ADG2188YCPZ-R2 [ADI]

IC CMOS 8 】 8 Unbuffered Analog Switch Array with Dual/Single Supplies; IC CMOS 8 】 8无缓冲模拟开关与双阵列/单电源供电
ADG2188YCPZ-R2
型号: ADG2188YCPZ-R2
厂家: ADI    ADI
描述:

IC CMOS 8 】 8 Unbuffered Analog Switch Array with Dual/Single Supplies
IC CMOS 8 】 8无缓冲模拟开关与双阵列/单电源供电

开关
文件: 总28页 (文件大小:667K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
I2C® CMOS 8 × 8 Unbuffered Analog  
Switch Array with Dual/Single Supplies  
ADG2188  
FEATURES  
GENERAL DESCRIPTION  
I2C-compatible interface  
The ADG2188 is an analog cross point switch with an  
array size of 8 × 8. The switch array is arranged so that  
there are eight columns by eight rows, for a total of 64  
switch channels. The array is bidirectional, and the rows and  
columns can be configured as either inputs or outputs. Each  
of the 64 switches can be addressed and configured through  
the I2C-compatible interface. Standard, full speed, and high  
speed (3.4 MHz) I2C interfaces are supported. Any  
3.4 MHz high speed I2C option  
32-lead LFCSP_VQ (5 mm × 5 mm)  
Double-buffered input logic  
Simultaneous update of multiple switches  
Up to 300 MHz bandwidth  
Fully specified at dual 5 V/single +12 V operation  
On resistance 35 Ω maximum  
Low quiescent current < 20 μA  
simultaneous switch combination is allowed. An additional  
feature of the ADG2188 is that switches can be updated  
simultaneously, using the LDSW command. In addition,  
APPLICATIONS  
AV switching in TV  
Automotive infotainment  
AV receivers  
RESET  
a
option allows all of the switch channels to be  
reset/off. At power on, all switches are in the off condition.  
The device is packaged in a 32-lead, 5 mm × 5 mm  
LFCSP_VQ.  
CCTV  
Ultrasound applications  
KVM switching  
Telecom applications  
Test equipment/instrumentation  
PBX systems  
FUNCTIONAL BLOCK DIAGRAM  
V
V
V
L
DD  
SS  
ADG2188  
1
1
INPUT  
SCL  
REGISTER  
AND  
7 TO 64  
LATCHES  
8 × 8 SWITCH ARRAY  
X0 TO X7 (I/O)  
SDA  
DECODER  
64  
64  
LDSW  
LDSW  
A2 A1 A0  
GND  
Y0 TO Y7 (I/O)  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADG2188  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Load Switch (LDSW)................................................................. 18  
Readback ..................................................................................... 18  
Serial Interface ................................................................................ 19  
High Speed I2C Interface........................................................... 19  
Serial Bus Address...................................................................... 19  
Writing to the ADG2188............................................................... 20  
Input Shift Register .................................................................... 20  
Write Operation.......................................................................... 22  
Read Operation........................................................................... 22  
Evaluation Board ............................................................................ 24  
Using the ADG2188 Evaluation Board ................................... 24  
Power Supply............................................................................... 24  
Schematics................................................................................... 25  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 27  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
I2C Timing Specifications............................................................ 7  
Timing Diagram ........................................................................... 8  
Absolute Maximum Ratings............................................................ 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 11  
Test Circuits..................................................................................... 15  
Terminology .................................................................................... 17  
Theory of Operation ...................................................................... 18  
RESET  
/Power-On Reset ............................................................ 18  
REVISION HISTORY  
4/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
ADG2188  
SPECIFICATIONS  
VDD = 12 V 10%, VSS = 0 V, VL = 5 V, GND = 0 V, all specifications TMIN to TMAX, unless otherwise noted.1  
Table 1.  
B Version  
−40°C to  
Y Version  
−40°C to  
Parameter  
+25°C  
+85°C  
+25°C  
+125°C  
Unit  
Conditions  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD − 2 V  
VDD − 2 V  
V max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
30  
35  
32  
37  
45  
50  
4.5  
8
2.3  
3.5  
14.5  
18  
30  
35  
32  
37  
45  
50  
4.5  
8
2.3  
3.5  
14.5  
18  
VDD = 10.8 V, VIN = 0 V, IS = −10 mA  
VDD = 10.8 V, VIN = 1.4 V, IS = −10 mA  
VDD = 10.8 V, VIN = 5.4 V, IS = −10 mA  
VDD = 10.8 V, VIN = 0 V, IS = −10 mA  
VDD = 10.8 V, VIN = 0 V to 1.4 V, IS = −10 mA  
VDD = 10.8 V, VIN = 0 V to 5.4 V, IS = −10 mA  
40  
42  
57  
9
42  
47  
62  
10  
5
On Resistance Matching  
Between Channels, ∆RON  
On Resistance Flatness, RFLAT(ON)  
4
20  
22  
LEAKAGE CURRENTS  
VDD = 13.2 V  
Channel Off Leakage, IOFF  
Channel On Leakage, ION  
0.03  
0.03  
0.03  
0.03  
μA typ  
μA typ  
VX = 7 V/1 V, VY = 1 V/7 V  
VX = VY = 1 V or 7 V  
DYNAMIC CHARACTERISTICS2  
COFF  
CON  
tON  
11  
11  
pF typ  
pF typ  
ns typ  
ns max  
ns typ  
ns max  
% typ  
18.5  
170  
185  
210  
250  
0.04  
18.5  
170  
185  
210  
250  
0.04  
RL = 300 Ω, CL = 35 pF  
RL = 300 Ω, CL = 35 pF  
190  
255  
195  
260  
tOFF  
THD + N  
RL = 10 kΩ, f = 20 Hz to 20 kHz,  
VS = 1 V p-p  
PSRR  
90  
dB typ  
f = 20 kHz; without decoupling;  
see Figure 24  
−3 dB Bandwidth  
210  
16.5  
−69  
210  
16.5  
−69  
MHz typ  
MHz typ  
dB typ  
Individual inputs to outputs  
8 inputs to 1 output  
RL = 75 Ω, CL = 5 pF, f = 5 MHz  
RL = 75 Ω, CL = 5 pF, f = 5 MHz  
Off Isolation  
Channel-to-Channel Crosstalk  
Adjacent Channels  
Nonadjacent Channels  
Differential Gain  
Differential Phase  
−63  
−76  
0.4  
0.6  
−3.5  
−63  
−76  
0.4  
0.6  
−3.5  
dB typ  
dB typ  
% typ  
° typ  
RL = 75 Ω, CL = 5 pF, f = 5 MHz  
RL = 75 Ω, CL = 5 pF, f = 5 MHz  
VS = 4 V, RS = 0 Ω, CL = 1 nF  
Charge Injection  
pC typ  
LOGIC INPUTS (Ax, RESET)2  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Leakage Current, IIN  
2.0  
0.8  
2.0  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
0.005  
7
0.005  
7
1
1
Input Capacitance, CIN  
Rev. 0 | Page 3 of 28  
 
