ADG3245 [ADI]

2.5 V/3.3 V, 8-Bit, 2-Port Level Translating, Bus Switch; 2.5 V / 3.3 V , 8位, 2端口电平转换,总线开关
ADG3245
型号: ADG3245
厂家: ADI    ADI
描述:

2.5 V/3.3 V, 8-Bit, 2-Port Level Translating, Bus Switch
2.5 V / 3.3 V , 8位, 2端口电平转换,总线开关

开关
文件: 总12页 (文件大小:306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY TECHNICAL DATA  
2.5 V/3.3 V, 8-Bit, 2-Port  
Level Translating, Bus Switch  
Preliminary Technical Data  
ADG3245  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
225 ps Propagation Delay through the Switch  
4.5 Switch Connection between Ports  
Data Rate 1.244 Gbps  
B0  
A0  
2.5 V/3.3 V Supply Operation  
Selectable Level Shifting/Translation  
Level Translation  
3.3 V to 2.5 V  
3.3 V to 1.8 V  
B7  
A7  
2.5 V to 1.8 V  
Small Signal Bandwidth 610 MHz  
20-Lead TSSOP and LFCSP Packages  
APPLICATIONS  
BE  
3.3 V to 1.8 V Voltage Translation  
3.3 V to 2.5 V Voltage Translation  
2.5 V to 1.8 V Voltage Translation  
Bus Switching  
Bus Isolation  
Hot Swap  
Hot Plug  
Analog Switch Applications  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The ADG3245 is a 2.5 V or 3.3 V, 8-bit, 2-port digital switch.  
It is designed on Analog Devices’ low voltage CMOS process,  
which provides low power dissipation yet gives high switching  
speed and very low on resistance, allowing inputs to be connected  
to outputs without additional propagation delay or generating  
additional ground bounce noise.  
1. 3.3 V or 2.5 V supply operation  
2. Extremely low propagation delay through switch  
3. 4.5 switches connect inputs to outputs  
4. Level/voltage translation  
5. 20-lead TSSOP and LFCSP (4 mm × 4 mm) packages  
The switches are enabled by means of the Bus Enable (BE) input  
signal. These digital switches allow bidirectional signals to be  
switched when ON. In the OFF condition, signal levels up to  
the supplies are blocked.  
This device is ideal for applications requiring level translation.  
When operated from a 3.3 V supply, level translation from 3.3 V  
inputs to 2.5 V outputs is allowed. Similarly, if the device is  
operated from a 2.5 V supply and 2.5 V inputs are applied, the  
device will translate the outputs to 1.8 V. In addition to this, a  
level translating select pin (SEL) is included. When SEL is low,  
V
CC is reduced internally, allowing for level translation between  
3.3 V inputs and 1.8 V outputs. This makes the device suited to  
applications requiring level translation between different supplies,  
such as converter to DSP/microcontroller interfacing.  
REV. PrE  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
PRELIMINARY TECHNICAL DATA  
(VCC = 2.3 V to 3.6 V, GND = 0 V, all specifications TMIN to TMAX, unless  
ADG3245–SPECIFICATIONS1 otherwise noted.)  
B Version  
Typ2  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
DC ELECTRICAL CHARACTERISTICS  
Input High Voltage  
VINH  
VINH  
VINL  
VINL  
II  
VCC = 2.7 V to 3.6 V  
VCC = 2.3 V to 2.7 V  
VCC = 2.7 V to 3.6 V  
VCC = 2.3 V to 2.7 V  
2.0  
1.7  
V
V
V
V
µA  
µA  
µA  
V
V
V
Input Low Voltage  
0.8  
0.7  
1
1
1
2.9  
2.1  
2.1  
Input Leakage Current  
OFF State Leakage Current  
ON State Leakage Current  
Max Pass Voltage  
0.01  
0.01  
0.01  
2.5  
1.8  
1.8  
IOZ  
0 A, B VCC  
0 A, B VCC  
VA/VB = VCC = SEL = 3.3 V, IO = –5 µA  
VA/VB = VCC = SEL = 2.5 V, IO= –5 µA  
VA/VB = VCC = 3.3 V, SEL = 0 V, IO= –5 µA  
VP  
2.0  
1.5  
1.5  
CAPACITANCE3  
