ADG1221BRMZ-REEL7 [ADI]

Low Capacitance, Low Charge Injection, ±15 V/12 V iCMOS® Dual SPST Switches; 低电容,低电荷注入,A ±15 V / 12 V iCMOS®双通道SPST开关
ADG1221BRMZ-REEL7
型号: ADG1221BRMZ-REEL7
厂家: ADI    ADI
描述:

Low Capacitance, Low Charge Injection, ±15 V/12 V iCMOS® Dual SPST Switches
低电容,低电荷注入,A ±15 V / 12 V iCMOS®双通道SPST开关

开关
文件: 总16页 (文件大小:279K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Capacitance, Low Charge Injection,  
± ±1 ꢀV/±ꢁ ꢀ iCMOS® Dual SPST Switches  
ADG±ꢁꢁ±VADG±ꢁꢁꢁVADG±ꢁꢁ3  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
<0.5 pC charge injection over full signal range  
Off capacitance: 2 pF  
Off leakage: 20 pA  
Supply range: 33 V  
On resistance: 120 Ω  
ADG1221  
ADG1222  
S1  
D1  
S1  
D1  
IN1  
D2  
S2  
IN1  
D2  
S2  
IN2  
Fully specified at 15 V, +12 V  
No VL supply required  
IN2  
3 V logic-compatible inputs  
Rail-to-rail operation  
10-lead MSOP package  
ADG1223  
APPLICATIONS  
S1  
D1  
IN1  
D2  
S2  
Automatic test equipment  
Data acquisition systems  
Battery-powered systems  
Sample-and-hold systems  
Audio signal routing  
IN2  
Video signal routing  
Communication systems  
SWITCHES SHOWN FOR A LOGIC 0 INPUT  
Figure 1.  
GENERAL DESCRIPTION  
ADG1222. The ADG1223 has one switch with digital control  
logic similar to that of the ADG1221; the logic is inverted on  
the other switch. The ADG1223 exhibits break-before-make  
switching action for use in multiplexer applications. Each  
switch conducts equally well in both directions when on and  
The ADG1221/ADG1222/ADG1223 are monolithic, complemen-  
tary metal-oxide semiconductor (CMOS) devices containing  
four independently selectable switches designed on an iCMOS  
(industrial CMOS) process. iCMOS is a modular manufacturing  
process combining high voltage CMOS and bipolar technologies.  
It enables the development of a wide range of high performance  
analog ICs, capable of 33 V operation, in a footprint that no  
previous generation of high voltage parts has been able to achieve.  
Unlike analog ICs using conventional CMOS processes, iCMOS  
components can tolerate high supply voltages while providing  
increased performance, dramatically lower power consumption,  
and reduced package size.  
has an input signal range that extends to the supplies. In the off  
condition, signal levels up to the supplies are blocked.  
0.5  
T
= 25ºC  
A
0.4  
0.3  
V
V
= +15V  
= –15V  
DD  
SS  
0.2  
0.1  
The ultralow capacitance and exceptionally low charge injection  
of these switches make them ideal solutions for data acquisition  
and sample-and-hold applications, where low glitch and fast  
settling are required. Figure 2 shows that there is minimum  
charge injection over the full signal range of the device.  
0
V
V
= 12V  
= 0V  
DD  
SS  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
V
V
= +5V  
= –5V  
DD  
SS  
The ADG1221/ADG1222/ADG1223 contain two independent  
single-pole/single-throw (SPST) switches. The ADG1221 and  
ADG1222 differ only in that the digital control logic is inverted.  
The ADG1221 switches are turned on with Logic 1 on the appro-  
priate control input, and Logic 0 is required for the  
–15  
–10  
–5  
0
5
10  
15  
INPUT VOLTAGE (V)  
Figure 2. Charge Injection vs. Input Voltage  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2007–2009 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
ADG±ꢁꢁ±VADG±ꢁꢁꢁVADG±ꢁꢁ3  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Thermal Resistance.......................................................................6  
ESD Caution...................................................................................6  
Pin Configuration and Function Descriptions..............................7  
Terminology.......................................................................................8  
Typical Performance Characteristics ..............................................9  
Test Circuits..................................................................................... 13  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Dual Supply ................................................................................... 3  
Single Supply ................................................................................. 4  
Absolute Maximum Ratings............................................................ 6  
REVISION HISTORY  
3/09—Rev. 0 to Rev. A  
Changes to Power Requirements, IDD, Digital Inputs = 5 V  
Parameter, Table 1............................................................................. 4  
Changes to tON Parameter and Power Requirements, IDD, Digital  
Inputs = 5 V Parameter, Table 2...................................................... 5  
2/07—Rev. 0: Initial Version  
Rev. A | Page 2 of 16  
ADG±ꢁꢁ±VADG±ꢁꢁꢁVADG±ꢁꢁ3  
SPECIFICATIONS  
DUAL SUPPLY  
VDD = 15 V 10%, VSS = –15 V 10%, GND = 0 V, unless otherwise noted.  
Table 1.  
Temperature  
Parameter  
25°C  
–40°C to +85°C –40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD to VSS  
V
VDD = +13.5 V, VSS = –13.5 V,  
VS = 1ꢀ V, IS = –1 mA (see Figure 23)  
12ꢀ  
2ꢀꢀ  
Ω typ  
Ω max  
24ꢀ  
27ꢀ  
On Resistance Match  
VS = 1ꢀ V, IS = –1 mA  
Between Channels, ∆RON  
2.5  
6
Ω typ  
Ω max  
1ꢀ  
76  
12  
83  
On Resistance Flatness, RFLAT(ON)  
VS = –5 V/ꢀ V/+5 V; IS = –1 mA  
2ꢀ  
64  
Ω typ  
Ω max  
LEAKAGE CURRENTS  
VDD = +16.5 V, VSS = –16.5 V  
Source Off Leakage, IS (Off)  
VS = 1ꢀ V, VD = 1ꢀ V (see Figure 24)  
ꢀ.ꢀꢀ2  
nA typ  
ꢀ.1  
ꢀ.6  
ꢀ.6  
ꢀ.6  
1
1
1
nA max  
Drain Off Leakage, ID (Off)  
VS = 1ꢀ V, VD = 1ꢀ V (see Figure 24)  
VS = VD = 1ꢀ V (see Figure 25)  
ꢀ.ꢀꢀ2  
ꢀ.1  
nA typ  
nA max  
Channel On Leakage, ID, IS (On)  
ꢀ.ꢀ1  
ꢀ.2  
nA typ  
nA max  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.ꢀ  
ꢀ.8  
V min  
V max  
VIN = VINL or VINH  
ꢀ.ꢀꢀ5  
μA typ  
μA max  
pF typ  
ꢀ.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS1  
tON  
2.5  
RL = 3ꢀꢀ Ω, CL = 35 pF, VS = 1ꢀ V  
(see Figure 26)  
13ꢀ  
17ꢀ  
ns typ  
ns max  
21ꢀ  
13ꢀ  
24ꢀ  
14ꢀ  
1ꢀ  
tOFF  
RL = 3ꢀꢀ Ω, CL = 35 pF, VS = 1ꢀ V  
(see Figure 26)  
85  
1ꢀ5  
ns typ  
ns max  
Break-Before-Make Time Delay  
(ADG1223 Only), tBBM  
RL = 3ꢀꢀ Ω, CL = 35 pF, VS1 = VS2 = 1ꢀ V  
(see Figure 27)  
4ꢀ  
ns typ  
ns min  
pC typ  
dB typ  
Charge Injection, QINJ  
Off Isolation  
ꢀ.1  
75  
VS = ꢀ V, RS = ꢀ Ω, CL = 1 nF (see Figure 28)  
RL = 5ꢀ Ω, CL = 1 pF, f = 1 MHz  
(see Figure 29)  
Rev. A | Page 3 of 16  
 