 
ADG2188  
B Version  
−40°C to  
Y Version  
−40°C to  
Parameter  
LOGIC INPUTS (SCL, SDA)2  
+25°C  
+85°C  
+25°C  
+125°C  
Unit  
Conditions  
Input High Voltage, VINH  
0.7 VL  
VL + 0.3  
−0.3  
0.7 VL  
VL + 0.3  
−0.3  
V min  
V max  
V min  
V max  
μA typ  
μA max  
V min  
pF typ  
Input Low Voltage, VINL  
0.3 VL  
0.3 VL  
Input Leakage Current, IIN  
0.005  
7
0.005  
7
VIN = 0 V to VL  
1
1
Input Hysteresis  
0.05 VL  
0.05 VL  
Input Capacitance, CIN  
LOGIC OUTPUT (SDA)2  
Output Low Voltage, VOL  
0.4  
0.6  
1
0.4  
0.6  
1
V max  
V max  
μA max  
ISINK = 3 mA  
ISINK = 6 mA  
Floating State Leakage Current  
POWER REQUIREMENTS  
IDD  
0.05  
0.05  
0.05  
0.05  
μA typ  
μA max  
μA typ  
μA max  
Digital inputs = 0 V or VL  
Digital inputs = 0 V or VL  
Digital inputs = 0 V or VL  
1
1
1
1
ISS  
IL  
Interface Inactive  
0.3  
0.1  
0.4  
0.3  
0.1  
0.4  
μA typ  
2
2
μA max  
mA typ  
mA max  
mA typ  
mA max  
Interface Active: 400 kHz fSCL  
Interface Active: 3.4 MHz fSCL  
0.2  
0.2  
-HS model only  
1.2  
1.7  
1 Temperature range is as follows: B version: −40°C to +85°C; Y version: −40°C to +125°C.  
2 Guaranteed by design, not subject to production test.  
Rev. 0 | Page 4 of 28  
ADG2188  
VDD = +5 V 10% , VSS = −5 V 10% , VL = 5 V, GND = 0 V, all specifications TMIN to TMAX, unless otherwise noted.1  
Table 2.  
B Version  
−40°C to  
+25°C +85°C  
Y Version  
−40°C to  
+25°C +125°C  
Parameter  
Unit  
Conditions  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD − 2 V V max  
Ω typ  
34  
34  
40  
50  
55  
66  
75  
4.5  
8
VDD = +4.5 V, VSS = −4.5 V, VIN = VSS, IS = −10 mA  
VDD = +4.5 V, VSS = −4.5 V, VIN = 0 V, IS = −10 mA  
VDD = +4.5 V, VSS = −4.5 V, VIN = +1.4 V, IS = −10 mA  
VDD = +4.5 V, VSS = −4.5 V, VIN = VSS, IS = −10 mA  
VDD = +4.5 V, VSS = −4.5 V, VIN = VSS to 0 V, IS = −10 mA  
40  
50  
55  
66  
75  
4.5  
8
17  
20  
34  
45  
65  
85  
9
50  
70  
95  
10  
25  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
On Resistance Matching  
Between Channels, ∆RON  
On Resistance Flatness, RFLAT(ON)  
17  
20  
34  
23  
VDD = +4.5 V, VSS = −4.5 V, VIN = VSS to +1.4 V,  
IS = −10 mA  
42  
45  
42  
48  
Ω max  
LEAKAGE CURRENTS  
VDD = 5.5 V, VSS = 5.5 V  
Channel Off Leakage, IOFF  
Channel On Leakage, ION  
0.03  
0.03  
0.03  
0.03  
μA typ  
μA typ  
VX = +4.5 V/−2 V, VY = −2 V/+4.5 V  
VX = VY = −2 V or +4.5 V  
DYNAMIC CHARACTERISTICS2  
COFF  
CON  
tON  
6
9.5  
6
9.5  
pF typ  
pF typ  
ns typ  
ns max  
ns typ  
ns max  
% typ  
170  
200  
210  
250  
0.04  
170  
200  
210  
250  
0.04  
90  
RL = 300 Ω, CL = 35 pF  
RL = 300 Ω, CL = 35 pF  
215  
255  
220  
260  
tOFF  
THD + N  
PSRR  
RL = 10 kΩ, f = 20 Hz to 20 kHz, VS = 1 V p-p  
f = 20 kHz; without decoupling; see Figure 24  
dB typ  
−3 dB Bandwidth  
300  
18  
300  
18  
MHz typ Individual inputs to outputs  
MHz typ 8 inputs to 1 output  
Off Isolation  
Channel-to-Channel Crosstalk  
Adjacent Channels  
Nonadjacent Channels  
Differential Gain  
Differential Phase  
−66  
−64  
dB typ  
RL = 75 Ω, CL = 5 pF, f = 5 MHz  
RL = 75 Ω, CL = 5 pF, f = 5 MHz  
−62  
−79  
1.5  
1.8  
−3  
−62  
−79  
1.5  
1.8  
−3  
dB typ  
dB typ  
% typ  
° typ  
RL = 75 Ω, CL = 5 pF, f = 5 MHz  
RL = 75 Ω, CL = 5 pF, f = 5 MHz  
VS = 0 V, RS = 0 Ω, CL = 1 nF  
Charge Injection  
pC typ  
LOGIC INPUTS (Ax, RESET)2  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Leakage Current, IIN  
2.0  
0.8  
2.0  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
0.005  
7
0.005  
7
1
1
Input Capacitance, CIN  
LOGIC INPUTS (SCL, SDA)2  
Input High Voltage, VINH  
0.7 VL  
VL + 0.3  
−0.3  
0.7 VL  
VL + 0.3  
−0.3  
V min  
V max  
V min  
Input Low Voltage, VINL  
0.3 VL  
0.3 VL  
V max  
μA typ  
μA max  
Input Leakage Current, IIN  
0.005  
0.005  
VIN = 0 V to VL  
1
1
Rev. 0 | Page 5 of 28  
 
