ADG5412FTRUZ-EP [ADI]

Fault Protection and Detection, 10 Ω RON, Quad SPST Switches;
ADG5412FTRUZ-EP
型号: ADG5412FTRUZ-EP
厂家: ADI    ADI
描述:

Fault Protection and Detection, 10 Ω RON, Quad SPST Switches

开关
文件: 总20页 (文件大小:301K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Voltage Latch-Up Proof,  
Quad SPST Switches  
ADG5412/ADG5413  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
Latch-up proof  
S1  
S1  
8 kV human body model (HBM) ESD rating  
Low on resistance (<10 Ω)  
9 V to 22 V dual-supply operation  
9 V to 40 V single-supply operation  
48 V supply maximum ratings  
IN1  
IN2  
IN3  
IN4  
IN1  
IN2  
IN3  
IN4  
D1  
S2  
D1  
S2  
D2  
S3  
D2  
S3  
ADG5412  
ADG5413  
Fully specified at 1ꢀ V, 20 V, +12 V, and +36 V  
VSS to VDD analog signal range  
D3  
S4  
D3  
S4  
APPLICATIONS  
Relay replacement  
Automatic test equipment  
Data acquisition  
D4  
D4  
Instrumentation  
SWITCHES SHOWN FOR A LOGIC 1 INPUT.  
Avionics  
Figure 1.  
Audio and video switching  
Communication systems  
exhibits break-before-make switching action for use in  
multiplexer applications.  
GENERAL DESCRIPTION  
The ADG5412/ADG5413 contain four independent single-  
pole/single-throw (SPST) switches. The ADG5412 switches  
turn on with Logic 1. The ADG5413 has two switches with  
digital control logic similar to that of the ADG5412; however,  
the logic is inverted on the other two switches. Each switch  
conducts equally well in both directions when on, and each  
switch has an input signal range that extends to the supplies.  
In the off condition, signal levels up to the supplies are blocked.  
PRODUCT HIGHLIGHTS  
1. Trench isolation guards against latch-up. A dielectric trench  
separates the P and N channel transistors thereby preventing  
latch-up even under severe overvoltage conditions.  
2. Low RON  
.
3. Dual-supply operation. For applications where the analog  
signal is bipolar, the ADG5412/ADG5413 can be operated  
from dual supplies up to 22 V.  
4. Single-supply operation. For applications where the analog  
signal is unipolar, the ADG5412/ADG5413 can be operated  
from a single rail power supply up to 40 V.  
The ADG5412 and ADG5413 do not have a VL pin. The digital  
inputs are compatible with 3 V logic inputs over the full  
operating supply range.  
The on-resistance profile is very flat over the full analog input  
range, which ensures good linearity and low distortion when  
switching audio signals. High switching speed also makes the  
devices suitable for video signal switching. The ADG5413  
5. 3 V logic compatible digital inputs: VINH = 2.0 V, VINL = 0.8 V.  
6. No VL logic power supply required.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
ADG5412/ADG5413  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Continuous Current per Channel, Sx or Dx..............................7  
Absolute Maximum Ratings ............................................................8  
ESD Caution...................................................................................8  
Pin Configurations and Function Descriptions............................9  
Typical Performance Characteristics ........................................... 1ꢂ  
Test Circuits..................................................................................... 14  
Terminology.................................................................................... 16  
Trench Isolation.............................................................................. 17  
Applications Information.............................................................. 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
1ꢀ ꢁ Dual Supply ....................................................................... 3  
2ꢂ ꢁ Dual Supply ....................................................................... 4  
12 ꢁ Single Supply........................................................................ ꢀ  
36 ꢁ Single Supply........................................................................ 6  
REVISION HISTORY  
7/10—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADG5412/ADG5413  
SPECIFICATIONS  
1ꢀ V DUAL SUPPLY  
VDD = +15 V 10%, VSS = −15 V 10%, GND = 0 V, unless otherwise noted.  
Table 1.  
Parameter  
2ꢀ°C −40°C to +8ꢀ°C −40°C to +12ꢀ°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD to VSS  
V
9.8  
Ω typ  
VS = ±±0 V, IS = −±0 mA;  
see Figure 24  
±±  
0.35  
±4  
±6  
Ω max  
Ω typ  
VDD = +±3.5 V, VSS = −±3.5 V  
VS = ±±0 V, IS = −±0 mA  
On-Resistance Match Between Channels,  
∆RON  
0.7  
±.2  
±.6  
0.9  
2
±.±  
2.2  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = ±±0 V, IS = −±0 mA  
LEAKAGE CURRENTS  
VDD = +±6.5 V, VSS = −±6.5 V  
Source Off Leakage, IS (Off)  
±0.05  
nA typ  
VS = ±±0 V, VD = m ±0 V;  
see Figure 27  
±0.25 ±0.75  
±0.05  
±3.5  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = ±±0 V, VD = m ±0 V;  
see Figure 27  
±0.25 ±0.75  
±0.±  
±3.5  
±±2  
nA max  
nA typ  
nA max  
Channel On Leakage, ID (On), IS (On)  
VS = VD = ±±0 V; see Figure 23  
±0.4  
±2  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
0.002  
2.5  
VIN = VGND or VDD  
±0.±  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS±  
tON  
±70  
202  
±20  
±45  
±5  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
RL = 300 Ω, CL = 35 pF  
VS = ±0 V; see Figure 3±  
RL = 300 Ω, CL = 35 pF  
VS = ±0 V; see Figure 3±  
RL = 300 Ω, CL = 35 pF  
236  
±70  
262  
±82  
tOFF  
Break-Before-Make Time Delay, tD  
(ADG54±3 Only)  
6
ns min  
pC typ  
V= VS2 = ±0 V; see Figure 30  
VS = 0 V, RS = 0 Ω, CL = ± nF;  
see Figure 32  
Charge Injection, QINJ  
Off Isolation  
240  
−78  
−70  
0.009  
±67  
dB typ  
dB typ  
% typ  
RL = 50 Ω, CL = 5 pF, f = ± MHz;  
see Figure 26  
RL = 50 Ω, CL = 5 pF, f = ± MHz;  
see Figure 25  
RL = ± kΩ, ±5 V p-p, f = 20 Hz  
to 20 kHz; see Figure 28  
RL = 50 Ω, CL = 5 pF; see  
Figure 29  
Channel-to-Channel Crosstalk  
Total Harmonic Distortion + Noise  
−3 dB Bandwidth  
MHz typ  
dB typ  
Insertion Loss  
−0.7  
RL = 50 Ω, CL = 5 pF, f = ± MHz;  
see Figure 29  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
±8  
±8  
60  
pF typ  
pF typ  
pF typ  
VS = 0 V, f = ± MHz  
VS = 0 V, f = ± MHz  
VS = 0 V, f = ± MHz  
Rev. 0 | Page 3 of 20  
 
