ADG439FBR-REEL [ADI]

High Performance, 4-Channel, Fault-Protected Analog Multiplexer;
ADG439FBR-REEL
型号: ADG439FBR-REEL
厂家: ADI    ADI
描述:

High Performance, 4-Channel, Fault-Protected Analog Multiplexer

光电二极管
文件: 总16页 (文件大小:302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Performance, 4-/8-Channel,  
Fault-Protected Analog Multiplexers  
ADG438F/ADG439F  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
All switches off with power supply off  
ADG438F  
Analog output of on channel clamped within power supplies  
if an overvoltage occurs  
S1  
Latch-up proof construction  
Fast switching times  
D
t
t
ON 250 ns maximum  
OFF 150 ns maximum  
Fault and overvoltage protection: −40 V to +55 V  
Break-before-make construction  
S8  
1 OF 8  
DECODER  
TTL- and CMOS-compatible inputs  
APPLICATIONS  
A0 A1 A2 EN  
Figure 1.  
Data acquisition systems  
Industrial and process control systems  
Avionics test equipment  
Signal routing between systems  
High reliability control systems  
ADG439F  
S1A  
S4A  
DA  
DB  
GENERAL DESCRIPTION  
S1B  
S4B  
The ADG438F and ADG439F are CMOS analog multiplexers, with  
the ADG438F comprising eight single channels and the ADG439F  
comprising four differential channels. These multiplexers provide  
fault protection. Using a series n-channel, p-channel, and  
n-channel MOSFET structure, both device and signal source  
protection is provided in the event of an overvoltage or power  
loss. The multiplexer can withstand continuous overvoltage  
inputs from −40 V to +55 V. During fault conditions with power  
supplies off, the multiplexer input (or output) appears as an open  
circuit and only a few nanoamperes of leakage current flows. This  
protects not only the multiplexer and the circuitry driven by the  
multiplexer, but also protects the sensors or signal sources which  
drive the multiplexer.  
1 OF 4  
DECODER  
A1  
A0  
EN  
Figure 2.  
PRODUCT HIGHLIGHTS  
1. Fault Protection. The ADG438F and ADG439F can with-  
stand continuous voltage inputs up to −40 V or +55 V.  
When a fault occurs due to the power supplies being  
turned off, all the channels are turned off and only a  
leakage current of a few nanoamperes flows.  
The ADG438F switches one of eight inputs to a common output  
as determined by the 3-bit binary address lines, A0, A1, and A2.  
The ADG439F switches one of four differential inputs to a  
common differential output as determined by the 2-bit binary  
address lines, A0 and A1. An EN input on each device is used  
to enable or disable the device. When disabled, all channels are  
switched off.  
2. On channel saturates while fault exists.  
3. Low RON  
.
4. Fast Switching Times.  
5. Break-Before-Make Switching. Switches are guaranteed  
break-before-make so that input signals are protected  
against momentary shorting.  
6. Trench Isolation Eliminates Latch-Up. A dielectric trench  
separates the p-channel and n-channel MOSFETs thereby  
preventing latch-up.  
7. Improved Off Isolation. Trench isolation enhances the  
channel-to-channel isolation of the ADG438F/ADG439F.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
ADG438F/ADG439F  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................5  
Pin Configuration and Function Descriptions..............................6  
Typical Performance Characteristics ..............................................7  
Test Circuits........................................................................................9  
Terminology.................................................................................... 12  
Theory of Operation ...................................................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Dual Supply................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
REVISION HISTORY  
7/11—Rev. D to Rev. E  
Updated Format..................................................................Universal  
Changes to Product Highlights Section and General  
Description........................................................................................ 1  
Changes to Specification Section and Table 1 .............................. 3  
Changes to Table 2............................................................................ 5  
Added Table 3 and Table 4; Renumbered Sequentially ............... 6  
Changes to Figure 5 to Figure 10.................................................... 7  
Changes to Figure 11 to Figure 13.................................................. 8  
Added Figure 14 to Figure 16.......................................................... 8  
Changes to Figure 18 to Figure 20, Figure 23, and Figure 24 ..... 9  
Changes to Terminology Section.................................................. 12  
Changes to Theory of Operation Section, Figure 29, and  
Figure 30 .......................................................................................... 13  
Updated Outline Dimensions....................................................... 14  
Changes to Ordering Guide .......................................................... 15  
2/00—Rev. C to Rev. D  
Rev. E | Page 2 of 16  
 