ADG2188  
B Version  
−40°C to  
+25°C +85°C  
Y Version  
−40°C to  
+25°C +125°C  
Parameter  
Unit  
Conditions  
Input Hysteresis  
0.05 VL  
0.05 VL  
V min  
pF typ  
Input Capacitance, CIN  
LOGIC OUTPUT (SDA)2  
Output Low Voltage, VOL  
7
7
0.4  
0.6  
1
0.4  
0.6  
1
V max  
V max  
μA max  
ISINK = 3 mA  
ISINK = 6 mA  
Floating State Leakage Current  
POWER REQUIREMENTS  
IDD  
0.05  
1
0.05  
1
0.005  
1
0.005  
1
μA typ  
μA max  
μA typ  
μA max  
Digital inputs = 0 V or VL  
Digital inputs = 0 V or VL  
Digital inputs = 0 V or VL  
ISS  
IL  
Interface Inactive  
0.3  
0.3  
μA typ  
2
2
μA max  
mA typ  
mA max  
mA typ  
mA max  
Interface Active: 400 kHz fSCL  
Interface Active: 3.4 MHz fSCL  
0.1  
0.1  
0.4  
0.3  
0.1  
0.1  
0.4  
0.3  
-HS model only  
1 Temperature range is as follows: B version: –40°C to +85°C; Y version: –40°C to +125°C.  
2 Guaranteed by design, not subject to production test.  
Rev. 0 | Page 6 of 28  
ADG2188  
I2C TIMING SPECIFICATIONS  
VDD = 5 V to 12 V; VSS = −5 V to 0 V; VL = 5 V; GND = 0 V; TA = TMIN to TMAX, unless otherwise noted (see Figure 2).  
Table 3.  
ADG2188 Limit at TMIN, TMAX  
Parameter1 Conditions  
Min  
Max  
100  
400  
Unit  
kHz  
kHz  
Description  
fSCL  
Standard mode  
Fast mode  
Serial clock frequency  
High speed mode2  
CB = 100 pF maximum  
CB = 400 pF maximum  
Standard mode  
Fast mode  
High speed mode2  
CB = 100 pF maximum  
CB = 400 pF maximum  
Standard mode  
Fast mode  
3.4  
1.7  
MHz  
MHz  
μs  
t1  
4
0.6  
tHIGH, SCL high time  
tLOW, SCL low time  
μs  
60  
ns  
ns  
μs  
μs  
120  
4.7  
1.3  
t2  
High speed mode2  
CB = 100 pF maximum  
CB = 400 pF maximum  
Standard mode  
Fast mode  
High speed mode2  
Standard mode  
Fast mode  
160  
320  
250  
100  
10  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
t3  
tSU;DAT, data setup time  
tHD;DAT, data hold time  
3
t4  
0
0
3.45  
0.9  
High speed mode2  
CB = 100 pF maximum  
CB = 400 pF maximum  
Standard mode  
Fast mode  
High speed mode2  
Standard mode  
Fast mode  
0
0
70  
150  
ns  
ns  
μs  
μs  
ns  
μs  
μs  
ns  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
t5  
t6  
4.7  
0.6  
160  
4
0.6  
160  
4.7  
1.3  
4
tSU;STA, setup time for a repeated start condition  
tHD;STA, hold time for a (repeated) start condition  
High speed mode2  
Standard mode  
Fast mode  
t7  
t8  
tBUF, bus free time between a stop and a start condition  
tSU;STO, setup time for a stop condition  
Standard mode  
Fast mode  
High speed mode2  
Standard mode  
Fast mode  
High speed mode2  
CB = 100 pF maximum  
CB = 400 pF maximum  
Standard mode  
Fast mode  
0.6  
160  
t9  
1000  
300  
tRDA, rise time of SDA signal  
tFDA, fall time of SDA signal  
20 + 0.1 CB  
10  
20  
80  
ns  
ns  
ns  
ns  
160  
300  
300  
t10  
20 + 0.1 CB  
High speed mode2  
CB = 100 pF maximum  
CB = 400 pF maximum  
10  
20  
80  
160  
ns  
ns  
Rev. 0 | Page 7 of 28  
 
 
ADG2188  
ADG2188 Limit at TMIN, TMAX  
Parameter1 Conditions  
Min  
Max  
1000  
300  
Unit  
ns  
ns  
Description  
t11  
t11A  
t12  
tSP  
Standard mode  
Fast mode  
High speed mode2  
CB = 100 pF maximum  
CB = 400 pF maximum  
Standard mode  
tRCL, rise time of SCL signal  
20 + 0.1 CB  
10  
20  
40  
80  
ns  
ns  
ns  
ns  
1000  
300  
tRCL1, rise time of SCL signal after a repeated start condition  
and after an acknowledge bit  
Fast mode  
20 + 0.1 CB  
High speed mode2  
CB = 100 pF maximum  
CB = 400 pF maximum  
Standard mode  
10  
20  
80  
ns  
ns  
ns  
ns  
160  
300  
300  
tFCL, fall time of SCL signal  
Fast mode  
20 + 0.1 CB  
High speed mode2  
CB = 100 pF maximum  
CB = 400 pF maximum  
Fast mode  
10  
20  
0
40  
80  
50  
10  
ns  
ns  
ns  
ns  
Pulse width of suppressed spike  
High speed mode2  
0
1 Guaranteed by initial characterization. All values measured with input filtering enabled. CB refers to capacitive load on the bus line; tR and tF are measured between  
0.3 VDD and 0.7 VDD  
.
2 High speed I2C is available only in -HS models  
3 A device must provide a data hold time for SDA to bridge the undefined region of the SCL falling edge.  
TIMING DIAGRAM  
t11  
t12  
t2  
t6  
SCL  
SDA  
t6  
t5  
t10  
t3  
t8  
t4  
t1  
t9  
t7  
S
P
S
P
S = START CONDITION  
P = STOP CONDITION  
Figure 2. Timing Diagram for 2-Wire Serial Interface  
Rev. 0 | Page 8 of 28  
 
 
ADG2188  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to VSS  
15 V  
VDD to GND  
VSS to GND  
VL to GND  
Analog Inputs  
Digital Inputs  
−0.3 V to +15 V  
+0.3 V to −7 V  
−0.3 V to +7 V  
VSS − 0.3 V to VDD + 0.3 V  
−0.3 V to VL + 0.3 V or 30 mA,  
whichever occurs first  
Continuous Current  
10 V on Input; Single Input  
Connected to Single Output  
1 V on Input; Single Input  
Connected to Single Output  
10 V on Input; Eight Inputs  
Connected to Eight Outputs  
65 mA  
90 mA  
25 mA  
Operating Temperature Range  
Industrial (B Version)  
Automotive (Y Version)  
Storage Temperature Range  
Junction Temperature  
32-Lead LFCSP_VQ  
–40°C to +85°C  
–40°C to +125°C  
–65°C to +150°C  
150°C  
θJA Thermal Impedance  
Reflow Soldering (Pb Free)  
Peak Temperature  
108.2°C/W  
260°C (+0/–5)  
Time at Peak Temperature  
10 sec to 40 sec  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 9 of 28  
 