ADG5412/ADG5413  
Parameter  
2ꢀ°C −40°C to +8ꢀ°C −40°C to +12ꢀ°C Unit  
Test Conditions/Comments  
VDD = +±6.5 V, VSS = −±6.5 V  
Digital inputs = 0 V or VDD  
POWER REQUIREMENTS  
IDD  
45  
μA typ  
55  
0.00±  
70  
μA max  
μA typ  
μA max  
ISS  
Digital inputs = 0 V or VDD  
±
VDD/VSS  
±9/±22  
V min/V max GND = 0 V  
± Guaranteed by design; not subject to production test.  
20 V DUAL SUPPLY  
VDD = +20 V 10%, VSS = −20 V 10%, GND = 0 V, unless otherwise noted.  
Table 2.  
Parameter  
2ꢀ°C −40°C to +8ꢀ°C −40°C to +12ꢀ°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD to VSS  
V
9
Ω typ  
VS = ±±5 V, IS = −±0 mA;  
see Figure 24  
±0  
0.35  
±3  
±5  
Ω max  
Ω typ  
VDD = +±8 V, VSS = −±8 V  
VS = ±±5 V, IS = −±0 mA  
On-Resistance Match Between  
Channels, ∆RON  
0.7  
±.5  
±.8  
0.9  
2.2  
±.±  
2.5  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = ±±5 V, IS = −±0 mA  
VDD = +22 V, VSS = −22 V  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
±0.05  
nA typ  
VS = ±±5 V, VD = m ±5 V;  
see Figure 27  
±0.25 ±0.75  
±0.05  
±3.5  
±3.5  
±±2  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = ±±5 V, VD = m ±5 V;  
see Figure 27  
±0.25 ±0.75  
±0.±  
nA max  
nA typ  
Channel On Leakage, ID (On), IS (On)  
VS = VD = ±±5 V; see  
Figure 23  
±0.4  
±2  
nA max  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
0.002  
2.5  
VIN = VGND or VDD  
±0.±  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS±  
tON  
±58  
±87  
±±0  
±38  
±2  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
RL = 300 Ω, CL = 35 pF  
VS = ±0 V; see Figure 3±  
RL = 300 Ω, CL = 35 pF  
VS = ±0 V; see Figure 3±  
RL = 300 Ω, CL = 35 pF  
2±7  
±54  
240  
±70  
tOFF  
Break-Before-Make Time Delay, tD  
(ADG54±3 Only)  
5
ns min  
pC typ  
dB typ  
dB typ  
V= VS2 = ±0 V; see  
Figure 30  
VS = 0 V, RS = 0 Ω, CL = ± nF;  
see Figure 32  
RL = 50 Ω, CL = 5 pF, f = ± MHz; see  
Figure 26  
RL = 50 Ω, CL = 5 pF, f = ± MHz;  
see Figure 25  
Charge Injection, QINJ  
Off Isolation  
3±0  
−78  
−70  
Channel-to-Channel Crosstalk  
Rev. 0 | Page 4 of 20  
 