A Port Off Capacitance  
B Port Off Capacitance  
A, B Port On Capacitance  
Control Input Capacitance  
CA OFF  
f = 1 MHz  
f = 1 MHz  
5
5
10  
6
pF  
pF  
pF  
pF  
C
B OFF  
CA, CB ON f = 1 MHz  
CIN  
f = 1 MHz  
SWITCHING CHARACTERISTICS3  
Propagation Delay A to B or B to A, tPD  
4
tPHL, tPLH  
CL = 50 pF, VCC = SEL = 3 V  
0.225 ns  
Propagation Delay Matching5  
Bus Enable Time BE to A or B6  
Bus Disable Time BE to A or B6  
Bus Enable Time BE to A or B6  
Bus Disable Time BE to A or B6  
Bus Enable Time BE to A or B6  
Bus Disable Time BE to A or B6  
Max Data Rate  
22.5  
4.8  
4.8  
3.3  
2.9  
3
ps  
ns  
ns  
ns  
ns  
ns  
tPZH, tPZL  
tPHZ, tPLZ  
tPZH, tPZL  
tPHZ, tPLZ  
tPZH, tPZL  
tPHZ, tPLZ  
VCC = 3.0 V to 3.6 V; SEL = VCC  
VCC = 3.0 V to 3.6 V; SEL = VCC  
VCC = 3.0 V to 3.6 V; SEL = 0 V  
VCC = 3.0 V to 3.6 V; SEL = 0 V  
VCC = 2.3 V to 2.7 V; SEL = VCC  
VCC = 2.3 V to 2.7 V; SEL = VCC  
VCC = SEL = 3.3 V; VA/VB = 2 V  
VCC = SEL = 3.3 V; VA/VB = 2 V  
1
1
0.5  
0.5  
0.5  
0.5  
3.2  
3.2  
2.2  
1.7  
2.2  
1.75  
1.244  
50  
2.6  
ns  
Gbps  
ps p-p  
MHz  
Channel Jitter  
Operating Frequency—Bus Enable  
fBE  
10  
DIGITAL SWITCH  
On Resistance  
RON  
VCC = 3 V, SEL = VCC, VA = 0 V, IBA = 8 mA  
4.5  
15  
5
11  
5
14  
0.45  
0.65  
8
28  
9
18  
8
V
CC = 3 V, SEL = VCC, VA = 1.7 V, IBA = 8 mA  
VCC = 2.3 V, SEL = VCC, VA = 0 V, IBA = 8 mA  
VCC = 2.3 V, SEL = VCC, VA = 1 V, IBA = 8 mA  
V
CC = 3 V, SEL = 0 V VA = 0 V, IBA = 8 mA  
VCC = 3 V, SEL = 0 V, VA = 1 V, IBA = 8 mA  
VCC = 3 V, SEL = VCC, VA = 0 V, IBA = 8 mA  
VCC = 3 V, SEL = VCC, VA = 1 V, IBA = 8 mA  
On Resistance Matching  
RON  
POWER REQUIREMENTS  
VCC  
Quiescent Power Supply Current  
2.3  
3.6  
1
1.2  
130  
V
ICC  
Digital Inputs = 0 V or VCC; SEL = VCC  
Digital Inputs = 0 V or VCC ; SEL = 0 V  
VCC = 3.6 V, BE = 3.0 V; SEL = VCC  
0.001  
0.65  
µA  
mA  
µA  
Increase in ICC per Input7  
NOTES  
ICC  
1Temperature range is as follows: B Version: –40°C to +85°C.  
2Typical values are at 25°C, unless otherwise stated.  
3Guaranteed by design, not subject to production test.  
4The digital switch contributes no propagation delay other than the RC delay of the typical RON of the switch and the load capacitance when driven by an ideal voltage  
source. Since the time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay  
of the digital switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.  
5Propagation delay matching between channels is calculated from the on resistance matching and load capacitance of 50 pF.  
6See Timing Measurement Information.  
7This current applies to the control pin BE only. The A and B ports contribute no significant ac or dc currents as they transition.  
Specifications subject to change without notice.  
–2–  
REV. PrE  
PRELIMINARY TECHNICAL DATA  
ADG3245  
ABSOLUTE MAXIMUM RATINGS*  
LFCSP Package  
JA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 30.4°C/W  
TSSOP Package  
(TA = 25°C, unless otherwise noted.)  
VCC to GND . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to +4.6 V  
Digital Inputs to GND . . . . . . . . . . . . . . . . . –0.5 V to +4.6 V  
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . –0.5 V to +4.6 V  
DC Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 mA  
Operating Temperature Range  
Industrial (B Version) . . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