ADG2188  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
8
V
24  
23  
22  
21  
20  
19  
18  
V
SS  
DD  
PIN 1  
INDICATOR  
NC  
NC  
NC  
NC  
NC  
X7  
NC  
X0  
X1  
X2  
X3  
X4  
X5  
ADG2188  
8 × 8  
TOP VIEW  
(Not to Scale)  
X6  
17  
9
10 11 12 13 14 15 16  
NC = NO CONNECT  
Exposed Paddle Soldered to VSS  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions1  
Pin No.  
Mnemonic Description  
1
VSS  
Negative Power Supply in a Dual-Supply Application. For single-supply applications, this pin should be tied to GND.  
2, 19 to 23 NC  
No Connect.  
3 to 8,  
17, 18  
X0 to X7  
Can be inputs or outputs.  
9 to 16  
24  
Y0 to Y7  
VDD  
Can be inputs or outputs.  
Positive Power Supply Input.  
25  
VL  
Logic Power Supply Input.  
26  
27  
SDA  
SCL  
Digital I/O. Bidirectional open drain data line. External pull-up resistor required.  
Digital Input, Serial Clock Line. Open drain input that is used in conjunction with SDA to clock data into the  
device. External pull-up resistor required.  
28  
29  
30  
31  
32  
A0  
A1  
A2  
RESET  
GND  
Logic Input. Address pin that sets the least significant bit of the 7-bit slave address.  
Logic Input. Address pin that sets the second least significant bit of the 7-bit slave address.  
Logic Input. Address pin that sets the third least significant bit of the 7-bit slave address.  
Active Low Logic Input. When this pin is low, all switches are open, and appropriate registers are cleared to 0.  
Ground. Reference point for all circuitry on the ADG2188.  
1 It is recommended that the exposed paddle be soldered to VSS to improve heat dissipation and crosstalk.  
Rev. 0 | Page 10 of 28  
 
ADG2188  
TYPICAL PERFORMANCE CHARACTERISTICS  
90  
80  
70  
60  
50  
40  
30  
200  
T
= 25°C  
= 10mA  
A
T
I
= 25°C  
= 10mA  
A
I
DS  
180 DS  
160  
140  
120  
100  
80  
V
= 7.2V  
DD  
V
DD  
= 0V  
SS  
V
= +8V  
V
= 8V  
DD  
V
= –5V  
= +5V  
SS  
DD  
V
60  
V
= 8.8V  
DD  
V
DD  
= 0V  
SS  
= +12V  
40  
V
8
20  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
9 10 11 12  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 4. Signal Range  
Figure 7. RON vs. Source Voltage, VDD = 8 V 10%  
85  
75  
65  
55  
45  
35  
25  
80  
V
V
= +5V  
= –5V  
= 10mA  
DD  
SS  
T
= 25°C  
= 10mA  
A
I
DS  
70  
60  
50  
40  
30  
20  
10  
0
I
DS  
T
= +125°C  
A
V
/V = ±4.5V  
DD SS  
T
= +85°C  
A
V
/V = ±5V  
DD SS  
T
= +25°C  
A
T
= –40°C  
A
V
/V = ±5.5V  
DD SS  
–5  
–4  
–3  
–2  
–1  
0
1
–5.5  
–4.5  
–3.5  
–2.5  
–1.5  
–0.5  
0.5  
1.5  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 8. RON vs. Temperature, Dual 5 V Supplies  
Figure 5. RON vs. Source Voltage, Dual 5 V Supplies  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
60  
50  
40  
30  
20  
10  
0
V
V
= 12V  
= 0V  
= 10mA  
T
I
= 25°C  
= 10mA  
DD  
SS  
A
T
= +125°C  
A
DS  
I
DS  
V
= 10.8V  
DD  
T
= +85°C  
A
V
= 12V  
DD  
T
= +25°C  
A
T
= –40°C  
A
V
6
= 13.2V  
DD  
0
1
2
3
4
5
7
8
0
1
2
3
4
5
6
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 6. RON vs. Supplies, VDD = 12 V 10%  
Figure 9. RON vs. Temperature, VDD = 12 V  
Rev. 0 | Page 11 of 28  
 
