ADG1208YRZ [ADI]

Low Capacitance, 8-Channel, ±15 V/+12 V iCMOS® Multiplexer;
ADG1208YRZ
型号: ADG1208YRZ
厂家: ADI    ADI
描述:

Low Capacitance, 8-Channel, ±15 V/+12 V iCMOS® Multiplexer

光电二极管
文件: 总21页 (文件大小:423K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Capacitance, 4-/8-Channel,  
15 V/+12 V iCMOS Multiplexers  
Data Sheet  
ADG1208/ADG1209  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
<1 pC charge injection over full signal range  
1 pF off capacitance  
33 V supply range  
ADG1208  
ADG1209  
S1  
S1A  
S4A  
DA  
DB  
120 Ω on resistance  
Fully specified at 15 V/+12 V  
3 V logic compatible inputs  
Rail-to-rail operation  
Break-before-make switching action  
Available in a 16-lead TSSOP, a 16-lead LFCSP, and a  
16-lead SOIC  
D
S1B  
S4B  
S8  
1-OF-8  
DECODER  
1-OF-4  
DECODER  
Typical power consumption < 0.03 µW  
A0 A1 A2 EN  
A0 A1 EN  
APPLICATIONS  
Figure 1.  
Audio and video routing  
Automatic test equipment  
Data-acquisition systems  
Battery-powered systems  
Sample-and-hold systems  
Communication systems  
GENERAL DESCRIPTION  
The ADG1208 and ADG1209 are monolithic, iCMOS® analog  
multiplexers comprising eight single channels and four differential  
channels, respectively. The ADG1208 switches one of eight inputs  
to a common output as determined by the 3-bit binary address  
lines A0, A1, and A2. The ADG1209 switches one of four  
differential inputs to a common differential output as determined  
by the 2-bit binary address lines A0 and A1. An EN input on  
both devices enable or disable the device. When disabled, all  
channels are switched off. When on, each channel conducts  
equally well in both directions and has an input signal range  
that extends to the supplies.  
The ultralow capacitance and exceptionally low charge injection  
of these multiplexers make them ideal solutions for data acquisition  
and sample-and-hold applications, where low glitch and fast  
settling are required. Figure 2 shows that there is minimum  
charge injection over the entire signal range of the device.  
iCMOS construction also ensures ultralow power dissipation,  
making the devices ideally suited for portable and battery-  
powered instruments.  
1.0  
MUX (SOURCE TO DRAIN)  
T
= 25°C  
A
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
The industrial CMOS (iCMOS) modular manufacturing  
process combines high voltage complementary metal-oxide  
semiconductor (CMOS) and bipolar technologies. It enables the  
development of a wide range of high performance analog ICs  
capable of 33 V operation in a footprint that no other generation  
of high voltage devices has been able to achieve. Unlike analog  
ICs using conventional CMOS processes, iCMOS components  
can tolerate high supply voltages while providing increased  
performance, dramatically lower power consumption, and  
reduced package size.  
V
V
= +15V  
= –15V  
DD  
SS  
V
V
= +12V  
= 0V  
DD  
SS  
0.1  
0
V
V
= +5V  
= –5V  
DD  
SS  
–15  
–10  
–5  
0
5
10  
15  
V
(V)  
S
Figure 2. Source to Drain Charge Injection vs. Source Voltage  
Rev. E  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2006–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADG1208/ADG1209  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................7  
Pin Configurations and Function Descriptions............................8  
Typical Performance Characteristics ........................................... 12  
Terminology.................................................................................... 16  
Test Circuits..................................................................................... 17  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 21  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Dual Supply ................................................................................... 3  
Single Supply ................................................................................. 5  
Absolute Maximum Ratings............................................................ 7  
REVISION HISTORY  
6/2016—Rev. D to Rev. E  
1/2009—Rev. A to Rev. B  
Change to IDD Parameter, Table 1 ....................................................4  
Change to IDD Parameter, Table 2 ....................................................6  
Changes to Analog Inputs Parameter, Table 3.............................. 7  
Added Digital Inputs Parameter, Table 3 ...................................... 7  
Moved Figure 7 ............................................................................... 10  
Change to Table 7 ........................................................................... 10  
Deleted Table 8; Renumbered Sequentially ................................ 11  
Updated Outline Dimensions ....................................................... 20  
Changes to Ordering Guide .......................................................... 21  
4/2007—Rev. 0 to Rev. A  
Added 16-lead SOIC ..........................................................Universal  
Changes to Table 1.............................................................................3  
Changes to Table 2.............................................................................5  
Changes to Figure 10 and Figure 11............................................. 10  
Updated Outline Dimensions....................................................... 17  
Changes to Ordering Guide.......................................................... 18  
3/2016—Rev. C to Rev. D  
Changes to Table 4 Title................................................................... 8  
Changes to Table 5 Title................................................................... 9  
Changes to Table 7 Title................................................................. 10  
Changes to Figure 7........................................................................ 11  
Added Table 8; Renumbered Sequentially .................................. 11  
Changes to Table 9 Title ................................................................. 12  
4/2006—Revision 0: Initial Version  
8/2015—Rev. B to Rev. C  
Changes to Features Section............................................................ 1  
Added Figure 4; Renumbered Sequentially .................................. 8  
Changes to Table 4............................................................................ 8  
Changes to Figure 5.......................................................................... 9  
Added Table 5; Renumbered Sequentially .................................... 9  
Added Figure 7................................................................................ 10  
Changes to Table 7.......................................................................... 10  
Changes to Figure 8........................................................................ 11  
Added Table 8.................................................................................. 11  
Updated Outline Dimensions ....................................................... 19  
Changes to Ordering Guide .......................................................... 20  
Rev. E | Page 2 of 21  
 
