ADF9010BCPZ-RL7 [ADI]

900 MHz ISM Band Analog RF Front End; 900 MHz的ISM频段RF模拟前端
ADF9010BCPZ-RL7
型号: ADF9010BCPZ-RL7
厂家: ADI    ADI
描述:

900 MHz ISM Band Analog RF Front End
900 MHz的ISM频段RF模拟前端

电信集成电路 电信电路 ISM频段 信息通信管理
文件: 总28页 (文件大小:476K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
900 MHz ISM Band  
Analog RF Front End  
ADF9010  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
CE  
V
R
V
AV  
DV  
DD  
P
X
DD  
DD  
840 MHz to 960 MHz ISM bands  
Rx baseband analog low-pass filtering and PGA  
Integrated RF Tx upconverter  
Integrated integer-N PLL and VCO  
Integrated Tx PA preamplifier  
Differential fully balanced architectures  
3.3 V supply  
Low power mode: <1 mA power-down current  
Programmable Rx LPF cutoff  
V
CM  
ADF9010  
Rx IP  
BB  
Rx IN  
BB  
Rx IP  
IN  
Rx IN  
IN  
Rx  
CM  
DC OFFSET  
CORRECTION  
V
CM  
OVF  
Rx QP  
BB  
Rx QP  
IN  
Rx QN  
BB  
Rx QN  
IN  
24-BIT  
INPUT SHIFT  
REGISTER  
S
CLK  
DC OFFSET  
CORRECTION  
S
DATA  
330 kHz, 880 kHz, 1.76 MHz, and bypass  
Rx PGA gain settings: 3 dB to 24 dB in 3 dB steps  
Low noise BiCMOS technology  
S
LE  
MUXOUT  
PLL  
R
R
SET  
REF  
IN  
PHASE  
COUNTER  
CHARGE  
PUMP  
CP  
FREQUENCY  
DETECTOR  
N COUNTER  
N = BP + A  
B
C
C
C
C
C
1
48-lead, 7 mm × 7 mm LFCSP  
EXT  
COUNTER  
2
EXT  
PRESCALER  
P/P + 1  
V
TUNE  
APPLICATIONS  
3
EXT  
A
COUNTER  
4
EXT  
900 MHz RFID readers  
T
÷4  
Unlicensed band 900 MHz applications  
LO  
LO  
P
OUT  
QUADRATURE  
N
PHASE SPLITTER  
OUT  
Tx IP  
BB  
Tx IN  
BB  
Tx  
Tx  
P
OUT  
N
OUT  
Tx QP  
BB  
Tx QN  
BB  
DGND  
AGND  
Figure 1.  
GENERAL DESCRIPTION  
The ADF9010 is a fully integrated RF Tx modulator and Rx  
analog baseband front end that operates in the frequency  
range from 840 MHz to 960 MHz. The receive path consists  
of a fully differential I/Q baseband PGA, low-pass filter, and  
general signal conditioning before connecting to an Rx ADC  
for baseband conversion. The Rx LPF gain ranges from 3 dB  
to 24 dB, programmable in 3 dB steps. The Rx LPF features  
four programmable modes with cutoff frequencies of 330 kHz,  
880 kHz, and 1.76 MHz, or the filter can be bypassed if necessary.  
The transmit path consists of a fully integrated differential Tx  
direct I/Q upconverter with a high linearity PA driver amplifier.  
It converts a baseband I/Q signal to an RF carrier-based signal  
between 840 MHz and 960 MHz. The highly linear transmit  
signal path ensures low output distortion.  
Complete local oscillator (LO) signal generation is integrated  
on chip, including the integer-N synthesizer and VCO, which  
generate the required I and Q signals for transmit I/Q upconver-  
sion. The LO signal is also available at the output to drive an  
external RF demodulator. Control of all the on-chip registers  
is via a simple 3-wire serial interface. The device operates with a  
power supply ranging from 3.15 V to 3.45 V and can be powered  
down when not in use.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
 
 
ADF9010  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
R Counter .................................................................................... 12  
A and B Counters....................................................................... 12  
Tx Section.................................................................................... 14  
Interfacing ................................................................................... 14  
Latch Structure ........................................................................... 15  
Control Latch.............................................................................. 21  
Tx Latch....................................................................................... 21  
Rx Calibration Latch.................................................................. 21  
LO Latch ...................................................................................... 22  
Rx Latch....................................................................................... 22  
Initialization................................................................................ 22  
Interfacing ................................................................................... 22  
Applications Information.............................................................. 23  
Demodulator Connection......................................................... 23  
LO and Tx Output Matching.................................................... 24  
PCB Design Guidelines ............................................................. 24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 25  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Transmit Characteristics.............................................................. 3  
Receive Baseband Characteristics .............................................. 4  
Integer-N PLL and VCO Characteristics .................................. 5  
Write Timing Characteristics...................................................... 6  
Absolute Maximum Ratings............................................................ 7  
Transistor Count........................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ........................................... 10  
Circuit Description......................................................................... 12  
Rx Section.................................................................................... 12  
LO Section................................................................................... 12  
REVISION HISTORY  
8/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
ADF9010  
SPECIFICATIONS  
TRANSMIT CHARACTERISTICS  
AVDD = DVDD = 3.3 V 5ꢀ, AGND = DGND = GND = 0 V, TA = 25°C, dBm refers to 50 Ω, 1.4 V p-p differential sine waves in  
quadrature on a 500 mV dc bias, baseband frequency = 1 MHz, unless otherwise noted.  
Table 1.  
B Version1  
Parameter  
Min  
Typ  
Max Unit  
Test Conditions/Comments  
TRANSMIT MODULATOR CHARACTERISTICS  
Operating Frequency Range  
840  
960  
MHz  
Range over which uncompensated sideband  
suppression < −30 dBc  
Output Power  
Output P1 dB  
Carrier Feedthrough  
Sideband Suppression  
Output IP3  
3
10  
−40  
−46  
24  
dBm  
dBm  
dBm  
dBc  
VIQ = 1.4 V p-p differential  
dBm  
POUT = −4 dBm per tone, 10 MHz and 12 MHz  
baseband input frequencies used.  
Noise Floor  
−158  
dBm/Hz  
TRANSMIT BASEBAND CHARACTERISTICS  
Input Impedance of Each Pin  
Input Capacitance of Each Pin  
Input Signal Level  
Common-Mode Output Level  
Tx Baseband 3 dB Bandwidth  
POWER SUPPLIES  
4
3
1.4  
0.6  
20  
kΩ typ  
pF  
V p-p  
V
Single-ended frequencies up to 2 MHz  
At 10 MHz  
Measured differentially at I or Q  
MHz  
Voltage Supply  
3.15  
3.45  
V
IDD  
Digital IDD  
Rx Baseband  
Tx Modulator  
LO Synthesizer and VCO  
Total IDD  
5
70  
140  
140  
360  
6
80  
mA  
mA  
mA  
mA  
mA  
Maximum gain settings  
Full power, baseband inputs biased at 0.5 V  
+ 5 dBm LO power setting selected  
410  
Power-Down  
Rx VDD  
AVDD  
DVDD  
1
20  
20  
mA  
μA  
μA  
1
1
LOGIC INPUTS (SERIAL INTERFACE)  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINH/IINL  
Input Capacitance, CIN  
LOGIC OUTPUTS (MUXOUT)  
Output High Voltage, VOH  
Output Low Voltage, VOL  
1.4  
V
V
μA  
pF  
1.8 V logic compatible  
0.4  
1
5
DVDD − 0.4  
V
V
IOL = 500 μA  
IOH = 500 μA  
0.4  
1 Operating temperature range for the B version is −40°C to +85°C.  
Rev. 0 | Page 3 of 28  
 
 
 