ADG2188  
80  
18  
16  
14  
12  
10  
8
V
V
= 12V  
= 0V  
DD  
SS  
V
V
= 8V  
= 0V  
= 10mA  
DD  
SS  
70  
60  
50  
40  
30  
20  
10  
0
Y CHANNELS, V  
= 7V  
BIAS  
I
DS  
T
= +125°C  
A
X CHANNELS, V  
= 7V  
BIAS  
T
= +85°C  
A
Y CHANNELS, V  
= 1V  
BIAS  
T
= +25°C  
A
6
T
= –40°C  
A
4
2
0
–2  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
20  
40  
60  
80  
100  
120  
SOURCE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 10. RON vs. Temperature, VDD = 8 V  
Figure 13. On Leakage vs. Temperature, 12 V Single Supply  
16  
14  
12  
10  
8
9
V
V
= 12V  
= 0V  
V
V
= +5V  
= –5V  
DD  
SS  
DD  
SS  
8
7
X, Y CHANNELS;  
= 7V ON X CHANNEL;  
V
BIAS  
1V ON Y CHANNEL  
6
5
X CHANNELS,  
= +4V  
V
BIAS  
4
3
6
X, Y CHANNELS;  
V = 1V ON X CHANNEL;  
Y CHANNELS,  
= –2V  
2
V
BIAS  
7V ON Y CHANNEL  
BIAS  
4
1
2
0
0
–1  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. On Leakage vs. Temperature, Dual 5 V Supplies  
Figure 14. Off Leakage vs. Temperature, 12 V Single Supply  
12  
0
V
V
= +5V  
= –5V  
DD  
SS  
–0.5  
10  
8
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
X, Y CHANNELS;  
= +4V ON X CHANNEL;  
V
BIAS  
–2V ON Y CHANNEL  
6
4
X, Y CHANNELS;  
= –2V ON X CHANNEL;  
V
BIAS  
+4V ON Y CHANNEL  
V
= +5V, V = –5V  
SS  
2
DD  
V
= +12V, V = 0V  
SS  
DD  
0
–2  
0
20  
40  
60  
80  
100  
120  
–5  
–3  
–1  
1
3
5
7
9
11  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 12. Off Leakage vs. Temperature, Dual 5 V Supplies  
Figure 15. Charge Injection vs. Supply Voltage  
Rev. 0 | Page 12 of 28  
ADG2188  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
240  
220  
200  
180  
160  
140  
120  
100  
tOFF  
V
= +5V, V = –5V  
SS  
DD  
tON  
V
= 12V, V = 0V  
SS  
DD  
V
V
= +5V  
= –5V  
= 25°C  
DD  
SS  
T
A
–40  
–20  
0
20  
40  
60  
80  
100  
120  
10  
1k  
100k  
10M  
1G  
10G  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 16. tON/tOFF Times vs. Temperature  
Figure 19. One Input to Eight Outputs Bandwidth, 5 V Dual Supply  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–10  
V
V
= +5V TO +12V  
= –5V TO 0V  
= 25°C  
DD  
SS  
–20  
–30  
T
A
–40  
–50  
–60  
–70  
–80  
–90  
V
V
= +5V  
= –5V  
= 25°C  
DD  
SS  
–100  
–110  
T
A
10  
1k  
100k  
10M  
1G 10G  
10  
1k  
100k  
10M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Individual Inputs to Individual Outputs Bandwidth,  
Dual 5 V Supply  
Figure 20. Off Isolation vs. Frequency  
–1  
–2  
–3  
–4  
–5  
–6  
V
V
T
= +5V TO +12V  
= –5V TO 0V  
= 25°C  
DD  
SS  
–20  
–40  
A
ADJACENT  
CHANNELS  
–60  
–80  
NON-ADJACENT  
CHANNELS  
–100  
V
V
= 12V  
= 0V  
–7  
DD  
SS  
T
= 25°C  
A
–8  
10  
–120  
1k  
100k  
10M  
1G  
10G  
10  
1k  
100k  
10M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. Individual Inputs to Individual Outputs Bandwidth,  
12 V Single Supply  
Figure 21. Crosstalk vs. Frequency  
Rev. 0 | Page 13 of 28  
ADG2188  
0.35  
0
–20  
V
V
= +5V  
= –5V  
DD  
SS  
V
V
A
= 5V/12V  
= –5V/0V  
DD  
SS  
T
= 25°C  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.2V p-p RIPPLE  
V
= 5V  
L
SWITCH ON,  
WITHOUT DECOUPLING  
–40  
SWITCH OFF,  
WITHOUT DECOUPLING  
–60  
–80  
WITH DECOUPLING  
V
= 3V  
L
–100  
–120  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 24. ACPSRR  
Figure 22. Digital Current (IL) vs. Frequency  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 5V  
L
V
= 3V  
L
0
1
2
3
4
5
6
V
(V)  
LOGIC  
Figure 23. Digital Current (IL) vs. VLOGIC for Varying Digital Supply Voltage  
Rev. 0 | Page 14 of 28  
 
ADG2188  
TEST CIRCUITS  
The test circuits show measurements on one channel for clarity, but the circuit applies to any of the switches in the matrix.  
I
DS  
V1  
I
I
OFF  
A
OFF  
X
Y
X
Y
A
I
ON  
A
X
Y
NC  
V
V
V
R
= V1/I  
V
Y
S
X
Y
ON  
DS  
Figure 25. On Resistance  
Figure 26. Off Leakage  
Figure 27. On Leakage  
V
V
V
V
DD  
SS  
0.1µF  
0.1µF  
50%  
9TH DATA BIT  
DD  
SS  
V
OUT  
X
Y
90%  
V
R
300  
OUT  
C
35pF  
L
L
V
X
tOFF AND tON  
GND  
Figure 28. Switching Times, tON, tOFF  
V
V
SS  
DD  
DD  
0.1  
µF  
0.1µF  
SW OFF  
SW ON  
V
V
SS  
Y
R
X
DATA BIT  
X
V
OUT  
C
L
V
X
1nF  
V
ΔV  
OUT  
OUT  
GND  
Q
= C × ΔV  
L OUT  
INJ  
Figure 29. Charge Injection  
V
V
V
V
V
V
SS  
DD  
DD  
SS  
DD  
DD  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
NETWORK  
ANALYZER  
V
V
SS  
SS  
X
X
50  
50  
50Ω  
V
X
V
X
Y
Y
V
V
OUT  
OUT  
V
V
R
R
L
L
50Ω  
50Ω  
GND  
GND  
V
V
WITH SWITCH  
OUT  
OUT  
OFF ISOLATION = 20 log  
INSERTION LOSS = 20 log  
V
V
WITHOUT SWITCH  
OUT  
S
Figure 30. Off Isolation  
Figure 31. Bandwidth  
Rev. 0 | Page 15 of 28  
 
ADG2188  
V
V
V
DD  
SS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
DD  
SS  
V
OUT  
Y1  
X2  
X1  
Y2  
R
50Ω  
R
50Ω  
L
R
50Ω  
50Ω  
DATA  
BIT  
V
X
GND  
V
OUT  
CHANNEL-TO-CHANNEL CROSSTALK = 20 log  
V
S
Figure 32. Channel-to-Channel Crosstalk  
Rev. 0 | Page 16 of 28  
ADG2188  
TERMINOLOGY  
On Resistance (RON  
)
Total Harmonic Distortion + Noise (THD + N)  
The series on-channel resistance measured between the  
X input/output and the Y input/output.  
The ratio of the harmonic amplitudes plus noise of a signal to  
the fundamental.  
On Resistance Match (ΔRON  
)
−3 dB Bandwidth  
The channel-to-channel matching of on resistance when  
channels are operated under identical conditions.  
The frequency at which the output is attenuated by 3 dB.  
Off Isolation  
On Resistance Flatness (RFLAT(ON)  
)
The measure of unwanted signal coupling through an off switch.  
The variation of on resistance over the specified range produced  
by the specified analog input voltage change with a constant  
load current.  
Crosstalk  
The measure of unwanted signal that is coupled through from  
one channel to another as a result of parasitic capacitance.  
Channel Off Leakage (IOFF  
The sum of leakage currents into or out of an off channel input.  
)
Differential Gain  
The measure of how much color saturation shift occurs when  
the luminance level changes. Both attenuation and amplification  
can occur; therefore, the largest amplitude change between any  
two levels is specified and is expressed as a percentage of the  
largest chrominance amplitude.  
Channel On Leakage (ION  
The current loss/gain through an on-channel resistance,  
creating a voltage offset across the device.  
)
Input Leakage Current (IIN)  
The current flowing into a digital input when a specified low  
level or high level voltage is applied to that input.  
Differential Phase  
The measure of how much hue shift occurs when the luminance  
level changes. It can be a negative or positive value and is  
expressed in degrees of subcarrier phase.  
Input Off Capacitance (COFF  
)
The capacitance between an analog input and ground when the  
switch channel is off.  
Charge Injection  
The measure of the glitch impulse transferred from the digital  
input to the analog output during on/off switching.  
Input/Output On Capacitance (CON  
The capacitance between the inputs or outputs and ground  
when the switch channel is on.  
)
Input High Voltage (VINH  
The minimum input voltage for Logic 1.  
)
Digital Input Capacitance (CIN)  
The capacitance between a digital input and ground.  
Input Low Voltage (VINL  
)
The maximum input voltage for Logic 0.  
Output On Switching Time (tON  
)
The time required for the switch channel to close. The time is  
measured from 50% of the logic input change to the time the  
output reaches 10% of the final value.  
Output Low Voltage (VOL  
The minimum input voltage for Logic 1.  
)
Input Low Voltage (VINL  
)
Output Off Switching Time (tOFF  
)
The maximum output voltage for Logic 0.  
The time required for the switch to open. This time is measured  
from 50% of the logic input change to the time the output  
reaches 90% of the switch off condition.  
IDD  
Positive supply current.  
ISS  
Negative supply current.  
Rev. 0 | Page 17 of 28  
 
