ADG3233BRMZ [ADI]

Low Voltage 1.65 V to 3.6 V,Bidirectional Logic Level Translation, Bypass Switch; 低电压1.65 V至3.6 V ,双向逻辑电平转换,旁路开关
ADG3233BRMZ
型号: ADG3233BRMZ
厂家: ADI    ADI
描述:

Low Voltage 1.65 V to 3.6 V,Bidirectional Logic Level Translation, Bypass Switch
低电压1.65 V至3.6 V ,双向逻辑电平转换,旁路开关

驱动程序和接口 开关 接口集成电路 光电二极管
文件: 总16页 (文件大小:292K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Voltage 1.65 V to 3.6 V, Bidirectional  
Logic Level Translation, Bypass Switch  
Data Sheet  
ADG3233  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
CC2  
CC1  
Operates from 1.65 V to 3.6 V supply rails  
Bidirectional level translation, unidirectional signal path  
8-lead SOT-23 and MSOP packages  
Bypass or normal operation  
V
CC1  
A1  
Y1  
Short circuit protection  
V
V
V
V
CC2  
CC1  
CC1  
CC2  
APPLICATIONS  
0
1
Y2  
JTAG chain bypassing  
Daisy-chain bypassing  
Digital switching  
A2  
EN  
ADG3233  
GND  
Figure 1.  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The ADG32331 is a bypass switch designed on a submicron  
process that operates from supplies as low as 1.65 V. The device  
is guaranteed for operation over the supply range 1.65 V to 3.6 V. It  
operates from two supply voltages, allowing bidirectional level  
translation, that is, it translates low voltages to higher voltages  
and vice versa. The signal path is unidirectional, meaning data  
may only flow from A Y.  
1. Bidirectional level translation matches any voltage level  
from 1.65 V to 3.6 V.  
2. The bypass switch offers high performance and is fully  
guaranteed across the supply range.  
3. Short circuit protection.  
4. Tiny 8-lead SOT-23 package and 8-lead MSOP.  
Table 1. Truth Table  
This type of device may be used in applications that require a  
bypassing function. It is ideally suited to bypassing devices in  
a JTAG chain or in a daisy-chain loop. One switch could be  
used for each device or a number of devices, thus allowing  
easy bypassing of one or more devices in a chain. This may  
be particularly useful in reducing the time overhead in testing  
devices in the JTAG chain or in daisy-chain applications where  
the user does not wish to change the settings of a particular device.  
EN  
Signal Path  
Function  
L
Enable bypass mode  
Enable normal mode  
A1 Y2, Y1 VCC1  
A1 Y1, A2 Y2  
H
The bypass switch is packaged in two of the smallest footprints  
available for its required pin count. The 8-lead SOT-23 package  
requires only 2.9 mm × 2.8 mm board space, while the MSOP  
package occupies approximately 3 mm × 4.9 mm board area.  
1 U.S. Patent Number: 7,369,385 B2.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2003–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADG3233  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................6  
Pin Configuration and Function Descriptions..............................7  
Typical Performance Characteristics ..............................................8  
Theory of Operation ...................................................................... 13  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Test Waveforms ............................................................................. 5  
Absolute Maximum Ratings............................................................ 6  
EN  
A1 and  
Input ........................................................................ 13  
Normal Operation...................................................................... 13  
Bypass Operation ....................................................................... 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 16  
REVISION HISTORY  
7/13—Rev. A to Rev. B  
Changes to Table 1 ............................................................................ 1  
7/11—Rev. 0 to Rev. A  
Changes to Patent Number, General Description Section, and  
Product Highlights Section ............................................................. 1  
Changes to VCC = VCC1 = VCC2 = 2.5 V 0.2 V, ENABLE Time  
Y1, Table 2 ............................................................................. 4  
EN  
Changes to Table 3............................................................................ 6  
Updated Outline Dimensions....................................................... 15  
Changes to Ordering Guide .......................................................... 16  
5/03—Revision 0: Initial Version  
Rev. B | Page 2 of 16  
 