ADG438F/ADG439F  
SPECIFICATIONS  
DUAL SUPPLY  
VDD = +15 V 10%, VSS = −15 V 10%, GND = 0 V, unless otherwise noted.  
Table 1.  
B Version  
−40°C to −40°C to −40°C to  
Parameter  
+25°C  
+85°C  
+105°C  
+125°C  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
VSS + 1.4  
VDD − 1.4  
VSS + 2.2  
VDD – 2.2  
270  
V typ  
V typ  
V typ  
V typ  
Ω typ  
Ω max  
% typ  
% max  
Output open circuit  
Output loaded, 1 mA  
RON  
−10 V ≤ VS ≤ +10 V, IS = 1 mA  
See Figure 17  
−10 V ≤ VS ≤ +10 V, IS = 1 mA  
390  
10  
3
420  
10  
3
450  
10  
3
On-Resistance Flatness, RFLAT (ON)  
9
10  
0.6  
3
RON Drift  
On-Resistance Match Between  
Channels, ΔRON  
%/°C typ VS = 0 V, IS = 1 mA  
% max  
VS = 10 V, IS = 1 mA  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
0.01  
0.5  
0.01  
0.5  
0.01  
0.5  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
VD = 10 V, VS = m10 V  
See Figure 18  
VD = 10 V, VS = m10 V  
See Figure 19  
VS = VD = 10 V  
See Figure 20  
1.5  
5
1.5  
5
4
Drain Off Leakage, ID (Off)  
ADG438F ADG439F  
Channel On Leakage, ID, IS (On)  
ADG438F/ADG439F  
20  
20  
5
5
FAULT  
Source Leakage Current, IS (Fault)  
0.02  
nA typ  
VS = +55 V or −40 V, VD = 0 V;  
see Figure 21  
(With Overvoltage)  
Drain Leakage Current, ID (Fault)  
(With Overvoltage)  
Source Leakage Current, IS (Fault)  
(Power Supplies Off)  
0.05  
0.05  
0.05  
30  
0.1  
0.1  
0.2  
0.2  
0.2  
0.2  
μA max  
nA typ  
μA max  
nA typ  
VS = 25 V, VD = m10 V; see Figure 19  
VS = 25 V, VD = VEN, A0, A1, A2 = 0 V  
See Figure 22  
0.1  
0.2  
0.3  
1
μA max  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current  
2.4  
0.8  
2.4  
0.8  
2.4  
0.8  
V min  
V max  
IINL or IINH  
1
1
1
μA max  
pF typ  
VIN = 0 V or VDD  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS1  
tTRANSITION  
5
175  
220  
90  
ns typ  
ns max  
RL = 1 MΩ, CL = 35 pF  
VS1 = 10 V, VS8 = m10 V; see Figure 25  
300  
40  
300  
40  
330  
40  
tOPEN  
60  
ns min  
RL = 1 kΩ, CL = 35 pF, VS = 5 V;  
see Figure 26  
tON (EN)  
tOFF (EN)  
180  
230  
100  
130  
ns typ  
ns max  
ns typ  
ns max  
RL = 1 kΩ, CL = 35 pF  
VS = 5 V; see Figure 27  
RL = 1 kΩ, CL = 35 pF  
VS = 5 V; see Figure 27  
300  
150  
300  
150  
345  
173  
Rev. E | Page 3 of 16  
 