Data Sheet  
ADG1208/ADG1209  
SPECIFICATIONS  
DUAL SUPPLY  
VDD = +15 V 10%, VSS = –15 V 10%, GND = 0 V, unless otherwise noted. Temperature range is as follows: Y version: –40°C to +125°C.  
Table 1.  
−40ºC to −40ºC to  
Parameter  
+25ºC +85ºC  
+125ºC  
VSS to VDD  
270  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
V
120  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
VS = 10 V, IS = −1 mA, see Figure 31  
VDD = +13.5 V, VSS = −13.5 V  
VS = 10 V, IS = −1 mA  
200  
3.5  
6
20  
64  
240  
10  
On-Resistance Match Between Channels, ∆RON  
On-Resistance Flatness, RFLAT (On)  
12  
VS = −5 V/0 V/+5 V, IS = −1 mA  
76  
83  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
0.003  
0.1  
0.003  
0.1  
0.1  
0.02  
0.2  
0.2  
nA typ  
nA max  
nA typ  
nA max  
nA max  
nA typ  
nA max  
nA max  
VD = 10 V, VS = −10 V, see Figure 32  
VS = 1 V/10 V, VD = 10 V/1 V, see Figure 32  
0.6  
1
Drain Off Leakage, ID (Off)  
ADG1208  
ADG1209  
Channel On Leakage, ID, IS (On)  
ADG1208  
0.6  
0.6  
1
1
VS = VD = 10 V, see Figure 33  
0.6  
0.6  
1
1
ADG1209  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
µA max  
µA max  
pF typ  
0.005  
VIN = VINL or VINH  
0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS1  
Transition Time, tTRANSITION  
2
80  
130  
75  
95  
83  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
dB typ  
dB typ  
% typ  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 34  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 36  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 36  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 10 V, see Figure 35  
VS = 0 V, RS = 0 Ω, CL = 1 nF, see Figure 37  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 38  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 40  
RL = 10 kΩ, 5 V rms, f = 20 Hz to 20 kHz,  
see Figure 41  
165  
105  
125  
185  
115  
140  
10  
tON (EN)  
tOFF (EN)  
100  
25  
Break-Before-Make Time Delay, tBBM  
Charge Injection  
Off Isolation  
Channel to Channel Crosstalk  
Total Harmonic Distortion Plus Noise  
0.4  
−85  
−85  
0.15  
−3 dB Bandwidth  
CS (Off)  
550  
1
MHz typ  
pF typ  
RL = 50 Ω, CL = 5 pF, see Figure 39  
f = 1 MHz, VS = 0 V  
1.5  
6
7
3.5  
4.5  
pF max  
pF typ  
pF max  
pF typ  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
CD (Off), ADG1208  
CD (Off), ADG1209  
pF max  
f = 1 MHz, VS = 0 V  
Rev. E | Page 3 of 21  
 
 
ADG1208/ADG1209  
Data Sheet  
−40ºC to −40ºC to  
Parameter  
+25ºC +85ºC  
+125ºC  
Unit  
Test Conditions/Comments  
CD, CS (On), ADG1208  
7
8
5
6
pF typ  
pF max  
pF typ  
pF max  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
CD, CS (On), ADG1209  
POWER REQUIREMENTS  
IDD  
VDD = +16.5 V, VSS = −16.5 V  
Digital inputs = 0 V or VDD  
0.002  
220  
µA typ  
µA max  
µA typ  
µA max  
µA typ  
µA max  
µA typ  
µA max  
1.0  
380  
1.0  
1.0  
IDD  
ISS  
ISS  
Digital inputs = 5 V  
0.002  
0.002  
Digital inputs = 0 V or VDD  
Digital inputs = 5 V  
VDD/VSS  
5/ 16.5 V min/max |VDD| = |VSS|  
1 Guaranteed by design, not subject to production test.  
Rev. E | Page 4 of 21  
 
