 shows the truth table  
for these bits. Figure 21 and Figure 22 show a summary of how  
the latches are programmed.  
T is the REFIN divide by 2 bit (0 or 1).  
25  
RF N DIVIDER  
N = INT + FRAC/2  
TO PFD/  
CAL BLOCK  
FROM RF  
INPUT STAGE  
N COUNTER  
THIRD-ORDER  
FRACTIONAL  
INTERPOLATOR  
INT  
FRAC  
VALUE  
VALUE  
Figure 18. RF N Divider  
Rev. 0 | Page 11 of 39  
 
 
 
 
 
 
 
 
 
ADF5902  
Data Sheet  
value is latched into the device by writing to the appropriate  
register. Second, a new write must be performed on Register R5.  
PROGRAM MODES  
Table 6 and Figure 24 through Figure 42 show how to set up the  
program modes in the ADF5902.  
For example, updating the fractional value can involve a write to  
the 13 LSB bits in Register R6 and the 12 MSB bits in Register R5.  
Write to Register R6 first, followed by the write to Register R5.  
The frequency change begins after the write to Register R5.  
Double buffering ensures that the bits written to in Register R6  
do not take effect until after the write to Register R5.  
Several settings in the ADF5902 are double buffered. These  
include the LSB fractional value, R counter value (R divider),  
reference doubler, clock divider, RDIV2, and MUXOUT. This  
means that two events must occur before the device uses a new  
value for any of the double buffered settings. First, the new  
Table 6. C5, C4, C3, C2, and C1 Truth Table  
Control Bits  
C5 (DB4)  
C4 (DB3)  
C3 (DB2)  
C2 (DB1)  
C1 (DB0)  
Register  
R0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
Rev. 0 | Page 12 of 39  
 
 
Data Sheet  
ADF5902  
REGISTER MAPS  
REGISTER 0 (R0)  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
1
1
Tx2C Tx1C PVCO VCAL PADC PTx2 PTx1 PLO C5(0)  
C4(0) C3(0) C2(0) C1(0)  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
REGISTER 1 (R1)  
CONTROL  
BITS  
RESERVED  
Tx AMP CAL REF CODE  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
TAR7 TAR6 TAR5 TAR4 TAR3 TAR2 TAR1 TAR0 C5(0) C4(0) C3(0) C2(0) C1(1)  
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
REGISTER 2 (R2)  
ADC  
AVERAGE  
CONTROL  
RESERVED  
ADC CLOCK DIVIDER  
BITS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
AS  
AA0 AA0 AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0 C5(0) C4(0) C3(0) C2(1) C1(0)  
REGISTER 3 (R3)  
CONTROL  
BITS  
1
RESERVED  
READBACK CONTROL  
MUXOUT DBR  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
M3 M2 M1 M0 IOL RC5 RC4 RC3 RC2 RC1 RC0 C5(0) C4(0) C3(0) C2(1) C1(1)  
0
0
0
0
0
0
0
1
1
0
0
0
1
0
0
1
REGISTER 4 (R4)  
CONTROL  
BITS  
RAMP STATUS/ANALOG TEST BUS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
AB14 AB13 AB12 AB11 AB10  
0
0
0
0
0
0
0
0
0
0
0
0
AB9 AB8 AB7 AB6 AB5 AB4 AB3 AB2 AB1 AB0 C5(0) C4(0) C3(1) C2(0) C1(0)  
REGISTER 5 (R5)  
CONTROL  
RESERVED  
INTEGER WORD  
FRAC MSB WORD  
BITS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
RON N11 N10  
N9  
N8  
N7  
N6  
N5  
N4  
N3  
N2  
N1  
N0  
F24 F23  
F22 F21  
F20 F19  
F18 F17 F16 F15 F14 F13 C5(0) C4(0) C3(1) C2(0) C1(1)  
REGISTER 6 (R6)  
CONTROL  
BITS  
1
DBR  
RESERVED  
FRAC LSB WORD  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 F0 C5(0) C4(0) C3(1) C2(1) C1(0)  
1DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY THE WRITE TO REGISTER 5.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 21. Register Summary (Register 0 to Register 6)  
Rev. 0 | Page 13 of 39  
 
 
ADF5902  
Data Sheet  
REGISTER 7 (R7)  
CONTROL  
BITS  
1
R DIVIDER DBR  
1
RESERVED  
CLOCK DIVIDER  
DBR  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
RD2  
RD  
R4  
R3  
R2  
R1  
R0 C5(0)  
C4(0) C3(1) C2(1) C1(1)  
C1D3 C1D2 C1D1 C1D0  
0
0
0
0
0
MR  
1
C1D11C1D10 C1D9 C1D8 C1D7 C1D6 C1D5 C1D4  
REGISTER 8 (R8)  
CONTROL  
BITS  
FREQENCY CAL DIVIDER  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FC9 FC8 FC7 FC6 FC5 FC4 FC3 FC2 FC1 FC0 C5(0) C4(1) C3(0) C2(0) C1(0)  
REGISTER 9 (R9)  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
1
0
1
0
1
0
0
0
1
0
0
0
0
0
1
0
1
1
1
0
0
1
0
0
1
C5(0) C4(1) C3(0) C2(0) C1(1)  
REGISTER 10 (R10)  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
1
1
1
0
1
0
0
1
1
0
0
1
0
1
0
1
0
0
1
1
0
0
1
0
C5(0) C4(1) C3(0) C2(1) C1(0)  
REGISTER 11 (R11)  
RAMP  
MODE  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
SFT  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SDR  
0
RM1 RM0  
0
CR C5(0) C4(1) C3(0) C2(1) C1(1)  
REGISTER 12 (R12)  
1
DBR  
RESERVED  
RESERVED  
CHARGE PUMP  
CURRENT  
CONTROL  
BITS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
CC3 CC2 CC1 CC0 CTRI  
C5(0) C4(1) C3(1) C2(0) C1(0)  
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
1
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY THE WRITE TO REGISTER 5.  
Figure 22. Register Summary (Register 7 to Register 12)  
Rev. 0 | Page 14 of 39  
 