ADG2188  
THEORY OF OPERATION  
The ADG2188 is an analog cross point switch with an array size  
of 8 × 8. The eight rows are referred to as the X input/output  
lines, and the eight columns are referred to as the Y input/output  
lines. The device is fully flexible in that it connects any X line or  
number of X lines with any Y line when turned on. Similarly, it  
connects any X line with any number of Y lines when turned on.  
LOAD SWITCH (LDSW)  
LDSW is an active high command that allows a number of  
switches to be simultaneously updated. This is useful in  
applications where it is important to have synchronous  
transmission of signals. There are two LDSW modes: the  
transparent mode and the latched mode.  
Control of the ADG2188 is carried out via an I2C interface.  
The device can be operated from single supplies of up to 13.2 V  
or from dual 5 V supplies. The ADG2188 has many attractive  
features, such as the ability to reset all the switches, the ability to  
update many switches at the same time, and the option of reading  
back the status of any switch. All of these features are described  
in more detail here in the Theory of Operation section.  
Transparent Mode  
In this mode, the switch position changes after the new word is  
written into the input shift register. LDSW is set to 1.  
Latched Mode  
In this mode, the switch positions are not updated at the same  
time that the input registers are written to. This is achieved by  
setting LDSW to 0 for each word (apart from the last word)  
written to the device. Then, setting LDSW to 1 for the last word  
allows all of the switches in that sequence to be simultaneously  
updated.  
RESET/POWER-ON RESET  
The ADG2188 offers the ability to reset all of the 64 switches  
RESET  
to the off state. This is done through the  
pin. When the  
RESET  
pin is low, all switches are open (off), and appropriate  
registers are cleared. Note that the ADG2188 also has a power-  
on reset block. This ensures that all switches are in the off  
condition at power-up of the device. In addition, all internal  
registers are filled with 0s and remain so until a valid write to  
the ADG2188 takes place.  
READBACK  
Readback of the switch array conditions is also offered when in  
standard mode and fast mode. Readback enables the user to  
check the status of the switches of the ADG2188. This is very  
useful when debugging a system.  
Rev. 0 | Page 18 of 28  
 
 
ADG2188  
SERIAL INTERFACE  
The ADG2188 is controlled via an I2C-compatible serial bus.  
The parts are connected to this bus as a slave device (no clock  
is generated by the switch).  
2. The peripheral whose address corresponds to the trans-  
mitted address responds by pulling the SDA line low  
during the ninth clock pulse, known as the acknowledge  
bit. At this stage, all other devices on the bus remain idle  
while the selected device waits for data to be written to  
HIGH SPEED I2C INTERFACE  
In addition to standard and full speed I2C, the ADG2188 also  
supports the high speed (3.4 MHz) I2C interface. Only the –HS  
models provide this added performance. See the Ordering  
Guide for details.  
W
or read from its serial register. If the R/ bit is 1 (high), the  
W
master reads from the slave device. If the R/ bit is 0  
(low), the master writes to the slave device.  
3. Data is transmitted over the serial bus in sequences of  
nine clock pulses: eight data bits followed by an acknowl-  
edge bit from the receiver of the data. Transitions on the  
SDA line must occur during the low period of the clock  
signal, SCL, and remain stable during the high period of  
SCL, because a low-to-high transition when the clock is  
high can be interpreted as a stop signal.  
SERIAL BUS ADDRESS  
The ADG2188 has a 7-bit slave address. The four MSBs are  
hard coded to 1110, and the three LSBs are determined by the  
state of Pin A0, Pin A1, and Pin A2. By offering the facility to  
hardware configure Pin A0, Pin A1, and Pin A2, up to eight  
of these devices can be connected to a single serial bus.  
4. When all data bits have been read or written, a stop  
condition is established by the master. A stop condition  
is defined as a low-to-high transition on the SDA line  
while SCL is high. In write mode, the master pulls the  
SDA line high during the 10th clock pulse to establish a  
stop condition. In read mode, the master issues a no  
acknowledge for the ninth clock pulse (that is, the SDA  
line remains high). The master then brings the SDA line  
low before the 10th clock pulse and then high during the  
10th clock pulse to establish a stop condition.  
The 2-wire serial bus protocol operates as follows:  
1. The master initiates data transfer by establishing a start  
condition, defined as when a high-to-low transition on  
the SDA line occurs while SCL is high. This indicates  
that an address/data stream follows. All slave peripherals  
connected to the serial bus respond to the start condition  
and shift in the next eight bits, consisting of a 7-bit  
W
address (MSB first) plus an R/ bit that determines the  
direction of the data transfer, that is, whether data is  
written to or read from the slave device.  
Refer to Figure 33 and Figure 34 for a graphical explanation  
of the serial data transfer protocol.  
Rev. 0 | Page 19 of 28  
 