Data Sheet  
ADG1208/ADG1209  
SINGLE SUPPLY  
VDD = 12 V 10%, VSS = 0 V, GND = 0 V, unless otherwise noted. Temperature range is as follows: Y version: –40°C to +125°C.  
Table 2.  
−40ºC to  
+85ºC  
−40ºC to  
+125ºC  
Parameter  
+25ºC  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
0 to VDD  
625  
V
300  
475  
5
Ω typ  
Ω max  
Ω typ  
VS = 0 V to 10 V, IS = −1 mA, see Figure 31  
VDD = 10.8 V, VSS = 0 V  
VS = 0 V to 10 V, IS = −1 mA  
567  
26  
On-Resistance Match Between  
Channels, ∆RON  
16  
60  
27  
Ω max  
Ω typ  
On-Resistance Flatness, RFLAT (On)  
LEAKAGE CURRENTS  
VS = 3 V/6 V/9 V, IS = −1 mA  
VDD = 13.2 V  
Source Off Leakage, IS (Off)  
0.003  
0.1  
0.003  
0.1  
0.1  
0.02  
0.2  
nA typ  
nA max  
nA typ  
nA max  
nA max  
nA typ  
nA max  
nA max  
VS = 1 V/10 V, VD = 10 V/1 V, see Figure 32  
0.6  
1
Drain Off Leakage, ID (Off)  
ADG1208  
ADG1209  
Channel On Leakage ID, IS (On)  
ADG1208  
VS = 1 V/10 V, VD = 10 V/1 V, see Figure 32  
VS = VD = 1 V or 10 V, see Figure 33  
0.6  
0.6  
1
1
0.6  
0.6  
1
1
ADG1209  
0.2  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
0.001  
3
0.1  
µA max  
pF typ  
VIN = VINL or VINH  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS1  
Transition Time, tTRANSITION  
100  
170  
90  
110  
105  
130  
45  
ns typ  
ns typ  
ns typ  
RL = 300 Ω, CL = 35 pF  
VS = 8 V, see Figure 34  
RL = 300 Ω, CL = 35 pF  
VS = 8 V, see Figure 36  
RL = 300 Ω, CL = 35 pF  
VS = 8 V, see Figure 36  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 8 V, see Figure 35  
VS = 6 V, RS = 0 Ω, CL = 1 nF, see Figure 37  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 38  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 40  
RL = 50 Ω, CL = 5 pF, see Figure 39  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
210  
140  
155  
235  
160  
175  
20  
tON (EN)  
tOFF (EN)  
Break-Before-Make Time Delay, tBBM  
ns typ  
ns min  
pC typ  
dB typ  
dB typ  
MHz typ  
pF typ  
pF max  
pF typ  
pF max  
pF typ  
pF max  
pF typ  
pF max  
pF typ  
pF max  
Charge Injection  
Off Isolation  
Channel to Channel Crosstalk  
−3 dB Bandwidth  
CS (Off)  
−0.2  
−85  
−85  
450  
1.2  
1.8  
7.5  
9
4.5  
5.5  
9
10.5  
6
CD (Off), ADG1208  
CD (Off), ADG1209  
CD, CS (On), ADG1208  
CD, CS (On), ADG1209  
7.5  
f = 1 MHz, VS = 6 V  
Rev. E | Page 5 of 21  
 
ADG1208/ADG1209  
Data Sheet  
−40ºC to  
+85ºC  
−40ºC to  
+125ºC  
Parameter  
+25ºC  
0.002  
220  
Unit  
Test Conditions/Comments  
VDD = 13.2 V  
Digital inputs = 0 V or VDD  
POWER REQUIREMENTS  
IDD  
µA typ  
µA max  
µA typ  
µA max  
V min/max  
1.0  
IDD  
Digital inputs = 5 V  
VSS = 0 V, GND = 0 V  
380  
5/16.5  
VDD  
1 Guaranteed by design, not subject to production test.  
Rev. E | Page 6 of 21  
 
Data Sheet  
ADG1208/ADG1209  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 3.  
Parameter  
Rating  
VDD to VSS  
35 V  
VDD to GND  
VSS to GND  
Analog Inputs1  
−0.3 V to +25 V  
+0.3 V to −25 V  
VSS − 0.3 V to VDD + 0.3 V or  
30 mA (whichever occurs first)  
GND − 0.3 V to VDD + 0.3 V or  
30 mA (whichever occurs first)  
ESD CAUTION  
Digital Inputs1  
Continuous Current, S or D  
30 mA  
Peak Current, S or D (Pulsed at  
1 ms, 10% Duty Cycle Maximum)  
100 mA  
Operating Temperature Range  
Industrial (Y Version)  
Storage Temperature  
Junction Temperature  
θJA Thermal Impedance  
TSSOP  
−40°C to +125°C  
−65°C to +150°C  
150°C  
112°C/W  
LFCSP  
SOIC  
30.4°C/W  
77°C/W  
Reflow Soldering Peak  
Temperature (Pb-Free)  
260(+0/−5)°C  
1 Overvoltages at A, EN, S, or D are clamped by internal diodes. Current should  
be limited to the maximum ratings given.  
Rev. E | Page 7 of 21  
 