 
ADG±ꢁꢁ±VADG±ꢁꢁꢁVADG±ꢁꢁ3  
Temperature  
Parameter  
25°C  
–40°C to +85°C –40°C to +125°C Unit  
Test Conditions/Comments  
Channel-to-Channel  
Crosstalk  
9ꢀ  
dB typ  
RL = 5ꢀ Ω, CL = 1 pF, f = 1 MHz  
(see Figure 3ꢀ)  
Total Harmonic  
Distortion + Noise, THD + N  
–3 dB Bandwidth  
CS (Off)  
ꢀ.15  
96ꢀ  
% typ  
RL = 1ꢀ kΩ, 5 V rms, f = 2ꢀ Hz to 2ꢀ kHz  
MHz typ  
RL = 5ꢀ Ω, CL = 1 pF (see Figure 31)  
VS = ꢀ V, f = 1 MHz  
1.7  
2.2  
pF typ  
pF max  
CD (Off)  
VS = ꢀ V, f = 1 MHz  
1.7  
2.2  
pF typ  
pF max  
CD, CS (On)  
VS = ꢀ V, f = 1 MHz  
3
4
pF typ  
pF max  
POWER REQUIREMENTS  
IDD  
VDD = +16.5 V, VSS = –16.5 V  
ꢀ.ꢀꢀ1  
14ꢀ  
μA typ  
μA max  
μA typ  
μA max  
Digital inputs = ꢀ V or VDD  
Digital inputs = ꢀ V or VDD  
Digital inputs = 5 V  
1.ꢀ  
19ꢀ  
Digital inputs = 5 V  
ISS  
Digital inputs = ꢀ V, 5 V, or VDD  
ꢀ.ꢀꢀ1  
μA typ  
1.ꢀ  
μA max  
VDD/VSS  
5/ 16.5  
V min/max GND = ꢀ V  
1 Guaranteed by design, not subject to production test.  
SINGLE SUPPLY  
VDD = 12 V 10%, VSS = 0 V, GND = 0 V, unless otherwise noted.  
Table 2.  
Temperature  
–40°C to +85°C –40°C to +125°C Unit  
Parameter  
25°C  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
ꢀ V to VDD  
V
VDD = 1ꢀ.8 V, VSS = ꢀ V, VS = ꢀ V to 1ꢀ V,  
IS = –1 mA (see Figure 23)  
3ꢀꢀ  
475  
Ω typ  
Ω max  
567  
26  
625  
On Resistance Match  
VS = ꢀ V to 1ꢀ V, IS = –1 mA  
Between Channels, ∆RON  
4.5  
16  
6ꢀ  
Ω typ  
Ω max  
Ω typ  
27  
On Resistance Flatness, RFLAT(ON)  
LEAKAGE CURRENTS  
VS = 3 V/6 V/9 V, IS = –1 mA  
VDD = 13.2 V, VSS = ꢀ V  
Source Off Leakage, IS (Off)  
VS = 1 V/1ꢀ V, VD = 1ꢀ V/1 V  
(see Figure 24)  
ꢀ.ꢀꢀ2  
nA typ  
ꢀ.1  
ꢀ.6  
ꢀ.6  
1
nA max  
Drain Off Leakage, ID (Off)  
VS = 1 V/1ꢀ V, VD = 1ꢀ V/1 V  
(see Figure 24)  
ꢀ.ꢀꢀ2  
ꢀ.1  
nA typ  
nA max  
1
Rev. A | Page 4 of 16  
 