Thermal Impedance . . . . . . . . . . . . . . . . . . . . 143°C/W  
JA  
Lead Temperature, Soldering (10 seconds) . . . . . . . . . . 300°C  
IR Reflow, Peak Temperature (<20 seconds) . . . . . . . . 235°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability. Only one absolute  
maximum rating may be applied at any one time.  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
ADG3245BCP  
ADG3245BRU  
–40°C to +85°C  
–40°C to +85°C  
Leaded Chip Scale Package (LFCSP)  
Thin Shrink Small Outline Package (TSSOP)  
CP-20  
RU-20  
Table I. Pin Description  
Table II. Truth Table  
BE SEL* Function  
Pin Mnemonic  
Description  
L
L
H
L
H
X
A = B, 3.3 V to 1.8 V Level Shifting  
A = B, 3.3 V to 2.5 V/2.5 V to 1.8 V Level Shifting  
Disconnect  
BE  
SEL  
Ax  
Bus Enable (Active Low)  
Level Translation Select  
Port A, Inputs or Outputs  
Port B, Inputs or Outputs  
Bx  
*SEL = 0 V only when VDD = 3.3 V 10%  
PIN CONFIGURATION  
20-Lead LFCSP and 20-Lead TSSOP  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
SEL  
A0  
CC  
BE  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
3
A1  
PIN 1  
15 BE  
14 B0  
13 B1  
12 B2  
11 B3  
SEL 1  
A4 2  
A5 3  
A6 4  
A7 5  
INDICATOR  
4
A2  
ADG3245  
TOP VIEW  
5
A3  
ADG3245  
TOP VIEW  
(Not to Scale)  
6
A4  
7
A5  
8
A6  
9
A7  
10  
GND  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
ADG3245 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
REV. PrE  
–3–  
PRELIMINARY TECHNICAL DATA  
ADG3245  
TERMINOLOGY  
VCC  
GND  
VINH  
VINL  
II  
Positive Power Supply Voltage  
Ground (0 V) Reference  
Minimum Input Voltage for Logic 1  
Maximum Input Voltage for Logic 0  
Input Leakage Current at the Control Inputs  
IOZ  
IOL  
OFF State Leakage Current. It is the maximum leakage current at the switch pin in the OFF state.  
ON State Leakage Current. It is the maximum leakage current at the switch pin in the ON state.  
VP  
Max Pass Voltage. The max pass voltage relates to the clamped output voltage of an NMOS device when the switch  
input voltage is equal to the supply voltage.  
RON  
Ohmic Resistance Offered by a Switch in the ON State. It is measured at a given voltage by forcing a specified  
amount of current through the switch.  
RON  
CX OFF  
CX ON  
CIN  
On Resistance Match between Any Two Channels, i.e., RON Max - RON Min  
OFF Switch Capacitance  
ON Switch Capacitance  
Control Input Capacitance. This consists of BE and SEL.  
ICC  
Quiescent Power Supply Current. This current represents the leakage current between the VCC and ground pins.  
It is measured when all control inputs are at a logic HIGH or LOW level and the switches are OFF.  
ICC  
Extra Power Supply Current Component for the BE Control Input when the input is not driven at the supplies.  
t
t
t
PLH, tPHL  
PZH, tPZL  
PHZ, tPLZ  
Data Propagation Delay Through the Switch in the ON State. Propagation delay is related to the RC time constant  
RON × CL, where CL is the load capacitance.  
Bus Enable Times. These are the times taken to cross the VT voltage at the switch output when the switch turns on  
in response to the control signal, BE.  
Bus Disable Times. This is the time taken to place the switch in the high impedance OFF state in response to the con-  
trol signal. It is measured as the time taken for the output voltage to change by Vfrom the original quiescent level,  