 
ADG1208/ADG1209  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
A0  
1
2
3
4
5
6
7
8
16  
15  
A1  
A2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
A0  
A1  
EN  
EN  
A2  
V
14 GND  
SS  
S1  
S2  
S3  
S4  
D
ADG1208  
TOP VIEW  
(Not to Scale)  
V
GND  
SS  
ADG1208  
TOP VIEW  
(Not to Scale)  
V
13  
DD  
S1  
V
DD  
12 S5  
11 S6  
S2  
S3  
S4  
D
S5  
S6  
S7  
S8  
10  
9
S7  
S8  
Figure 3. 16-Lead TSSOP Pin Configuration (ADG1208)  
Figure 4. 16-Lead SOIC Pin Configuration (ADG1208)  
Table 4. 16-Lead TSSOP and 16-Lead SOIC Pin Function Descriptions (ADG1208)  
Pin No. Mnemonic Description  
1
2
A0  
EN  
Logic Control Input.  
Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs  
determine on switches.  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
VSS  
S1  
S2  
S3  
S4  
D
S8  
S7  
S6  
S5  
VDD  
GND  
A2  
A1  
Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground.  
Source Terminal 1. Can be an input or an output.  
Source Terminal 2. Can be an input or an output.  
Source Terminal 3. Can be an input or an output.  
Source Terminal 4. Can be an input or an output.  
Drain Terminal. Can be an input or an output.  
Source Terminal 8. Can be an input or an output.  
Source Terminal 7. Can be an input or an output.  
Source Terminal 6. Can be an input or an output.  
Source Terminal 5. Can be an input or an output.  
Most Positive Power Supply Potential.  
Ground (0 V) Reference.  
Logic Control Input.  
Logic Control Input.  
Rev. E | Page 8 of 21  
 