ADG±ꢁꢁ±VADG±ꢁꢁꢁVADG±ꢁꢁ3  
Temperature  
Parameter  
25°C  
–40°C to +85°C –40°C to +125°C Unit  
Test Conditions/Comments  
Channel On Leakage, ID, IS (On)  
VS = VD = 1 V or 1ꢀ V (see Figure 25)  
ꢀ.ꢀ1  
ꢀ.2  
nA typ  
nA max  
ꢀ.6  
1
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.ꢀ  
ꢀ.8  
V min  
V max  
VIN = VINL or VINH  
ꢀ.ꢀꢀ1  
3
μA typ  
μA max  
pF typ  
ꢀ.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS1  
tON  
RL = 3ꢀꢀ Ω, CL = 35 pF, VS = 8 V  
(see Figure 26)  
19ꢀ  
25ꢀ  
ns typ  
ns max  
3ꢀꢀ  
19ꢀ  
345  
225  
1ꢀ  
tOFF  
RL = 3ꢀꢀ Ω, CL = 35 pF, VS = 8 V  
(see Figure 26)  
12ꢀ  
15ꢀ  
ns typ  
ns max  
Break-Before-Make Time Delay  
(ADG1223 Only), tBBM  
RL = 3ꢀꢀ Ω, CL = 35 pF, VS1 = VS2 = 8 V  
(see Figure 27)  
7ꢀ  
ns typ  
ns min  
pC typ  
Charge Injection, QINJ  
Off Isolation  
ꢀ.2  
75  
VS = 6 V, RS = ꢀ Ω, CL = 1 nF  
(see Figure 28)  
RL = 5ꢀ Ω, CL =1 pF, f = 1 MHz  
(see Figure 29)  
dB typ  
dB typ  
MHz typ  
Channel-to-Channel Crosstalk  
9ꢀ  
RL = 5ꢀ Ω, CL = 1 pF, f = 1 MHz  
(see Figure 3ꢀ)  
−3 dB Bandwidth  
CS (Off)  
55ꢀ  
RL = 5ꢀ Ω, CL = 1 pF (see Figure 31)  
VS = 6 V, f = 1 MHz  
2.1  
2.6  
pF typ  
pF max  
CD (Off)  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
2.1  
2.6  
pF typ  
pF max  
CD, CS (On)  
3.8  
4.6  
pF typ  
pF max  
POWER REQUIREMENTS  
IDD  
VDD = 13.2 V  
ꢀ.ꢀꢀ1  
14ꢀ  
μA typ  
μA max  
μA typ  
μA max  
Digital inputs = ꢀ V or VDD  
Digital inputs = ꢀ V or VDD  
Digital inputs = 5 V  
Digital inputs = 5 V  
1.ꢀ  
19ꢀ  
VDD  
5/16.5  
V min/max VSS = ꢀ V, GND = ꢀ V  
1 Guaranteed by design, not subject to production test.  
Rev. A | Page 5 of 16  
ADG±ꢁꢁ±VADG±ꢁꢁꢁVADG±ꢁꢁ3  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 3.  
Parameter  
Rating  
VDD to VSS  
35 V  
–ꢀ.3 V to +25 V  
+ꢀ.3 V to −25 V  
Table 4. Thermal Resistance  
Package Type  
1ꢀ-Lead MSOP (4-Layer Board)  
VDD to GND  
VSS to GND  
Analog Inputs1  
θJA  
θJC  
Unit  
2ꢀ6  
44  
°C/W  
VSS – ꢀ.3 V to VDD + ꢀ.3 V or  
3ꢀ mA, whichever occurs first  
GND – ꢀ.3 V to VDD + ꢀ.3 V or  
3ꢀ mA, whichever occurs first  
Digital Inputs1  
ESD CAUTION  
Peak Current, S or D  
1ꢀꢀ mA (pulsed at 1 ms,  
1ꢀ% duty cycle max)  
Continuous Current per  
Channel, S or D  
3ꢀ mA  
Operating Temperature Range –4ꢀ°C to +125°C  
Storage Temperature Range  
Junction Temperature  
–65°C to +15ꢀ°C  
15ꢀ°C  
Reflow Soldering Peak  
Temperature, Pb free  
26ꢀ°C  
1 Overvoltages at IN, S, or D are clamped by internal diodes. Current must be  
limited to the maximum ratings given.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 6 of 16  
 