ADF9010  
RECEIVE BASEBAND CHARACTERISTICS  
AVDD = DVDD = 3.3 V 5ꢀ, AGND = DGND = GND = 0 V, TA = 25°C, dBm refers to 50 Ω, 1.4 V p-p differential sine waves in  
quadrature on a 500 mV dc bias, baseband frequency = 1 MHz, unless otherwise noted.  
Table 2.  
B Version1  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
RECEIVE BASEBAND PGA  
Highest Voltage Gain  
Lowest Voltage Gain  
24  
3
dB  
dB  
Gain Control Range  
Gain Control Step  
Noise Spectral Density (Referred to Input)  
RECEIVE BASEBAND FILTERS  
3 dB Cutoff Frequency (Mode 0)  
Gain Flatness  
18  
3
3.5  
dB  
dB  
nV/√Hz  
Programmable using 3-bit interface  
At maximum PGA gain  
320  
500  
kHz  
dB  
μs  
After filter calibration  
Typical from dc to 90 kHz  
DC to 360 kHz  
0.5  
Differential Group Delay  
150  
μs  
170 kHz to 310 kHz  
After filter calibration  
Attenuation Template  
@ 330 kHz Offset  
@ 500 kHz Offset  
@ 1 MHz Offset  
3 dB Cutoff Frequency (Mode 1)  
Gain Flatness  
−3  
−8  
−28  
880  
dB  
dB  
dB  
kHz  
dB  
μs  
After filter calibration  
DC to 90 kHz  
DC to 360 kHz  
0.5  
Differential Group Delay  
500  
150  
μs  
170 kHz to 310 kHz  
After filter calibration  
Attenuation Template  
@ 880 kHz Offset  
@ 2 MHz Offset  
@ 4 MHz Offset  
3 dB Cutoff Frequency (Mode 2)  
Gain Flatness  
−3  
dB  
dB  
dB  
MHz  
dB  
μs  
−17  
−38  
1.76  
After filter calibration  
DC to 90 kHz  
DC to 360 kHz  
0.5  
Differential Group Delay  
500  
150  
μs  
170 kHz to 310 kHz  
After filter calibration  
Attenuation Template  
@ 1.76 MHz Offset  
@ 4 MHz Offset  
@ 8 MHz Offset  
@ 16 MHz Offset  
3 dB Cutoff Frequency (Mode 3)  
Gain Flatness  
Differential Group Delay  
@ 2 MHz Offset  
−3  
dB  
dB  
dB  
dB  
MHz  
dB  
μs  
−18  
−38  
−60  
4
After filter calibration  
DC to 90 kHz  
DC to 360 kHz  
0.5  
500  
−0.5  
−2  
dB  
dB  
@ 4 MHz Offset  
Input Impedance of Each Pin  
@ 24 dB gain  
@ 3 dB gain  
Input Capacitance of Each Pin  
Input Signal Level  
Common-Mode Output Level  
Maximum Residual DC  
250  
4
3
Ω
kΩ  
pF  
V p-p  
V
mV  
At 10 MHz  
2
Measured differentially at I or Q  
On Rx baseband outputs  
Baseband gain 0 dB − 27 dB  
1.65  
150  
1 Operating temperature range for the B version is −40°C to +85°C.  
Rev. 0 | Page 4 of 28  
 
 
ADF9010  
INTEGER-N PLL AND VCO CHARACTERISTICS  
Table 3.  
B Version1  
Typ  
Parameter  
Min  
3360  
Max  
Unit  
Test Conditions/Comments  
Measured at LO output (900 MHz)  
VCOOPERATING FREQUENCY  
LO OUTPUT CHARACTERISTICS  
VCO Control Voltage Sensitivity  
3840  
MHz  
8
MHz/V 3.6 GHz VCO frequency (taking into account  
divide by 4)  
Harmonic Content (Second)  
Harmonic Content (Third)  
Frequency Pushing (Open Loop)  
Frequency Pulling (Open Loop)  
Lock Time  
−27  
−14  
1.2  
10  
1000  
−4 to +5  
dBc  
dBc  
MHz/V  
Hz  
μs  
dBm  
Into 2.00 VSWR load.  
10 kHz loop bandwidth  
LO outputs combined in a 1:1 transformer;  
programmable in 3 dB steps  
Output Power  
Output Power Variation  
NOISE CHARACTERISTICS  
VCO Phase Noise Performance2  
@ 100 kHz Offset  
@ 1 MHz Offset  
@ 10 MHz Offset  
In-Band Phase Noise3, 4  
3
dB  
Measured at LO output (900 MHz)  
−120  
−141  
−154  
−96  
−220  
−70  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz @ 1 kHz offset from carrier  
dBc/Hz  
dBc  
Normalized In-Band Phase Noise Floor3, 4  
Spurious Frequencies at Output Channel Spacing  
900 MHz offset, 1 MHz PFD frequency, 250 kHz  
channel spacing; loop bandwidth = 7.5 kHz  
PHASE DETECTOR  
Phase Detector Frequency5  
Maximum Allowable Prescaler Output Frequency6  
CHARGE PUMP  
8
325  
MHz  
MHz  
ICP Sink/Source  
With RSET = 4.7 kΩ  
High Value  
Low Value  
RSET Range  
ICP Three-State Leakage Current  
Sink and Source Current Matching  
ICP vs. VCP  
5
mA  
mA  
kΩ  
nA  
%
0.625  
2.7  
10  
0.2  
2
1.5  
2
1.25 V ≤ VCP ≤ 2.5 V  
1.25 V ≤ VCP ≤ 2.5 V  
VCP = 2.0 V  
%
%
ICP vs. Temperature  
PLL REFERENCE  
Reference Clock Frequency  
Reference Clock Sensitivity  
Reference Input Capacitance  
REFIN Input Current  
10  
0.7  
104  
MHz  
PLL VDD V p-p  
pF  
100  
5
μA  
1 Operating temperature range for the B version is −40°C to +85°C.  
2 The noise of the VCO is measured in open-loop conditions.  
3 The phase noise is measured with the EVAL-ADF9010EBZ1 evaluation board and the Agilent E5052A spectrum analyzer. The spectrum analyzer provides the REFIN for  
the synthesizer; offset frequency = 1 kHz.  
4 fREFIN = 10 MHz; fPFD = 1000 kHz; N = 3600; loop BW = 25 kHz.  
5 Guaranteed by design. Sample tested to ensure compliance.  
6 This is the maximum operating frequency of the CMOS counters. The prescaler value should be chosen to ensure that the RF input is divided down to a frequency that  
is less than this value.  
Rev. 0 | Page 5 of 28  
 
ADF9010  
WRITE TIMING CHARACTERISTICS  
AVDD = DVDD = 3.3 V 5ꢀ% AGND = DGND = GND = 0 V% TA = 25°C, guaranteed by design, but not production tested.  
Table 4.  
Parameter  
Limit at tMIN to tMAX (B Version)  
Unit  
Test Conditions/Comments  
SDATA to SCLK setup time  
SDATA to SCLK hold time  
SCLK high duration  
SCLK low duration  
SCLK to SLE setup time  
SLE pulse width  
t1  
t2  
t3  
t4  
t5  
t6  
10  
10  
25  
25  
10  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
t3  
t4  
S
S
CLCK  
DATA  
t1  
t2  
DB1  
(CONTROL BIT C2)  
DB0 (LSB)  
(CONTROL BIT C1)  
DB23 (MSB)  
DB22  
DB2  
t6  
S
S
LE  
LE  
t5  
Figure 2. Write Timing Diagram  
Rev. 0 | Page 6 of 28  
 
 
ADF9010  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only% functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 5.  
Parameter  
Rating  
1
DVDD, RxVDD , AVDD to GND  
RxVDD, AVDD to DVDD  
VP to GND1  
Digital I/O Voltage to GND1  
Analog I/O Voltage to GND1  
Charge Pump Voltage to GND1  
REFIN, LOEXTP, LO EXTN to GND1  
−0.3 V to +3.9 V  
−0.3 V to +0.3 V  
−0.3 V to +5.5 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to AVDD + 0.3 V  
−0.3 V to VP to GND1  
−0.3 V to VDD + 0.3 V  
320 mV  
This device is a high-performance RF integrated circuit with an  
ESD rating of <0.5 kV and is ESD sensitive. Proper precautions  
should be taken for handling and assembly.  
LOEXTP to LOEXT  
N
TRANSISTOR COUNT  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Maximum Junction Temperature  
LCSP θJA Thermal Impedance  
Reflow Soldering  
The ADF9010 transistor count is 40,454 (CMOS) and 994  
(bipolar).  
−40°C to +85°C  
−65°C to +150°C  
150°C  
ESD CAUTION  
26°C/W  
Peak Temperature  
Time at Peak Temperature  
260°C/W  
40 sec  
1 GND = AGND = DGND = 0 V.  
Rev. 0 | Page 7 of 28  
 