Data Sheet  
ADG1208/ADG1209  
V
1
2
3
4
12 GND  
SS  
V
11  
10  
9
S1  
S2  
S3  
ADG1208  
DD  
TOP VIEW  
S5  
S6  
(Not to Scale)  
1. THE EXPOSED PAD IS CONNECTED INTERNALLY.  
FOR INCREASED RELIABILITY OF THE SOLDER  
JOINTS AND MAXIMUM THERMAL CAPABILITY,  
IT IS RECOMMENDED THAT THE PAD BE  
SOLDERED TO THE SUBSTRATE, V  
.
SS  
Figure 5. 16-Lead LFCSP Pin Configuration (ADG1208)  
Table 5. 16-Lead LFCSP Pin Function Descriptions (ADG1208)  
Pin No. Mnemonic Description  
1
2
3
4
5
6
7
8
VSS  
S1  
S2  
S3  
S4  
D
S8  
S7  
S6  
Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground.  
Source Terminal 1. Can be an input or an output.  
Source Terminal 2. Can be an input or an output.  
Source Terminal 3. Can be an input or an output.  
Source Terminal 4. Can be an input or an output.  
Drain Terminal. Can be an input or an output.  
Source Terminal 8. Can be an input or an output.  
Source Terminal 7. Can be an input or an output.  
Source Terminal 6. Can be an input or an output.  
Source Terminal 5. Can be an input or an output.  
Most Positive Power Supply Potential.  
Ground (0 V) Reference.  
9
10  
11  
12  
13  
14  
15  
16  
S5  
VDD  
GND  
A2  
A1  
A0  
EN  
Logic Control Input.  
Logic Control Input.  
Logic Control Input.  
Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs  
determine on switches.  
EPAD  
Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and maximum  
thermal capability, it is recommended that the pad be soldered to the substrate, VSS.  
Table 6. ADG1208 Truth Table  
A2  
X
0
0
0
0
1
1
1
A1  
X
0
0
1
1
0
0
1
A0  
X
0
1
0
1
0
1
0
EN  
0
1
1
1
1
1
1
1
On Switch  
None  
1
2
3
4
5
6
7
8
1
1
1
1
Rev. E | Page 9 of 21  
ADG1208/ADG1209  
Data Sheet  
A0  
1
2
3
4
5
6
7
8
16  
15  
14  
A1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
A0  
EN  
A1  
EN  
GND  
GND  
V
V
SS  
S1A  
S2A  
S3A  
S4A  
DA  
DD  
ADG1209  
TOP VIEW  
(Not to Scale)  
V
V
DD  
SS  
ADG1209  
TOP VIEW  
(Not to Scale)  
13 S1B  
12 S2B  
11 S3B  
10 S4B  
S1A  
S1B  
S2B  
S3B  
S4B  
DB  
S2A  
S3A  
S4A  
DA  
9
DB  
Figure 6. 16-Lead TSSOP Pin Configuration (ADG1209)  
Figure 7.16-Lead SOIC Pin Configuration (ADG1209)  
Table 7. 16-Lead TSSOP and 16-Lead SOIC Pin Function Descriptions (ADG1209)  
Pin No. Mnemonic Description  
1
2
A0  
EN  
Logic Control Input.  
Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs  
determine on switches.  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
VSS  
Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground.  
Source Terminal 1A. Can be an input or an output.  
Source Terminal 2A. Can be an input or an output.  
Source Terminal 3A. Can be an input or an output.  
Source Terminal 4A. Can be an input or an output.  
Drain Terminal A. Can be an input or an output.  
Drain Terminal B. Can be an input or an output.  
Source Terminal 4B. Can be an input or an output.  
Source Terminal 3B. Can be an input or an output.  
Source Terminal 2B. Can be an input or an output.  
Source Terminal 1B. Can be an input or an output.  
Most Positive Power Supply Potential.  
S1A  
S2A  
S3A  
S4A  
DA  
DB  
S4B  
S3B  
S2B  
S1B  
VDD  
GND  
A1  
Ground (0 V) Reference.  
Logic Control Input.  
Rev. E | Page 10 of 21  
Data Sheet  
ADG1208/ADG1209  
V
1
2
3
4
12  
11  
10  
9
V
DD  
SS  
S1B  
S2B  
S3B  
S1A  
S2A  
S3A  
ADG1209  
TOP VIEW  
(Not to Scale)  
1. THE EXPOSED PAD IS CONNECTED INTERNALLY.  
FOR INCREASED RELIABILITY OF THE SOLDER  
JOINTS AND MAXIMUM THERMAL CAPABILITY,  
IT IS RECOMMENDED THAT THE PAD BE  
SOLDERED TO THE SUBSTRATE, V  
.
SS  
Figure 8. 16-Lead LFCSP Pin Configuration (ADG1209)  
Table 8. 16-Lead LFCSP Pin Function Descriptions (ADG1209)  
Pin No. Mnemonic Description  
1
VSS  
Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground.  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
S1A  
S2A  
S3A  
S4A  
DA  
Source Terminal 1A. Can be an input or an output.  
Source Terminal 2A. Can be an input or an output.  
Source Terminal 3A. Can be an input or an output.  
Source Terminal 4A. Can be an input or an output.  
Drain Terminal A. Can be an input or an output.  
Drain Terminal B. Can be an input or an output.  
Source Terminal 4B. Can be an input or an output.  
Source Terminal 3B. Can be an input or an output.  
Source Terminal 2B. Can be an input or an output.  
Source Terminal 1B. Can be an input or an output.  
Most Positive Power Supply Potential.  
DB  
S4B  
S3B  
S2B  
S1B  
VDD  
GND  
A1  
Ground (0 V) Reference.  
Logic Control Input.  
Logic Control Input.  
A0  
EN  
Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs  
determine on switches.  
EPAD  
Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and maximum  
thermal capability, it is recommended that the pad be soldered to the substrate, VSS.  
Table 9. ADG1209 Truth Table  
A1  
A0  
EN  
0
On Switch Pair  
X
X
None  
0
0
1
1
0
1
0
1
1
1
1
1
1
2
3
4
Rev. E | Page 11 of 21  
ADG1208/ADG1209  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
250  
200  
V
V
= +15V  
= –15V  
DD  
SS  
T
= 25°C  
A
V
V
= +15V  
= –15V  
DD  
SS  
180  
160  
140  
120  
100  
80  
V
V
= +13.5V  
= –13.5V  
DD  
SS  
200  
150  
T
T
= +125°C  
= +85°C  
A
A
T
= +25°C  
= –40°C  
A
A
V
V
= +16.5V  
= –16.5V  
DD  
SS  
100  
T
60  
50  
0
40  
20  
0
–15  
–10  
–5  
0
5
10  
15  
–18 –15 –12 –9 –6 –3  
0
3
6
9
12 15 18  
SOURCE OR DRAIN VOLTAGE (V)  
SOURCE OR DRAIN VOLTAGE (V)  
Figure 12. On Resistance as a Function of VD (VS) for Different Temperatures,  
Dual Supply  
Figure 9. On Resistance as a Function of VD (VS) for Dual Supply  
600  
600  
V
V
= 12V  
= 0V  
DD  
SS  
T
= 25°C  
V
V
= +4.5V  
= –4.5V  
A
DD  
SS  
T
= +125°C  
A
500  
400  
300  
200  
500  
V
V
= +5V  
= –5V  
DD  
SS  
T
= +85°C  
A
400  
300  
T
= +25°C  
A
V
V
= +5.5V  
= –5.5V  
DD  
SS  
T
= –40°C  
A
200  
100  
0
100  
0
0
2
4
6
8
10  
12  
–6  
–4  
–2  
0
2
4
6
SOURCE OR DRAIN VOLTAGE (V)  
SOURCE OR DRAIN VOLTAGE (V)  
Figure 13. On Resistance as a Function of VD (VS) for Different Temperatures,  
Single Supply  
Figure 10. On Resistance as a Function of VD (VS) for Dual Supply  
400  
450  
V
V
V
= +15V  
= –15V  
T
= 25°C  
DD  
SS  
V
V
= 10.8V  
= 0V  
A
DD  
SS  
400  
350  
300  
250  
200  
150  
100  
300  
200  
= +10V/–10V  
BIAS  
V
= 12V  
= 0V  
I
,
(ON) + +  
S
DD  
D
V
SS  
I
(OFF) + –  
D
100  
I
(OFF) + –  
S
V
V
= 13.2V  
= 0V  
0
DD  
SS  
I
,
(ON) – –  
S
D
–100  
–200  
–300  
–400  
I
(OFF) – +  
D
I
(OFF) – +  
S
50  
0
0
10 20 30 40 50 60 70 80 90 100 110 120  
TEMPERATURE (°C)  
0
2
4
6
8
10  
12  
14  
SOURCE OR DRAIN VOLTAGE (V)  
Figure 14. ADG1208 Leakage Currents as a Function of Temperature, Dual Supply  
Figure 11. On Resistance as a Function of VD (VS) for Single Supply  
Rev. E | Page 12 of 21  
 