Data Sheet  
ADG3233  
SPECIFICATIONS  
VCC1 = VCC2 = 1.65 V to 3.6 V, GND = 0 V, all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter1  
Symbol  
Test Conditions/Comments  
VCC2 = 1.65 V to 3.6 V, GND = 0 V  
VCC1 = 3.0 V to 3.6 V  
Min  
Typ2 Max  
Unit  
LOGIC INPUTS/OUTPUTS3  
Input High Voltage4  
VIH  
1.35  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VCC1 = 2.3 V to 2.7 V  
VCC1 = 1.65 V to 1.95 V  
VCC1 = 3.0 V to 3.6 V  
VCC1 = 2.3 V to 2.7 V  
1.35  
0.65 × VCC  
Input Low Voltage4  
VIL  
0.8  
0.7  
0.35 × VCC  
VCC1 = 1.65 V to 1.95 V  
Output High Voltage (Y1)  
VOH  
IOH = −100 µA, VCC1 = 3.0 V to 3.6 V  
IOH = −100 µA, VCC1 = 2.3 V to 2.7 V  
IOH = −100 µA, VCC1 = 1.65 V to 1.95 V  
IOH = −4 mA, VCC1 = 2.3 V to 2.7 V  
IOH = −4 mA, VCC1 = 1.65 V to 1.95 V  
IOH = −8 mA, VCC1 = 3.0 V to 3.6 V  
IOL = 100 µA, VCC1 = 3.0 V to 3.6 V  
IOL = 100 µA, VCC1 = 2.3 V to 2.7 V  
IOL = 100 µA, VCC1 = 1.65 V to 1.95 V  
IOL = 4 mA, VCC1 = 2.3 V to 2.7 V  
IOL = 4 mA, VCC1 = 1.65 V to 1.95 V  
IOL = 8 mA, VCC1 = 3.0 V to 3.6 V  
VCC1 = 1.65 V to 3.6 V, GND = 0 V  
IOH = −100 µA, VCC2 = 3.0 V to 3.6 V  
IOH = −100 µA, VCC2 = 2.3 V to 2.7 V  
IOH = −100 µA, VCC2 = 1.65 V to 1.95 V  
IOH = −4 mA, VCC2 = 2.3 V to 2.7 V  
IOH = −4 mA,VCC2 = 1.65 V to 1.95 V  
IOH = −8 mA, VCC2 = 3.0 V to 3.6 V  
IOL = 100 µA, VCC2 = 3.0 V to 3.6 V  
IOL = 100 µA, VCC2 = 2.3 V to 2.7 V  
IOL = 100 µA, VCC2 = 1.65 V to 1.95 V  
IOL = 4 mA, VCC2 = 2.3 V to 2.7 V  
IOL = 4 mA, VCC2 = 1.65 V to 1.95 V  
IOL = 8 mA, VCC2 = 3.0 V to 3.6 V  
2.4  
2.0  
VCC − 0.45  
2.0  
VCC – 0.45  
2.4  
Output Low Voltage (Y1)  
VOL  
0.40  
0.40  
0.45  
0.40  
0.45  
0.40  
LOGIC OUTPUTS3  
Output High Voltage (Y2)  
VOH  
2.4  
2.0  
VCC − 0.45  
2.0  
VCC – 0.45  
2.4  
V
V
V
V
V
V
V
V
V
V
V
V
Output Low Voltage (Y2)  
VOL  
0.40  
0.40  
0.45  
0.40  
0.45  
0.40  
SWITCHING CHARACTERISTICS 4, 5  
VCC = VCC1 = VCC2 = 3.3 V 0.3 V  
Propagation Delay, tPD  
tPHL, tPLH  
tPHL, tPLH  
tPHL, tPLH  
tEN  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
3.5  
3.5  
4
5.4  
5.4  
6.5  
6
ns  
ns  
ns  
ns  
A1 Y1 Normal Mode  
A2 Y2 Normal Mode  
A1 Y2 Bypass Mode  
4
ENABLE Time EN Y1  
tDIS  
tEN  
tDIS  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
2.8  
4.5  
4
4
ns  
ns  
ns  
DISABLE Time EN Y1  
ENABLE Time EN Y2  
DISABLE Time EN Y2  
6.5  
6.5  
Rev. B | Page 3 of 16  
 