ADG438F/ADG439F  
B Version  
−40°C to −40°C to −40°C to  
Parameter  
Settling Time, tSETT  
0.1%  
0.01%  
Charge Injection  
+25°C  
+85°C  
+105°C  
+125°C  
Unit  
Test Conditions/Comments  
1
1
1
μs typ  
μs typ  
pC typ  
RL = 1 kΩ, CL = 35 pF  
VS = 5 V  
VS = 0 V, RS = 0 Ω, CL = 1 nF;  
see Figure 28  
RL = 1 kΩ, CL = 15 pF, f = 100 kHz,  
VS = 7 V rms; see Figure 23  
RL = 1 kΩ, CL = 15 pF, f = 100 kHz,  
VS = 7 rms; see Figure 24  
2.5  
2.5  
2.5  
15  
93  
93  
3
Off Isolation  
dB typ  
dB typ  
pF typ  
Channel-to-Channel Crosstalk  
CS (Off)  
CD (Off)  
ADG438F  
ADG439F  
POWER REQUIREMENTS  
IDD  
22  
12  
pF typ  
pF typ  
0.05  
0.1  
0.1  
mA typ  
mA max  
μA typ  
VIN = 0 V or 5 V  
0.2  
1
0.2  
1
0.2  
1
ISS  
μA max  
1 Guaranteed by design, not subject to production test.  
Rev. E | Page 4 of 16  
 
ADG438F/ADG439F  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 2.  
Parameter  
Rating  
VDD to VSS  
48 V  
VDD to GND  
VSS to GND  
−0.3 V to +48 V  
+0.3 V to −48 V  
Digital Input, EN, Ax  
−0.3 V to VDD + 0.3 V or 20 mA,  
whichever occurs first  
VS, Analog Input Overvoltage with  
Power On (VDD = +15 V, VSS = −15 V)  
VSS − 25 V to VDD + 40 V  
ESD CAUTION  
VS, Analog Input Overvoltage with  
Power Off (VDD = 0 V, VSS = 0 V)  
−40 V to +55 V  
Continuous Current, S or D  
Peak Current, S or D (Pulsed at 1 ms,  
10% Duty Cycle Maximum)  
20 mA  
40 mA  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Junction Temperature  
Plastic DIP Package  
θJA, Thermal Impedance  
SOIC Package  
−40°C to +125°C  
−65°C to +150°C  
150°C  
117°C/W  
θJA, Thermal Impedance  
Narrow Body  
Wide Body  
125°C/W  
90°C/W  
Rev. E | Page 5 of 16  
 
ADG438F/ADG439F  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
A0  
1
2
3
4
5
6
7
8
A0  
EN  
1
2
3
4
5
6
7
8
16 A1  
16 A1  
EN  
15 A2  
15 GND  
V
V
SS  
14 GND  
14  
V
DD  
SS  
ADG438F  
ADG439F  
TOP VIEW  
(Not to Scale)  
S1  
S1A  
13  
V
13 S1B  
12 S2B  
11 S3B  
TOP VIEW  
DD  
(Not to Scale)  
S2  
S3  
S4  
D
S2A  
S3A  
S4A  
DA  
12 S5  
11 S6  
10 S7  
10  
9
S4B  
DB  
9
S8  
Figure 3. ADG438F Pin Configuration  
Figure 4. ADG439F Pin Configuration  
Table 3. ADG438F Pin Function Description  
Table 4. ADG439F Pin Function Description  
Pin  
No.  
Pin  
No.  
Mnemonic Description  
Mnemonic Description  
1
2
A0  
EN  
Logic Control Input.  
1
2
A0  
EN  
Logic Control Input.  
Active High Digital Input. When low, the  
device is disabled, and all switches are off.  
When high, Ax logic inputs determine on  
switches.  
Active High Digital Input. When low, the  
device is disabled, and all switches are off.  
When high, Ax logic inputs determine on  
switches.  
3
VSS  
Most Negative Power Supply Potential. In  
single-supply applications, this pin can be  
connected to ground.  
3
VSS  
Most Negative Power Supply Potential. In  
single-supply applications, this pin can be  
connected to ground.  
4
S1  
S2  
S3  
S4  
D
Source Terminal 1. This pin can be an input  
or an output.  
Source Terminal 2. This pin can be an input  
or an output.  
Source Terminal 3. This pin can be an input  
or an output.  
Source Terminal 4. This pin can be an input  
or an output.  
4
S1A  
S2A  
S3A  
S4A  
DA  
Source Terminal 1A. This pin can be an  
input or an output.  
Source Terminal 2A. This pin can be an  
input or an output.  
Source Terminal 3A. This pin can be an  
input or an output.  
Source Terminal 4A. This pin can be an  
input or an output.  
5
5
6
6
7
7
8
Drain Terminal. This pin can be an input or  
an output.  
8
Drain Terminal A. This pin can be an input  
or an output.  
9
S8  
S7  
S6  
S5  
Source Terminal 8. This pin can be an input  
or an output.  
Source Terminal 7. This pin can be an input  
or an output.  
Source Terminal 6. This pin can be an input  
or an output.  
Source Terminal 5. This pin can be an input  
or an output.  
9
DB  
Drain Terminal B. This pin can be an input  
or an output.  
Source Terminal 4B. This pin can be an  
input or an output.  
Source Terminal 3B. This pin can be an  
input or an output.  
Source Terminal 2B. This pin can be an  
input or an output.  
Source Terminal 1B. This pin can be an  
input or an output.  
Most Positive Power Supply Potential.  
Ground (0 V) Reference.  
10  
11  
12  
10  
11  
12  
13  
S4B  
S3B  
S2B  
S1B  
13  
14  
15  
16  
VDD  
GND  
A2  
Most Positive Power Supply Potential.  
Ground (0 V) Reference.  
Logic Control Input.  
14  
15  
16  
VDD  
GND  
A1  
A1  
Logic Control Input.  
Logic Control Input.  
Table 5. ADG438F Truth Table1  
Table 6. ADG439F Truth Table1  
A2  
X
0
0
0
0
1
1
1
A1  
X
0
0
1
1
0
0
1
A0  
X
0
1
0
1
0
1
0
EN  
On Switch  
A1  
A0  
EN  
On Switch Pair  
0
1
1
1
1
1
1
1
None  
X
0
0
1
X
0
1
0
0
1
1
1
None  
1
2
3
4
5
6
7
8
1
2
3
4
1
1
1
1 X = don’t care.  
1
1
1
1
1 X = don’t care.  
Rev. E | Page 6 of 16  
 