with reference to the logic level transition at the control input. (Refer to Figure 3 for enable and disable times.)  
Max Data Rate Maximum Rate at which Data Can Be Passed through the Switch  
Channel Jitter  
fBE  
Peak-to-Peak Value of the Sum of the Deterministic and Random Jitter of the Switch Channel  
Operating Frequency of Bus Enable. This is the maximum frequency at which Bus Enable (BE) can be toggled.  
–4–  
REV. PrE  
PRELIMINARY TECHNICAL DATA  
Typical Performance Characteristics–ADG3245  
40  
35  
30  
25  
40  
35  
30  
25  
20  
15  
10  
5
40  
V = 3V  
CC  
V
= 3V  
V
= 2.3V  
CC  
T = 25C  
A
SEL = 0V  
CC  
T
= 25C  
T
= 25C  
35  
A
A
SEL = V  
SEL = V  
CC  
CC  
30  
25  
20  
15  
10  
5
V
= 3.3V  
= 3.6V  
V
= 3.3V  
V
= 2.5V  
= 2.7V  
CC  
CC  
CC  
20  
15  
10  
5
V
CC  
V
CC  
V
= 3.6V  
CC  
0
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0 3.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
V
/V – V  
V
/V – V  
A
B
V
/V – V  
A
B
A
B
TPC 3. On Resistance vs.  
Input Voltage  
TPC 1. On Resistance vs.  
Input Voltage  
TPC 2. On Resistance vs.  
Input Voltage  
3.0  
2.5  
20  
15  
10  
5
15  
10  
5
V
= 3.6V  
T
= 25C  
CC  
A
V
= 3.3V  
V
= 2.5V  
CC  
CC  
SEL = V  
CC  
= –5A  
SEL = V  
SEL = V  
CC  
I
CC  
O
2.0  
1.5  
V
= 3.3V  
CC  
85C  
V
= 3V  
CC  
85C  
1.0  
0.5  
0
40C  
25C  
25C  
40C  
0
0
0
0.5  
1.0  
1.5  
V
2.0 2.5  
– V  
3.0 3.5  
1.0  
/V – V  
2.0  
0
0.5  
1.5  
0
0.5  
V /V – V  
1.0  
1.2  
CC  
V
A
B
A
B
TPC 5. On Resistance vs. Input  
Voltage for Different Temperatures  
TPC 6. Pass Voltage vs. VCC  
TPC 4. On Resistance vs. Input  
Voltage for Different Temperatures  
1800  
1600  
1400  
1200  
1000  
800  
2.5  
2.5  
T
= 25C  
A
T
= 25C  
T
= 25C  
A
V
= 2.7V  
= 2.5V  
A
V
= 3.6V  
CC  
CC  
SEL = V  
SEL = 0V  
I = –5A  
O
CC  
= –5A  
2.0  
1.5  
1.0  
0.5  
I
2.0  
1.5  
1.0  
0.5  
O
V
= 3.3V, SEL = 0V  
CC  
V
CC  
V
= 3.3V  
CC  
V
= 2.3V  
V
= 3V  
CC  
CC  
600  
V
= SEL = 3.3V  
CC  
400  
200  
V
= SEL = 2.5V  
CC  
0
0
0
0
0.5  
1.0  
1.5  
– V  
2.0  
2.5  
3.0  
0
2
4
6
8
10 12 14 16 18 20  
0
0.5  
1.0  
1.5  
V
2.0  
– V  
2.5  
3.0 3.5  
V
ENABLE FREQUENCY – MHz  
CC  
CC  
TPC 9. ICC vs. Enable Frequency  
TPC 7. Pass Voltage vs. VCC  
TPC 8. Pass Voltage vs. VCC  
REV. PrE  
–5–  
PRELIMINARY TECHNICAL DATA  
ADG3245  
3.0  
3.0  
2.5  
2.0  
1.5  
0
T
= 25C  
A
T
= 25C  
T
V
= 25C  
= V  
CC  
A
A
–0.2  
SEL = V  
CC  
ON OFF  
= InF  
V
= 0V  
A
A
2.5  
2.0  
1.5  
1.0  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
BE = 0  
BE = 0  
C
L
V
= SEL = 3.3V  
CC  
V
= 3.3V; SEL = 0V  
CC  
V
= 2.5V  
CC  
V
= SEL = 3.3V  
CC  
1.0  
V
= SEL = 2.5V  
CC  
–1.4  
–1.6  
V
= 3.3V  
1.5  
CC  
0.5  
0
0.5  
0
–1.8  
–2.0  
V
= 3.3V; SEL = 0V  
CC  
V
= SEL = 2.5V  
CC  
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10  
– A  
0
0.5  
1.0  
2.0  
/V – V  
2.5  
3.0  
0
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.040.03 0.020.01 0  
V
I
I
– A  
A
B
O
O
TPC 10. Output Low Characteristic  
TPC 11. Output High Characteristic  
TPC 12. Charge Injection vs.  
Source Voltage  
–20  
–30  
0
–20  
T
V
= 25C  
T
= 25C  
A
A
= 3.3V/2.5V  
V = 3.3V/2.5V  
SEL =V  
–30  
–40  
–50  
–60  
–70  
–80  
T
V
= 25C  
CC  
CC  
–2  
–4  
A
SEL =V  
= 3.3V/2.5V  
CC  
ADJACENT CHANNELS  
= 0dBm  
CC  
= 0dBm  
CC  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
SEL =V  
V
N/W ANALYZER:  
R
IN  
N/W ANALYZER:  
= R = 50ꢀ  