ADG3233  
Data Sheet  
Parameter1  
Symbol  
Test Conditions/Comments  
Min  
Typ2 Max  
Unit  
VCC = VCC1 = VCC2 = 2.5 V 0.2 V  
Propagation Delay, tPD  
A1 Y1 Normal Mode  
A2 Y2 Normal Mode  
A1 Y2 Bypass Mode  
ENABLE Time EN Y1  
tPHL, tPLH  
tPHL, tPLH  
tPHL, tPLH  
tEN  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
4.5  
4.5  
4.5  
5
6.2  
6.2  
6.5  
7.2  
ns  
ns  
ns  
ns  
tDIS  
tEN  
tDIS  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
3.2  
5
4.7  
7.7  
7.2  
ns  
ns  
ns  
DISABLE Time EN Y1  
ENABLE Time EN Y2  
4.8  
DISABLE Time EN Y2  
VCC = VCC1 = VCC2 = 1.8 V 0.15 V  
Propagation Delay, tPD  
tPHL, tPLH  
tPHL, tPLH  
tPHL, tPLH  
tEN  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
6.7  
6.5  
6.5  
7
10  
ns  
ns  
ns  
ns  
A1 Y1 Normal Mode  
A2 Y2 Normal Mode  
A1 Y2 Bypass Mode  
ENABLE Time EN Y1  
10  
10.25  
10.5  
tDIS  
tEN  
tDIS  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
CL = 30 pF, VT = VCC/2  
4.4  
7
6.5  
12  
ns  
ns  
ns  
DISABLE Time EN Y1  
ENABLE Time EN Y2  
6.5  
10.5  
DISABLE Time EN Y2  
Input Leakage Current  
Output Leakage Current  
POWER REQUIREMENTS  
Power Supply Voltages  
II  
IO  
0 ≤ VIN ≤ 3.6 V  
0 ≤ VIN ≤ 3.6 V  
1
1
µA  
µA  
VCC1  
VCC2  
ICC1  
ICC2  
ΔICC1  
1.65  
1.65  
3.6  
3.6  
2
2
0.75  
V
V
µA  
µA  
µA  
Quiescent Power Supply Current  
Increase in ICC per Input  
Digital inputs = 0 V or VCC  
Digital inputs = 0 V or VCC  
VCC = 3.6 V, one input at 3.0 V; others at  
V
CC or GND  
1 Temperature range is as follows: B Version: −40°C to +85°C.  
2 All typical values are at VCC = VCC1 = VCC2, TA = 25°C, unless otherwise stated.  
3 VIL and VIH levels are specified with respect to VCC1, VOH, and VOL levels for Y1 are specified with respect to VCC1, and VOH, and VOL levels are specified for Y2 with respect to  
VCC2  
.
4 Guaranteed by design, not subject to production test.  
5 See the Test Waveforms section.  
Rev. B | Page 4 of 16  
 
 
 
Data Sheet  
ADG3233  
TEST WAVEFORMS  
V
V
CC1  
INPUT  
T
0V  
tPHL  
tPLH  
V
V
OH  
OUTPUT  
T
V
OL  
Figure 2. Propagation Delay  
V
V
CC1  
EN  
T
0V  
tEN  
tDIS  
V
V
V
OH  
Y1  
V
T
T
(A1 AT GND)  
OL  
Figure 3. Y1 Enable and Disable Times  
V
V
CC1  
EN  
T
0V  
tEN  
tDIS  
V
CC1  
A1  
A2  
0V  
V
CC1  
0V  
V
OLH  
V
Y2  
T
V
V
T
OL  
Figure 4. Y2 Enable and Disable Times  
Rev. B | Page 5 of 16  
 