ADG5412/ADG5413  
Parameter  
2ꢀ°C −40°C to +8ꢀ°C −40°C to +12ꢀ°C Unit  
Test Conditions/Comments  
Total Harmonic Distortion + Noise  
0.007  
% typ  
RL = ± kΩ, 20 V p-p, f = 20 Hz to  
20 kHz; see Figure 28  
−3 dB Bandwidth  
Insertion Loss  
±60  
MHz typ  
dB typ  
RL = 50 Ω, CL = 5 pF;  
see Figure 29  
RL = 50 Ω, CL = 5 pF, f = ± MHz;  
see Figure 29  
−0.6  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
POWER REQUIREMENTS  
IDD  
±7  
±7  
60  
pF typ  
pF typ  
pF typ  
VS = 0 V, f = ± MHz  
VS = 0 V, f = ± MHz  
VS = 0 V, f = ± MHz  
VDD = +22 V, VSS = −22 V  
Digital inputs = 0 V or VDD  
50  
70  
0.00±  
μA typ  
μA max  
μA typ  
±±0  
ISS  
Digital inputs = 0 V or VDD  
VDD/VSS  
±9/±22  
V min/V max GND = 0 V  
± Guaranteed by design; not subject to production test.  
12 V SINGLE SUPPLY  
VDD = 12 V 10%, VSS = 0 V, GND = 0 V, unless otherwise noted.  
Table 3.  
Parameter  
2ꢀ°C −40°C to +8ꢀ°C −40°C to +12ꢀ°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
0 V to VDD  
3±  
V
±9  
Ω typ  
VS = 0 V to ±0 V, IS = −±0 mA;  
see Figure 24  
VDD = ±0.8 V, VSS = 0 V  
22  
0.4  
27  
Ω max  
Ω typ  
On-Resistance Match Between Channels,  
∆RON  
VS = 0 V to ±0 V, IS = −±0 mA  
0.8  
4.4  
5.5  
±
±.2  
7.5  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = 0 V to ±0 V, IS = −±0 mA  
VDD = ±3.2 V, VSS = 0 V  
6.5  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
±0.05  
nA typ  
VS = ± V/±0 V, VD = ±0 V/± V;  
see Figure 27  
±0.25 ±0.75  
±0.05  
±3.5  
±3.5  
±±2  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = ± V/±0 V, VD = ±0 V/± V;  
see Figure 27  
±0.25 ±0.75  
±0.±  
nA max  
nA typ  
Channel On Leakage, ID (On), IS (On)  
VS = VD = ± V/±0 V; see  
Figure 23  
±0.4  
±2  
nA max  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
0.002  
2.5  
VIN = VGND or VDD  
±0.±  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS±  
tON  
225  
296  
±50  
±87  
ns typ  
ns max  
ns typ  
ns max  
RL = 300 Ω, CL = 35 pF  
VS = 8 V; see Figure 3±  
RL = 300 Ω, CL = 35 pF  
VS = 8 V; see Figure 3±  
358  
222  
403  
247  
tOFF  
Rev. 0 | Page 5 of 20  
 