ADG2188  
WRITING TO THE ADG2188  
INPUT SHIFT REGISTER  
The input shift register is 24 bits wide. A 3-byte write is necessary when writing to this register and is done under the control of the serial  
clock input, SCL. The contents of the three bytes of the input shift register are shown in Figure 33 and described in Table 6.  
DB16 (LSB)  
A0 R/W  
DB8 (LSB)  
DB0 (LSB)  
X LDSW  
DB23 (MSB)  
DB15 (MSB)  
DB7 (MSB)  
1
1
1
0
A2  
A1  
DATA  
X
AX3 AX2 AX1 AX0 AY2 AY1 AY0  
X
X
X
X
X
DEVICE ADDRESS  
DATA BITS  
DATA BITS  
Figure 33. Data-Words  
Table 6. Input Shift Register Bit Function Descriptions  
Bit  
Mnemonic  
Description  
DB23 to DB17  
1110xxx  
The MSBs of the ADG2188 are set to 1110. The LSBs of the address byte are set by the  
state of the three address pins, Pin A0, Pin A1, and Pin A2.  
DB16  
DB15  
R/W  
Controls whether the ADG2188 slave device is read from or written to.  
If R/W = 1, the ADG2188 is being read from.  
If R/W = 0, the ADG2188 is being written to.  
Data  
Controls whether the switch is to be open (off) or closed (on).  
If Data = 0, the switch is open/off.  
If Data = 1, the switch is closed/on.  
DB14 to DB11  
DB10 to DB8  
DB7 to DB1  
DB0  
AX3 to AX0  
AY2 to AY0  
X
Controls I/Os X0 to X7. See Table 7 for the decode truth table.  
Controls I/Os Y0 to Y7. See Table 7 for the decode truth table.  
Don’t care.  
This bit is useful when a number of switches need to be updated simultaneously.  
If LDSW = 1, the switch position changes after the new word is read in.  
If LDSW = 0, the input data is latched, but the switch position is not changed.  
LDSW  
As shown in Table 6, Bit DB11 to Bit DB14 control the X input/output lines, while Bit DB8 to Bit DB10 control the Y input/output lines.  
Table 7 shows the truth table for these bits. Note that the full coding sequence is written out for Channel Y0, and Channel Y1 to Channel Y7  
RESET  
follow a similar pattern. Note also that the  
pin must be high when writing to the device.  
Table 7. Address Decode Truth Table  
DB15  
DATA  
DB14  
AX3  
DB13  
AX2  
DB12  
AX1  
DB11  
AX0  
DB10  
AY2  
DB9  
AY1  
DB8  
AY0  
Switch Configuration  
X0 to Y0 (on)  
X0 to Y0 (off)  
X1 to Y0 (on)  
X1 to Y0 (off)  
X2 to Y0 (on)  
X2 to Y0 (off)  
X3 to Y0 (on)  
X3 to Y0 (off)  
X4 to Y0 (on)  
X4 to Y0 (off)  
X5 to Y0 (on)  
X5 to Y0 (off)  
Reserved  
1
0
1
0
1
0
1
0
1
0
1
0
X
X
1
0
1
0
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reserved  
X6 to Y0 (on)  
X6 to Y0 (off)  
X7 to Y0 (on)  
X7 to Y0 (off)  
Reserved  
1
1
0
1
Reserved  
Rev. 0 | Page 20 of 28  
 
 
 
 
ADG2188  
DB15  
DATA  
DB14  
AX3  
DB13  
AX2  
DB12  
AX1  
DB11  
AX0  
DB10  
AY2  
DB9  
AY1  
DB8  
AY0  
Switch Configuration  
Reserved  
Reserved  
Reserved  
Reserved  
X
X
X
X
1
0
..  
1
1
1
1
0
0
..  
1
1
1
1
0
0
..  
0
0
1
1
0
0
..  
0
1
0
1
0
0
..  
0
0
0
0
0
0
..  
0
0
0
0
0
0
..  
0
0
0
0
1
1
..  
X0 to Y1 (on)  
X0 to Y1 (off)  
1
1
0
..  
1
0
0
..  
0
0
0
..  
0
0
0
..  
1
0
0
..  
0
0
0
..  
0
1
1
..  
1
0
0
..  
X7 to Y1 (on)  
X0 to Y2 (on)  
X0 to Y2 (off)  
1
1
0
..  
1
0
0
..  
0
0
0
..  
0
0
0
..  
1
0
0
..  
0
0
0
..  
1
1
1
..  
0
1
1
..  
X7 to Y2 (on)  
X0 to Y3 (on)  
X0 to Y3 (off)  
1
1
0
..  
1
0
0
..  
0
0
0
..  
0
0
0
..  
1
0
0
..  
0
1
1
..  
1
0
0
..  
1
0
0
..  
X7 to Y3 (on)  
X0 to Y4 (on)  
X0 to Y4 (off)  
1
1
0
..  
1
0
0
..  
0
0
0
..  
0
0
0
..  
1
0
0
..  
1
1
1
..  
0
0
0
..  
0
1
1
..  
X7 to Y4 (on)  
X0 to Y5 (on)  
X0 to Y5 (off)  
1
1
0
..  
1
0
0
..  
0
0
0
..  
0
0
0
..  
1
0
0
..  
1
1
1
..  
0
1
1
..  
1
0
0
..  
X7 to Y5 (on)  
X0 to Y6 (on)  
X0 to Y6 (off)  
1
1
0
..  
1
0
0
..  
0
0
0
..  
0
0
0
..  
1
0
0
..  
1
1
1
..  
1
1
1
..  
0
1
1
..  
X7 to Y6 (on)  
X0 to Y7 (on)  
X0 to Y7 (off)  
1
1
0
0
1
1
1
1
X7 to Y7 (on)  
Rev. 0 | Page 21 of 28  
ADG2188  
b. Enter the readback address for the X line of interest,  
the addresses of which are shown in Table 8. Note that  
the ADG2188 is expecting a 2-byte write; therefore, be  
sure to also enter another byte of don’t cares (see  
Figure 35).  
WRITE OPERATION  
When writing to the ADG2188, the user must begin with an  
W
address byte and R/ bit, after which the switch acknowledges  
that it is prepared to receive data by pulling SDA low. This  
address byte is followed by the two 8-bit words. The write  
operations for the switch array are shown in Figure 34. Note  
that it is only the condition of the switch corresponding to the  
bits in the data bytes that changes state. All other switches retain  
their previous condition.  
c. The ADG2188 then places the status of those eight  
switches in a register than can be read back.  
2. The second step involves reading back from the register  
that holds the status of the eight switches associated with  
the X line of choice.  
READ OPERATION  
Readback on the ADG2188 is designed to work as a tool for  
debug and can be used to output the status of any of the  
64 switches of the device. The readback function is a two-step  
sequence that works as follows:  
a. As before, enter the I2C address of the ADG2188. This  
W
time, set the R/ to 1 to indicate a read back from the  
device.  
d. As with a write to the device, the ADG2188 outputs a  
2-byte sequence during readback. Therefore, the first  
eight bits of data out that are read back are all 0s. The  
next eight bits of data that come back are the status of  
the eight Y lines attached to that particular X line. If  
the bit is a 1, then the switch is closed (on); similarly, if  
the bit is a 0, the switch is open (off).  
1. Select the relevant X line to be read back from. Note that  
there are eight switches connecting that X line to the eight  
Y lines. The next step involves writing to the ADG2188 to  
tell the part to reveal the status of those eight switches.  
a. Enter the I2C address of the ADG2188, and set the  
W
R/ to 0 to indicate a write to the device.  
The entire read sequence is shown in Figure 35.  
SCL  
SDA  
A2  
A1  
DATA AX3 AX2  
AX1  
AX0  
AY2  
AY1  
AY0  
A0  
R/W  
x
x
x
x
x
x
x
LDSW  
STOP  
COND  
BY  
ACK  
BY  
SWITCH  
START  
COND  
BY  
ACK  
BY  
SWITCH  
ACK  
BY  
SWITCH  
ADDRESS BYTE  
DATA BYTE  
DATA BYTE  
MASTER  
MASTER  
Figure 34. Write Operation  
Table 8. Readback Addresses for Each X Line  
X Line  
RB7  
RB6  
RB5  
1
1
1
1
1
1
1
1
RB4  
1
1
1
1
1
1
1
1
RB3  
RB2  
1
1
1
1
1
1
1
1
RB1  
0
0
0
0
0
0
0
0
RB0  
X0  
X1  
X2  
X3  
X4  
X5  
X6  
X7  
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
Rev. 0 | Page 22 of 28  
 