ADG3233  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Rating  
VCC to GND  
Digital Inputs to GND  
A1, EN  
–0.3 V to +4.6 V  
–0.3 V to +4.6 V  
–0.3 V to +4.6 V  
–0.3 V to VCC1 + 0.3 V  
25 mA  
A2  
Only one absolute maximum rating may be applied at any one  
time.  
DC Output Current  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Junction Temperature  
8-Lead MSOP  
ESD CAUTION  
–40°C to +85°C  
–65°C to +150°C  
150°C  
θJA Thermal Impedance  
θJC Thermal Impedance  
8-Lead SOT-23  
206°C/W  
43°C/W  
θJA Thermal Impedance  
Lead Temperature, Soldering (10 sec)  
211°C/W  
300°C  
IR Reflow, Peak Temperature (<20 sec) 235°C  
Soldering (Pb-Free)  
Reflow, Peak Temperature  
Time at Peak Temperature  
260(+0/−5)°C  
20 sec to 40 sec  
Rev. B | Page 6 of 16  
 
 
Data Sheet  
ADG3233  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
8
7
6
5
V
CC2  
CC1  
A1  
V
1
2
3
4
8 V  
CC1  
CC2  
Y1  
Y1  
ADG3233  
ADG3233  
7
A1  
A2  
EN  
TOP VIEW  
A2  
EN  
Y2  
TOP VIEW  
(Not to Scale)  
Y2  
6
5
(Not to Scale)  
GND  
GND  
Figure 5. 8-Lead SOT-23 Package (RJ-8)  
Figure 6. 8-Lead MSOP Package (RM-8)  
Table 4. Pin Function Descriptions  
Pin No.  
RJ-8 RM-8  
Mnemonic Description  
1
8
2
3
7
6
8
1
7
6
2
3
VCC1  
VCC2  
A1  
A2  
Y1  
Supply Voltage 1, can be any supply voltage from 1.65 V to 3.6 V.  
Supply Voltage 2, can be any supply voltage from 1.65 V to 3.6 V.  
Input Referred to VCC1  
Input Referred to VCC2  
.
.
Output Referred to VCC1.  
Y2  
Output Referred to VCC2. Voltage levels appearing at Y2 will be translated from a VCC1 voltage level to a VCC2  
voltage level.  
4
5
5
4
EN  
Active Low Device Enable. When low, bypass mode is enabled; when high, the device is in normal mode.  
Device Ground.  
GND  
Rev. B | Page 7 of 16  
 
ADG3233  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
5.0  
30  
25  
20  
15  
10  
5
T
= 25°C  
V
= 3.3V  
A
CC1  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 3.3V  
CC2  
V
= 2.5V  
CC2  
V
= 1.8V  
CC2  
V
= 2.5V  
V
= 3.3V  
CC2  
CC2  
V
= 1.8V  
2.5  
0
CC2  
–5  
1.5  
2.0  
3.0  
3.5  
4.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
V
(V)  
TEMPERATURE (°C)  
CC1  
Figure 10. ICC2 vs. Temperature  
Figure 7. ICC1 vs. VCC1  
2000  
1800  
1600  
1400  
1200  
1000  
800  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
A
T
= 25°C  
A
V
= V  
= 3.3V  
= 1.8V  
CC1  
CC2  
V
= V  
CC1  
CC2  
600  
V
= 3.3V  
CC1  
2.0  
V
= 2.5V  
CC1  
400  
200  
V
= 1.8V  
3.5  
CC1  
0
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
1.5  
2.5  
3.0  
(V)  
4.0  
V
CC2  
Figure 11. ICC1 vs. Frequency, Normal Mode  
Figure 8. ICC2 vs. VCC2  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
T
= 25°C  
A
V
= 3.3V  
CC2  
25  
20  
15  
10  
5
V
= V  
= 3.3V  
= 1.8V  
CC1  
CC1  
CC2  
CC2  
V
V
= 3.3V  
= 2.5V  
CC1  
CC1  
V
= 1.8V  
CC1  
V
= V  
0
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
0
10  
20  
30  
40  
50  
60  
70  
80  
TEMPERATURE (°C)  
Figure 12. ICC1 vs. Frequency, Bypass Mode  
Figure 9. ICC1 vs. Temperature  
Rev. B | Page 8 of 16  
 