Data Sheet  
ADF5902  
REGISTER 13 (R13)  
CONTROL  
BITS  
CLOCK DIVIDER 2  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
LES CDM1 CDM0 C2D11C2D10 C2D9 C2D8 C2D7 C2D6 C2D5 C2D4 C2D3 C2D2 C2D1 C2D0 CDS1 CDS0 C5(0) C4(1) C3(1) C2(0) C1(1)  
REGISTER 14 (R14)  
DEVIATION  
SEL  
CONTROL  
BITS  
RESERVED  
DEVIATION OFFSET  
DEVIATION WORD  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
TDI  
DW10 DW9 DW8 DW7 DW6 DW5 DW4 DW3 DW2 DW1 DW0 C5(0)  
C4(1) C3(1) C2(1) C1(0)  
TRC  
0
0
0
DS1 DS0 DO3 DO2 DO1 DO0 DW15 DW14 DW13 DW12 DW11  
REGISTER 15 (R15)  
STEP  
SEL  
CONTROL  
BITS  
RESERVED  
STEP WORD  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
SS1 SS0 SW19 SW18 SW17 SW16 SW15 SW14 SW13 SW12 SW11 SW10 SW9 SW8 SW7 SW6 SW5 SW4 SW3 SW2 SW1 SW0 C5(0) C4(1) C3(1) C2(1) C1(1)  
REGISTER 16 (R16)  
DELAY  
SELECT  
CONTROL  
BITS  
RESERVED  
DELAY START WORD  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
DSL1 DSL0 TR1 RD DS11 DS10 DS9 DS8 DS7 DS6 DS5 DS4 DS3 DS2 DS1 DS0 C5(1) C4(0) C3(0) C2(0) C1(0)  
0
0
0
0
0
0
0
0
0
0
0
REGISTER 17 (R17)  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C5(1) C4(0) C3(0) C2(0) C1(1)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 23. Register Summary (Register 13 to Register 17)  
Rev. 0 | Page 15 of 39  
ADF5902  
Data Sheet  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
1
1
1
1
Tx2C Tx1C PVCO VCAL PADC PTx2 PTx1 PLO C5(0)  
C4(0) C3(0) C2(0) C1(0)  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
PLO PUP LO  
0
1
POWER DOWN LO  
POWER UP LO  
PTx1 PUP Tx1  
0
1
POWER DOWN Tx1  
POWER UP Tx1  
PTx2 PUP Tx2  
0
1
POWER DOWN Tx2  
POWER UP Tx2  
PADC PUP ADC  
0
1
POWER DOWN ADC  
POWER UP ADC  
Tx2C Tx2 AMP CAL  
0
1
NORMAL OPERATION  
Tx2 AMP CAL  
VCAL VCO CAL  
NORMAL OPERATION  
VCO FULL CAL  
0
1
Tx1C Tx1 AMP CAL  
0
1
NORMAL OPERATION  
Tx1 AMP CAL  
PVCO PUP VCO  
0
1
POWER DOWN VCO  
POWER UP VCO  
Figure 24. Register 0 (R0)  
VCO Calibration  
REGISTER 0  
Bit DB9 provides the control bit for frequency calibration of the  
VCO. Set this bit to 0 for normal operation. Setting this bit to 1  
performs a VCO frequency and amplitude calibration. Bit DB9  
is shown as VCO CAL in Figure 24.  
Control Bits  
With Bits[C5:C1] set to 00000, Register R0 is programmed.  
Figure 24 shows the input data format for programming this  
register.  
Power-Up ADC  
Reserved  
Bit DB8 provides the power-up bit for the ADC. Setting this bit  
to 0 performs a power-down of the ADC. Setting this bit to 1  
performs a power-up of the ADC. Bit DB8 is shown as PUP ADC  
in Figure 24.  
Bits[DB31:DB13] are reserved and must be set as shown in  
Figure 24.  
Transmitter 2 (Tx2) Amplitude Calibration  
Bit DB12 provides the control bit for amplitude calibration of  
the Tx2 output. Set this bit to 0 for normal operation. Setting  
this bit to 1 performs an amplitude calibration of the Tx2  
output. Bit DB12 is shown as Tx2 AMP CAL in Figure 24.  
Power-Up Tx2 Output  
Bit DB7 provides the power-up bit for the Tx2 output. Setting  
this bit to 0 performs a power-down of the Tx2 output. Setting  
this bit to 1 performs a power-up of the Tx2 output. Only one  
transmitter output can be powered up at any time, either Tx1  
(DB6) or Tx2 (DB7). Bit DB7 is shown as PUP Tx2 in Figure 24.  
Tx1 Amplitude Calibration  
Bit DB11 provides the control bit for amplitude calibration of  
the Tx1 output. Set this bit to 0 for normal operation. Setting  
this bit to 1 performs an amplitude calibration of the Tx1  
output. Bit DB11 is shown as Tx1 AMP CAL in Figure 24.  
Power-Up Tx1 Output  
Bit DB6 provides the power-up bit for the Tx1 output. Setting  
this bit to 0 performs a power-down of the Tx1 output. Setting  
this bit to 1 performs a power-up of the Tx1 output. Only one  
Tx output can be powered up at any time, either Tx1 (DB6) or  
Tx2 (DB7). Bit DB6 is shown as PUP Tx1 in Figure 24.  
Power-Up VCO  
Bit DB10 provides the power-up bit for the VCO. Setting this bit  
to 0 performs a power-down of the VCO. Setting this bit to 1  
performs a power-up of the VCO. Bit DB10 is shown as PUP  
VCO in Figure 24.  
Power-Up LO Output  
Bit DB5 provides the power-up bit for the LO output. Setting  
this bit to 0 performs a power-down of the LO output. Setting  
this bit to 1 performs a power-up of the LO output. Bit DB5 is  
shown as PUP LO in Figure 24.  
Rev. 0 | Page 16 of 39  
 
 
Data Sheet  
ADF5902  
CONTROL  
BITS  
Tx AMP CAL REF CODE  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
TAR7 TAR6 TAR5 TAR4 TAR3 TAR2 TAR1 TAR0 C5(0) C4(0) C3(0) C2(0) C1(1)  
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
TAR7 TAR6 .......... TAR1 TAR0  
Tx AMP CAL REF CODE  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
252  
253  
254  
255  
Figure 25. Register 1 (R1)  
Transmitter Amplitude Calibration Reference Code  
REGISTER 1  
Bits[DB12:DB5] set the transmitter amplitude calibration  
reference code for the two transmitter outputs during  
calibration. Calibrate the output power on the transmitter  
outputs from −20 dBm to 8 dBm by setting the transmitter  
amplitude calibration reference code (see Figure 7).  
Bits[DB12:DB5] are shown as Tx AMP CAL REF CODE  
in Figure 25.  
Control Bits  
With Bits[C5:C1] set to 00001, Register R1 is programmed.  
Figure 25 shows the input data format for programming this  
register.  
Reserved  
Bits[DB31:DB13] are reserved and must be set as shown in  
Figure 25.  
Rev. 0 | Page 17 of 39  
 
 
ADF5902  
Data Sheet  
ADC  
AVERAGE  
CONTROL  
BITS  
RESERVED  
ADC CLOCK DIVIDER  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
AS  
AA0 AA0 AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0 C5(0) C4(0) C3(0) C2(1) C1(0)  
AS  
0
ADC START  
AC7 AC6  
AC1  
AC0  
ADC CLOCK DIVIDER  
.
NORMAL OPERATION  
START ADC CONVERSION  
0
0
.
0
0
.
0
1
.
1
0
.
1
.
1
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
AA1 AA0  
ADC AVERAGE  
.
.
.
.
.
0
0
1
1
0
1
0
1
1
2
3
4
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
124  
125  
126  
127  
Figure 26. Register 2 (R2)  
ADC Start  
REGISTER 2  
Bit DB15 starts the ADC conversion. Setting this bit to 1 starts  
an ADC conversion.  
Control Bits  
With Bits[C5:C1] set to 00010, Register R2 is programmed.  
Figure 26 shows the input data format for programming this  
register.  
ADC Average  
Bits[DB14:DB13] program the ADC average, which is the  
number of averages of the ADC output (see Figure 26).  
Reserved  
Bits[DB31:DB16] are reserved and must be set as shown in  
Figure 26.  
ADC Clock Divider  
Bits[DB12:DB5] program the clock divider, which is used as the  
sampling clock for the ADC (see Figure 26). The output of the  
R divider block clocks the ADC clock divider. Program a  
divider value to ensure the ADC sampling clock is 1 MHz.  
Rev. 0 | Page 18 of 39  
 
 
Data Sheet  
ADF5902  
CONTROL  
BITS  
MUXOUT DBR1  
RESERVED  
READBACK CONTROL  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
1
1
0
0
0
1
0
0
1
M3 M2  
M1  
M0  
IOL RC5 RC4 RC3 RC2 RC1 RC0 C5(0) C4(0) C3(0) C2(1) C1(1)  
M3 M2 M1 M0  
MUXOUT  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
TRISTATE OUTPUT  
LOGIC HIGH  
LOGIC LOW  
R DIVIDER OUTPUT  
N DIVIDER OUTPUT  
RESERVED  
READBACK CONTROL  
RC5 RC4 RC3 RC2 RC1 RC0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
NONE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
REGISTER 0  
REGISTER 1  
REGISTER 2  
REGISTER 3  
REGISTER 4  
REGSITER 5  
REGISTER 6  
REGISTER 7  
REGISTER 8  
REGISTER 9  
REGISTER 10  
REGISTER 11  
REGISTER 12  
REGISTER 13 SEL = 0  
REGISTER 14 SEL = 0  
RESERVED  
CAL BUSY  
RESERVED  
RESERVED  
RESERVED  
R DIVIDER/2  
N DIVIDER/2  
RESERVED  
RESERVED  
RAMP STATUS TO MUXOIUT  
REGISTER 15 SEL = 0  
REGISTER 16 SEL = 0  
REGISTER 17  
1
DBR = DOUBLE-BUFFERED REGISTER.  
IOL  
0
IO LEVEL  
0
.
0
.
1
.
0
.
0
.
1
.
RESERVED  
1.8V LOGIC OUTPUTS  
3.3V LOGIC OUTPUTS  
ADC READBACK  
RESERVED  
0
1
1
0
0
1
1
.
.
.
.
.
.
1
0
0
1
1
0
FREQ READBACK  
.
0
0
0
0
0
1
1
1
.
.
.
.
.
RESERVED  
REGISTER 13 SEL = 1  
0
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
REGISTER 14 SEL = 1  
REGISTER 15 SEL = 1  
REGISTER 16 SEL = 1  
REGISTER 13 SEL = 2  
REGISTER 14 SEL = 2  
REGISTER 15 SEL = 2  
REGISTER 16 SEL = 2  
REGISTER 13 SEL = 3  
REGISTER 14 SEL = 3  
REGISTER 15 SEL = 3  
REGISTER 16 SEL = 3  
RESERVED  
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
0
1
1
1
0
0
1
0
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
Figure 27. Register 3 (R3)  
MUXOUT Control  
REGISTER 3  
Bits[DB15:DB12] control the on-chip multiplexer of the  
ADF5902. See Figure 27 for the truth table.  
Control Bits  
With Bits[C5:C1] set to 00011, Register R3 is programmed.  
Figure 27 shows the input data format for programming this  
register.  
Input/Output (I/O) Level  
Bit DB11 controls the DOUT logic levels. Setting this bit to 0  
sets the DOUT logic level to 1.8 V. Setting this bit to 1 sets the  
DOUT logic level to 3.3 V.  
Reserved  
Bits[DB31:DB16] are reserved and must be set as shown in  
Figure 27.  
Readback Control  
Bits[DB10:DB5] control the readback data to DOUT on the  
ADF5902. See Figure 27 for the truth table.  
Rev. 0 | Page 19 of 39  
 