 
 
ADF9010  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
Rx IP  
IN  
1
2
36 Rx IN  
BB  
PIN 1  
INDICATOR  
Rx IN  
IN  
35 Rx IP  
BB  
34 Rx QP  
BB  
RxV  
DD  
3
33 Rx QN  
BB  
LO  
OUT  
N
4
LO  
OUT  
P
5
32 C  
31 C  
30 R  
3
4
EXT  
EXT  
SET  
AGND  
DGND  
6
ADF9010  
TOP VIEW  
7
(Not to Scale)  
REF  
IN  
8
29 AV  
DD  
DV  
9
28 Tx IN  
DD  
BB  
27 Tx IP  
V
10  
P
BB  
CP 11  
26 Tx QP  
BB  
25 Tx QN  
AGND 12  
BB  
NC = NO CONNECT  
Figure 3. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
RxINIP, RxININ  
RxVDD  
Description  
1, 2  
3, 46  
Input/Complementary In-Phase Input to the Receive Filter Stage.  
Receiver Filter Power Supply. This voltage ranges from 3.15 V to 3.45 V. Decoupling capacitors to the  
analog ground plane should be placed as close as possible to this pin. RxVDD must be the same  
value as AVDD and DVDD  
.
4, 5  
LOOUTN, LOOUT  
P
Buffered Local Oscillator Output. These outputs are used to provide the LO for the external RF  
demodulator. These require an RF choke to AVDD and a dc bypass capacitor before connection to a  
demodulator.  
6, 12, 18, 24, 44 AGND  
Analog Ground. This is the ground return path of analog circuitry.  
Digital Ground.  
PLL Reference Input. This is a CMOS input with a nominal threshold of VDD/2 and a dc equivalent  
input resistance of 100 kΩ (see Figure 13). This input can be driven from a TTL or CMOS crystal  
oscillator, or it should be ac-coupled.  
7
8
DGND  
REFIN  
9, 37  
10  
DVDD  
VP  
Digital Power Supply. This voltage ranges from 3.15 V to 3.45 V. Decoupling capacitors to the digital  
ground plane should be placed as close as possible to this pin. DVDD must be the same value as AVDD  
.
This pin supplies the voltage to the charge pump. If the internal VCO is used, it should equal AVDD  
and DVDD. If an external VCO is used, the voltage can be AVDD < VP < 5.5 V.  
11  
CP  
Charge Pump Output. When enabled, this pin provides ICP to the external loop filter, which in turn  
drives the external VCO.  
13  
CT  
A capacitor connected to this pin is used to roll off noise from the VCO. It should be decoupled to  
AGND with a value of 10 nF. The output voltage on this part is proportional to temperature. At  
ambient temperature, the voltage is 2.0 V.  
14  
CEXT  
CEXT  
1
2
A capacitor connected to this pin is used to roll off noise from the VCO. It should be decoupled to  
AGND with a value of 10 nF.  
A capacitor connected to this pin is used to roll off noise from the VCO. It should be decoupled to  
AGND with a value of 10 nF.  
15  
16, 21, 29  
AVDD  
Analog Power Supply. This voltage ranges from 3.15 V to 3.45 V. Decoupling capacitors to the  
analog ground plane should be placed as close as possible to this pin. AVDD must be the same value  
as DVDD  
.
Rev. 0 | Page 8 of 28  
 
ADF9010  
Pin No.  
Mnemonic  
Description  
17  
VTUNE  
Control Input to the VCO. This input determines the VCO frequency and is derived from filtering the  
CP output.  
19, 20  
22, 23  
LOEXTP, LO EXT  
N
Single-Ended External VCO Input of 50 Ω. This is used if the ADF9010 utilizes an optional external VCO.  
These pins are internally dc-biased and must be ac-coupled. AC-couple LOEXTN to ground with 100 pF  
and ac-couple the VCO signal with 100 pF through LOEXTP.  
Buffered Tx Output. These pins contain the Tx output signal, which can be combined in a balun for  
best results.  
TxOUTP, Tx OUT  
N
25, 26  
27, 28  
30  
TxBBQN, TxBBQP  
TxBBIP, TxBBIN  
RSET  
Baseband Quadrature Phase Input/Complementary Input to the Transmit Modulator.  
Baseband In-Phase Input/Complementary to the Transmit Modulator.  
Connecting a resistor between this pin and AGND sets the maximum charge pump output current.  
The nominal voltage potential at the RSET pin is 0.66 V. The relationship between ICP and RSET is  
ICPMAX = 25.5/RSET  
where:  
RSET is 5.1 kΩ.  
ICPMAX is 5 mA.  
31  
CEXT  
CEXT  
4
3
A capacitor connected to this pin is used to roll off noise from the VCO. It should be decoupled  
to AGND with a value of 10 nF.  
A capacitor connected to this pin is used to roll off noise from the VCO. It should be decoupled  
to AGND with a value of 10 nF.  
32  
33, 34  
35, 36  
38  
RxBBQN, RxBBQP  
Output/Complementary Filtered Quadrature Signals from the Receive Filter Stage. The filtered  
output is passed to the baseband MxFE chip.  
Output/Complementary Filtered In-Phase from the Receive Filter Stage. The filtered output is  
passed to the baseband MxFE chip.  
Chip Enable. A Logic 0 on this pin powers down the device. A Logic 1 on this pin enables the device  
depending on the status of the power-down bits.  
RxBBIP, RxBBIN  
CE  
39  
SCLK  
Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is  
latched into the 24-bit shift register on the SCLK rising edge. This is a high impedance CMOS input.  
40  
SDATA  
Serial Data Input. The serial data is loaded MSB first with the two LSBs being the control bits. This is  
a high impedance CMOS input.  
41  
SLE  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift register is loaded into  
one of the four latches; the latch uses the control bits.  
42  
MUXOUT  
OVF  
This multiplexer output allows either the PLL lock detect, the scaled VCO frequency, or the scaled  
PLL reference frequency to be accessed externally.  
A rising edge on this pin drops the gain of the Rx path by 6 dB. This is used to rapidly drop the gain  
if the ADC detects an overload.  
43  
45  
NC  
No Connect.  
47, 48  
RxINQP, RxINQN  
Input/Complementary Quadrature Input to the Receive Filter Stage.  
Rev. 0 | Page 9 of 28  
ADF9010  
TYPICAL PERFORMANCE CHARACTERISTICS  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
–40  
900MHz LO  
10MHz REF  
1MHz PFD  
INTEGRATED PHASE ERROR: 0.75 rms  
IN  
–60  
–80  
–100  
–120  
–140  
–160  
–40°C 3.15V OIP3  
–40°C 3.3V OIP3  
–40°C 3.45V OIP3  
+25°C 3.15V OIP3 +85°C 3.15V OIP3  
+25°C 3.3V OIP3 +85°C 3.3V OIP3  
+25°C 3.45V OIP3 +85°C 3.45V OIP3  
840 850 860 870 880 890 900 910 920 930 940 950 960  
LO FREQUENCY (MHz)  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 7. Output IP3 (dBm) vs. LO Frequency (Hz), with Supply and  
Temperature Variations; Two-Tone Test (10 MHz and 12 MHz Baseband  
Input Frequencies)  
Figure 4. LO Phase Noise (900 MHz, Including Open-Loop VCO Noise)  
10  
9
0
–40°C 3.15V SBS  
–40°C 3.3V SBS  
–40°C 3.45V SBS  
+25°C 3.15V SBS +85°C 3.15V SBS  
+25°C 3.3V SBS +85°C 3.3V SBS  
+25°C 3.45V SBS +85°C 3.45V SBS  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
8
7
6
–40°C 3.15V P  
OUT  
5
4
3
2
1
0
–40°C 3.3V P  
OUT  
–40°C 3.45V P  
+25°C 3.15V P  
OUT  
OUT  
+25°C 3.3V P  
OUT  
+25°C 3.45V P  
+85°C 3.15V P  
OUT  
OUT  
+85°C 3.3V P  
OUT  
+85°C 3.45V P  
OUT  
840 850 860 870 880 890 900 910 920 930 940 950 960  
LO FREQUENCY (MHz)  
840 850 860 870 880 890 900 910 920 930 940 950 960  
LO FREQUENCY (MHz)  
Figure 5. Single Sideband Tx Power Output (dBm) vs. LO frequency (Hz) with  
Supply and Temperature Variations; Outputs Combined in 50:100 Balun  
Figure 8. Unwanted Sideband Suppression (dBc) vs. LO Frequency (Hz) with  
Supply and Temperature Variations  
20  
15  
10  
5
20  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–40°C 3.15V P  
OUT  
–40°C 3.3V P  
OUT  
0
–5  
–40°C 3.45V P  
+25°C 3.15V P  
OUT  
OUT  
+25°C 3.3V P  
OUT  
+25°C 3.45V P  
+85°C 3.15V P  
OUT  
OUT  
–70  
–80  
25°C 3.3V P  
(dBm)  
OUT  
25°C 3.3V SBS (dBc)  
25°C 3.3V LOFT (dBc)  
25°C 3.3V HD2 (dBm)  
25°C 3.3V HD3 (dBm)  
+85°C 3.3V P  
OUT  
–10  
–15  
+85°C 3.45V P  
IDEAL  
OUT  
–90  
–100  
–10  
–5  
0
5
10  
15  
20  
0.2  
0.6  
1.0  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
P
(dBm)  
DIFFERENTIAL INPUT VOLTAGE (V)  
IN  
Figure 9. Second- and Third-Order Distortion, Sideband Suppression (dBc),  
Carrier Feedthrough (dBm) and SBS POUT vs. Baseband Differential Input  
Level; LO Frequency = 900 MHz  
Figure 6. Power Output vs. Baseband Input Power with Supply and  
Temperature Variations  
Rev. 0 | Page 10 of 28  
 