CC  
V
= 0dBm  
IN  
N/W ANALYZER:  
= R = 50ꢀ  
IN  
R
L
S
R
–6  
–8  
L
= R = 50ꢀ  
S
L
S
–10  
–12  
–14  
–90  
–100  
0.03 0.1  
1
10  
100  
1000  
0.03 0.1  
1
10  
100  
1000  
0.03 0.1  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
FREQUENCY – MHz  
TPC 13. Bandwidth vs. Frequency  
TPC 15. Off Isolation vs.  
Frequency  
TPC 14. Crosstalk vs. Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.5  
2.5  
V
= SEL = 3.3V  
= 2V p-p  
CC  
ENABLE  
3.0  
V
IN  
ENABLE  
2.0  
V
= SEL = 3.3V  
CC  
20dB ATTENUATION  
DISABLE  
ENABLE  
V
= SEL = 2.5V  
2.5  
2.0  
1.5  
1.0  
CC  
DISABLE  
1.5  
1.0  
V
= 3.3V, SEL = 0V  
CC  
DISABLE  
0.5  
0
0.5  
0
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
DATA RATE – GBPS  
–40 –20  
0
20  
40  
60  
80 100  
–40 –20  
0
20  
40  
60  
80  
100  
TEMPERATURE – C  
TEMPERATURE – C  
TPC 16. Enable/Disable Time  
vs. Temperature  
TPC 17. Enable/Disable Time  
vs. Temperature  
TPC 18. Jitter vs. Data Rate;  
PRBS 31  
–6–  
REV. PrE  
PRELIMINARY TECHNICAL DATA  
ADG3245  
100  
95  
90  
85  
80  
75  
V
= SEL = 3.3V  
= 2V p-p  
CC  
V
IN  
20dB ATTENUATION  
70  
65  
60  
55  
50  
V
= 2.5V  
20dB  
ATTENUATION  
CC  
V
= 3.3V  
37mV/DIV  
200ps/DIV  
20dB  
ATTENUATION  
CC  
SEL = 2.5V  
35mV/DIV  
100ps/DIV  
SEL = 3.3V  
T
= 28C  
V
= 2V p-p  
A
IN  
V
= 2V p-p  
T
= 25C  
IN  
A
% EYE WIDTH = ((CLOCK PERIOD –  
JITTER p-p)/CLOCK PERIOD) 100%  
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
DATA RATE – GBPS  
TPC 20. Eye Pattern; 1.244  
GBPS, VCC = 3.3 V, PRBS 31  
TPC 21. Eye Pattern; 1 GBPS,  
CC = 2.5 V, PRBS 31  
TPC 19. Eye Width vs. Data  
Rate; PRBS 31  
V
20dB  
ATTENUATION  
= 3.3V  
SEL = 3.3V  
50.1mV/DIV  
50ps/DIV  
V
CC  
T
= 25C  
A
V
= 2V p-p  
IN  
TPC 22. Jitter @ 1.244 GBPS,  
PRBS 31  
REV. PrE  
–7–  
PRELIMINARY TECHNICAL DATA  
ADG3245  
TIMING MEASUREMENT INFORMATION  
For the following load circuit and waveforms, the notation that  
is used is VIN and VOUT where:  
VIN =VA andVOUT =VB  
or  
VIN =VB andVOUT =VA  
V
IH  
CONTROL  
INPUT BE  
V
T
0V  
tPLH  
tPLH  
V
V
H
CC  
2 V  
CC  
SW1  
V
T
V
OUT  
V
L
GND  
R
L
V
V
OUT  
Figure 2. Propagation Delay  
IN  
PULSE  
GENERATOR  
D.U.T.  
R
R
C
L
L
T
NOTES  
PULSE GENERATOR FOR ALL PULSES: tR 2.5ns, tF 2.5ns,  
FREQUENCY 10MHz  
C
R
INCLUDES BOARD, STRAY, AND LOAD CAPACITANCES.  
IS THE TERMINATION RESISTOR, SHOULD BE EQUAL TO Z  
L
T
OUT  
OF THE PULSE GENERATOR.  
Figure 1. Load Circuit  
Test Conditions  
Symbol  
VCC = 3.3 V 0.3 V (SEL = VCC  
)
VCC = 2.5 V 0.2 V (SEL = VCC  
)
VCC = 3.3 V 0.3 V (SEL = 0 V) Unit  
RL  
V⌬  
CL  
VT  
500  
300  
50  
500  
150  
30  
500  
150  
30  
mV  
pF  
V
1.5  
0.9  
0.9  
DISABLE  
ENABLE  
V
INH  
V
CONTROL INPUT BE  
T
Table III. Switch Position  
0V  
tPZL  
tPLZ  
TEST  
S1  
V
CC  
V
CC  
V
OUT  
tPLZ, tPZL  
tPHZ, tPZH  
2 × VCC  
GND  
V
V
= 0V  
= V  
T
IN  
V
V
+V  
L
L
SW1 @ 2V  
CC  
tPZH  
tPHZ  
V
V
H
V
OUT  
V
–V  
V
IN  
CC  
H
T
SW1 @ GND  
0V  
0V  
Figure 3. Enable and Disable Times  
–8–  
REV. PrE  
PRELIMINARY TECHNICAL DATA  
ADG3245  
BUS SWITCH APPLICATIONS  
2.5 V to 1.8 V Translation  
Mixed Voltage Operation, Level Translation  
When VCC is 2.5 V (SEL = 2.5 V) and the input signal range is  
0 V to VCC, the max output signal will, as before, be clamped to  
within a voltage threshold below the VCC supply.  
Bus switches can be used to provide an ideal solution for inter-  