 
ADF5902  
Data Sheet  
CONTROL  
BITS  
RESERVED  
RAMP STATUS/ANALOG TEST BUS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
AB14 AB13 AB12 AB11 AB10 AB9 AB8 AB7 AB6 AB5 AB4 AB3 AB2 AB1 AB0 C5(0) C4(0) C3(1) C2(0) C1(0)  
0
0
0
0
0
0
0
0
0
0
0
0
AB14 AB13 AB12 AB11 AB10 AB9 AB8 AB7 AB6 AB5 AB4 AB3 AB2 AB1 AB0  
ANALOG TEST BUS  
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0000  
0x00C0  
0x0100  
0x0503  
0x0903  
NONE  
RAMP COMPLETE TO MUXOUT  
RAMP DOWN TO MUXOUT  
TEMPERATURE SENSOR TO ATEST  
TEMPERATURE SENSOR TO ADC  
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
1
0
1
0
0
0
0
0
1
0
Figure 28. Register 4 (R4)  
Ramp Status/Analog Test Bus  
REGISTER 4  
Bits[DB19:DB5] control the analog test bus and the ramp status  
to MUXOUT (see Figure 28).  
Control Bits  
With Bits[C5:C1] set to 00100, Register R4 is programmed.  
Figure 28 shows the input data format for programming this  
register.  
The analog test bus allows access to internal test signals for the  
temperature sensor which can be connected to the ATEST pin  
or the internal ADC.  
Reserved  
Setting Bits DB[19:5] to 0 (no value) sets the ATEST pin to high  
impedance.  
Bits[DB31:DB20] are reserved and must be set as shown in  
Figure 28.  
For ramp status outputs on MUXOUT, the MUXOUT bits in  
Register R3 (Bits[DB15:DB12]) must be set to 1111 to access  
these modes.  
Rev. 0 | Page 20 of 39  
 
 
Data Sheet  
ADF5902  
CONTROL  
BITS  
RESERVED  
INTEGER WORD  
FRAC MSB WORD  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
RON N11 N10  
N9  
N8  
N7  
N6  
N5  
N4  
N3  
N2  
N1  
N0  
F24 F23  
F22 F21  
F20 F19  
F18 F17 F16 F15 F14 F13 C5(0) C4(0) C3(1) C2(0) C1(1)  
N11  
0
N10  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
N4  
N3  
N2  
0
0
0
.
N1  
0
0
1
.
N0  
0
1
0
.
INTEGER WORD  
FRAC MSB WORD  
(FRAC)*  
F24  
F23  
.......... F14  
F13  
0
0
0
.
0
0
0
.
0
0
0
.
NOT ALLOWED  
0
NOT ALLOWED  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
0
1
0
1
.
0
0
NOT ALLOWED  
1
.
...  
2
0
0
0
0
.
0
0
0
.
1
1
1
.
0
0
1
.
1
1
0
.
0
1
0
.
NOT ALLOWED  
3
0
75  
.
0
76  
.
.
.
.
.
.
...  
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
4093  
4094  
4095  
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
4092  
4093  
4094  
4095  
1
1
R1  
RAMP ON  
*THE FRAC VALUE IS MADE UP OF THE 12-BIT MSB STORED IN  
REGISTER R5, AND THE 13-BIT LSB REGISTER STORED IN  
0
1
RAMP DISABLED  
RAMP ENABLED  
REGISTER R6. FRAC VALUE = 13-BIT LSB + 12-BIT MSB × 213  
.
Figure 29. Register 5 (R5)  
When using the TX_DATA pin to trigger the ramp off in  
continuous ramp modes, the ramp stops at the initial frequency,  
a write to Register R6 is not required. When using the TX_  
DATA pin in single ramp modes, a write to Register R6 is not  
required prior to repeating the single ramp function.  
REGISTER 5  
Control Bits  
With Bits[C5:C1] set to 00101, Register R5 is programmed.  
Figure 29 shows the input data format for programming this  
register.  
12-Bit Integer Value (INT)  
Reserved  
These 12 bits (Bits[DB28:DB17]) set the INT value, which  
determines the integer part of the RF division factor. This INT  
value is used in Equation 5. See the RF Synthesis: a Worked  
Example section for more information. All integer values from 75  
to 4095 are allowed.  
Bits[DB31:DB30] are reserved and must be set as shown in  
Figure 29.  
Ramp On  
When Bit DB29 is set to 1, the ramp is started. When Bit DB29  
is set to 0, the ramp function is disabled.  
12-Bit MSB Fractional Value (FRAC)  
In continuous ramp modes, the ramp stops when Bit DB29 is  
set to 0. For applications that require the ramp to stop at the  
initial frequency, a write to Register R6 is required prior to  
disabling the ramp function. In single ramp modes, a write to  
Register R6 is required prior to repeating the single ramp  
function.  
Bits[DB16:DB5], together with Bits[DB17:DB5] (FRAC LSB  
word) in Register R6, control what is loaded as the FRAC value  
into the fractional interpolator. This FRAC value partially  
determines the overall RF division factor. It is also used in  
Equation 1. These 12 bits are the most significant bits (MSB) of  
the 25-bit FRAC value, and Bits[DB17:DB5] (FRAC LSB word)  
in Register R6 are the least significant bits (LSB). See the RF  
Synthesis: a Worked Example section for more information.  
Rev. 0 | Page 21 of 39  
 
 
ADF5902  
Data Sheet  
CONTROL  
BITS  
1
DBR  
RESERVED  
FRAC LSB WORD  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
F12  
F11 F10  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2 F1  
F0 C5(0) C4(0) C3(1) C2(1) C1(0)  
FRAC LSB WORD  
(FRAC)*  
F12  
F11  
.......... F1  
F0  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
8188  
8189  
8190  
8191  
*THE FRAC VALUE IS MADE UP OF THE 12-BIT MSB STORED IN  
REGISTER R5, AND THE 13-BIT LSB REGISTER STORED IN  
REGISTER R6. FRAC VALUE = 13-BIT LSB + 12-BIT MSB × 2  
1
13  
DBR = DOUBLE-BUFFERED REGISTER.  
.
Figure 30. Register 6 (R6)  
13-Bit LSB FRAC Value  
REGISTER 6  
These 13 bits (Bits[DB17:DB5]), together with Bits[DB16:DB5]  
(FRAC MSB word) in Register R5, control what is loaded as the  
FRAC value into the fractional interpolator. This FRAC value  
partially determines the overall RF division factor. It is also used  
in Equation 1. These 13 bits are the least significant bits (LSB)  
of the 25-bit FRAC value, and Bits[DB16:DB5] (FRAC MSB  
word) in Register R5 are the most significant bits (MSB). See  
the RF Synthesis: a Worked Example section for more  
information.  
Control Bits  
With Bits[C5:C1] set to 00110, Register R6 is programmed.  
Figure 30 shows the input data format for programming  
this register.  
Reserved  
Bits[DB31:DB18] are reserved and must be set as shown in  
Figure 30.  
Rev. 0 | Page 22 of 39  
 