ADF9010  
9
8
7
6
5
4
3
2
1
0
20  
0
–20  
–40  
–60  
–80  
–100  
Fc 330KHz  
Fc 1MHz  
Fc 2MHz  
BYPASS  
–40°C 3.15V P  
+25°C 3.15V P  
+85°C 3.15V P  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
–40°C 3.3V P  
+25°C 3.3V P  
+85°C 3.3V P  
OUT  
OUT  
OUT  
–40°C 3.45V P  
+25°C 3.45V P  
+85°C 3.45V P  
1
10  
100  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
INPUT FREQUENCY (MHz)  
Figure 10. Single Sideband Power vs. Baseband Input Frequency, with  
Supply and Temperature Variations; Maximum Gain Setting Selected;  
LO Frequency = 900 MHz  
Figure 11. Rx Filter Performance, Power vs. Input Frequency  
Rev. 0 | Page 11 of 28  
ADF9010  
CIRCUIT DESCRIPTION  
Rx SECTION  
R COUNTER  
The 14-bit R counter allows the input clock frequency to be  
divided down to produce the input clock to the phase frequency  
detector (PFD). Division ratios from 1 to 8191 are allowed.  
PGA  
SETTING  
OVF  
Rx IP  
IN  
Rx IP  
BB  
A AND B COUNTERS  
Rx IN  
IN  
Rx IN  
BB  
The A and B CMOS counters combine with the dual modulus  
prescaler to allow a wide range of division ratios in the PLL  
feedback counter. The counters are specified to work when  
the prescaler output is 300 MHz or less.  
DC OFFSET  
CORRECTION  
Figure 12. Rx Filter  
Pulse Swallow Function  
The Rx section of the ADF9010 features programmable base-  
band low-pass filters. These are used to amplify the desired Rx  
signal from the demodulator while removing the unwanted  
portion to ensure no antialiasing occurs in the Rx ADC.  
The A and B counters, in conjunction with the dual-modulus  
prescaler (see Figure 14), make it possible to generate large  
divider ratios. The equation for N is as follows:  
N = BP + A  
These filters have a programmable gain stage, allowing gain to  
be selected from 3 dB to 24 dB in steps of 3 dB. The bandwidth  
of these filters is also programmable, allowing 3 dB cutoff fre-  
quencies of 330 kHz, 880 kHz, and 1.76 MHz, along with a  
bypass mode. The filters utilize a fourth-order Bessel transfer  
function (see the Specifications section for more information).  
If desired, the filter stage can be bypassed.  
where:  
N is the overall divider ratio of the signal from the external  
RF input.  
P is the preset modulus of the dual-modulus prescaler.  
B is the preset divide ratio of the binary 13-bit counter (3 to 8191).  
A is the preset divide ratio of the binary 5-bit swallow counter  
(0 to 31).  
Additionally, a rising edge on the OVF pin reduces the gain of  
the Rx amplifiers by 6 dB. This is to correct a potential overflow  
of the input to the ADC.  
N = BP + A  
13-BIT B  
COUNTER  
TO PFD  
Updating the Rx calibration latch with the calibration bit  
enabled calibrates the filter to remove any dc offset. The  
3 dB cutoff frequency (fC) of the filters is calibrated also.  
LOAD  
LOAD  
6-BIT A  
COUNTER  
PRESCALER  
P/P + 1  
FROM RF  
INPUT STAGE  
MODULUS  
CONTROL  
LO SECTION  
LO Reference Input Section  
N DIVIDER  
The LO input stage is shown in Figure 13. SW1 and SW2  
are normally closed switches% SW3 is normally open. When  
power-down is initiated, SW3 is closed and SW1 and SW2 are  
opened. This ensures that there is no loading of the REFIN pin  
on power-down.  
Figure 14. A and B Counters  
Prescaler (P/P + 1)  
The dual-modulus prescaler (P/P + 1), along with the A and  
B counters, enables the large division ratio, N, to be realized  
(N = BP + A). The dual-modulus prescaler, operating at CML  
levels, takes the clock from the RF input stage and divides it down  
to a manageable frequency for the A and B CMOS counters.  
The prescaler is programmable. The prescaler can be set in  
software to 8/9, 16/17, or 32/33. For the ADF9010, however,  
the 16/17 and 32/33 settings should be used. It is based on a  
synchronous 4/5 core. A minimum divide ratio is possible for  
fully contiguous output frequencies. This minimum is deter-  
mined by P, the prescaler value, and is given by (P2 − P).  
POWER-DOWN  
CONTROL  
100k  
SW2  
NC  
TO R COUNTER  
REF  
IN  
NC  
SW1  
BUFFER  
SW3  
NO  
Figure 13. Reference Input Stage  
Rev. 0 | Page 12 of 28  
 
 
 
 
 
 
ADF9010  
DV  
DD  
PFD and Charge Pump  
The phase frequency detector (PFD) takes inputs from the  
R counter and N counter (N = BP + A) and produces an output  
proportional to the phase and frequency difference between  
them (see Figure 15).  
ANALOG LOCK DETECT  
DIGITAL LOCK DETECT  
R COUNTER OUTPUT  
N COUNTER OUTPUT  
SDOUT  
MUXOUT  
MUX  
CONTROL  
V
P
CHARGE  
PUMP  
UP  
HI  
D1  
Q1  
U1  
DGND  
R DIVIDER  
Figure 16. MUXOUT Circuit  
CLR1  
Voltage-Controlled Oscillator (VCO)  
The VCO core in the ADF9010 uses 16 overlapping bands, as  
shown in Figure 17, to allow a wide frequency range to be covered  
with a low VCO sensitivity (KV) and to result in good phase noise  
and spurious performance. The VCO operates at 4× the LO  
frequency, providing an output range of 840 MHz to 960 MHz.  
CP  
U3  
DELAY  
CLR2  
U2  
DOWN  
HI  
D2  
Q2  
The correct band is chosen automatically by the band select  
logic at power-up or whenever the LO latch is updated. During  
band select, which takes five PFD cycles, the VCO VTUNE is  
disconnected from the output of the loop filter and connected  
to an internal reference voltage.  
N DIVIDER  
CPGND  
R DIVIDER  
N DIVIDER  
CP OUTPUT  
3.5  
3.0  
2.5  
2.  
Figure 15. PFD Simplified Schematic and Timing (In Lock)  
MUXOUT  
The output multiplexer on the ADF9010 allows the user  
to access various internal points on the chip. The state of  
MUXOUT is controlled by M3, M2, and M1 in the control  
latch. The full truth table is shown in Figure 22. Figure 16  
shows the MUXOUT section in block diagram form.  
1.5  
1.0  
SERIES 1  
0.5  
0
750  
Lock Detect  
800  
850  
900  
950  
1000  
FREQUENCY (Hz)  
MUXOUT can be programmed for two types of lock detect:  
digital and analog. Digital lock detect is active high. If the LDP  
in the R counter latch is set to 0, digital lock detect is set high  
when the phase error on three consecutive phase detector cycles  
is less than 15 ns.  
Figure 17. VCO Bands  
The R counter output is used as the clock for the band select logic  
and should not exceed 1 MHz. A programmable divider is pro-  
vided at the R counter input to allow division by 1, 2, 4, or 8 and  
is controlled by Bit BSC1 and Bit BSC2 in the Tx latch. Where the  
required PFD frequency exceeds 1 MHz, the divide ratio should be  
set to allow enough time to select the correct band.  
With the LDP set to 1, five consecutive cycles of less than 15 ns  
phase error are required to set the lock detect. It stays set high  
until a phase error of greater than 25 ns is detected on any  
subsequent PD cycle.  
After the band is selected, normal PLL action resumes. The  
nominal value of KV is 32 MHz/V or 8 MHz/V, taking into  
account the divide by 4.  
The N-channel open-drain analog lock detect should be  
operated with an external pull-up resistor of 10 kΩ nominal.  
When a lock has been detected, this output is high with narrow  
low-going pulses.  
The output from the VCO is divided by 4 for the LO inputs to  
the mixers, and for the LO output drive to the demodulator.  
Rev. 0 | Page 13 of 28  
 