facing between mixed voltage systems. The ADG3245 is suitable  
for applications where voltage translation from 3.3 V technology  
to a lower voltage technology is needed. This device can translate  
from 3.3 V to 1.8 V, from 2.5 V to 1.8 V, or bidirectionally  
from 3.3 V directly to 2.5 V.  
2.5V  
Figure 4 shows a block diagram of a typical application in which  
a user needs to interface between a 3.3 V ADC and a 2.5 V  
microprocessor. The microprocessor may not have 3.3 V toler-  
ant inputs, therefore placing the ADG3245 between the two  
devices allows the devices to communicate easily. The bus  
switch directly connects the two blocks, thus introducing  
minimal propagation delay, timing skew, or noise.  
ADG3245  
2.5V  
1.8V  
Figure 7. 2.5 V to 1.8 V Voltage Translation, SEL = 2.5 V  
In this case, the output will be limited to approximately  
1.8 V, as shown in Figure 7.  
3.3V  
3.3V  
2.5V  
V
OUT  
2.5V SUPPLY  
SEL = 2.5V  
2.5V  
3.3V ADC  
MICROPROCESSOR  
1.8V  
Figure 4. Level Translation between a 3.3 V ADC  
and a 2.5 V Microprocessor  
V
IN  
3.3 V to 2.5 V Translation  
0V  
SWITCH  
INPUT  
2.5V  
When VCC is 3.3 V (SEL = 3.3 V) and the input signal range is  
0 V to VCC, the max output signal will be clamped to within a  
voltage threshold below the VCC supply.  
Figure 8. 2.5 V to 1.8 V Voltage Translation, SEL = 2.5 V  
3.3 V to 1.8 V Translation  
3.3V  
The ADG3245 offers the option of interfacing between a 3.3 V  
device and a 1.8 V device. This is possible through use of the  
SEL pin.  
3.3V  
2.5V  
2.5V  
2.5V  
SEL pin: An active low control pin. SEL activates internal  
circuitry in the ADG3245 that allows voltage translation  
between 3.3 V devices and 1.8 V devices.  
ADG3245  
3.3V  
Figure 5. 3.3 V to 2.5 V Voltage Translation, SEL = 3.3 V  
In this case, the output will be limited to 2.5 V, as shown in  
Figure 6.  
3.3V  
ADG3245  
1.8V  
V
OUT  
3.3V SUPPLY  
SEL = 3.3V  
2.5V  
Figure 9. 3.3 V to 1.8 V Voltage Translation, SEL = 0 V  
When VCC is 3.3 V and the input signal range is 0 V to VCC, the  
max output signal will be clamped to 1.8 V, as shown in Figure 9.  
To do this, the SEL pin must be tied to Logic 0. If SEL is  
V
IN  
0V  
SWITCH  
INPUT  
3.3V  
unused, it should be tied directly to VCC  
.
Figure 6. 3.3 V to 2.5 V Voltage Translation, SEL = 3.3 V  
This device can be used for translation from 2.5 V to 3.3 V  
devices, and also between two 3.3 V devices.  
REV. PrE  
–9–  
PRELIMINARY TECHNICAL DATA  
ADG3245  
V
OUT  
3.3V SUPPLY  
SEL = 0V  
PLUG-IN  
CARD (1)  
CARD I/O  
CARD I/O  
1.8V  
CPU  
RAM  
PLUG-IN  
CARD (2)  
V
IN  
0V  
SWITCH  
INPUT  
3.3V  
Figure 10. 3.3 V to 1.8 V Voltage Translation, SEL = 0 V  
Bus Isolation  
Figure 12. ADG3245 in a Hot Plug Application  
A common requirement of bus architectures is low capacitance  
loading of the bus. Such systems require bus bridge devices that  
extend the number of loads on the bus without exceeding the  
specifications. Because the ADG3245 is designed specifically for  
applications that do not need drive yet require simple logic  
functions, it solves this requirement. The device isolates access  
to the bus, thus minimizing capacitance loading.  
There are many systems that require the ability to handle hot  
swapping, such as docking stations, PCI boards for servers, and  
line cards for telecommunications switches. If the bus can be  