 
ADG438F/ADG439F  
TYPICAL PERFORMANCE CHARACTERISTICS  
2000  
2000  
1750  
1500  
1250  
1000  
750  
T
= 25°C  
A
V
V
= +15V  
= –15V  
DD  
SS  
1750  
1500  
1250  
1000  
750  
500  
250  
0
V
= +5V  
= –5V  
DD  
SS  
T
T
T
T
= 125°C  
= 105°C  
= 85°C  
= 25°C  
V
A
A
A
A
V
V
= +10V  
= –10V  
DD  
SS  
V
V
= +15V  
= –15V  
DD  
SS  
500  
250  
0
–15  
–15  
–10  
–5  
0
5
10  
15  
–10  
–5  
0
5
10  
15  
V
, V (V)  
S
D
V , V (V)  
D S  
Figure 5. On Resistance as a Function of VD (VS)  
Figure 8. On Resistance as a Function of VD (VS) for Different Temperatures  
1m  
100µ  
10µ  
1µ  
1m  
V
V
V
= 0V  
= 0V  
= 0V  
100µ  
DD  
SS  
V
V
V
= +15V  
= –15V  
= 0V  
DD  
SS  
D
10µ  
1µ  
D
OPERATING RANGE  
100n  
10n  
1n  
100n  
10n  
1n  
OPERATING RANGE  
100p  
10p  
1p  
100p  
10p  
1p  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
60  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
60  
V
SOURCE VOLTAGE (V)  
V
SOURCE VOLTAGE (V)  
S
S
Figure 6. Source Input Leakage Current as a Function of VS (Power Supplies Off)  
During Overvoltage Conditions  
Figure 9. Source Input Leakage Current as a Function of VS (Power Supplies On)  
During Overvoltage Conditions  
1m  
0.3  
V
V
V
= +15V  
= –15V  
DD  
100µ  
V
V
V
= +15V  
= –15V  
= 0V  
DD  
SS  
SS  
0.2  
0.1  
(V ) = ±10V  
S
A
D
10µ  
1µ  
D
T
= 25°C  
100n  
10n  
1n  
I
(OFF)  
D
0.0  
I
(OFF)  
S
–0.1  
–0.2  
–0.3  
OPERATING RANGE  
100p  
10p  
1p  
I
, I (ON)  
S
D
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
60  
–14  
–10  
–6  
–2  
2
V , V (V)  
S
6
10  
14  
V
SOURCE VOLTAGE (V)  
S
D
Figure 7. Drain Output Leakage Current as a Function of VS (Power Supplies On)  
During Overvoltage Conditions  
Figure 10. Leakage Currents as a Function of VD (VS)  
Rev. E | Page 7 of 16  
 