 
Data Sheet  
ADF5902  
CONTROL  
BITS  
DBR1  
RESERVED  
CLOCK DIVIDER  
R DIVIDER DBR  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
RD2 RD R4 R3 R2 R1 R0 C5(0)  
C4(0) C3(1) C2(1) C1(1)  
0
C1D3 C1D2 C1D1 C1D0  
0
0
0
0
0
MR  
1
C1D11C1D10 C1D9 C1D8 C1D7 C1D6 C1D5 C1D4  
MR  
0
MASTER RESET  
RD2 RDIV2  
DISABLED  
ENABLED  
0
1
DISABLED  
ENABLED  
1
REF  
DOUBLER  
RD  
C1D11 C1D10 .......... C1D2 C1D0  
CLOCK DIVIDER (CLK1)  
0
1
DISABLED  
ENABLED  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
0
1
0
1
.
0
1
2
R4  
R3  
R1  
R0  
R DIVIDER (R)  
R2  
3
.
0
0
.
0
0
.
0
1
.
1
0
.
1
0
0
.
.
.
.
.
.
2
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
4092  
4093  
4094  
4095  
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
28  
29  
30  
31  
1
1
1
1
1DBR = DOUBLE-BUFFERED REGISTER.  
Figure 31. Register 7 (R7)  
Divide by 2 (RDIV2)  
REGISTER 7  
Setting the DB11 bit to 1 inserts a divide by 2 toggle flip flop  
between the R counter and VCO calibration block.  
Control Bits  
With Bits[C5:C1] set to 00111, Register R7 is programmed.  
Figure 31 shows the input data format for programming  
this register.  
Reference Doubler  
Setting DB10 to 0 feeds the REFIN signal directly to the 5-bit  
R counter, disabling the doubler. Setting this bit to 1 multiplies  
the REFIN frequency by a factor of 2 before the REFIN signal is  
fed to the 5-bit R counter. When the doubler is disabled, the  
REFIN falling edge is the active edge at the PFD input to the  
fractional synthesizer. When the doubler is enabled, both the  
rising and falling edges of REFIN become active edges at the  
PFD input.  
Reserved  
Bits[DB31:DB26] are reserved and must be set as shown in  
Figure 31.  
Master Reset  
Bit DB25 provides a master reset bit for the device. Setting this  
bit to 1 performs a reset of the device and all register maps.  
Setting this bit to 0 returns the device to normal operation.  
When the reference doubler is enabled, for optimum phase  
noise performance, it is recommended to only use charge pump  
current settings of 0b0000 to 0b0111, that is, 0.28 mA to 2.24 mA  
in Register 12. In this case, the best practice is to design the loop  
filter for a charge pump current of 1.12 mA or 1.4 mA and then  
use the programmable charge pump current to adjust the  
frequency response.  
Clock Divider  
Bits[DB23:DB12] controls the clock divider (CLK1) value (see  
Figure 31). The CLK1 value sets a divider for the VCO frequency  
calibration. Load the divider such that PFD frequency (fPFD)/  
CLK1 is less than or equal to 25 kHz.  
For example, for fPFD = 50 MHz, set CLK1 = 2048 so that fPFD  
CLK1 < 25 kHz.  
/
The maximum allowable REFIN frequency when the doubler is  
enabled is 50 MHz.  
The CLK1 value is also used to determine the duration of the  
time step in ramp mode. See the Ramp and Modulation section  
for more information.  
5-Bit R Divider  
The 5-bit R counter allows the input reference frequency  
(REFIN) to be divided down to produce the reference clock to  
the VCO calibration block. Division ratios from 1 to 31 are  
allowed.  
Rev. 0 | Page 23 of 39  
 
 
 
ADF5902  
Data Sheet  
CONTROL  
BITS  
FREQENCY CAL DIVIDER  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
FC9 FC8 FC7 FC6 FC5 FC4 FC3 FC2 FC1 FC0 C5(0) C4(1) C3(0) C2(0) C1(0)  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FREQUENCY CAL  
FC9 FC8  
...  
...  
...  
...  
...  
...  
...  
...  
...  
FC4 FC3 FC2 FC1 FC0  
DIVIDER  
0
0
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
1
.
0
1
0
.
0
1
2
...  
.
.
.
.
.
.
.
...  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
1021  
1023  
1024  
Figure 32. Register 8 (R8)  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
1
0
1
0
1
0
0
0
1
0
0
0
0
0
1
0
1
1
1
0
0
1
0
0
1
C5(0) C4(1) C3(0) C2(0) C1(1)  
Figure 33. Register 9 (R9 0x2A20B929)  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C5(0) C4(1) C3(0) C2(0) C1(1)  
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
1
0
0
1
0
0
1
Figure 34. Register 9 (R9 0x2800B929)  
frequency calibration divider is less than or equal to 100 kHz  
(see Figure 32).  
REGISTER 8  
Control Bits  
REGISTER 9  
With Bits[C5:C1] set to 01000, Register R8 is programmed.  
Figure 32 shows the input data format for programming this  
register.  
The bits in Register 9 are reserved and must be programmed as  
shown in Figure 32 using a hexadecimal word of 0x2A20B929,  
prior to the VCO calibration.  
Reserved  
The bits in Register 9 must be programmed as described in  
Figure 32, using a hexadecimal word of 0x2800B929 for normal  
operation.  
Bits[DB31:DB15] are reserved and must be set as shown in  
Figure 32.  
Frequency Calibration Divider  
See the Applications Information section for more information.  
Bits[DB14:DB5] set a divider for the VCO frequency calibration  
clock. Load the divider such that the PFD frequency (fPFD)/  
Rev. 0 | Page 24 of 39  
 
 
 
Data Sheet  
ADF5902  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
1
1
1
0
1
0
0
1
1
0
0
1
0
1
0
1
0
0
1
1
0
0
1
0
C5(0) C4(1) C3(0) C2(1) C1(0)  
Figure 35. Register 10 (R10 0x1D32A64A)  
RAMP  
MODE  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
SDR SFT RM1 RM0 CR C5(0) C4(1) C3(0) C2(1) C1(1)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CR CNTR RESET  
0
1
DISABLED  
ENABLED  
SDR SD RESET  
0
1
ENABLED  
DISABLED  
SING FULL TRI  
DISABLED  
SFT  
0
1
ENABLED  
RM1 RM0 RAMP MODE  
0
0
1
1
0
1
0
1
CONTINUOUS SAWTOOTH  
SINGLE SAWTOOTH BURST  
CONTINUOUS TRIANGULAR  
SINGLE RAMP BURST  
Figure 36. Register 11 (R11)  
Single Full Triangle  
REGISTER 10  
When Bit DB9 is set to 1, the single full triangle function is  
enabled. When Bit DB9 is set to 0, this function is disabled. To  
use the single full triangle function, ramp mode (Register 11,  
Bits DB[8:7]) must be set to 0b11, single sawtooth burst. For  
more information, see the Ramp and Modulation section.  
The bits in Register 10 are reserved and must be programmed  
as shown in Figure 35 using a hexadecimal word of 0x1D32A64A.  
REGISTER 11  
Control Bits  
With Bits[C5:C1] set to 01011, Register R11 is programmed.  
Figure 36 shows the input data format for programming this  
register.  
Ramp Mode  
Bits[DB8:DB7] determine the type of generated waveform (see  
Figure 36). For more information, see the Ramp and  
Modulation section.  
Reserved  
Bits[DB31:DB12], Bit DB10, and Bit DB6 are reserved and must  
be set as shown in Figure 36.  
Counter Reset  
Bit DB5 provides a counter reset bit for the counters. Setting  
this bit to 1 performs a counter reset of the device counters.  
Setting this bit to 0 returns the device to normal operation.  
Bit DB5 is shown as CNTR RESET in Figure 36.  
SD Reset  
For most applications, set Bit DB11 to 0. When this bit is set to 0,  
the Σ-Δ (SD) modulator is reset on each write to Register R5. If  
it is not required that the SD modulator be reset on each write to  
Register R5, set this bit to 1.  
Rev. 0 | Page 25 of 39  
 
 
 
 
ADF5902  
Data Sheet  
1
DBR  
RESERVED  
RESERVED  
CHARGE PUMP  
CURRENT  
CONTROL  
BITS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
CC3 CC2 CC1 CC0  
CTRI  
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
C5(0) C4(1) C3(1) C2(0) C1(0)  
CP  
CTRI  
TRISTATE  
0
1
DISABLED  
ENABLED  
I
(mA)  
CP  
CC3  
CC2  
CC1  
CC0  
5.1k  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.28  
0.56  
0.84  
1.12  
1.40  
1.68  
1.96  
2.24  
2.52  
2.80  
3.08  
3.36  
3.64  
3.92  
4.20  
4.48  
1
DBR = DOUBLE-BUFFERED REGISTER.  
Figure 37. Register 12 (R12)  
Charge Pump Current Setting  
REGISTER 12  
Bits[DB20:DB17] set the charge pump current (see Figure 37). Set  
these bits to the charge pump current that the loop filter is  
designed with. The best practice is to design the loop filter for a  
charge pump current of 2.24 mA or 2.52 mA and then use the  
programmable charge pump current to adjust the frequency  
response. See the Reference Doubler section for information on  
setting the charge pump current when the doubler is enabled.  
Control Bits  
With Bits[C5:C1] set to 01100, Register R12 is programmed.  
Figure 37 shows the input data format for programming this  
register.  
Reserved  
Bits[DB31:DB21] and Bit DB16 are reserved and must be set as  
shown in Figure 37.  
Charge Pump Tristate  
When Bit DB15 is set to 1, the charge pump is placed in tristate  
mode. For normal charge pump operation, set this bit to 0.  
Rev. 0 | Page 26 of 39  
 