 
ADG5412/ADG5413  
Parameter  
2ꢀ°C −40°C to +8ꢀ°C −40°C to +12ꢀ°C Unit  
Test Conditions/Comments  
Break-Before-Make Time Delay, tD  
(ADG54±3 Only)  
70  
ns typ  
RL = 300 Ω, CL = 35 pF  
38  
ns min  
pC typ  
V= VS2 = 8 V; see Figure 30  
VS = 6 V, RS = 0 Ω, CL = ± nF;  
see Figure 32  
Charge Injection, QINJ  
Off Isolation  
95  
−78  
−70  
0.07  
±80  
−±.3  
dB typ  
dB typ  
% typ  
RL = 50 Ω, CL = 5 pF, f = ± MHz;  
see Figure 26  
RL = 50 Ω, CL = 5 pF, f = ± MHz;  
see Figure 25  
RL = ± kΩ, 6 V p-p, f = 20 Hz  
to 20 kHz; see Figure 28  
RL = 50 Ω, CL = 5 pF; see  
Figure 29  
Channel-to-Channel Crosstalk  
Total Harmonic Distortion + Noise  
−3 dB Bandwidth  
MHz typ  
dB typ  
Insertion Loss  
RL = 50 Ω, CL = 5 pF, f = ± MHz;  
see Figure 29  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
POWER REQUIREMENTS  
IDD  
22  
22  
58  
pF typ  
pF typ  
pF typ  
VS = 6 V, f = ± MHz  
VS = 6 V, f = ± MHz  
VS = 6 V, f = ± MHz  
VDD = ±3.2 V  
40  
μA typ  
Digital inputs = 0 V or VDD  
65  
μA max  
VDD  
9/40  
V min/V max GND = 0 V, VSS = 0 V  
± Guaranteed by design; not subject to production test.  
36 V SINGLE SUPPLY  
VDD = 36 V 10%, VSS = 0 V, GND = 0 V, unless otherwise noted.  
Table 4.  
Parameter  
2ꢀ°C −40°C to +8ꢀ°C −40°C to +12ꢀ°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
0 V to VDD  
±7  
V
±0.6  
Ω typ  
VS = 0 V to 30 V, IS = −±0 mA;  
see Figure 24  
VDD = 32.4 V, VSS = 0 V  
±2  
0.35  
±5  
Ω max  
Ω typ  
On-Resistance Match Between Channels,  
∆RON  
VS = 0 V to 30 V, IS = −±0 mA  
0.7  
2.7  
3.2  
0.9  
3.8  
±.±  
4.5  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT(ON)  
VS = 0 V to 30 V, IS = −±0 mA  
VDD = 39.6 V, VSS = 0 V  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
±0.05  
nA typ  
VS = ± V/30 V, VD = 30 V/± V;  
see Figure 27  
±0.25 ±0.75  
±0.05  
±3.5  
±3.5  
±±2  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = ± V/30 V, VD = 30 V/± V;  
see Figure 27  
±0.25 ±0.75  
±0.±  
nA max  
nA typ  
Channel On Leakage, ID (On), IS (On)  
VS = VD = ± V/30 V; see  
Figure 23  
±0.4  
±2  
nA max  
Rev. 0 | Page 6 of 20  
 