 
ADF9010  
LO Output  
Mixers  
The LOOUTP and LOOUTN pins are connected to the collectors  
of an NPN differential pair driven by buffered outputs from the  
VCO, as shown in Figure 18. To allow optimal power dissipation  
vs. the output power requirements, the tail current of the diffe-  
rential pair is programmable via Bit TP1 and Bit TP2 in the  
control latch. The four current levels that can be set are: 6 mA,  
8.5 mA, 11.5 mA, and 17.5 mA. These levels give output power  
levels of −4 dBm, −1 dBm, +2 dBm, and +5 dBm, respectively,  
if both outputs are combined in a 1 + 1:1 transformer or a 180°  
microstrip coupler.  
The ADF9010 has two double-balanced mixers, one for the  
in-phase channel (I channel) and one for the quadrature  
channel (Q channel). Both mixers are based on the Gilbert  
cell design of four cross-connected transistors.  
Tx Output  
The TxOUTP and TxOUTN pins of the ADF9010 are connected  
to the collectors of four NPN differential pairs driven by the  
baseband signals, as shown in Figure 20. To allow the user  
optimal power dissipation vs. the output power requirements,  
the tail current of the differential pair is programmable via  
Bit TP1 and Bit TP2 in the control latch. Two levels can be set%  
these levels give output power levels of −3 dBm and, +3 dBm,  
respectively, using a 50 Ω resistor to VDD and ac coupling into a  
50 Ω load. Alternatively, both outputs can be combined in a 1 +  
1:1 transformer or a 180° microstrip coupler. This buffer can be  
powered off if desired.  
If the outputs are used individually, the optimum output stage  
consists of a shunt inductor to VDD  
.
Another feature of the ADF9010 is that the supply current to  
the RF output stage is shut down until the part achieves lock as  
measured by the digital lock detect circuitry. This is enabled by  
the mute Tx until lock detect (F4) bit in the control latch.  
LO  
P
LO N  
OUT  
OUT  
Another feature of the ADF9010 is that the supply current to the Tx  
output stage is shut down until the part achieves lock as measured  
by the digital lock detect circuitry. This is enabled by the mute LO  
until lock detect bit (F5) in the control latch.  
BUFFER/  
DIVIDE BY 4  
VCO  
Tx  
P
OUT  
Tx  
N
OUT  
Figure 18. LO Output Section  
LO  
LO  
LO  
LO  
IP  
QP  
IN  
QN  
IP  
IN  
QP  
QN  
Tx SECTION  
Figure 20. Tx Section  
VCO  
INTERFACING  
Input Shift Register  
LO  
LO  
P
OUT  
÷4  
TX IP  
BB  
N
OUT  
TX IN  
BB  
The digital section of the ADF9010 includes a 24-bit input shift  
register. Data is clocked into the 24-bit shift register on each  
rising edge of SCLK. The data is clocked in MSB first. Data is  
transferred from the shift register to one of four latches on  
the rising edge of SLE. The destination latch is determined by  
the state of the two control bits (C2, C1) in the shift register.  
These are the two LSBs, DB1 and DB0, as shown in Figure 21.  
Tx  
Tx  
P
N
QUAD  
PHASE  
SPLITTER  
OUT  
INT/  
EXT  
LO  
EXT  
P
OUT  
LO  
EXT  
N
Tx QP  
BB  
Tx QN  
BB  
The truth table for Bit C3, Bit C2, and Bit C1 is shown in Table 7.  
It displays a summary of how the latches are programmed. Note  
that some bits are used for factory testing and should not be  
programmed by the user.  
Figure 19. Tx Section  
Tx Baseband Inputs  
Differential in-phase (I) and quadrature baseband (Q) inputs  
are high impedance inputs that must be dc-biased to approx-  
imately 500 mV dc and e driven from a low impedance source.  
Nominal characterized ac signal swing is 700 mV p-p on each  
pin. This results in a differential drive of 1.4 V p-p with a 500 mV  
dc bias.  
Table 7. Truth Table  
Control Bits  
C3  
X
C2  
0
C1  
0
Data Latch  
Control latch  
Tx latch  
0
0
1
1
0
1
Rx calibration  
LO latch  
X
1
0
X
1
1
Rx filter  
Rev. 0 | Page 14 of 28  
 
 
 
 
 
ADF9010  
LATCH STRUCTURE  
Figure 21 shows the three on-chip latches for the ADF9010. The two LSBs determine which latch is programmed.  
CONTROL LATCH  
MUTE MUTE  
LO Tx  
UNTIL UNTIL  
LD LD  
Tx  
OUTPUT  
POWER  
CHARGE  
PUMP  
CURRENT  
LO  
OUTPUT  
POWER  
CONTROL  
BITS  
MUXOUT  
RESERVED  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
RES PD4 PD3 PD2 PD1  
TP2 TP1 CPI3 CPI2 CPI1  
P2  
P1  
F5  
F4  
F3  
F2  
M3  
M2  
M1  
F1  
RES RES C2 (0) C1 (0)  
Tx LATCH  
Tx MOD  
LO PHASE  
BAND  
SELECT  
CLOCK  
CONTROL  
BITS  
LO PHASE  
13-BIT REFERENCE COUNTER  
SELECT  
SELECT  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C3 (0) C2 (0) C1 (1)  
P2  
R1  
P1  
T3  
T2  
T1 BSC2  
R13 R12 R11 R10  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
BSC1  
P3  
Rx CALIBRATION  
Tx MOD  
LO PHASE  
SELECT  
BAND  
SELECT  
CLOCK  
LO PHASE  
SELECT  
HIGH-PASS FILTER BOOST  
TIMEOUT COUNTER  
CONTROL  
BITS  
Rx CALIBRATION DIVIDER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
RC1 HP6 HP5 HP4 HP3 HP2 HP1 C3 (1) C2 (0) C1 (1)  
P3  
P2  
P1  
T3  
T2  
T1 BSC2 BSC1 R13 RC6 RC5 RC4 RC3 RC2  
LO LATCH  
CONTROL  
BITS  
13-BIT B COUNTER  
PRESCALER  
5-BIT A COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
G1  
B13 B12 B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
A5  
A4  
A3  
A2  
A1 C2 (1) C2 (0)  
M1  
P2  
P1  
Rx LATCH  
CONTROL  
BITS  
Rx FILTER  
BANDWIDTH  
Rx FILTER  
GAIN STEPS  
TEST MODES  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
T13 T12 T1  
DB1 DB0  
T16  
T15 T14  
T10  
T7  
T6  
T5  
T4  
HP  
BW2 BW1  
G2  
G1  
C2 (1) C1 (1)  
T8  
T3  
T11  
T9  
T2  
G3  
Figure 21. Latch Summary  
Rev. 0 | Page 15 of 28  
 