 
 
ADG±ꢁꢁ±VADG±ꢁꢁꢁVADG±ꢁꢁ3  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
IN1  
S1  
D1  
D2  
S2  
1
2
3
4
5
10 IN2  
ADG1221/  
ADG1222/  
ADG1223  
9
8
7
6
V
DD  
GND  
NC  
TOP VIEW  
(Not to Scale)  
V
SS  
NC = NO CONNECT  
Figure 3. 10-Lead MSOP Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
9
1ꢀ  
IN1  
S1  
D1  
D2  
S2  
VSS  
NC  
GND  
VDD  
Logic Control Input.  
Source Terminal. Can be an input or output.  
Drain Terminal. Can be an input or output.  
Drain Terminal. Can be an input or output.  
Source Terminal. Can be an input or output.  
Most Negative Power Supply Potential.  
No Connect.  
Ground (ꢀ V) Reference.  
Most Positive Power Supply Potential.  
Logic Control Input.  
IN2  
Table 6. ADG1221/ADG1222 Truth Table  
ADG1221 INx  
ADG1222 INx  
Switch Condition  
1
1
On  
Off  
Table 7. ADG1223 Truth Table  
ADG1223 INx  
Switch 1 Condition  
Switch 2 Condition  
1
Off  
On  
On  
Off  
Rev. A | Page 7 of 16  
 