ADG438F/ADG439F  
100  
0
–20  
T
= 25°C  
A
V
V
= +15V  
= –15V  
DD  
SS  
V
V
V
V
= +15V  
= –15V  
= +10V  
DD  
SS  
D
S
10  
1
= –10V  
–40  
I
(OFF)  
D
–60  
I
(ON)  
D
–80  
I
(OFF)  
0.1  
0.01  
S
–100  
–120  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
25  
35  
45  
55  
65  
75  
85  
95  
105 115 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 14. Off Isolation vs. Frequency, 15 V Dual Supply  
Figure 11. Leakage Currents as a Function of Temperature  
40  
35  
30  
25  
20  
15  
10  
5
260  
T
V
V
= 25°C  
= +15V  
A
240  
220  
200  
180  
160  
140  
120  
100  
DD  
= –15V  
tTRANSITION  
SS  
tON (EN)  
DRAIN OFF  
tOFF (EN)  
SOURCE OFF  
0
–15  
–10  
–5  
0
5
10  
15  
10  
11  
12  
13  
14  
15  
POWER SUPPLY (V)  
V
(V)  
S
Figure 12. Switching Time vs. Dual Power Supply  
Figure 15. Capacitance vs. Source Voltage  
300  
250  
200  
150  
100  
50  
30  
20  
V
V
= +15V  
= –15V  
DD  
SS  
V
V
T
= +15V  
= –15V  
= 25°C  
DD  
SS  
tON (EN)  
A
10  
tTRANSITION  
0
tOFF (EN)  
–10  
–20  
–30  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–15  
–10  
–5  
0
5
10  
15  
TEMPERATURE (°C)  
V
(V)  
S
Figure 13. Switching Time vs. Temperature  
Figure 16. Charge Injection vs. Source Voltage  
Rev. E | Page 8 of 16  
ADG438F/ADG439F  
TEST CIRCUITS  
I
DS  
V
V
V
V
DD  
SS  
V1  
DD  
SS  
S1  
S2  
A
D
D
S
S8  
V
S
EN  
0.8V  
V
V
D
S
R
= V /I  
1 DS  
ON  
Figure 17. On Resistance  
Figure 21. Input Leakage Current (with Overvoltage)  
0V  
0V  
V
V
V
V
DD  
SS  
V
V
SS  
DD  
0V  
A2  
A
V
S
S1  
DD  
SS  
A1ADG438F*  
I
(OFF)  
A
S
S1  
S2  
A0  
S8  
D
EN  
D
V
S8  
S
EN  
0.8V  
GND  
V
D
*SIMILAR CONNECTION FOR ADG439F.  
Figure 18. IS (Off)  
Figure 22. Input Leakage Current (with Power Supplies Off)  
V
V
DD  
DD  
V
V
V
V
DD  
DD  
SS  
SS  
A2  
A1  
A0  
S1  
S8  
V
IN  
S1  
S2  
ADG438F*  
I
(OFF)  
A
D
D
D
V
OUT  
R
50  
L
S8  
V
D
GND  
V
V
SS  
SS  
EN  
0.8V  
V
S
*SIMILAR CONNECTION FOR ADG439F.  
Figure 19. ID (Off)  
Figure 23. Off Isolation  
V
V
DD  
SS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
DD  
SS  
V
OUT  
S1  
R
L
50  
D
R
50Ω  
S2  
V
S
GND  
I
(ON)  
A
D
S
D
NC  
V
OUT  
CHANNEL-TO-CHANNEL CROSSTALK = 20 log  
V
V
D
S
NC = NO CONNECT  
Figure 20. ID (On)  
Figure 24. Channel-to-Channel Crosstalk  
Rev. E | Page 9 of 16  
 