 
ADF9010  
MUTE MUTE  
LO Tx  
UNTIL UNTIL  
LD LD  
Tx  
OUTPUT  
POWER  
CHARGE  
PUMP  
CURRENT  
LO  
OUTPUT  
POWER  
CONTROL  
BITS  
MUXOUT  
RESERVED  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
DB1 DB0  
RES PD4 PD3 PD2 PD1  
TP2 TP1 CPI3 CPI2 CPI1  
P2  
P1  
F5  
F4  
F3  
F2  
M3  
M2  
M1  
F1  
RES RES C2 (0) C1 (0)  
THESE BITS ARE  
RESERVED  
AND SHOULD BE  
SET TO 0, 1  
THIS BIT  
IS RESERVED  
FOR FACTORY  
TESTING AND  
SHOULD BE  
SET TO 0  
COUNTER  
F1  
0
OPERATION  
NORMAL  
1
COUNTERS HELD  
IN RESET  
M3  
M2  
M1  
0
OUTPUT  
0
0
0
0
THREE-STATE OUTPUT  
DIGITAL LOCK DETECT  
(ACTIVE HIGH)  
1
POWER DOWN  
PD4 Rx  
0
0
1
1
1
1
0
0
0
1
0
1
N DIVIDER OUTPUT  
0
1
DISABLED  
ENABLED  
DV  
DD  
R DIVIDER OUTPUT  
N-CHANNEL OPEN-DRAIN  
LOCK DETECT  
1
1
1
1
0
1
SERIAL DATA OUTPUT  
DGND  
POWER DOWN  
PD3 PLL  
0
1
DISABLED  
ENABLED  
PHASE DETECTOR  
POLARITY  
F2  
POWER DOWN  
PD2 VCO  
0
1
NEGATIVE  
POSITIVE  
0
1
DISABLED  
ENABLED  
POWER DOWN  
PD1 Tx  
0
1
DISABLED  
ENABLED  
CHARGE PUMP  
OUTPUT  
F3  
0
1
NORMAL  
THREE-STATE  
Tx OUTPUT POWER  
TP2  
0
0
1
1
TP1  
FULLY ON  
–6dB  
–6dB  
0
1
0
1
MUTE Tx UNTIL  
LOCK DETECT  
F4  
MUTE  
0
1
DISABLED  
ENABLED  
MUTE LO UNTIL  
LOCK DETECT  
I
(mA)  
CP  
F5  
CPI3  
CPI2  
CPI1  
2.7k  
1.25  
2.50  
3.75  
5.00  
6.25  
7.50  
8.75  
10.0  
4.7kΩ  
10kΩ  
0.31  
0.63  
0.94  
1.25  
1.56  
1.87  
2.19  
2.50  
0
1
DISABLED  
ENABLED  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0.63  
1.25  
1.87  
2.50  
3.13  
3.75  
4.38  
5.00  
P2  
P1  
LO OUTPUT POWER (COMBINED)  
0
0
1
1
0
1
0
1
–4 dBm  
–1 dBm  
+2 dBm  
+5 dBm  
Figure 22. Control Latch  
Rev. 0 | Page 16 of 28  
 
ADF9010  
Tx MOD  
LO PHASE  
SELECT  
BAND  
SELECT  
CLOCK  
LO PHASE  
SELECT  
CONTROL  
BITS  
13-BIT REFERENCE COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C3 (0) C2 (0) C1 (1)  
P2  
R1  
P1  
T3  
T2  
T1 BSC2  
R13 R12 R11 R10  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
BSC1  
P3  
X = DON’T  
CARE  
R13  
R12  
R11  
..........  
R3  
0
0
0
1
.
R2  
0
1
1
0
.
R1  
DIVIDE RATIO  
0
0
0
0
.
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
1
0
1
0
.
1
2
3
4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
8188  
8189  
8190  
8191  
BSC2  
BSC1  
BAND SELECT CLOCK DIVIDER  
NOT ALLOWED  
NOT ALLOWED  
NOT ALLOWED  
8
0
0
1
1
0
1
0
1
THESE BITS ARE RESERVED AND SHOULD BE SET TO 1,1  
T3  
0
T2  
0
T1  
0
OUTPUT  
NORMAL QUADRATURE  
I TO BOTH  
0
0
1
0
1
0
Q TO BOTH  
0
1
1
EXTERNAL LO, QUADRATURE  
ALL OFF  
1
X
X
P3  
0
P2  
P1  
0
OUTPUT  
I OUT  
0
0
1
1
0
0
1
1
0
1
Q OUT  
0
0
IB OUT  
0
1
QB OUT  
EXTERNAL I  
EXTERNAL Q  
1
0
1
1
1
0
EXTERNAL I TO PLL, OUT OFF  
ALL OFF  
1
1
Figure 23. Tx Latch  
Rev. 0 | Page 17 of 28  
 
ADF9010  
BAND  
SELECT  
CLOCK  
Tx MOD  
LO PHASE  
SELECT  
LO PHASE  
SELECT  
HIGH-PASS FILTER BOOST  
TIMEOUT COUNTER  
CONTROL  
BITS  
Rx CALIBRATION DIVIDER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
RC1 HP6 HP5 HP4 HP3 HP2 HP1 C3 (1) C2 (0) C1 (1)  
P3  
P2  
P1  
T3  
T2  
T1 BSC2 BSC1 R13 RC6 RC5 RC4 RC3 RC2  
X = DON’T  
CARE  
TIMEOUT  
COUNTER  
CYCLES  
Rx FILTER f  
C
CALIBRATION  
F5  
HP6  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
HP2  
HP1  
0
1
DISABLED  
ENABLED  
0
0
0
0
.
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
.
.
1
1
1
1
0
0
1
1
0
1
0
1
60  
61  
62  
63  
BSC2  
BSC1  
BAND SELECT CLOCK DIVIDER  
NOT ALLOWED  
NOT ALLOWED  
NOT ALLOWED  
8
0
0
1
1
0
1
0
1
THESE BITS ARE RESERVED AND SHOULD BE SET TO 1,1  
T3  
T2  
0
T1  
0
OUTPUT  
0
0
0
0
1
NORMALQUADRATURE  
I TO BOTH  
0
1
1
0
Q TO BOTH  
1
1
EXTERNAL LO, QUADRATURE  
ALL OFF  
X
X
CAL COUNTER  
DIVIDE RATIO  
RC6  
..........  
RC2  
RC1  
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
0
1
1
.
0
1
0
1
.
0
1
2
3
P3  
0
P2  
0
P1  
0
OUTPUT  
I OUT  
.
.
.
.
.
0
0
1
Q OUT  
.
.
.
.
0
1
0
IB OUT  
QB OUT  
ALL OFF  
1
1
1
1
0
0
1
1
0
1
0
1
60  
61  
62  
63  
0
1
1
1
X
X
Figure 24. Rx Calibration Latch  
Rev. 0 | Page 18 of 28  
 
ADF9010  
CONTROL  
BITS  
13-BIT B COUNTER  
PRESCALER  
5-BIT A COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
P2  
P1  
G1  
M1  
B13 B12 B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
A5  
A4  
A3  
A2  
A1 C2 (1) C2 (0)  
X = DON’T CARE  
A COUNTER  
A5  
..........  
A2  
A1  
DIVIDE RATIO  
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
N DIV MUX OPERATION  
0
1
VCO FEEDBACK TO N DIVIDER.  
MUX FEEDBACK TO N DIVIDER.  
.
.
.
.
.
.
.
.
1
0
0
28  
1
1
1
..........  
..........  
..........  
0
1
1
1
0
1
29  
30  
31  
B12  
B12  
B11  
B3  
B2  
0
0
1
1
.
B1  
0
1
0
1
.
B COUNTER DIVIDE RATIO  
0
0
0
0
.
0
0
0
0
.
0
0
0
0
.
..........  
0
NOT ALLOWED  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
.
NOT ALLOWED  
NOT ALLOWED  
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
8188  
8189  
8190  
8191  
CP GAIN  
0
OPERATION  
USE THE PROGRAMMED CHARGE PUMP  
CURRENT SETTING FROM CONTROL REGISTER  
1
USE THE MAXIMUM CHARGE PUMP CURRENT  
SETTING  
N = BP + A, P IS THE PRESCALER VALUE SET IN THE FUNCTION LATCH.  
B MUST BE GREATER THAN OR EQUAL TO A. FOR CONTINUOUSLY  
2
IS (P – P).  
MIN  
ADJACENT VALUES OF (N × F  
) AT THE OUTPUT, N  
REF  
P2  
P1  
PRESCALER VALUE  
0
0
1
1
0
1
0
1
8/9  
16/17  
32/33  
32/33  
Figure 25. LO Latch  
Rev. 0 | Page 19 of 28  
 