ADG±ꢁꢁ±VADG±ꢁꢁꢁVADG±ꢁꢁ3  
TERMINOLOGY  
IDD  
tON  
The positive supply current.  
The delay between applying the digital control input and the  
output switching on (see Figure 26).  
ISS  
The negative supply current.  
tOFF  
The delay between applying the digital control input and the  
output switching off (see Figure 26).  
VD (VS)  
The analog voltage on Terminal D and Terminal S.  
tBBM  
RON  
Off time or on time measured between the 90% points of both  
switches, when switching from one address state to another  
(ADG1223 only).  
The ohmic resistance between Terminal D and Terminal S.  
RFLAT(ON)  
Flatness is defined as the difference between the maximum and  
minimum value of on resistance, as measured over the specified  
analog signal range.  
Q
INJ (Charge Injection)  
A measure of the glitch impulse transferred from the digital  
input to the analog output during switching.  
IS (Off)  
Off Isolation  
The source leakage current with the switch off.  
A measure of unwanted signal coupling through an off switch.  
ID (Off)  
Crosstalk  
The drain leakage current with the switch off.  
A measure of unwanted signal that is coupled through from one  
channel to another as a result of parasitic capacitance.  
ID, IS (On)  
The channel leakage current with the switch on.  
–3 dB Bandwidth  
The frequency at which the output is attenuated by 3 dB.  
VINL  
The maximum input voltage for Logic 0.  
On Response  
The frequency response of the on switch.  
VINH  
The minimum input voltage for Logic 1.  
Insertion Loss  
The loss due to the on resistance of the switch.  
IINL (IINH  
)
The input current of the digital input.  
THD + N (Total Harmonic Noise Plus Distortion)  
The ratio of the harmonic amplitude plus noise of the signal to  
the fundamental.  
CS (Off)  
The off switch source capacitance, measured with reference  
to ground.  
ACPSRR (AC Power Supply Rejection Ratio)  
Measures the ability of a part to avoid coupling noise and spurious  
signals that appear on the supply voltage pin to the output of the  
switch. The dc voltage on the device is modulated by a sine wave  
of 0.62 V p-p. The ratio of the amplitude of signal on the output  
to the amplitude of the modulation is the ACPSRR.  
CD (Off)  
The off switch drain capacitance, measured with reference  
to ground.  
CD, CS (On)  
The on switch capacitance, measured with reference to ground.  
CIN  
The digital input capacitance.  
Rev. A | Page 8 of 16  
 
ADG±ꢁꢁ±VADG±ꢁꢁꢁVADG±ꢁꢁ3  
TYPICAL PERFORMANCE CHARACTERISTICS  
200  
250  
200  
150  
100  
V
V
= +15V  
= –15V  
T
= 25°C  
DD  
SS  
A
180  
160  
140  
120  
100  
80  
V
V
= +13.5V  
= –13.5V  
DD  
SS  
T
= +125°C  
A
T
= +85°C  
A
V
V
= +15V  
= –15V  
V
V
= +16.5V  
= –16.5V  
DD  
SS  
DD  
SS  
T
= +25°C  
A
T
= –40°C  
A
60  
40  
50  
0
20  
0
–18 –15 –12 –9 –6  
–3  
0
3
6
9
12 15 18  
–15  
–10  
–5  
0
5
10  
15  
SOURCE OR DRAIN VOLTAGE (V)  
SOURCE OR DRAIN VOLTAGE (V)  
Figure 4. On Resistance as a Function of VS (VD), Dual Supply  
Figure 7. On Resistance as a Function of VS (VD)  
for Different Temperatures, Dual Supply  
450  
600  
500  
400  
300  
200  
T
= 25°C  
V
V
= 12V  
= 0V  
A
DD  
SS  
400  
350  
300  
250  
200  
T
= +125°C  
A
T
= +85°C  
A
V
V
= +5.5V  
= –5.5V  
DD  
SS  
150  
100  
T
= –40°C  
A
T
= +25°C  
A
100  
0
50  
0
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
0
2
4
6
8
10  
12  
SOURCE OR DRAIN VOLTAGE (V)  
SOURCE OR DRAIN VOLTAGE (V)  
Figure 5. On Resistance as a Function of VS (VD), Dual Supply  
Figure 8. On Resistance as a Function of VS (VD)  
for Different Temperatures, Single Supply  
450  
200  
150  
T
= 25°C  
A
V
V
V
= +15V  
= –15V  
DD  
400  
350  
300  
250  
200  
150  
100  
SS  
V
V
= 12V  
= 0V  
100  
DD  
SS  
= ±10V  
BIAS  
V
V
= 10.8V  
= 0V  
DD  
50  
SS  
0
–50  
–100  
–150  
–200  
–250  
–300  
–350  
–400  
–450  
V
V
= 13.2V  
= 0V  
DD  
SS  
I
I
(OFF) + –  
(OFF) – +  
I
I
(OFF) + –  
(OFF) – +  
S
S
D
50  
0
D
I
, I (ON) + +  
I
, I (ON) – –  
D S  
D
S
0
2
4
6
8
10  
12  
0
20  
40  
60  
80  
100  
120  
SOURCE OR DRAIN VOLTAGE (V)  
TEMPERATURE (ºC)  
Figure 6. On Resistance as a Function of VS (VD), Single Supply  
Figure 9. Leakage Current as a Function of Temperature, Dual Supply  
Rev. A | Page 9 of 16  
 