 
Data Sheet  
ADF5902  
CONTROL  
BITS  
CLOCK DIVIDER 2  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
LES CDM1 CDM0 C2D11C2D10 C2D9 C2D8 C2D7 C2D6 C2D5 C2D4 C2D3 C2D2 C2D1 C2D0 CDS1 CDS0 C5(0) C4(1) C3(1) C2(0) C1(1)  
LES  
0
LE SEL  
LE FROM PIN  
LE SYNC WITH REF  
1
CDS1 CDS0  
CLK DIV SEL  
IN  
0
0
LOAD CLK DIV 0  
0
1
1
1
0
1
LOAD CLK DIV 1  
LOAD CLK DIV 2  
LOAD CLK DIV 3  
CDM1 CDM0 CLOCK DIVIDER MODE  
0
0
1
1
0
1
0
1
CLOCK DIVIDER OFF  
RESERVED  
FREQ MEASUREMENT  
RAMP DIVIDER  
C2D11C2D10  
C2D1 C2D0  
CLOCK DIVIDER 2 (CLK2)  
0
0
0
0
.
0
0
0
0
.
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
4092  
4093  
4094  
4095  
Figure 38. Register 13 (R13)  
Clock Divider Mode  
REGISTER 13  
Bits[DB20:DB19] are used to enable ramp divider mode. When  
using any of the ramp modes, set Bits[CDM1:CDM0] to 11.  
Otherwise, set these bits to 0b00.  
Control Bits  
With Bits[C5:C1] set to 01101, Register R13 is programmed.  
Figure 38 shows the input data format for programming this  
register.  
12-Bit Clock Divider (CLK2) Value  
Bits[DB18:DB7] program the clock divider (CLK2) timer when  
the device operates in ramp mode (see the Ramp and  
Modulation section).  
Reserved  
Bits[DB31:DB22] are reserved and must be set as shown in  
Figure 38.  
Clock Divider Select  
LE Select  
Bits[DB6:DB5] select the segment of the ramp CLK2 is used (see  
Figure 38). For more information, see the Ramp and Modulation  
section. Bits[DB6:DB5] are shown as CLK DIV SEL in Figure 38.  
In some applications, it is necessary to synchronize the LE pin  
with the reference signal. To perform this synchronization,  
Bit DB21 must be set to 1. Synchronization is performed  
internally on the device.  
Rev. 0 | Page 27 of 39  
 
 
ADF5902  
Data Sheet  
DEVIATION  
SEL  
CONTROL  
BITS  
DEVIATION OFFSET  
DEVIATION WORD  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
TDI DW10 DW9 DW8 DW7 DW6 DW5 DW4 DW3 DW2 DW1 DW0 C5(0)  
C4(1) C3(1) C2(1) C1(0)  
TRC  
0
0
0
DS1 DS0 DO3 DO2 DO1 DO0 DW15 DW14 DW13 DW12 DW11  
TDI Tx_DATA INV  
0
1
DISABLED  
DW15 DW14 ...  
DW1 DW0  
DEVIATION WORD  
ENABLED  
0
.
1
.
...  
...  
1
.
1
.
32,767  
.
TX RAMP CLK  
DO3 DO3 DO1 DO0 DEV OFFSET  
TRC  
0
0
0
0
1
1
1
0
3
2
...  
...  
0
0
0
.
0
0
0
.
0
0
1
.
0
1
0
.
0
1
2
.
0
1
CLK DIV  
Tx_DATA PIN  
...  
0
0
0
0
0
0
1
0
1
0
...  
...  
...  
1
1
1
.
1
1
1
.
1
1
0
.
1
0
1
.
–1  
–2  
.
.
.
.
.
0
1
1
1
0
0
1
1
0
1
7
8
9
3
...  
...  
...  
0
0
.
1
0
0
0
–32,768  
DS1  
DS0  
DEVIATION SEL  
0
0
1
1
0
1
0
1
LOAD DEVIATION 0  
LOAD DEVIATION 1  
LOAD DEVIATION 2  
LOAD DEVIATION 3  
Figure 39. Register 14 (R14)  
TX_DATA Ramp Clock  
REGISTER 14  
When Bit DB30 is set to 0, the clock divider clock is used to  
clock the ramp. When Bit DB30 is set to 1, the TX_DATA pin  
is used to clock the ramp.  
Control Bits  
With Bits[C5:C1] set to 01110, Register R14 is programmed.  
Figure 39 shows the input data format for programming this  
register.  
Deviation Select  
Bits[DB26:DB25] select the deviation word to be loaded (see  
Figure 39).  
Reserved  
Bits[DB29:DB27] are reserved and must be set as shown in  
Figure 39.  
4-Bit Deviation Offset Word  
Bits DB[24:21] determine the deviation offset word. The  
deviation offset word affects the deviation resolution (see the  
Ramp and Modulation section).  
TX_DATA Invert  
When Bit DB31 is set to 0, events triggered by TX_DATA occur  
on the rising edge of the TX_DATA pulse. When Bit DB31 is set  
to 1, events triggered by TX_DATA occur on the falling edge of  
the TX_DATA pulse.  
16-Bit Deviation Word  
Bits[DB20:DB5] determine the signed deviation word in twos  
complement format. The deviation word defines the deviation  
step (see the Ramp and Modulation section).  
Rev. 0 | Page 28 of 39  
 
 
Data Sheet  
ADF5902  
STEP  
SEL  
CONTROL  
BITS  
RESERVED  
STEP WORD  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
SS1 SS0 SW19 SW18 SW17 SW16 SW15 SW14 SW13 SW12 SW11 SW10 SW9 SW8 SW7 SW6 SW5 SW4 SW3 SW2 SW1 SW0 C5(0) C4(1) C3(1) C2(1) C1(1)  
SS1 SS0  
STEP SEL  
...  
SW19 SW18  
SW1 SW0  
STEP WORD  
0
0
1
1
0
1
0
1
LOAD STEP 0  
LOAD STEP 1  
LOAD STEP 2  
LOAD STEP 3  
0
0
0
0
.
0
0
0
0
.
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
1,048,572  
1,048,573  
1,048,574  
1,048,575  
Figure 40. Register 15 (R15)  
Step Select  
REGISTER 15  
Bits[DB26:DB25] select the step word to be loaded (see Figure 40).  
Control Bits  
With Bits[C5:C1] set to 01111, Register R15 is programmed.  
Figure 40 shows the input data format for programming this  
register.  
20-Bit Step Word  
Bits[DB22:DB3] determine the step word. The step word is the  
number of steps in the ramp (see the Ramp and Modulation  
section).  
Reserved  
Bits[DB31:DB27] are reserved and must be set as shown in  
Figure 40.  
Rev. 0 | Page 29 of 39  
 
 
ADF5902  
Data Sheet  
CONTROL  
BITS  
RESERVED  
DEL SEL  
DELAY START WORD  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
DSL1 DSL0  
0
TR1  
RD  
DS11 DS10 DS9 DS8 DS7 DS6 DS5 DS4 DS3 DS2 DS1 DS0 C5(1) C4(0) C3(0) C2(0) C1(0)  
DS11 DS10  
...  
DS1  
DS0  
DELAY START WORD  
0
0
0
0
.
0
0
0
0
.
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
0
0
1
1
.
0
1
0
1
.
0
1
2
TR1 TX DATA TRIGGER  
3
0
1
DISABLED  
ENABLED  
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
4092  
4093  
4094  
4095  
DSL1 DSL0  
DELAY SELECT  
0
0
1
1
0
1
0
1
LOAD DELAY 0  
LOAD DELAY 1  
LOAD DELAY 2  
LOAD DELAY 3  
RD  
RAMP DEL  
0
1
DISABLED  
ENABLED  
Figure 41. Register 16 (R16)  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C5(1) C4(0) C3(0) C2(0) C1(1)  
0
0
Figure 42. Register 17 (R17)  
When Bit DB20 is set to 0, this function is disabled.  
REGISTER 16  
Control Bits  
When activating continuous triangular or continuous sawtooth  
ramps, a pulse applied to the TX_DATA pin is required after  
Bit DB29 of Register 5 is toggled high. To stop the continuous  
triangular or sawtooth ramps, a TX_DATA pulse is required  
after Bit DB29 of Register 5 is toggled low.  
With Bits[C5:C1] set to 10000, Register R16 is programmed.  
Figure 41 shows the input data format for programming this  
register.  
Reserved  
When Bit DB20 is set to 0, this function is disabled.  
Bits[DB31:DB25], Bits[DB22:DB21], and Bits[DB18:DB17] are  
reserved and must be set as shown in Figure 41.  
Ramp Delay  
When Bit DB19 is set to 1, the delay between ramps function is  
enabled. When Bit DB19 is set to 0, this function is disabled.  
Delay Select  
Bits[DB24:DB23] select the delay word to be loaded.  
TX_DATA Trigger  
12-Bit Delay Word  
Bits[DB16:DB5] determine the delay word. The delay word  
determines the duration of the ramp start delay.  
When Bit DB20 is set to 1, a logic high on the TX_DATA pin  
activates the ramp in conjunction with Bit DB29 of Register 5.  
Synchronize the active edge of the pulse applied to the TX_  
DATA pin to the rising edge of the REFIN reference input.  
REGISTER 17  
The bits in Register 17 are reserved and must be programmed  
as described in Figure 42 using a hexadecimal word of  
0x00000011.  
The pulse duration applied to the TX_DATA pin must be a  
minimum width of 4 × 1/fPFD, where fPFD is the phase frequency  
detector (PFD) frequency.  
Rev. 0 | Page 30 of 39  
 
 
 