Data Sheet  
ADG3233  
2000  
10  
8
T
= 25°C  
A
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
V
= V  
= 3.3V  
CC2  
CC1  
6
tEN  
V
= V = 1.8V  
CC2  
CC1  
4
tDIS  
2
0
T
= 25°C  
A
V
= V  
CC1  
CC2  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
100M  
4.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
SUPPLY (V)  
Figure 13. ICC2 vs. Frequency, Normal Mode  
Figure 16. Y2 Enable, Disable Time vs. Supply  
2000  
1800  
1600  
1400  
1200  
1000  
800  
6
T
= 25°C  
A
5
4
3
2
1
0
tEN  
V
= V = 3.3V  
CC2  
CC1  
V
= V = 1.8V  
CC2  
CC1  
tDIS  
600  
400  
V
= V = 3.3V  
CC2  
CC1  
200  
0
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 14. ICC2 vs. Frequency, Bypass Mode  
Figure 17. Y1 Enable, Disable Time vs. Temperature  
10  
8
6
5
4
3
2
1
0
tEN  
6
tDIS  
tEN  
tDIS  
4
2
0
T
= 25°C  
A
V
= V = 3.3V  
CC2  
CC1  
V
= V  
CC1  
CC2  
1.5  
2.0  
2.5  
3.0  
3.5  
–40  
–20  
0
20  
40  
60  
80  
SUPPLY (V)  
TEMPERATURE (°C)  
Figure 15. Y1 Enable, Disable Time vs. Supply  
Figure 18. Y2 Enable, Disable Time vs. Temperature  
Rev. B | Page 9 of 16  
ADG3233  
Data Sheet  
16  
10  
9
8
7
6
5
4
3
2
1
0
V
V
= 3.3V  
= 1.8V  
= 25°C  
V
V
= 1.8V  
= 3.3V  
CC1  
CC1  
CC2  
CC2  
14  
12  
10  
8
T
T = 25°C  
A
A
DATA RATE = 10Mbps  
DATA RATE = 10Mbps  
tPLH, LOW-TO-HIGH TRANSITION  
tPLH, LOW-TO-HIGH TRANSITION  
6
4
tPHL, HIGH-TO-LOW TRANSITION  
tPHL, HIGH-TO-LOW TRANSITION  
2
0
22  
32  
42  
52  
62  
72  
82  
92  
102  
22  
32  
42  
52  
62  
72  
82  
92  
102  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 19. Rise/Fall Time vs. Capacitive Load, A1 Y1, A2 Y2  
Figure 22. Rise/Fall Time vs. Capacitive Load, A1 Y2, Bypass Mode  
16  
8
V
V
= 3.3V  
= 3.3V  
V
V
= 3.3V  
= 1.8V  
CC1  
CC2  
CC1  
CC2  
14  
12  
10  
8
7
6
5
4
3
2
1
0
T
= 25°C  
T = 25°C  
DATA RATE = 10Mbps  
A
A
DATA RATE = 10Mbps  
tPLH  
,
LOW-TO-HIGH TRANSITION  
tPLH, LOW-TO-HIGH TRANSITION  
tPHL, HIGH-TO-LOW TRANSITION  
6
4
tPHL, HIGH-TO-LOW TRANSITION  
2
0
22  
32  
42  
52  
62  
72  
82  
92  
102  
22  
32  
42  
52  
62  
72  
82  
92  
102  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 20. Rise/Fall Time vs. Capacitive Load, A1 Y2, Bypass Mode  
Figure 23. Propagation Delay vs. Capacitive Load A1 Y1  
10  
8
V
V
= 1.8V  
= 3.3V  
CC1  
9
8
7
6
5
4
3
2
1
0
CC2  
7
6
5
4
3
2
1
0
T
= 25°C  
A
DATA RATE = 10Mbps  
tPLH, LOW-TO-HIGH TRANSITION  