ADG±ꢁꢁ±VADG±ꢁꢁꢁVADG±ꢁꢁ3  
0.5  
0.4  
150  
T
= 25ºC  
A
V
V
V
= +5V  
= –5V  
DD  
SS  
100  
50  
= ±4.5V  
V
V
= +15V  
= –15V  
BIAS  
DD  
SS  
0.3  
0.2  
0
0.1  
–50  
–100  
–150  
–200  
–250  
0
V
V
= 12V  
= 0V  
DD  
SS  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
I
I
(OFF) + –  
(OFF) – +  
I
I
(OFF) + –  
(OFF) – +  
S
S
D
V
V
= +5V  
= –5V  
DD  
SS  
D
I
, I (ON) + +  
I
, I (ON) – –  
D S  
D
S
0
20  
40  
60  
80  
100  
120  
–10  
–5  
0
5
10  
–15  
15  
TEMPERATURE (ºC)  
INPUT VOLTAGE (V)  
Figure 10. Leakage Current as a Function of Temperature, Dual Supply  
Figure 13. Charge Injection vs. Input Voltage  
300  
300  
250  
200  
150  
100  
50  
V
V
V
= 12V  
= 0V  
DD  
SS  
15V DS t  
OFF  
250  
200  
150  
100  
50  
15V DS t  
12V SS t  
12V SS t  
ON  
OFF  
ON  
= 1/10V  
BIAS  
0
–50  
–100  
–150  
–200  
I
I
(OFF) + –  
(OFF) – +  
I
I
(OFF) + –  
(OFF) – +  
S
S
D
D
I
, I (ON) + +  
I
, I (ON) – –  
D S  
D
S
0
20  
40  
60  
80  
100  
120  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (ºC)  
TEMPERATURE (ºC)  
Figure 11. Leakage Current as a Function of Temperature, Single Supply  
Figure 14. tON/tOFF vs. Temperature  
120  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
I
PER CHANNEL  
= 25ºC  
DD  
V
= +15V  
DD  
T
V
= –15V  
A
SS  
100  
80  
60  
40  
20  
0
T = 25ºC  
A
V
V
= +15V  
= –15V  
DD  
SS  
V
4
= 12V  
DD  
V
= 0V  
SS  
–90  
–100  
0
2
6
8
10  
12  
14  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
LOGIC LEVEL, INx (V)  
Figure 12. IDD vs. Logic Level  
Figure 15. Off Isolation vs. Frequency  
Rev. A | Page 1ꢀ of 16  
ADG±ꢁꢁ±VADG±ꢁꢁꢁVADG±ꢁꢁ3  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–20  
–40  
–60  
–80  
V
V
= +15V  
= –15V  
DD  
SS  
V
V
T
= +15V  
= –15V  
= 25ºC  
DD  
SS  
NO DECOUPLING CAPS ON  
Vp-p = 0.63V  
= 25ºC  
A
T
A
DECOUPLING CAPS ON  
–100  
–120  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
10k  
1G  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 16. Crosstalk vs. Frequency  
Figure 18. ACPSRR vs. Frequency  
10  
0
–2  
LOAD = 10k  
= 25°C  
V
V
= +15V  
= –15V  
DD  
SS  
T
A
–4  
T = 25ºC  
A
–6  
1
–8  
V
V
= +5V, V = –5V, V = +3.5V rms  
SS  
DD  
DD  
S
–10  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
= +15V, V = –15V, V = +5V rms  
SS  
S
0.1  
0.01  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10k  
100k  
1M  
10M  
100M  
100M  
1G  
FREQUENCY (Hz)  
Figure 17. Insertion Loss vs. Frequency  
Figure 19. THD + N vs. Frequency  
Rev. A | Page 11 of 16  
ADG±ꢁꢁ±VADG±ꢁꢁꢁVADG±ꢁꢁ3  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
T
= +15V  
= –15V  
SOURCE OFF  
DRAIN OFF  
V
V
T
= +5V  
= –5V  
SOURCE OFF  
DRAIN OFF  
DD  
SS  
DD  
SS  
0.5  
0
= 25ºC  
= 25ºC  
SOURCE/DRAIN ON  
SOURCE/DRAIN ON  
A
A
–15  
–10  
–5  
0
5
10  
15  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
BIAS VOLTAGE (V)  
BIAS VOLTAGE (V)  
Figure 20. Capacitance vs. Bias Voltage  
Figure 22. Capacitance vs. Bias Voltage  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
T
= 12V  
= 0V  
SOURCE OFF  
DRAIN OFF  
DD  
SS  
= 25ºC  
SOURCE/DRAIN ON  
A
0
2
4
6
8
10  
12  
BIAS VOLTAGE (V)  
Figure 21. Capacitance vs. Bias Voltage  
Rev. A | Page 12 of 16  
ADG±ꢁꢁ±VADG±ꢁꢁꢁVADG±ꢁꢁ3  
TEST CIRCUITS  
I
(OFF)  
A
I
(OFF)  
A
S
D
Sx  
Dx  
V
V
D
S
I
DS  
Figure 24. Test Circuit 2—Off Leakage  
V1  
I
(ON)  
A
D
Sx  
Dx  
Sx  
Dx  
NC  
V
D
V
S
R
= V1/I  
ON  
DS  
NC = NO CONNECT  
Figure 25. Test Circuit 3—On Leakage  
Figure 23. Test Circuit 1—On Resistance  
V
V
DD  
SS  
0.1µF  
0.1µF  
ADG1222  
ADG1221  
V
V
50%  
50%  
50%  
50%  
IN  
V
V
SS  
DD  
V
L
OUT  
Sx  
Dx  
IN  
R
300  
C
L
V
ADG1221/  
ADG1222  
S
35pF  
INx  
90%  
90%  
V
OUT  
GND  
tOFF  
tON  
Figure 26. Test Circuit 4—Switching Times  
V
V
SS  
DD  
DD  
V
0.1µF  
0.1µF  
IN  
50%  
50%  
0V  
0V  
V
V
SS  
90%  
90%  
V
V
S1  
D1  
OUT1  
OUT2  
V
V
V
S1  
OUT1  
C
35pF  
R
300  
L
L
S2  
D2  
V
S2  
OUT2  
C
35pF  
R
300ꢀ  
L
L
90%  
90%  
IN1,  
IN2  
0V  
ADG1223  
GND  
tD  
tD  
Figure 27. Test Circuit 5—Break-Before-Make Time Delay  
V
V
DD  
SS  
V
V
SS  
DD  
V
V
ADG1222  
ADG1221  
IN  
IN  
ON  
OFF  
V
R
S
OUT  
Sx  
Dx  
C
L
V
S
ADG1221/  
ADG1222  
1nF  
INx  
V
OUT  
ΔV  
OUT  
GND  
Q
= C × ΔV  
L
OUT  
INJ  
Figure 28. Test Circuit 6—Charge Injection  
Rev. A | Page 13 of 16  
 