 
Data Sheet  
ADF5902  
APPLICATIONS INFORMATION  
This sequence locks the VCO to 24.025 GHz with a 100 MHz  
reference. The ramp-up rate is 200 MHz at 144 μs. The ramp-  
down rate is 200 MHz at 9 μs.  
INITIALIZATION SEQUENCE  
After powering up the device, administer the programming  
sequence shown in Table 7.  
Table 7. Initialization Sequence  
Step  
Register  
Hexadecimal Code  
0x02000007  
0x0000002B  
0x0000000B  
0x0018000D  
0x1D32A64A  
0x2A20B929  
0x40003E88  
0x800FE520  
Description  
1
2
3
4
5
6
7
8
R7  
Master reset  
Reset the counters  
Enable counters  
Enable ramp divider  
R11  
R11  
R13  
R10  
R9  
Reserved  
VCO calibration setup  
Set the VCO frequency calibration divider clock to 100 kHz  
Power up the device and LO  
R8  
R0  
Delay of 10 μs  
9
10  
11  
12  
13  
14  
15  
16  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
0x01800827  
0x00000006  
0x01E38005  
0x00000004  
0x01897803  
0x00020642  
0xFFF7FFE1  
0x800FE720  
PFD = 50 MHz, CLK1 = 2048  
Set the LSB FRAC = 0  
N = 241.175  
Set the ATEST pin to high impedance  
Sets the I/O level to 3.3 V, CAL_BUSY to MUXOUT  
Set ADC clock to 1 MHz  
Set the transmitter amplitude level  
Start the VCO frequency calibration  
Delay of 1200 μs  
17  
18  
R0  
R0  
0x800FE560  
0x800FED60  
Turn Tx1 on, Tx2 off, and LO on  
Tx1 amplitude calibration  
Delay of 500 μs  
19  
20  
R0  
R0  
0x800FE5A0  
0x800FF5A0  
Turn Tx1 off, Tx2 on, and LO on  
Tx2 amplitude calibration  
Delay of 500 μs  
21  
22  
23  
24  
25  
26  
27  
28  
R17  
R16  
R15  
R15  
R15  
R15  
R14  
R14  
0x00000011  
0x00000010  
0x0000120F  
0x0200012F  
0x0400120F  
0x0600012F  
0x012038EE  
0x033C720E  
Reserved  
Ramp delay register  
Load step register with STEP_SEL = 0, step word is 144  
Load step register with STEP_SEL = 1, step word is 9  
Load step register with STEP_SEL = 2, step word is 144  
Load step register with STEP_SEL = 3, step word is 9  
Load deviation register with DEV_SEL = 0, DEV = 455, DEV offset = 9  
Load deviation register with DEV_SEL = 1, dev word= −1820, DEV  
offset = 9  
29  
30  
R14  
R14  
0x052038EE  
0x73C720E  
Load deviation register with DEV_SEL = 2, dev word = 455, dev offset = 9  
Load deviation register with DEV_SEL = 3, dev word = −1820 dev  
offset = 9  
31  
32  
33  
34  
35  
36  
37  
38  
R13  
R13  
R13  
R13  
R12  
R9  
R7  
R6  
R5  
R4  
0x0018050D  
0x0018052D  
0x0018054D  
0x0018056D  
0x004F000C  
0x2800B929  
0x0100A027  
0x00000006  
0x00F04005  
0x00002004  
0x0189F803  
Load the clock register with CLK DIV SEL = 0, CLK2_0 = 10  
Load the clock register with CLK DIV SEL = 1, CLK2_1 = 10  
Load the clock register with CLK DIV SEL = 2, CLK2_2 = 10  
Load the clock register with CLK DIV SEL = 3, CLK2_3 = 10  
Charge pump current = 2.24 mA  
Normal Operation  
PFD = 100 MHz, CLK1 = 10  
Set the LSB FRAC = 0  
INT =120, MSB FRAC = 512; lock to 24.025 GHz  
Ramp down to MUXOUT  
39  
40  
41  
R3  
I/O voltage level to 3.3 V  
Delay of 100 μs  
42  
R11  
0x0000010B  
Select ramp mode  
Rev. 0 | Page 31 of 39  
 
 
 
ADF5902  
Data Sheet  
temperature can be monitored using the temperature sensor  
(see the Temperature Sensor section).  
RECALIBRATION SEQUENCE  
The ADF5902 can be recalibrated after the initialization sequence  
is complete and the device is powered up. The recalibration  
sequence must be run for every 10°C temperature change. The  
Table 8. Recalibration Sequence  
Step Number from  
Initialization Sequence  
Register  
R0  
Hexadecimal Code  
0x800FE500  
0x2A20B929  
0x01800827  
0x00000006  
0x01E38005  
0x00000004  
0x01897803  
0x00020642  
0xFFF7FFE1  
0x800FE700  
Description  
Turn Tx1 off, Tx2 off and LO off  
Reserved  
PFD = 50 MHz, CLK1 = 2048  
Set the LSB FRAC = 0  
6
9
R9  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
10  
11  
12  
13  
14  
15  
N = 241.175  
Set the ATEST pin to high impedance  
I/O level to 3.3 V, CAL_BUSY to MUXOUT  
Set ADC clock to 1 MHz  
Set the transmitter amplitude level  
Start the VCO frequency calibration  
R0  
Delay of 1200 μs  
17  
18  
R0  
R0  
0x800FE560  
0x800FED60  
Turn Tx1 on, Tx2 off, and LO on  
Tx1 amplitude calibration  
Delay of 500 μs  
19  
20  
R0  
R0  
0x800FE5A0  
0x800FF5A0  
Turn Tx1 off, Tx2 on, and LO on  
Tx2 amplitude calibration  
Delay of 500 μs  
36  
37  
38  
39  
R9  
R7  
R6  
R5  
0x2800B929  
0x0100A027  
0x00000006  
0x00F04005  
Reserved  
PFD set to 100 MHz, CLK_DIV1 = 10  
Set the LSB FRAC = 0  
Set INT word to 120, set MSB FRAC = 512; lock to  
24.025 GHz  
40  
41  
R4  
R3  
0x00002004  
0x0189F803  
Ramp down to MUXOUT  
I/O voltage level to 3.3 V  
Delay of 100 μs  
42  
R11  
0x0000010B  
Select ramp mode  
Rev. 0 | Page 32 of 39  
 
Data Sheet  
ADF5902  
RF SYNTHESIS: A WORKED EXAMPLE  
TEMPERATURE SENSOR  
The following equation governs how to program the ADF5902:  
RFOUT = (INT + (FRAC/225)) × fREF × 2  
(5)  
where:  
RFOUT is the RF frequency output.  
INT is the integer division factor.  
FRAC is the fractionality.  
The ADF5902 has an on-chip temperature sensor that can be  
accessed on the ATEST pin or as a digital word on DOUT  
following an ADC conversion. The temperature sensor operates  
over the full operating temperature range of −40°C to +105°C.  
The accuracy can be improved by performing a one-point  
calibration at room temperature and storing the result in  
memory.  
f
REF = REFIN × ((1 + D)/(R × (1 + T)))  
(6)  
With the temperature sensor on the analog test bus and test bus  
connected to the ATEST pin (Register 4 set to 0x0000A064), the  
ATEST voltage can be converted to temperature with the  
following equation:  
where:  
REFIN is the reference frequency input.  
D is the reference doubler bit, DB10 in Register R7 (0 or 1).  
R is the reference division factor.  
VATEST VOFF  
Temperature (C)   
(3)  
T is the reference divide by 2 bit, DB11 in Register R7 (0 or 1).  
VGAIN  
For example, in a system where a 24.125 GHz RF frequency  
output (RFOUT) is required and a 100 MHz reference frequency  
input (REFIN) is available, fREF is set to 50 MHz.  
where:  
V
V
V
ATEST is the voltage on the ATEST pin.  
OFF = 0.699 V, the offset voltage.  
GAIN = 6.4 × 10−3, the voltage gain.  
From Equation 6,  
f
REF = (100 MHz × (1 + 0)/(1 × (1 + 1)) = 50 MHz  
From Equation 5,  
24.125 GHz = 50 MHz × (N + FRAC/225) × 2  
The temperature sensor result can be converted to a digital  
word with the ADC and readback on DOUT with the following  
sequence:  
1. Write 0x00012064 to Register R4 to connect the analog test  
bus to the ADC and the temperature sensor to the analog  
test bus.  
2. Write 0x0002A802 to Register R2 to start the ADC  
conversion.  
3. Write 0x0189FAC3 to Register R3 to set the ADC output  
data to DOUT.  
4. Read back DOUT.  
Calculating the N and FRAC values,  
N = int(RFOUT/(fREF × 2)) = 241  
FRAC = FMSB × 213 + FLSB  
F
F
MSB = int(((RFOUT/(fREF × 2)) − N) × 212) = 1024  
LSB = int(((((RFOUT/(fREF × 2)) − N) × 212) − FMSB) × 213) = 0  
where:  
FMSB is the 12-bit MSB FRAC value in Register R5.  
FLSB is the 13-bit LSB FRAC value in Register R6.  
5. Write 0x00002064 to Register R4 to reset Register R4 to the  
initial value.  
int() makes an integer of the argument in parentheses.  
6. Write 0x00020642 to Register R2 to reset Register R2 to the  
initial value.  
REFERENCE DOUBLER  
The on-chip reference doubler allows the input reference signal to  
be doubled. This doubling is useful for increasing the PFD compar-  
ison frequency. Doubling the PFD frequency typically improves  
the noise performance of the system by 3 dB.  
Convert the DOUT word to temperature with the following  
equation:  