ADF9010  
CONTROL  
BITS  
Rx FILTER  
BANDWIDTH  
Rx FILTER  
GAIN STEPS  
TEST MODES  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
DB1 DB0  
T16  
T15 T14  
T13 T12  
T11  
T10  
T9  
T8  
T7  
T6  
T5  
T4  
T3  
T2  
T1  
HP  
BW2 BW1 G3  
G2  
G1  
C2 (1) C1 (1)  
G3  
0
G2  
G1  
0
FILTER GAIN  
3dB  
0
0
1
1
0
0
1
1
0
1
6dB  
0
0
9dB  
0
1
12dB  
15dB  
18dB  
21dB  
24dB  
1
0
1
1
THESE BITS ARE USED FOR FACTORY  
TESTING AND SHOULD NOT BE  
PROGRAMMED BY THE USER.  
THEY SHOULD BE SET TO 0.  
1
0
1
1
HP  
0
HPF BOOST  
DISABLED  
ENABLED  
1
BW2  
BW1  
Rx FILTER BANDWIDTH  
0
0
1
1
0
1
0
1
LOW  
1MHz  
2MHz  
BYPASSED  
Figure 26. Rx Latch  
Rev. 0 | Page 20 of 28  
 
ADF9010  
CONTROL LATCH  
Tx LATCH  
With (C2, C1) = (0, 0), the control latch is programmed.  
Figure 22 shows the input data format for programming  
the control latch.  
With (C3, C2, C1) = (0, 0, 1), the Tx latch is programmed.  
Figure 23 shows the input data format for programming  
the Tx latch.  
Power-Down  
LO Phase Select  
Programming a 1 to PD4, PD3, PD2, PD1 powers down  
the circuitry for the Rx filters, PLL, VCO, and Tx sections,  
respectively. Programming a 0 enables normal operation for  
each section.  
Bit P3, Bit P2, and Bit P1 set the phase of the LO output to the  
demodulator. This enables the user to select the phase delay of  
the Rx LO signal to the demodulator in 90° steps. See the truth  
table in Figure 23. The Rx LO output can be disabled if desired.  
Tx Output Power  
Tx Modulation LO Phase Select  
Bit TP1 and Bit TP2 set the output power level of the VCO.  
See the truth table in Figure 22.  
Bit T3, Bit T2, and Bit T1 set the input modulation of the  
VCO. Normal quadrature to each mixer can be replaced by  
choosing one LO phase to both mixers if desired. The normal  
(I) or quadrature (Q) phase can be chosen. See the truth table  
in Figure 23.  
Charge Pump Current  
Bit CPI3, Bit CPI2, and Bit CPI1 determine Current Setting 2.  
See the truth table in Figure 22.  
Band Select Clock  
LO Output Power  
Bits BSC2 and Bit BSC1 set a divider for the band select logic  
clock input. The recommended setting is 1, 1, which programs  
a value of 8 to the divider. No other setting is allowed.  
Bit P1 and Bit P2 set the output power level of the LO. See the  
truth table in Figure 22.  
Mute LO Until Lock Detect  
Reference Counter  
Bit F5 is the mute until lock detect bit. This function, when  
enabled, ensures that the LO outputs are not switched on  
until the PLL is locked.  
R13 to R1 set the counter divide ratio. The divide range is 1  
(00 … 001) to 8191 (111 … 111).  
Rx CALIBRATION LATCH  
Mute Tx Until Lock Detect  
With (C3, C2, C1) = (1, 0, 1), the Rx calibration latch is  
programmed. Figure 24 shows the input data format for  
programming the Rx calibration latch.  
Bit F4 is the mute Tx until lock detect bit. This function, when  
enabled, ensures that the Tx outputs are not switched on until  
the PLL is locked.  
LO Phase Select  
Charge Pump Three-State  
Bit P3, Bit P2, and Bit P1 set the phase of the LO output to the  
demodulator. This enables the user to select the phase delay of  
the Rx LO signal to the demodulator in 90° steps. See the truth  
table in Figure 24. The Rx LO output can be disabled if desired.  
Bit F3 puts the charge pump into three-state mode when pro-  
grammed to a 1. It should be set to 0 for normal operation.  
Phase Detector Polarity  
Bit F2 sets the phase detector polarity. The positive setting  
enabled by programming a 1 is used when using the on-chip  
VCO with a passive loop filter or with an active noninverting  
filter. It can also be set to 0. This is required if an active inverting  
loop filter is used.  
Tx Modulation LO Phase Select  
Bit T3, Bit T2, and Bit T1 set the input modulation of the VCO.  
Normal quadrature to each mixer can be replaced by choosing  
one LO phase to both mixers if desired. The normal (I) or quad-  
rature (Q) phase can be chosen. See the truth table in Figure 24.  
MUXOUT Control  
Band Select Clock  
The on-chip multiplexer is controlled by M3, M2, and M1.  
See the truth table in Figure 22.  
Bit BSC2 and Bit BSC1 set a divider for the band select logic  
clock input. The recommended setting is 1, 1, which programs  
a value of 8 to the divider. No other setting is allowed.  
Counter Reset  
Bit F1 is the counter reset bit for the PLL of the ADF9010.  
When this bit is set to 1, the R, A, and B counters are held  
in reset. For normal operation, this bit should be 0.  
Rx Filter Calibration  
Setting Bit R13 high performs a calibration of the Rx filters’  
cutoff frequency, fC. Setting this bit to 0 ensures the filter cutoff  
frequency calibration sequence is not initiated if this latch is  
programmed.  
Reserved Bits  
DB3 and DB2 are spare bits that are reserved. They should  
be programmed to 0 and 1, respectively.  
Rev. 0 | Page 21 of 28  
 
 
 
ADF9010  
Rx Calibration Divider  
A Counter Latch  
Bit RC6 to Bit RC1 program a 6-bit divider, which outputs  
a divided REFIN signal to assist calibration of the cutoff  
frequency, fC, of the Rx filters. The calibration circuit uses  
this divideddown PLL reference frequency to ensure an  
accurate cutoff frequency in the Rx filter. The divider value  
should be chosen to ensure that the frequency of the divided  
down signal is exactly 2 MHz, that is, if a 32 MHz crystal is  
used as the PLL REFIN frequency, then a value of 16 should  
be programmed to the counter to ensure accurate calibration.  
Bit A5 to Bit A1 program the 5-bit A counter. The divide range  
is 0 (00000) to 31 (11111).  
Rx LATCH  
Program the Rx latch with (C2, C1) = (1, 1). Figure 26 shows  
the input data format for programming the LO latch.  
High-Pass Filter Boost  
This function is enabled by setting the HP bit to 1. A 0 disables  
this function. This is used to reduce settling time on the high-  
pass filter from the Rx demodulator. This is usually used in  
conjunction with the high-pass filter boost counter (See the  
Rx Calibration Latch section).  
High-Pass Filter Boost Timeout Counter  
In most applications of the ADF9010, a high-pass filter is placed  
between the demodulator outputs and the ADF9010 Rx inputs.  
The capacitors used in these filters may require a long charge  
up time, and to address this, a filter boost function exists that  
charges up the capacitor to ~1.6 V. The duration for this boost  
is set by the product of the period of the Rx calibration signal,  
(REFIN divided by the Rx calibration divider) and the 6-bit value  
programmed to these registers. This value can be as large as 63.  
Programming a value of 000000 leads to the calibration time  
being manually set by the HPF boost in the Rx latch. It becomes  
necessary in such cases to program this bit to 0 for normal Rx  
operation.  
Rx Filter Bandwidth  
The Rx filter bandwidth is programmable and is controlled by  
Bit BW2 and Bit BW1. See the truth table in Figure 26.  
Rx Filter Gain Steps  
Bit G3 to Bit G1 set the gain of the Rx filters. The gain can  
vary from 3 dB to 24 dB in 3 dB steps. See the truth table in  
Figure 26.  
INITIALIZATION  
The correct initialization sequence for the ADF9010 is as follows:  
LO LATCH  
1. Power-down all blocks: Tx, Rx, PLL, and VCO. Set the Tx  
output power off control latch to (1, 1). Set the LO phase  
select off (P1, P2, P3) in Tx latch to (1, 1, 1).  
2. Program the R1 latch with the desired R counter and  
Tx values.  
Program the LO latch with (C2, C1) = (1, 0). Figure 25 shows  
the input data format for programming the LO latch.  
Prescaler  
Bit P2 and Bit P1 in the LO latch set the prescaler values.  
3. Program R5 with Rx calibration data for frequency  
calibration and high-pass filter boost.  
CP Gain  
4. Program R0 to power up all LO and Tx/Rx blocks.  
5. Program R2 to encode correct LO frequency.  
6. Program R3 to power up Rx filter.  
Setting G1 to 0 chooses the programmed charge pump current  
setting from the control latch. Setting this bit to 1 chooses the  
maximum possible setting.  
N Div Mux  
INTERFACING  
The ADF9010 has a simple SPI®-compatible interface for  
writing to the device. SCLK, SDATA, and SLE control the data  
transfer. See Figure 2 for the timing diagram.  
Setting M1 to 0 feeds the VCO signals back to the N divider.  
Setting this bit to 1 allows the mux signal to be fed back instead.  
B Counter Latch  
The maximum allowable serial clock rate is 20 MHz. This  
means that the maximum update rate possible for the device  
is 833 kHz or one update every 1.2 μs. This is certainly more  
than adequate for systems that have typical lock times in  
hundreds of microseconds.  
Bit B13 to Bit B1 program the B counter. The divide range is  
3 (00 … 0011) to 8191 (11 … 111).  
Rev. 0 | Page 22 of 28  
 