Data Sheet  
ADG1208/ADG1209  
150  
6
4
DEMUX (DRAIN TO SOURCE)  
= 25°C  
V
V
V
= 12V  
= 0V  
DD  
SS  
T
A
= 1V/10V  
BIAS  
100  
50  
I
(OFF) + –  
V
V
= +5V  
= –5V  
S
DD  
SS  
I
,
(ON) + +  
S
D
2
I
(OFF) + –  
D
0
0
V
V
= +12V  
= 0V  
DD  
SS  
I
(OFF) – +  
S
I
,
(ON) – –  
S
D
V
V
= +15V  
= –15V  
DD  
SS  
–50  
–100  
–150  
–2  
I
(OFF) – +  
D
–4  
–6  
0
10 20 30 40 50 60 70 80 90 100 110 120  
TEMPERATURE (°C)  
–15  
–10  
–5  
0
5
10  
15  
V
(V)  
S
Figure 15. ADG1208 Leakage Currents as a Function of Temperature,  
Single Supply  
Figure 18. Drain-to-Source Charge Injection vs. Source Voltage  
200  
350  
300  
I
T
PER CHANNEL  
= 25C  
DD  
180  
160  
140  
120  
100  
80  
A
V
V
= +5V  
= –5V  
V
V
= +15V  
= –15V  
DD  
SS  
DD  
250  
200  
150  
100  
50  
SS  
V
V
= +12V  
= 0V  
DD  
SS  
60  
V
V
= +15V  
= –15V  
DD  
SS  
40  
V
V
= +12V  
= 0V  
DD  
SS  
20  
0
0
–40  
0
2
4
6
8
10  
12  
14  
16  
–20  
0
20  
40  
60  
80  
100  
120  
LOGIC, IN (V)  
X
TEMPERATURE (°C)  
Figure 16. IDD vs. Logic Level  
Figure 19. tON/tOFF Times vs. Temperature  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0
MUX (SOURCE TO DRAIN)  
= 25°C  
V
V
= +15V  
= –15V  
= 25C  
T
DD  
SS  
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
T
A
V
V
= +15V  
= –15V  
DD  
SS  
V
V
= +12V  
= 0V  
DD  
SS  
0.1  
0
V
V
= +5V  
= –5V  
DD  
SS  
–100  
–110  
–15  
–10  
–5  
0
5
10  
15  
10k  
100k  
1M  
10M  
100M  
1G  
V
(V)  
FREQUENCY (Hz)  
S
Figure 17. Source-to-Drain Charge Injection vs. Source Voltage  
Figure 20. Off Isolation vs. Frequency  
Rev. E | Page 13 of 21  
ADG1208/ADG1209  
Data Sheet  
20  
10  
V
V
T
= +15V  
= –15V  
= 25°C  
DD  
SS  
LOAD = 10k  
= 25°C  
T
A
0
–20  
–40  
–60  
–80  
A
1
V
V
= +5V, V = –5V, V = +3.5Vrms  
SS  
DD  
S
ADJACENT CHANNELS  
= +15V, V = –15V, V = +5Vrms  
SS  
DD  
S
0.1  
NONADJACENT  
CHANNELS  
–100  
–120  
0.01  
10k  
100k  
1M  
10M  
100M  
1G  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
Figure 21. ADG1208 Crosstalk vs. Frequency  
Figure 24. THD + N vs. Frequency  
0
–20  
12  
10  
8
V
V
= +15V  
= –15V  
= 25°C  
DD  
SS  
T
A
–40  
SOURCE/DRAIN ON  
DRAIN OFF  
ADJACENT CHANNELS  
–60  
6
–80  
4
–100  
–120  
2
0
SOURCE OFF  
NONADJACENT  
CHANNELS  
10k  
100k  
1M  
10M  
100M  
1G  
–15  
–10  
–5  
0
5
10  
15  
FREQUENCY (Hz)  
V
(V)  
BIAS  
Figure 25. ADG1208 Capacitance vs. Source Voltage,  
15 V Dual Supply  
Figure 22. ADG1209 Crosstalk vs. Frequency  
–6.0  
–6.5  
–7.0  
–7.5  
–8.0  
–8.5  
–9.0  
–9.5  
–10.0  
12  
10  
8
V
V
= 12V  
= 0V  
= 25°C  
DD  
SS  
T
A
SOURCE/DRAIN ON  
DRAIN OFF  
6
4
SOURCE OFF  
2
0
10k  
100k  
1M  
10M  
100M  
1G  
0
2
4
6
8
10  
12  
FREQUENCY (Hz)  
V
(V)  
BIAS  
Figure 26. ADG1208 Capacitance vs. Source Voltage,  
12 V Single Supply  
Figure 23. On Response vs. Frequency  
Rev. E | Page 14 of 21  
Data Sheet  
ADG1208/ADG1209  
12  
10  
8
8
7
6
5
4
3
2
V
V
= 12V  
= 0V  
= 25°C  
DD  
SS  
T
A
SOURCE/DRAIN ON  
DRAIN OFF  
SOURCE/DRAIN ON  
DRAIN OFF  
V
V
= +5V  
= –5V  
= 25°C  
DD  
SS  
6
4
2
0
T
A
SOURCE OFF  
1
0
SOURCE OFF  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
0
2
4
6
8
10  
12  
V
(V)  
V
(V)  
BIAS  
BIAS  
Figure 27. ADG1208 Capacitance vs. Source Voltage, 5 V Dual Supply  
Figure 29. ADG1209 Capacitance vs. Source Voltage, 12 V Single Supply  
8
8
V
V
= +15V  
= –15V  
= 25°C  
DD  
SS  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
SOURCE/DRAIN ON  
DRAIN OFF  
T
A
SOURCE/DRAIN ON  
V
V
= +5V  
= –5V  
= 25°C  
DD  
DRAIN OFF  
SS  
T
A
SOURCE OFF  
SOURCE OFF  
1
0
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
–15  
–10  
–5  
0
5
10  
15  
V
(V)  
V
(V)  
BIAS  
BIAS  
Figure 28. ADG1209 Capacitance vs. Source Voltage, 15 V Dual Supply  
Figure 30. ADG1209 Capacitance vs. Source Voltage, 5 V Dual Supply  
Rev. E | Page 15 of 21  
ADG1208/ADG1209  
Data Sheet  
TERMINOLOGY  
RON  
tTRANSITION  
Ohmic resistance between D and S.  
Delay time between the 50% and 90% points of the digital  
inputs and the switch on condition when switching from one  
address state to another.  
ΔRON  
Difference between the RON of any two channels.  
TBBM  
IS (Off)  
Off time measured between the 80% point of both switches  
when switching from one address state to another.  
Source leakage current when the switch is off.  
ID (Off)  
VINL  
Drain leakage current when the switch is off.  
Maximum input voltage for Logic 0.  
ID, IS (On)  
VINH  
Channel leakage current when the switch is on.  
Minimum input voltage for Logic 1.  
VD (VS)  
I
INL (IINH)  
Analog voltage on Terminal D, Terminal S.  
Input current of the digital input.  
CS (Off)  
IDD  
Channel input capacitance for off condition.  
Positive supply current.  
CD (Off)  
ISS  
Channel output capacitance for off condition.  
Negative supply current.  
CD, CS (On)  
On switch capacitance.  
Off Isolation  
A measure of unwanted signal coupling through an off channel.  
CIN  
Charge Injection  
A measure of the glitch impulse transferred from the digital  
input to the analog output during switching.  
Digital input capacitance.  
t
ON (EN)  
Delay time between the 50% and 90% points of the digital input  
and switch on condition.  
Bandwidth  
The frequency at which the output is attenuated by 3 dB.  
t
OFF (EN)  
On Response  
The frequency response of the on switch.  
Delay time between the 50% and 90% points of the digital input  
and switch off condition.  
Total Harmonic Distortion Plus Noise (THD + N)  
The ratio of the harmonic amplitude plus noise of the signal to  
the fundamental.  
Rev. E | Page 16 of 21  
 