tPLH, LOW-TO-HIGH TRANSITION  
tPHL, HIGH-TO-LOW TRANSITION  
tPHL, HIGH-TO-LOW TRANSITION  
V
V
= 3.3V  
= 3.3V  
CC1  
CC2  
= 25°C  
T
A
DATA RATE = 10Mbps  
22  
32  
42  
52  
62  
72  
82  
92  
102  
22  
32  
42  
52  
62  
72  
82  
92  
102  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 21. Rise/Fall Time vs. Capacitive Load, A1 Y1, A2 Y2  
Figure 24. Propagation Delay vs. Capacitive Load A2 Y2  
Rev. B | Page 10 of 16  
Data Sheet  
ADG3233  
8
7
6
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
tPHL  
,
A2 → Y2  
tPHL, A1 → Y1  
tPLH  
,
LOW-TO-HIGH TRANSITION  
5
4
3
2
1
0
tPLH  
,
A1 → Y1  
tPLH  
,
A2 → Y2  
tPHL, HIGH-TO-LOW TRANSITION  
V
V
T
= 3.3V  
= 3.3V  
CC1  
CC2  
= 25°C  
A
DATA RATE = 10Mbps  
V
= V  
= 3.3V  
0
CC1  
CC2  
22  
32  
42  
52  
62  
72  
82  
92  
102  
–40  
–20  
20  
40  
60  
80  
CAPACITIVE LOAD (pF)  
TEMPERATURE (°C)  
Figure 28. Propagation Delay vs. Temperature, Normal Mode  
Figure 25. Propagation Delay vs. Capacitive Load A1 Y2, Bypass Mode  
8
7
4
tPHL, A1 → Y2  
tPLH  
,
A1 → Y1  
6
5
4
3
2
1
0
3
2
1
0
tPLH  
,
A1 → Y2  
tPHL, A2 → Y2  
tPHL, A1 → Y1  
tPLH  
,
A2 → Y2  
T
V
= 25°C  
A
= V  
CC1  
CC2  
V
= V  
CC2  
= 3.3V  
0
CC1  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
–40  
–20  
20  
40  
60  
80  
SUPPLY (V)  
TEMPERATURE (°C)  
Figure 26. Propagation Delay vs. Supply, Normal Mode  
Figure 29. Propagation Delay vs. Temperature, Bypass Mode  
8
6
4
2
0
T
= 25°C  
A
EN = HIGH  
3.3V  
A1  
Y1  
1.8V  
3.3V  
tPHL, A1 → Y2  
3
1
tPLH  
,
A1 → Y2  
A2  
Y2  
T
V
= 25°C  
A
2
4
= V  
CC1  
CC2  
DATA RATE = 10MHz  
M5.00ns CH1 1.48V  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
CH1 1.00V  
CH2 500mV  
SUPPLY (V)  
CH3 1.00VΩ CH4 1.00VΩ  
Figure 27. Propagation Delay vs. Supply, Bypass Mode  
Figure 30. Normal Mode VCC1 = 3.3 V, VCC2 = 1.8 V  
Rev. B | Page 11 of 16  
ADG3233  
Data Sheet  
1.8V  
T
= 25°C  
A
DATA RATE = 10MHz  
3.3V  
1.8V  
A1  
3.3V  
A1  
3
2
Y2  
1.8V  
Y2  
Y1  
3
2
1
T
= 25°C  
A
DATA RATE = 10MHz  
CH2 1.00VΩ CH2 500mV  
M5.00ns  
CH2 1.47V  
CH1 1.00V  
CH3 1.00VΩ  
CH2 2.00V  
M5.00ns CH3 900mV  
Figure 31. Bypass Mode, VCC1 = 3.3 V, VCC2 = 1.8 V  
Figure 33. Bypass Mode, VCC1 = 1.8 V, VCC2 = 3.3 V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 3.3V  
= 2.5V  
T
V
= 25°C  
CC  
CC  
A
3.3V  
= V  
= V  
CC2  
CC  
CC1  
1.8V  
A1  
3
1
V
Y1  
SOURCE  