 
 
 
 
 
 
ADG438F/ADG439F  
V
V
V
V
DD  
SS  
3V  
DD  
SS  
A2  
V
V
S1  
S2 TO S7  
ADDRESS  
S1  
50%  
50%  
A1  
A0  
DRIVE (V  
)
V
50  
IN  
IN  
ADG438F*S8  
S8  
2.4V  
EN  
D
V
OUT  
R
1MΩ  
C
L
35pF  
L
90%  
GND  
V
OUT  
90%  
*SIMILAR CONNECTION FOR ADG439F.  
tTRANSITION  
tTRANSITION  
Figure 25. Switching Time of Multiplexer, tTRANSITION  
V
V
V
V
DD  
DD  
SS  
3V  
ADDRESS  
SS  
DRIVE (V  
)
IN  
A2  
A1  
A0  
V
S1  
S2 TO S7  
S
V
50  
IN  
ADG438F*S8  
D
V
OUT  
80%  
2.4V  
EN  
GND  
V
80%  
OUT  
R
1kΩ  
C
L
35pF  
L
tOPEN  
*
*SIMILAR CONNECTION FOR ADG439F.  
Figure 26. Break-Before-Make Delay, tOPEN  
V
V
V
V
DD  
SS  
3V  
ENABLE  
50%  
50%  
DRIVE (V  
)
DD  
SS  
IN  
A2  
V
S1  
S2 TO S8  
S
0V  
A1  
A0  
ADG438F*  
V
OUT  
0.9V  
OUT  
D
V
OUT  
EN  
GND  
OUTPUT  
0V  
R
1k  
C
L
35pF  
L
V
50Ω  
IN  
0.1V  
OUT  
tOFF (EN)  
tON (EN)  
*SIMILAR CONNECTION FOR ADG439F.  
Figure 27. Enable Delay, tON (EN), tOFF (EN)  
Rev. E | Page 10 of 16  
 
 
 
ADG438F/ADG439F  
V
V
V
V
DD  
DD  
SS  
SS  
3V  
A2  
LOGIC  
INPUT (V  
)
A1  
A0  
S
IN  
ADG438F*  
0V  
R
S
D
V
OUT  
EN  
C
1nF  
V
L
S
V  
V
OUT  
OUT  
GND  
V
IN  
Q
= C × V  
L OUT  
INJ  
*SIMILAR CONNECTION FOR ADG439F.  
Figure 28. Charge Injection  
Rev. E | Page 11 of 16  
 
ADG438F/ADG439F  
TERMINOLOGY  
CS (Off)  
VDD  
Channel input capacitance for off condition.  
Most positive power supply potential.  
CD (Off)  
VSS  
Channel output capacitance for off condition.  
Most negative power supply potential.  
CD, CS (On)  
On switch capacitance.  
GND  
Ground (0 V) reference.  
CIN  
RON  
Digital input capacitance.  
Ohmic resistance between D and S.  
t
ON (EN)  
ΔRON  
Delay time between the 50% and 90% points of the digital input  
and switch on condition.  
ΔRON represents the difference between the RON of any two  
channels as a percentage of the maximum RON of those two  
channels.  
t
OFF (EN)  
Delay time between the 50% and 90% points of the digital input  
and switch off condition.  
RFLAT (ON)  
Flatness is defined as the difference between the maximum and  
minimum value of the on resistance measured over the specified  
tTRANSITION  
analog signal range and is represented by RFLAT (ON)  
.
Delay time between the 50% and 90% points of the digital  
inputs and the switch on condition when switching from one  
address state to another.  
Flatness is calculated by  
((RMAX RMIN) / RMAX × 100)  
RON Drift  
Change in RON when temperature changes by one degree Celsius.  
tOPEN  
Off time measured between 80% points of both switches when  
switching from one address state to another.  
IS (Off)  
VINL  
Source leakage current when the switch is off.  
Maximum input voltage for Logic 0.  
ID (Off)  
VINH  
Drain leakage current when the switch is off.  
Minimum input voltage for Logic 1.  
ID, IS (On)  
I
INL (IINH)  
Channel leakage current when the switch is on.  
Input current of the digital input.  
VD (VS)  
Off Isolation  
Analog voltage on Terminal D and Terminal S.  
A measure of unwanted signal coupling through an off channel.  
IS (Fault—Power Supplies On)  
Source leakage current when exposed to an overvoltage  
condition.  
Charge Injection  
A measure of the glitch impulse transferred from the digital  
input to the analog output during switching.  
ID (Fault—Power Supplies On)  
Drain leakage current when exposed to an overvoltage  
condition.  
IDD  
Positive supply current.  
ISS  
IS (Fault—Power Supplies Off)  
Source leakage current with power supplies off.  
Negative supply current.  
Rev. E | Page 12 of 16  
 