ADC VLSB  
VOFF  
Temperature (C)   
(4)  
VGAIN  
where:  
ADC is the ADC code read back on DOUT.  
V
V
V
LSB = 7.33 mV, the ADC LSB voltage.  
OFF = 0.699 V, the offset voltage.  
GAIN = 6.4 × 10−3, the voltage gain.  
Rev. 0 | Page 33 of 39  
 
 
 
ADF5902  
Data Sheet  
FREQUENCY MEASUREMENT PROCEDURE  
Use the following procedure to measure the output locked  
frequency of the ADF5902:  
1. In Register R3, set the readback control bits  
(Bits[DB10:DB5]) to 26.  
2. Read back the frequency counter value on DOUT and  
record this value as Frequency 1 (see Figure 3).  
3. In Register R7, set the CLK1 bits (Bits[DB23:DB12]) to  
1808.  
TIME  
Figure 44. Single Triangular Burst  
4. In Register R13, set the CLK2 bits (Bits[DB18:DB7]) to 10.  
5. In Register R5, set the ramp on bit (Bit DB29) to 0.  
6. In Register R13, Set the clock divider mode bits  
(Bits[DB20:DB19]) to 2.  
7. Allow a minimum delay of 428 μs (CLKDIV/fPFD (sec)).  
8. In Register R3, set the readback control bits  
(Bits[DB10:DB5]) to 26.  
TIME  
Figure 45. Single Sawtooth Burst  
9. Read back the frequency counter value on DOUT and  
record this value as Frequency 2.  
Where Frequency 1 > Frequency 2,  
Frequency Counter Value Delta = (216 Frequency 1) +  
Frequency 2.  
TIME  
Where Frequency 2 > Frequency 1,  
Figure 46. Continuous Sawtooth Ramp  
Frequency Counter Value Delta = Frequency 2 − Frequency 1.  
10. Calculate the output frequency using the following formula:  
Output Frequency = (Frequency Counter Value Delta/  
CLKDIV) × fPFD × NDIV × 2  
where:  
CLKDIV = ((CLK2 × 212) + CLK1).  
TIME  
f
N
PFD = fREF/RDIV  
.
Figure 47. Continuous Triangular Ramp  
DIV = INT value + (FRAC value/(225)).  
WAVEFORM DEVIATIONS AND TIMING  
11. Set Register R13 and Register R7 back to the original  
settings and enable the ramp function in Register R5 if  
required.  
TIMER  
fDEV  
WAVEFORM GENERATION  
The ADF5902 is capable of generating five types of waveforms  
in the frequency domain: single ramp burst, single triangular  
burst, single sawtooth burst, continuous sawtooth ramp, and  
continuous triangular ramp. Figure 43 through Figure 47 show  
the types of waveforms available.  
TIME  
Figure 48. Waveform Timing  
The key parameters that define a ramp are  
Frequency deviation  
Time per step  
Number of steps  
TIME  
Figure 43. Single Ramp Burst  
Rev. 0 | Page 34 of 39  
 
 
 
 
 
Data Sheet  
ADF5902  
Frequency Deviation  
There are numerous ramp shapes available (see the Waveform  
Generation section). Depending on the chosen shape, some or  
all of the ramp slopes must be programmed. Figure 49 shows  
what must be programmed for each shape. The slope being  
programmed is controlled by  
The frequency deviation for each frequency hop is set by  
f
DEV = (fPFD/225) × (DEV × 2DEV_OFFSET  
where:  
PFD is the PFD frequency.  
DEV is a 16-bit word (Bits[DB20:DB5] in Register R14).  
)
(7)  
f
CLK DIV SEL (Register R13, Bits[DB6:DB5]).  
DEV SEL (Register R14, Bits[DB26:DB25]).  
Step SEL (Register R15, Bits[DB26:DB25]).  
DEV_OFFSET is a 4-bit word (Bits[DB24:DB21] in Register R14).  
Time per step  
Typically, each register must be written multiple times, one time  
for each slope.  
The time between each frequency hop is set by  
Timer = CLK1 × CLK2 × (1/fPFD  
)
(8)  
The frequency deviation for each step of a slope is set by  
where:  
f
DEV = (fPFD/225) × (DEV × 2DEV_OFFSET  
)
CLK1 and CLK2 are the 12-bit clock values (12-bit CLK1 divider in  
Register R7 and 12-bit CLK2 divider in Register R13).  
where:  
f
DEV is the frequency deviation of a step.  
Bits[DB20:DB19] in Register R13 must be set to 11 for ramp  
divider.  
f
PFD is the PFD frequency.  
DEV is the deviation value (Register R14, Bits[DB20:DB5]).  
DEV_OFFSET is the deviation offset (Register R14,  
Bits[DB24:DB21]).  
f
PFD is the PFD frequency.  
Either CLK1 or CLK2 must be greater than 1, that is, CLK1 =  
CLK2 = 1 is not allowed.  
The time for each step of a slope is set by  
Number of Steps  
Timer = CLK1 × CLK2 × (1/fPFD  
where:  
Timer is the time per step.  
)
A 20-bit step value (Bits[DB24:DB5] in Register R15) defines  
the number of frequency hops that take place. The INT value  
cannot be incremented by more than 28 = 256 from its starting  
value.  
CLK1 is the CLK1 value (Register R7, Bits[23:12]).  
CLK2 is the CLK2 value (Register R13, Bits[18:7]).  
RAMP AND MODULATION  
CLK1 is common to all slopes.  
All ramps are generated according to the scheme shown in  
Figure 49. The total ramp is separated into four sections. Each  
section consists of a delay section and a slope section. Each  
slope is made up of one or more steps. Each step has a  
programmed frequency deviation and step time.  
The number of steps per slope is programmed in Register R15,  
Bits[DB24:DB5].  
When programming the registers for a ramp, write the registers  
in descending order. Then write to Register R5 to enable the  
ramp (Register R5, Bit DB29 = 1) must be last.  
Rev. 0 | Page 35 of 39  
 