Data Sheet  
ADG1208/ADG1209  
TEST CIRCUITS  
I
(ON)  
A
D
V
S
D
NC  
S
D
V
D
NC = NO CONNECT  
I
DS  
V
S
Figure 31. On Resistance  
Figure 33. On Leakage  
I
(OFF)  
A
I (OFF)  
D
S
S
D
A
V
V
S
D
Figure 32. Off Leakage  
V
V
V
V
DD  
DD  
SS  
SS  
3V  
ADDRESS  
tr < 20ns  
tf < 20ns  
50%  
50%  
A0  
DRIVE (V  
)
IN  
S1  
V
V
S1  
S8  
0V  
A1  
A2  
V
IN  
50  
S2–S7  
tTRANSITION  
tTRANSITION  
S8  
ADG12081  
90%  
OUTPUT  
D
2.4V  
EN  
OUTPUT  
300Ω  
GND  
35pF  
90%  
1
SIMILAR CONNECTION FOR ADG1209.  
Figure 34. Address to Output Switching Times, tTRANSITION  
V
V
V
DD  
DD  
SS  
3V  
V
SS  
ADDRESS  
A0  
A1  
A2  
DRIVE (V  
)
IN  
S1  
V
S
V
IN  
50  
0V  
S2–S7  
S8  
ADG12081  
80%  
80%  
OUTPUT  
OUTPUT  
D
2.4V  
EN  
300Ω  
GND  
35pF  
tBBM  
1
SIMILAR CONNECTION FOR ADG1209.  
Figure 35. Break-Before-Make Delay, tBBM  
Rev. E | Page 17 of 21  
 
 
 
 
 
 
ADG1208/ADG1209  
Data Sheet  
V
V
V
V
DD  
SS  
SS  
3V  
DD  
A0  
A1  
A2  
ENABLE  
50%  
50%  
DRIVE (V  
)
S1  
S2–S8  
V
IN  
S
0V  
ADG12081  
tON (EN)  
tOFF (EN)  
0.9V  
OUTPUT  
0.9V  
D
EN  
O
O
OUTPUT  
V
35pF  
IN  
50  
300Ω  
GND  
1
SIMILAR CONNECTION FOR ADG1209.  
Figure 36. Enable Delay, tON (EN), tOFF (EN)  
V
V
V
V
DD  
DD  
SS  
SS  
3V  
A0  
A1  
A2  
V
V
IN  
ADG12081  
R
S
S
D
OUT  
V
OUT  
V  
OUT  
EN  
C
1nF  
L
V
Q
= C × V  
L OUT  
S
INJ  
GND  
V
IN  
1
SIMILAR CONNECTION FOR ADG1209.  
Figure 37. Charge Injection  
Rev. E | Page 18 of 21  
 