1.8V  
3.3V  
V
= 1.8V  
CC  
A2  
4
2
Y2  
V
= 3.3V  
CC  
V
= 2.5V  
CC  
V
= 1.8V  
CC  
T
= 25°C  
A
SINK  
DATA RATE = 10MHz  
0
5
10  
CURRENT (mA)  
15  
20  
CH1 1.00V  
CH2 2.00V  
CH3 5.00VΩ CH4 1.00VΩ  
M5.00ns CH1 1.48V  
Figure 32. Normal Mode, VCC1 = 1.8 V, VCC2 = 3.3 V  
Figure 34. Y1 and Y2 Source and Sink Current  
Rev. B | Page 12 of 16  
Data Sheet  
ADG3233  
THEORY OF OPERATION  
NORMAL OPERATION  
The ADG3233 is a bypass switch designed on a submicron  
process that operates from supplies as low as 1.65 V. The device  
is guaranteed for operation over the supply range 1.65 V to 3.6 V. It  
operates from two supply voltages, allowing bidirectional level  
translation, that is, it translates low voltages to higher voltages  
and vice versa. The signal path is unidirectional, meaning data  
may only flow from A Y.  
Figure 35 shows the bypass switch being used in normal mode.  
In this mode, the signal paths are from A1 Y1 and A2 Y2.  
The device will level translate the signal applied to A1 to a VCC1  
logic level (this level translation can be either to a higher or  
lower supply) and route the signal to the Y1 output, which  
will have standard VOL/VOH levels for VCC1 supplies. The signal  
is then passed through Device 1 and back to the A2 input pin  
of the bypass switch.  
A1 AND EN INPUT  
EN  
The A1 and enable ( ) inputs have VIL/VIH logic levels so that  
The logic level inputs of A2 are with respect to the VCC1 supply.  
The signal will be level translated from VCC1 to VCC2 and routed  
to the Y2 output pin of the bypass switch. Y2 output logic levels  
are with respect to the VCC2 supply.  
the part can accept logic levels of VOL/VOH from Device 0 or the  
controlling device independent of the value of the supply being  
used by the controlling device. These inputs (A1,  
capable of accepting inputs outside the VCC1 supply range. For  
example, the VCC1 supply applied to the bypass switch could be  
1.8 V while Device 0 could be operating from a 2.5 V or 3.3 V  
supply rail, there are no internal diodes to the supply rails, so  
the device can handle inputs above the supply but inside the  
absolute maximum ratings.  
EN  
) are  
V
V
V
CC2  
CC0  
CC1  
DEVICE 0  
DEVICE 1  
DEVICE 2  
SIGNAL INPUT  
SIGNAL OUTPUT  
V
V
CC2  
CC1  
A1  
A2  
Y1  
Y2  
EN  
LOGIC 1  
BYPASS SWITCH  
Figure 35. Bypass Switch in Normal Mode  
Rev. B | Page 13 of 16  
 