ADF5902  
Data Sheet  
DELAY 1  
DELAY 3  
DELAY 0  
DELAY 2  
DELAY 0  
TIME  
SLOPE 3  
STEP SELECT (REG 15, BITS[DB26:DB25]) = 0b11  
STEP WORD (REG 15, BITS[DB24:DB5]) = X  
DEV SELECT (REG 14, BITS[DB26:DB25]) = 0b11  
DEV OFFSET (REG 14, BITS[DB24:DB21]) = X  
DEV WORD (REG 14, BITS[DB20:DB5]) = –X (NOTE: NEGATIVE)  
DELAY 0  
CLK DIV MODE (REG 13, BITS[DB20:DB19]) = 0b11  
DELAY SELECT (REG 16, BITS[DB24:DB23]) = 0b00  
RAMP DELAY (REG 16, BITS[DB19]) = 1  
DELAY WORD (REG 16, BITS[DB16:DB5]) = X  
CLK DIVIDER (REG 13, BITS[DB18:DB7]) = X  
2
CLK DIV SELECT (REG 13, BITS[DB6:DB5]) = 0b11  
2
DELAY 3  
DELAY SELECT (REG 16, BITS[DB24:DB23]) = 0b11  
RAMP DELAY (REG 16, BITS[DB19]) = 1  
SLOPE 0  
STEP SELECT (REG 15, BITS[DB26:DB25]) = 0b00  
STEP WORD (REG 15, BITS[DB24:DB5]) = X  
DELAY WORD (REG 16, BITS[DB16:DB5]) = X  
SLOPE 2  
STEP SELECT (REG 15, BITS[DB26:DB25]) = 0b10  
STEP WORD (REG 15, BITS[DB24:DB5]) = X  
DEV SELECT (REG 14, BITS[DB26:DB25]) = 0b00  
DEV OFFSET (REG 14, BITS[DB24:DB21]) = X  
DEV WORD (REG 14, BITS[DB20:DB5]) = X  
DELAY 2  
DELAY SELECT (REG 16, BITS[DB24:DB23]) = 0b10  
RAMP DELAY (REG 16, BITS[DB19]) = 1  
DELAY WORD (REG 16, BITS[DB16:DB5]) = X  
DEV SELECT (REG 14, BITS[DB22:DB25]) = 0b10  
DEV OFFSET (REG 14, BITS[DB24:DB21]) = X  
DEV WORD (REG 14, BITS[DB20:DB5]) = X  
CLK DIV MODE (REG 13, BITS[DB20:DB19]) = 0b11  
CLK2 DIVIDER (REG 13, BITS[DB18:DB7]) = X  
CLK2 DIV SELECT (REG 13, BITS[DB6:DB5]) = 0b00  
CLK DIV MODE (REG 13, BITS[DB20:DB19]) = 0b11  
SLOPE 1  
CLK DIVIDER (REG 13, BITS[DB18:DB7]) = X  
STEP SELECT (REG 15, BITS[DB26:DB25]) = 0b01  
STEP WORD (REG 15, BITS[DB24:DB5]) = X  
2
CLK DIV SELECT (REG 13, BITS[DB6:DB5]) = 0b10  
2
DEV SELECT (REG 14, BITS[DB26:DB25]) = 0b01  
DEV OFFSET (REG 14, BITS[DB24:DB21]) = X  
DEV WORD (REG 14, BITS[DB20:DB5]) = –X (NOTE: NEGATIVE)  
DELAY 1  
DELAY SELECT (REG 16, BITS[DB24:DB23]) = 0b01  
RAMP DELAY (REG 16, BITS[DB19]) = 1  
DELAY WORD (REG 16, BITS[DB16:DB5]) = X  
CLK DIV MODE (REG 13, BITS[DB20:DB19]) = 0b11  
CLK DIVIDER (REG 13, BITS[DB18:DB7]) = X  
2
CLK DIV SELECT (REG 13, BITS[DB6:DB5]) = 0b01  
2
NOTES  
- ALL DELAYS ARE OPTIONAL.  
- SINGLE RAMP BURST:  
- DELAY 0 TO DELAY 3 ARE ENABLED BY REG 16, BITS[DB19].  
- RAMP MODE (R11BITS[DB8:DB7]) MUST BE SET TO 0b11.  
- SLOPE 0 MUST BE PROGRAMMED.  
- CONTINUOUS SAWTOOTH RAMP:  
- RAMP MODE (REG 11, BITS[DB8:DB7]) MUST BE SET TO 0b00.  
- SLOPE 0 AND 2 MUST BE PROGRAMMED (EVEN  
IF SLOPE 0 AND SLOPE 2 ARE THE SAME).  
- SINGLE TRIANGULAR RAMP:  
- RAMP MODE (REG 11, BITS[DB8:DB7]) MUST BE SET TO 0b11.  
- SLOPE 0 AND SLOPE 1 MUST BE PROGRAMMED.  
- SING FULL TRI (REG 11, BIT[DB9]) = 1.  
- CONTINUOUS TRIANGULAR RAMP:  
- RAMP MODE (REG 11, BITS[DB8:DB7]) MUST BE SET TO 0b10.  
- SLOPE 0, SLOPE 1, SLOPE 2, AND SLOPE 3 MUST BE PROGRAMMED.  
- WHEN PROGRAMMING SLOPE 1 OR SLOPE 3, DEV WORD  
MUST BE NEGATIVE TO DECREASE THE FREQUENCY.  
- SINGLE SAWTOOTH RAMP:  
- RAMP MODE (REG 11, BITS[DB8:DB7]) MUST BE SET TO 0b01.  
- SLOPE 0 MUST BE PROGRAMMED.  
- NEGATIVE VALUES ARE TWOS COMPLEMENT BINARY.  
- X = DON’T CARE.  
Figure 49. Ramp Sections  
Rev. 0 | Page 36 of 39  
 
Data Sheet  
ADF5902  
Ramp Complete and Ramp-Down Signals to MUXOUT  
External Control of Ramp Steps  
Figure 50 shows the ramp complete signal on MUXOUT.  
The internal ramp clock can be bypassed and each step can be  
triggered by a pulse on the TX_DATA pin. This process allows  
transparent control of each step. Enable this feature by setting  
Bit DB30 in Register R14 to 1.  
RF  
TIME  
OUT  
TIME  
TX_DATA  
TIME  
TIME  
Figure 50. Ramp Complete Signal on MUXOUT  
To activate this function, set Bits[DB15:DB12] in Register R3  
to 1111, and set Bits[DB19:DB5] in Register R4 to 0x00C0.  
Figure 52. External Control of Ramp Steps  
Figure 51 shows the ramp-down signal on MUXOUT.  
APPLICATION OF THE ADF5902 IN FMCW RADAR  
Figure 53 shows the application of the ADF5902 in a frequency  
modulated continuous wave (FMCW) radar system.  
In the FMCW radar system, the ADF5902 generates the  
sawtooth or triangle ramps necessary for this type of radar to  
operate.  
TIME  
The ADF5902 CPOUT pin controls the VTUNE pin on the ADF5902  
transmitter MMIC and thus the frequency of the VCO and the  
transmitter output signal on TXOUT1 or TXOUT2. The LO signal  
from the ADF5902 is fed to the LO input on the ADF5904.  
The ADF5904 downconverts the signal from the four receiver  
antennas to baseband with the LO signal from the transmitter  
MMIC.  
TIME  
Figure 51. Ramp-Down Signal on MUXOUT  
To activate this function, set Bits[DB15:DB12] in Register R3  
to 1111, and set Bits[DB19:DB5] in Register R4 to 0x0100.  
The downconverted baseband signals from the four receiver  
channels on the ADF5904 are fed to the ADAR7251 4-channel,  
continuous time, Σ-Δ ADC.  
A digital signal processor (DSP) follows the ADC to handle the  
target information processing.  
Rev. 0 | Page 37 of 39  
 
 
 
ADF5902  
Data Sheet  
LOOP FILTER  
CP  
V
TUNE  
OUT  
TX  
TX  
1
2
OUT  
ADF5902  
OUT  
LO  
OUT  
LO_IN  
RX1_RF  
RX2_RF  
RX3_RF  
RX4_RF  
DSP  
ADAR7251  
Rx BASEBAND  
ADF5904  
Figure 53. FMCW Radar with the ADF5902  
Rev. 0 | Page 38 of 39  
 
Data Sheet  
ADF5902  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
25  
32  
TIONS  
INDIC ATOR AREA OP  
(SEE DETAIL A)  
24  
1
0.50  
BSC  
3.75  
3.60 SQ  
3.55  
EXPOSED  
PAD  
17  
8
16  
9
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5  
Figure 54. 32-Lead Lead Frame Chip Scale Package [LFCSP]  
5 mm × 5 mm Body and 0.75 mm Package Height  
(CP-32-12)  
ORDERING GUIDE  
Model1  
ADF5902WCCPZ  
ADF5902WCCPZ-RL7  
EV-ADF5902SD1Z  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option  
CP-32-12  
CP-32-12  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
AUTOMOTIVE PRODUCTS  
The ADF5902W models are available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for these models.  
©2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16746-0-12/18(0)  
Rev. 0 | Page 39 of 39  
 
 
 

相关型号:

ADF5904

4-Channel, 24 GHz,Receiver Downconverter
ADI

ADF5904ACPZ

4-Channel, 24 GHz, Receiver Downconverter
ADI

ADF5904ACPZ-RL7

4-Channel, 24 GHz, Receiver Downconverter
ADI

ADF5904WCCPZ

4-Channel, 24 GHz,Receiver Downconverter
ADI

ADF5904WCCPZ-RL7

4-Channel, 24 GHz,Receiver Downconverter
ADI

ADF6-10-03.5-L-4-1

Board Stacking Connector, 40 Contact(s), 4 Row(s), Female, Straight, 0.025 inch Pitch, Surface Mount Terminal, Locking, Black Insulator, Socket,
SAMTEC

ADF6-10-03.5-LTL-4-1

Board Stacking Connector, 40 Contact(s), 4 Row(s), Female, Straight, 0.025 inch Pitch, Surface Mount Terminal, Locking, Black Insulator, Socket,
SAMTEC

ADF6-10-03.5-S-4-2-A

Board Stacking Connector, 40 Contact(s), 4 Row(s), Female, Straight, 0.025 inch Pitch, Surface Mount Terminal, Locking, Black Insulator, Socket,
SAMTEC

ADF6-10-03.5-STL-4-1

Board Stacking Connector, 40 Contact(s), 4 Row(s), Female, Straight, 0.025 inch Pitch, Surface Mount Terminal, Locking, Black Insulator, Socket,
SAMTEC

ADF6-10-07.5-LTL-4-1

Board Stacking Connector, 40 Contact(s), 4 Row(s), Female, Straight, 0.025 inch Pitch, Surface Mount Terminal, Locking, Black Insulator, Socket,
SAMTEC

ADF6-10-07.5-LTL-4-1-A

Board Stacking Connector, 40 Contact(s), 4 Row(s), Female, Straight, 0.025 inch Pitch, Surface Mount Terminal, Locking, Black Insulator, Socket,
SAMTEC

ADF6-10-07.5-S-4-1-A

Board Stacking Connector, 40 Contact(s), 4 Row(s), Female, Straight, 0.025 inch Pitch, Surface Mount Terminal, Locking, Black Insulator, Socket,
SAMTEC