ADG438F/ADG439F  
THEORY OF OPERATION  
Q1  
Q2  
Q3  
The ADG438F/ADG439F multiplexers are capable of withstanding  
overvoltages from −40 V to +55 V, irrespective of whether the  
power supplies are present or not. Each channel of the multiplexer  
consists of an n-channel MOSFET, a p-channel MOSFET, and  
an n-channel MOSFET, connected in series. When the analog  
input exceeds the power supplies, one of the MOSFETs saturates,  
limiting the current. The current during a fault condition is  
determined by the load on the output. Figure 31 illustrates the  
channel architecture that enables these multiplexers to with-  
stand continuous overvoltages.  
+55V  
OVERVOLTAGE  
n-CHANNEL  
MOSFET  
SATURATES  
V
V
SS  
DD  
Figure 29. +55 V Overvoltage Input to the On Channel  
Q1  
Q2  
Q3  
–40V  
OVERVOLTAGE  
n-CHANNEL  
MOSFET  
IS ON  
p-CHANNEL  
MOSFET  
SATURATES  
When an analog input of VSS + 2.2 V to VDD – 2.2 V (output loaded,  
1 mA) is applied to the ADG438F/ADG439F, the multiplexer  
behaves as a standard multiplexer, with specifications similar to  
a standard multiplexer, for example, the on-resistance is 270 Ω  
typically. However, when an overvoltage is applied to the device,  
one of the three MOSFETs saturates.  
V
V
DD  
SS  
Figure 30. −40 V Overvoltage on an Off Channel with Multiplexer Power On  
Q1  
Q2  
Q3  
+55V  
OVERVOLTAGE  
n-CHANNEL  
Figure 29 to Figure 32 show the conditions of the three  
MOSFETs for the various overvoltage situations. When the  
analog input applied to an on channel approaches the positive  
power supply line, the n-channel MOSFET saturates because  
the voltage on the analog input exceeds the difference between  
MOSFET IS  
OFF  
Figure 31. +55 V Overvoltage with Power Off  
Q1  
Q2  
Q3  
V
DD and the n-channel threshold voltage (VTN). When a voltage  
–40V  
OVERVOLTAGE  
more negative than VSS is applied to the multiplexer, the p-channel  
MOSFET saturates because the analog input is more negative  
than the difference between VSS and the p-channel threshold  
voltage (VTP). Because VTN is nominally 1.4 V and VTP − 1.4 V,  
the analog input range to the multiplexer is limited to VSS + 1.4 V  
to VDD − 1.4 V (output open circuit) when a 15 V power supply  
is used.  
n-CHANNEL  
MOSFET IS  
ON  
p-CHANNEL  
MOSFET IS  
OFF  
Figure 32. –40 V Overvoltage with Power Off  
When the power supplies are present but the channel is off, again  
either the p-channel MOSFET or one of the n-channel MOSFETs  
remains off when an overvoltage occurs.  
Finally, when the power supplies are off, the gate of each MOSFET  
is at ground. A negative overvoltage switches on the first n-channel  
MOSFET, but the bias produced by the overvoltage causes the  
p-channel MOSFET to remain turned off. With a positive over-  
voltage, the first MOSFET in the series remains off because the  
gate to source voltage applied to this MOSFET is negative.  
During fault conditions (power supplies off), the leakage current  
into and out of the ADG438F/ADG439F is limited to a few  
microamps. This limit protects the multiplexer and succeeding  
circuitry from over stresses as well as protects the signal sources  
that drive the multiplexer. Also, the other channels of the multi-  
plexer are undisturbed by the overvoltage and continue to operate  
normally.  
Rev. E | Page 13 of 16  
 