 
Data Sheet  
ADG1208/ADG1209  
V
V
V
DD  
V
DD  
SS  
SS  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
NETWORK  
ANALYZER  
V
V
V
V
DD  
SS  
DD  
SS  
V
OUT  
S1  
R
L
S
50  
50  
50Ω  
D
V
S
R
50Ω  
S2  
D
V
OUT  
R
L
V
S
50Ω  
GND  
V
GND  
V
OUT  
OFF ISOLATION = 20 log  
OUT  
V
S
CHANNEL-TO-CHANNEL CROSSTALK = 20 log  
V
S
Figure 38. Off Isolation  
Figure 40. Channel to Channel Crosstalk  
V
V
DD  
SS  
V
V
DD  
SS  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
AUDIO PRECISION  
V
V
DD  
SS  
V
V
DD  
SS  
R
S
S
50  
S
IN  
V
S
V
S
D
V p-p  
D
V
OUT  
V
OUT  
V
R
50Ω  
IN  
L
R
10k  
L
GND  
GND  
V
WITH SWITCH  
OUT  
INSERTION LOSS = 20 log  
V
WITHOUT SWITCH  
OUT  
Figure 41. THD + N  
Figure 39. Bandwidth  
Rev. E | Page 19 of 21  
 
 
 
 
ADG1208/ADG1209  
Data Sheet  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 42. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.35  
0.30  
0.25  
PIN 1  
INDICATOR  
PIN 1  
TIONS  
INDIC ATOR AREA OP  
(SEE DETAIL A)  
13  
16  
0.65  
BSC  
1
12  
2.25  
2.10 SQ  
1.95  
EXPOSED  
PAD  
9
4
8
5
0.70  
0.60  
0.50  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
SECTION OF THIS DATA SHEET.  
0.08  
SEATING  
PLANE  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.  
Figure 43. 16-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.75 mm Package Height  
(CP-16-23)  
Dimensions shown in millimeters  
Rev. E | Page 20 of 21  
 
Data Sheet  
ADG1208/ADG1209  
10.00 (0.3937)  
9.80 (0.3858)  
9
8
16  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AC  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 44. 16-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1  
ADG1208YRUZ  
ADG1208YRUZ-REEL7  
ADG1208YCPZ-REEL  
ADG1208YCPZ-REEL7  
ADG1208YRZ  
ADG1208YRZ-REEL7  
ADG1209YRUZ  
Temperature Range  
Package Description  
Package Option  
RU-16  
RU-16  
CP-16-23  
CP-16-23  
R-16  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
16-Lead Narrow Body Small Outline Package [SOIC_N]  
16-Lead Narrow Body Small Outline Package [SOIC_N]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
16-Lead Narrow Body Small Outline Package [SOIC_N]  
16-Lead Narrow Body Small Outline Package [SOIC_N]  
R-16  
RU-16  
RU-16  
CP-16-23  
R-16  
R-16  
ADG1209YRUZ-REEL7  
ADG1209YCPZ-REEL7  
ADG1209YRZ  
ADG1209YRZ-REEL7  
1 Z = RoHS Compliant Part.  
©2006–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05713-0-6/16(E)  
Rev. E | Page 21 of 21  
 

相关型号:

ADG1208YRZ-REEL7

Low Capacitance, 4-/8-Channel, ±15 V/12 V iCMOS Multiplexers
ADI

ADG1208YRZ-REEL71

Low Capacitance, 4-/8-Channel 15 V/12 V iCMOS Multiplexers
ADI

ADG1208YRZ1

Low Capacitance, 4-/8-Channel, ±15 V/12 V iCMOS Multiplexers
ADI

ADG1209

Low Capacitance, 4-/8-Channel +-15 V/+12 V iCMOS Multiplexers
ADI

ADG1209YCP

IC 4-CHANNEL, DIFFERENTIAL MULTIPLEXER, QCC16, 4 X 4 MM, LFCSP-16, Multiplexer or Switch
ADI

ADG1209YCPZ-REEL

Low Capacitance, 4-/8-Channel +-15 V/+12 V iCMOS Multiplexers
ADI

ADG1209YCPZ-REEL1

Low Capacitance, 4-/8-Channel 15 V/12 V iCMOS Multiplexers
ADI

ADG1209YCPZ-REEL7

Low Capacitance, 4-/8-Channel +-15 V/+12 V iCMOS Multiplexers
ADI

ADG1209YCPZ-REEL71

Low Capacitance, 4-/8-Channel 15 V/12 V iCMOS Multiplexers
ADI

ADG1209YRU

IC 4-CHANNEL, DIFFERENTIAL MULTIPLEXER, PDSO16, MS-153AB, TSSOP-16, Multiplexer or Switch
ADI

ADG1209YRUZ

Low Capacitance, 4-/8-Channel +-15 V/+12 V iCMOS Multiplexers
ADI

ADG1209YRUZ-REEL7

Low Capacitance, 4-/8-Channel +-15 V/+12 V iCMOS Multiplexers
ADI