isolated prior to insertion or removal, then there is more control  
over the hot swap event. This isolation can be achieved using a  
bus switch. The bus switches are positioned on the hot swap card  
between the connector and the devices. During hot swap, the  
ground pin of the hot swap card must connect to the ground pin  
of the back plane before any other signal or power pins.  
LOAD A  
LOAD C  
Analog Switching  
BUS/  
BACKPLANE  
Bus switches can be used in many analog switching applications;  
for example, video graphics. Bus switches can have lower on  
resistance, smaller ON and OFF channel capacitance and thus  
improved frequency performance than their analog counterparts.  
The bus switch channel itself consisting solely of an NMOS  
switch limits the operating voltage (see TPC 1 for a typical  
plot), but in many cases this does not present an issue.  
LOAD B  
LOAD D  
BUS SWITCH  
LOCATION  
Figure 11. Location of Bus Switched in a Bus  
Isolation Application  
Hot Plug and Hot Swap Isolation  
The ADG3245 is suitable for hot swap and hot plug applications.  
The output signal of the ADG3245 is limited to a voltage that is  
below the VCC supply, as shown in Figures 6, 8, and 10. Therefore  
the switch acts like a buffer to take the impact from hot insertion,  
protecting vital and expensive chipsets from damage.  
High Impedance During Power-Up/Power-Down  
To ensure the high impedance state during power-up or power-  
down, BE should be tied to VCC through a pull-up resistor; the  
minimum value of the resistor is determined by the current-  
sinking capability of the driver.  
In hot-plug applications, the system cannot be shutdown when  
new hardware is being added. To overcome this, a bus switch can  
be positioned on the backplane between the bus devices and the  
hot plug connectors. The bus switch is turned off during hot plug.  
Figure 12 shows a typical example of this type of application.  
PACKAGE AND PINOUT  
The ADG3245 is packaged in both a small 20-lead TSSOP or a  
tiny 20-lead LFCSP package. The area of the TSSOP option is  
37.5 mm2, while the area of the LFCSP option is 16 mm2. This  
leads to a 57% savings in board space when using the LFCSP pack-  
age compared with the TSSOP package. This makes the LFCSP  
option an excellent choice for space-constrained applications.  
The ADG3245 in the TSSOP package offers a flowthrough  
pinout. The term flowthrough signifies that all the inputs are on  
opposite sides from the outputs. A flowthrough pinout simplifies  
the PCB layout.  
–10–  
REV. PrE  
PRELIMINARY TECHNICAL DATA  
ADG3245  
OUTLINE DIMENSIONS  
20-Lead Chip Scale Package [LFCSP]  
4 4 mm Body  
(CP-20)  
Dimensions shown in millimeters  
0.60  
MAX  
4.0  
BSC SQ  
0.60  
MAX  
16  
15  
20  
1
5
PIN 1  
2.25  
2.10 SQ  
1.95  
INDICATOR  
3.75  
TOP  
BOTTOM  
VIEW  
VIEW  
BSC SQ  
11  
10  
0.75  
0.55  
0.35  
6
0.70 MAX  
0.65 NOM  
0.30  
0.23  
0.18  
12MAX  
1.00  
0.90  
0.80  
0.05  
0.02  
0.00  
SEATING  
PLANE  
COPLANARITY  
0.08  
0.50  
BSC  
0.25  
REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-1  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-20)  
Dimensions shown in millimeters  
6.60  
6.50  
6.40  
20  
11  
10  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8ꢁ  
0ꢁ  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153AC  
REV. PrE  
–11–  
–12–  