 
 
 
ADG438F/ADG439F  
OUTLINE DIMENSIONS  
0.800 (20.32)  
0.790 (20.07)  
0.780 (19.81)  
16  
1
9
8
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001-AB  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 33. 16-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-16)  
Dimensions shown in inches and (millimeters)  
10.00 (0.3937)  
9.80 (0.3858)  
9
8
16  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AC  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 34. 16-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-16)  
Dimensions shown in millimeters and (inches)  
Rev. E | Page 14 of 16  
 
ADG438F/ADG439F  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.  
25 (0.0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 35. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
N-16  
N-16  
R-16  
R-16  
R-16  
R-16  
N-16  
N-16  
R-16  
R-16  
RW-16  
RW-16  
RW-16  
R-16  
ADG438FBN  
ADG438FBNZ  
ADG438FBR  
ADG438FBR-REEL  
ADG438FBRZ  
ADG438FBRZ-REEL  
ADG439FBN  
ADG439FBNZ  
ADG439FBR  
ADG439FBR-REEL  
ADG439FBRW  
ADG439FBRWZ  
ADG439FBRWZ-REEL  
ADG439FBRZ  
ADG439FBRZ-REEL  
16-Lead Plastic Dual In-Line Package [PDIP]  
16-Lead Plastic Dual In-Line Package [PDIP]  
16-Lead Standard Small Outline Package [SOIC_N]  
16-Lead Standard Small Outline Package [SOIC_N]  
16-Lead Standard Small Outline Package [SOIC_N]  
16-Lead Standard Small Outline Package [SOIC_N]  
16-Lead Plastic Dual In-Line Package [PDIP]  
16-Lead Plastic Dual In-Line Package [PDIP]  
16-Lead Standard Small Outline Package [SOIC_N]  
16-Lead Standard Small Outline Package [SOIC_N]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_N]  
16-Lead Standard Small Outline Package [SOIC_N]  
R-16  
1 Z = RoHS Compliant Part.  
Rev. E | Page 15 of 16  
 
ADG438F/ADG439F  
NOTES  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00468-0-7/11(E)  
Rev. E | Page 16 of 16  

相关型号:

ADG439FBRN

4-Channel Analog Multiplexer
ETC

ADG439FBRW

High Performance 4/8 Channel Fault-Protected Analog Multiplexers
ADI

ADG439FBRW

4-CHANNEL, DIFFERENTIAL MULTIPLEXER, PDSO16, 0.300 INCH, SOIC-16
ROCHESTER

ADG439FBRW-REEL

4-CHANNEL, DIFFERENTIAL MULTIPLEXER, PDSO16, 0.300 INCH, SOIC-16
ROCHESTER

ADG439FBRW-REEL

IC 4-CHANNEL, DIFFERENTIAL MULTIPLEXER, PDSO16, 0.300 INCH, SOIC-16, Multiplexer or Switch
ADI

ADG439FBRWZ

High Performance, 4-Channel, Fault-Protected Analog Multiplexer
ADI

ADG439FBRWZ

4-CHANNEL, DIFFERENTIAL MULTIPLEXER, PDSO16, 0.300 INCH, SOIC-16
ROCHESTER

ADG439FBRWZ-REEL

IC,ANALOG MUX,SINGLE,4-CHANNEL,CMOS,SOP,16PIN,PLASTIC
ADI

ADG439FBRZ

High Performance, 4-/8-Channel, Fault-Protected Analog Multiplexers
ADI

ADG439FBRZ-REEL

IC MULTIPLEXER DUAL 4X1 16SOIC
ADI

ADG439F_15

High Performance, 4-/8-Channel, Fault-Protected Analog Multiplexers
ADI

ADG441

LC2MOS Quad SPST Switches
ADI