 
 
ADG2188  
SCL  
SDA  
A2  
A1  
RB7  
ACK  
BY  
SWITCH  
RB6 RB5  
RB4 RB3  
RB2  
RB1 RB0  
A0  
R/W  
x
x
x
x
x
x
x
x
STOP  
COND  
BY  
NO ACK  
BY  
SWITCH  
START  
COND  
BY  
ACK  
BY  
SWITCH  
ADDRESS BYTE  
DATA BYTE  
DATA BYTE  
MASTER  
MASTER  
SCL  
SDA  
A2  
A1  
A0  
R/W  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
STOP  
COND  
BY  
NO ACK  
BY  
MASTER  
START  
COND  
BY  
ACK  
BY  
SWITCH  
ACK  
BY  
MASTER  
ADDRESS BYTE  
DUMMY READBACK BYTE  
READBACK BYTE  
MASTER  
MASTER  
Figure 35. Read Operation  
Rev. 0 | Page 23 of 28  
 
ADG2188  
EVALUATION BOARD  
The ADG2188 evaluation board allows designers to evaluate the  
high performance 8 × 8 switch array of the ADG2188 with a  
minimum of effort.  
USING THE ADG2188 EVALUATION BOARD  
The ADG2188 evaluation kit is a test system designed to  
simplify the evaluation of the ADG2188. Each input/output  
of the part comes with a socket specifically chosen for easy  
audio/video evaluation. An application note is also available  
with the evaluation board that gives full information on  
operating the evaluation board.  
The evaluation kit includes a populated, tested ADG2188  
printed circuit board. The evaluation board interfaces to the  
USB port of a PC, or it can be used as a standalone evaluation  
board. Software is available with the evaluation board that  
allows the user to easily program the ADG2188 through the USB  
port. Schematics of the evaluation board are shown in Figure 36  
and Figure 37. The software runs on any PC that has Microsoft®  
Windows® 2000 or Windows XP installed.  
POWER SUPPLY  
The ADG2188 evaluation board can be operated with both  
single and dual supplies. VDD and VSS are supplied externally by  
the user. The VL supply can be applied externally, or the USB  
port can be used to power the digital circuitry.  
Rev. 0 | Page 24 of 28  
 
ADG2188  
SCHEMATICS  
Figure 36. EVAL-ADG2188EB Schematic, USB Controller Section  
Rev. 0 | Page 25 of 28  
 
 
ADG2188  
Figure 37. EVAL-ADG2188EB Schematic, Chip Section  
Rev. 0 | Page 26 of 28  
 
ADG2188  
OUTLINE DIMENSIONS  
5.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
TOP  
VIEW  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
(BOTTOM VIEW)  
4.75  
BSC SQ  
0.50  
0.40  
0.30  
17  
16  
8
9
0.25 MIN  
3.50 REF  
0.80 MAX  
0.65 TYP  
12° MAX  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
Figure 38. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm x 5 mm Body, Very Thin Quad  
(CP-32-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package  
Option  
Model  
I2C Speed  
Package Description  
ADG2188BCPZ-R21  
ADG2188BCPZ-REEL71  
−40°C to +85°C  
−40°C to +85°C  
100 kHz, 400 kHz  
100 kHz, 400 kHz  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-32-2  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-32-2  
ADG2188BCPZ-HS-RL71 −40°C to +85°C  
100 kHz, 400 kHz, 3.4 MHz 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-32-2  
−40°C to +125°C 100 kHz, 400 kHz 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-32-2  
−40°C to +125°C 100 kHz, 400 kHz  
ADG2188YCPZ-R21  
ADG2188YCPZ-REEL71  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-32-2  
ADG2188YCPZ-HS-RL71 −40°C to +125°C 100 kHz, 400 kHz, 3.4 MHz 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-32-2  
EVAL-ADG2188EB  
8 x 8 Evaluation Board  
1 Z = Pb-free part.  
Rev. 0 | Page 27 of 28  
 
 
 
ADG2188  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05897-0-4/06(0)  
Rev. 0 | Page 28 of 28  
 
 
 
 
 
 
 
 

相关型号:

ADG2188YCPZ-REEL7

IC CMOS 8 】 8 Unbuffered Analog Switch Array with Dual/Single Supplies
ADI

ADG221

LC2MOS QUAD SPST SWITCHES
ADI

ADG221BCHIPS

IC QUAD 1-CHANNEL, SGL POLE SGL THROW SWITCH, UUC16, DIE-16, Multiplexer or Switch
ADI

ADG221BQ

LC2MOS QUAD SPST SWITCHES
ADI

ADG221BQ/883B

IC,ANALOG SWITCH,QUAD,SPST,CMOS,DIP,16PIN,CERAMIC
ADI

ADG221KN

LC2MOS QUAD SPST SWITCHES
ADI

ADG221KN/883B

IC,ANALOG SWITCH,QUAD,SPST,CMOS,DIP,16PIN,PLASTIC
ADI

ADG221KNZ

LCMOS Quad SPST Switches
ADI

ADG221KP

LC2MOS QUAD SPST SWITCHES
ADI

ADG221KPZ

LC2MOS ±15 V Quad SPST Switch
ADI

ADG221KR

LC2MOS QUAD SPST SWITCHES
ADI

ADG221KRZ

LC2MOS ±15 V Quad SPST Switch
ADI