 
 
 
 
 
 
ADG±ꢁꢁ±VADG±ꢁꢁꢁVADG±ꢁꢁ3  
V
V
DD  
SS  
0.1µF  
0.1µF  
V
V
DD  
SS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
DD  
SS  
NETWORK  
ANALYZER  
V
V
DD  
SS  
Sx  
50  
50ꢀ  
INx  
Sx  
50  
V
S
INx  
V
S
Dx  
V
Dx  
OUT  
V
IN  
R
50ꢀ  
L
V
OUT  
ADG1221/ADG1222/  
ADG1223 GND  
V
IN  
R
L
ADG1221/ADG1222/  
ADG1223  
50ꢀ  
GND  
V
OUT  
OFF ISOLATION = 20 LOG  
V
WITH SWITCH  
OUT  
V
S
INSERTION LOSS = 20 LOG  
V
WITHOUT SWITCH  
OUT  
Figure 29. Test Circuit 7—Off Isolation  
Figure 31. Test Circuit 9—Bandwidth  
V
V
DD  
SS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
DD  
SS  
V
V
SS  
DD  
0.1µF  
0.1µF  
V
OUT  
S1  
R
L
50  
AUDIO PRECISION  
V
V
DD  
SS  
Dx  
R
S
50ꢀ  
50  
S2  
Sx  
ADG1221/ADG1222/  
INx  
V
S
V
V p-p  
S
ADG1223  
GND  
Dx  
V
OUT  
V
IN  
R
L
10kꢀ  
ADG1221/ADG1222/  
V
OUT  
ADG1223  
GND  
CHANNEL-TO-CHANNEL CROSSTALK = 20 LOG  
V
S
Figure 30. Test Circuit 8—Channel-to-Channel Crosstalk  
Figure 32. Test Circuit 10—Total Harmonic Distortion + Noise  
Rev. A | Page 14 of 16  
 