 
 
 
ADF9010  
APPLICATIONS INFORMATION  
CE  
VP  
RXVDD  
VCM  
AVDD  
DVDD  
ADF9010  
MxFE  
SHA  
RxBBIP  
RxINIP  
RxININ  
RxBBIN  
OVF  
ADC  
AGC  
DC OFFSET  
CORRECTION  
VCM  
SHA  
RxBBQP  
RxINQP  
RxINQN  
RxBBQN  
SCLK  
SDATA  
SLE  
24-BIT  
INPUT SHIFT  
REGISTER  
DC OFFSET  
CORRECTION  
Tx BASEBAND  
Rx BASEBAND  
MUXOUT  
RSET  
PLL  
REFIN  
R
DIGITAL  
CONTROL  
PHASE  
FREQUENCY  
DETECTOR  
COUNTER  
CP  
CHARGE  
PUMP  
N COUNTER  
N = BP + A  
B
CEXT  
1
COUNTER  
CEXT2  
CEXT3  
CEXT4  
VTUNE  
PRESCALER  
P/P + 1  
A
COUNTER  
CT  
CLK  
DATA  
LE  
24-BIT  
INPUT SHIFT  
REGISTER  
BALUN  
LOOUTP  
EN  
TxBBIP  
TxBBIN  
TxBBQP  
TxBBQN  
LOOUT  
N
DAC  
DAC  
PA MODULE  
TxOUT  
P
AUX  
DAC  
AUX  
DAC  
AUX  
DAC  
BALUN  
TxOUT  
N
DGND  
AGND  
Figure 27. Applications Diagram  
The diagram in Figure 27 shows the ADF9010 in an RFID appli-  
cation. The demodulator is driven by the LOOUTx pins of the  
ADF9010. This demodulator produces quadrature baseband  
signals that are gained up in the ADF9010 Rx filters. These  
filtered analog baseband signals are then digitized by the ADC  
on a mixed signal front-end (MxFE) part. The digital signals  
are then processed by DSP.  
shunt capacitors and series inductors. Due to the large self-  
blocker, a 100 nF capacitor removes the dc generated by the  
self-blocker inherent to RFID systems. This system is used  
on the EVAL-ADF9010EBZ1 evaluation board.  
100nF  
0  
IHI  
RxINIP  
DEMOD  
ADL5382  
47pF  
ADF9010  
1.2nF  
On the transmit side, the MxFE generates quadrature analog  
baseband signals, which are upconverted to RF using the inte-  
grated PLL and VCO. The modulated RF signals are combined  
using a balun and gained up to 30 dBm by a power amplifier.  
100nF  
0Ω  
RxININ  
ILO  
Figure 28. ADL5382 to ADF9010 Rx Interface  
DEMODULATOR CONNECTION  
To receive the back-scattered signals from an RFID tag,  
the ADF9010 needs to be used with a high dynamic range  
demodulator, such as the ADL5382 that is suitable for RFID  
applications. Some extra filtration is provided by the optional  
Rev. 0 | Page 23 of 28  
 
 
 
ADF9010  
pad. This ensures that the solder joint size is maximized. The  
bottom of the chip scale package has a central thermal pad.  
LO AND Tx OUTPUT MATCHING  
The LO and Tx output stages are each connected to the collectors  
of an NPN differential pair driven by buffered outputs from the  
VCO or mixer outputs, respectively.  
The thermal pad on the printed circuit board should be at least  
as large as this exposed pad. On the printed circuit board, there  
should be a clearance of at least 0.25 mm between the thermal  
pad and the inner edges of the pad pattern. This ensures that  
shorting is avoided.  
Thermal vias can be used on the printed circuit board thermal  
pad to improve thermal performance of the package. If vias are  
used, they should be incorporated in the thermal pad at a 1.2 mm  
pitch grid. The via diameter should be between 0.3 mm and  
0.33 mm, and the via barrel should be plated with 1 oz. copper  
to plug the via.  
The recommended matching for each of these circuits consists  
of a 7.5 nH shunt inductor to VDD, a 100 pF series capacitor, and  
in the case of the Tx output a 50:100 balun to combine the Tx  
outputs. The Anaren BD0810J50100A00 is ideally suited to this  
task.  
PCB DESIGN GUIDELINES  
The lands on the chip scale package (CP-48-1) are rectangular.  
The printed circuit board pad for these should be 0.1 mm  
longer than the package land length and 0.05 mm wider than  
the package land width. The land should be centered on the  
The user should connect the printed circuit board thermal pad  
to AGND.  
Rev. 0 | Page 24 of 28  
 
 
ADF9010  
OUTLINE DIMENSIONS  
0.30  
0.23  
0.18  
7.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
37  
36  
48  
1
PIN 1  
INDICATOR  
EXPOSED  
5.25  
5.10 SQ  
4.95  
TOP  
VIEW  
6.75  
BSC SQ  
PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
25  
24  
12  
13  
0.25 MIN  
5.50  
REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.50 BSC  
SECTION OF THIS DATA SHEET.  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VKKD-2  
Figure 29. 48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
7 mm × 7 mm Body, Very Thin Quad  
(CP-48-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
Package Description  
Package Option  
CP-48-1  
ADF9010BCPZ1  
48-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
48-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
48-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
Evaluation Board  
ADF9010BCPZ-RL1  
ADF9010BCPZ-RL71  
EVAL-ADF9010EBZ1  
CP-48-1  
CP-48-1  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 25 of 28  
 
 
ADF9010  
NOTES  
Rev. 0 | Page 26 of 28  
ADF9010  
NOTES  
Rev. 0 | Page 27 of 28  
ADF9010  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07373-0-8/08(0)  
Rev. 0 | Page 28 of 28  

相关型号:

ADFC13

MULTI-LAYER DIELECTRIC FILTER
ABRACON

ADFC13-1906.50-A

Dielectric BPF, 1906.5MHz
ABRACON

ADFC13-1906.50-A-T

Dielectric BPF, 1906.5MHz
ABRACON

ADFC13-1906.50-B

Dielectric BPF, 1906.5MHz
ABRACON

ADFC13-1906.50-B-T

Dielectric BPF, 1906.5MHz
ABRACON

ADFC13-2450-C-T

Dielectric BPF, 2450MHz
ABRACON
ABRACON

ADFC15-245000-A-T

SMD 2.45GHz Dielectric Band Pass Filter
ABRACON

ADFC18-245000-A-T

SMD 2.45GHz Dielectric Band Pass Filter
ABRACON

ADFC21

MULTI-LAYER DIELECTRIC FILTER
ABRACON

ADFC21-2400.00-A

Dielectric BPF, 2400MHz
ABRACON

ADFC21-2400.00-A-T

Dielectric BPF, 2400MHz
ABRACON