 
 
 
ADG3233  
Data Sheet  
BYPASS OPERATION  
Figure 36 illustrates the device as used in bypass mode. The  
signal path is now from A1 directly to Y2, thus bypassing  
Device 1 completely. The signal will be level translated to a VCC2  
logic level and available on Y2, where it may be applied directly  
The three supplies in Figure 35 and Figure 36 may be any  
combination of supplies, that is., VCC0, VCC1, and VCC2 may be  
any combination of supplies, for example, 1.8 V, 2.5 V, an d 3 . 3 V.  
to the input of Device 2. In bypass mode, Y1 is pulled up to VCC1  
.
V
V
V
CC2  
CC0  
CC1  
DEVICE 0  
DEVICE 1  
DEVICE 2  
SIGNAL INPUT  
SIGNAL OUTPUT  
V
V
CC2  
CC1  
A1  
A2  
Y1  
Y2  
EN  
LOGIC 0  
BYPASS SWITCH  
Figure 36. Bypass Switch in Bypass Mode  
Rev. B | Page 14 of 16  
 
 
Data Sheet  
ADG3233  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 37. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
3.00  
2.90  
2.80  
8
1
7
2
6
3
5
4
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
PIN 1  
INDICATOR  
0.65 BSC  
1.95  
BSC  
1.30  
1.15  
0.90  
0.22 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.60  
0.45  
0.30  
0.15 MAX  
0.05 MIN  
8°  
4°  
0°  
SEATING  
PLANE  
0.60  
BSC  
0.38 MAX  
0.22 MIN  
COMPLIANT TO JEDEC STANDARDS MO-178-BA  
Figure 38. 8-Lead Small Outline Transistor Package [SOT-23]  
(RJ-8)  
Dimensions shown in millimeters  
Rev. B | Page 15 of 16  
 
ADG3233  
Data Sheet  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
Branding  
W1B  
W1B  
S1S  
W1B  
W1B  
W1B  
S1S  
Package Option  
ADG3233BRJ-REEL  
ADG3233BRJ-REEL7  
ADG3233BRJZ-REEL7  
ADG3233BRM  
ADG3233BRM-REEL  
ADG3233BRM-REEL7  
ADG3233BRMZ  
RJ-8  
RJ-8  
RJ-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
ADG3233BRMZ-REEL7  
S1S  
1 Z = RoHS Compliant Part.  
©2003–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03297-0-7/13(B)  
Rev. B | Page 16 of 16  
 
 

相关型号:

ADG3233BRMZ-REEL7

Low Voltage 1.65 V to 3.6 V,Bidirectional Logic Level Translation, Bypass Switch
ADI

ADG3241

2.5 V/3.3 V, 1-Bit, 2-Port Level Translator Bus Switch in SOT-66
ADI

ADG3241BKS-500RL7

2.5 V/3.3 V, 1-Bit, 2-Port Level Translator Bus Switch in SOT-66
ADI

ADG3241BKS-500RL7

3241 SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO6, MO-203AB, SC-70, TSSOP-6
ROCHESTER

ADG3241BKS-REEL

2.5 V/3.3 V, 1-Bit, 2-Port Level Translator Bus Switch in SOT-66
ADI

ADG3241BKS-REEL7

2.5 V/3.3 V, 1-Bit, 2-Port Level Translator Bus Switch in SOT-66
ADI

ADG3241BKS-REEL7

3241 SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO6, MO-203AB, SC-70, TSSOP-6
ROCHESTER

ADG3241BKSZ

3241 SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO6
ADI

ADG3241BKSZ-500RL7

2.5 V/3.3 V, 1 - Bit, 2 - Port Level Translator Bus Switch
ADI

ADG3241BKSZ-500RL7

3241 SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO6, LEAD FREE, MO-203AB, SC-70, TSSOP-6
ROCHESTER

ADG3241BKSZ-REEL

3241 SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO6, LEAD FREE, MO-203AB, SC-70, TSSOP-6
ADI

ADG3241BKSZ-REEL7

3241 SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO6, LEAD FREE, MO-203AB, SC-70, TSSOP-6
ROCHESTER