 
 
ADG±ꢁꢁ±VADG±ꢁꢁꢁVADG±ꢁꢁ3  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
6
10  
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
1
5
PIN 1  
0.50 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.05  
0.33  
0.17  
SEATING  
PLANE  
0.23  
0.08  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 33. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−4ꢀ°C to +125°C  
−4ꢀ°C to +125°C  
−4ꢀ°C to +125°C  
−4ꢀ°C to +125°C  
−4ꢀ°C to +125°C  
−4ꢀ°C to +125°C  
Package Description  
Package Option  
RM-1ꢀ  
RM-1ꢀ  
Branding  
S27  
S27  
ADG1221BRMZ1  
ADG1221BRMZ-REEL71  
ADG1222BRMZ1  
ADG1222BRMZ-REEL71  
ADG1223BRMZ1  
ADG1223BRMZ-REEL71  
1ꢀ-Lead Mini Small Outline Package (MSOP)  
1ꢀ-Lead Mini Small Outline Package (MSOP)  
1ꢀ-Lead Mini Small Outline Package (MSOP)  
1ꢀ-Lead Mini Small Outline Package (MSOP)  
1ꢀ-Lead Mini Small Outline Package (MSOP)  
1ꢀ-Lead Mini Small Outline Package (MSOP)  
RM-1ꢀ  
RM-1ꢀ  
S28  
S28  
RM-1ꢀ  
RM-1ꢀ  
S2J  
S2J  
1 Z = Pb-free part.  
Rev. A | Page 15 of 16  
 
 
ADG±ꢁꢁ±VADG±ꢁꢁꢁVADG±ꢁꢁ3  
NOTES  
©2007–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06574-0-3/09(A)  
Rev. A | Page 16 of 16  

相关型号:

ADG1221BRMZ-REEL71

Low Capacitance, Low Charge Injection, 15 V/12 V iCMOS Dual SPST Switches
ADI

ADG1221BRMZ1

Low Capacitance, Low Charge Injection, 15 V/12 V iCMOS Dual SPST Switches
ADI

ADG1222

Low Capacitance, Low Charge Injection, 15 V/12 V iCMOS Dual SPST Switches
ADI

ADG1222BRMZ

Low Capacitance, Low Charge Injection, ±15 V/12 V iCMOS® Dual SPST Switches
ADI

ADG1222BRMZ-REEL7

Low Capacitance, Low Charge Injection, ±15 V/12 V iCMOS® Dual SPST Switches
ADI

ADG1222BRMZ-REEL71

Low Capacitance, Low Charge Injection, 15 V/12 V iCMOS Dual SPST Switches
ADI

ADG1222BRMZ1

Low Capacitance, Low Charge Injection, 15 V/12 V iCMOS Dual SPST Switches
ADI

ADG1223

Low Capacitance, Low Charge Injection, 15 V/12 V iCMOS Dual SPST Switches
ADI

ADG1223BRMZ

Low Capacitance, Low Charge Injection, 15 V/12 V iCMOS Dual SPST Switches
ADI

ADG1223BRMZ-REEL7

Low Capacitance, Low Charge Injection, ±15 V/12 V iCMOS® Dual SPST Switches
ADI

ADG1223BRMZ-REEL71

Low Capacitance, Low Charge Injection, 15 V/12 V iCMOS Dual SPST Switches
ADI

ADG1223BRMZ1

Low Capacitance, Low Charge Injection, 15 V/12 V iCMOS Dual SPST Switches
ADI