相关型号:

ADG3245BCPZ

2.5 V/3.3 V, 8 Bit, 2 Port Level Translator, Bus Switch
ADI

ADG3245BRU

2.5 V/3.3 V, 8-Bit, 2-Port Level Translating, Bus Switch
ADI

ADG3245BRUZ-REEL7

2.5 V/3.3 V, 8 Bit, 2 Port Level Translator, Bus Switch
ADI

ADG3245_15

2.5V/3.3V 8 Bit 2 Port Level Translating Bus Switch
ADI

ADG3246

2.5 V/3.3 V, 10-Bit, 2-Port Level Translating, Bus Switch
ADI

ADG3246BCP

2.5 V/3.3 V, 10-Bit, 2-Port Level Translating, Bus Switch
ADI

ADG3246BCP-REEL7

2.5 V/3.3 V, 10-Bit, 2-Port Level Translating, Bus Switch
ADI

ADG3246BCPZ

2.5 V/3.3 V, 10-Bit, 2-Port Level Translating, Bus Switch
ADI

ADG3246BRU

2.5 V/3.3 V, 10-Bit, 2-Port Level Translating, Bus Switch
ADI

ADG3246BRU-REEL7

2.5 V/3.3 V, 10-Bit, 2-Port Level Translating, Bus Switch
ADI

ADG3246BRUZ

10-BIT DRIVER, TRUE OUTPUT, PDSO24, MS-153AD, TSSOP-24
ADI

ADG3247

2.5 V/3.3 V, 16-Bit, 2-Port Level Translating, Bus Switch
ADI