 
ADG5412/ADG5413  
Parameter  
2ꢀ°C −40°C to +8ꢀ°C −40°C to +12ꢀ°C Unit  
Test Conditions/Comments  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
0.002  
2.5  
VIN = VGND or VDD  
±0.±  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS±  
tON  
±80  
220  
±30  
±69  
25  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
RL = 300 Ω, CL = 35 pF  
VS = ±8 V; see Figure 3±  
RL = 300 Ω, CL = 35 pF  
VS = ±8 V; see Figure 3±  
RL = 300 Ω, CL = 35 pF  
230  
±67  
248  
±74  
tOFF  
Break-Before-Make Time Delay, tD  
(ADG54±3 Only)  
8
ns min  
pC typ  
V= VS2 = ±8 V; see Figure 30  
VS = ±8 V, RS = 0 Ω, CL = ± nF;  
see Figure 32  
Charge Injection, QINJ  
Off Isolation  
280  
−78  
−70  
0.03  
±74  
−0.8  
dB typ  
dB typ  
% typ  
RL = 50 Ω, CL = 5 pF, f = ± MHz;  
see Figure 26  
RL = 50 Ω, CL = 5 pF, f = ± MHz;  
Figure 25  
RL = ± kΩ, ±8 V p-p, f = 20 Hz  
to 20 kHz; see Figure 28  
RL = 50 Ω, CL = 5 pF; see  
Figure 29  
Channel-to-Channel Crosstalk  
Total Harmonic Distortion + Noise  
−3 dB Bandwidth  
MHz typ  
dB typ  
Insertion Loss  
RL = 50 Ω, CL = 5 pF, f = ± MHz;  
see Figure 29  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
POWER REQUIREMENTS  
IDD  
±8  
±8  
58  
pF typ  
pF typ  
pF typ  
VS = ±8 V, f = ± MHz  
VS = ±8 V, f = ± MHz  
VS = ±8 V, f = ± MHz  
VDD = 39.6 V  
80  
μA typ  
Digital inputs = 0 V or VDD  
±00  
±30  
μA max  
VDD  
9/40  
V min/V max GND = 0 V, VSS = 0 V  
± Guaranteed by design; not subject to production test.  
CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx  
Table 5.  
Parameter  
2ꢀ°C  
8ꢀ°C  
12ꢀ°C  
Unit  
CONTINUOUS CURRENT, Sx OR Dx  
VDD = +±5 V, VSS = −±5 V  
TSSOP (θJA = ±±2.6°C/W)  
LFCSP (θJA = 30.4°C/W)  
VDD = +20 V, VSS = −20 V  
TSSOP (θJA = ±±2.6°C/W)  
LFCSP (θJA = 30.4°C/W)  
VDD = ±2 V, VSS = 0 V  
89  
±60  
59  
94  
37  
49  
mA maximum  
mA maximum  
95  
±70  
63  
98  
39  
50  
mA maximum  
mA maximum  
TSSOP (θJA = ±±2.6°C/W)  
LFCSP (θJA = 30.4°C/W)  
VDD = 36 V, VSS = 0 V  
6±  
±±0  
43  
70  
29  
42  
mA maximum  
mA maximum  
TSSOP (θJA = ±±2.6°C/W)  
LFCSP (θJA = 30.4°C/W)  
80  
±44  
54  
87  
35  
47  
mA maximum  
mA maximum  
Rev. 0 | Page 7 of 20  
 
 
 
ADG5412/ADG5413  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 6.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
VDD to VSS  
48 V  
−0.3 V to +48 V  
+0.3 V to −48 V  
VSS − 0.3 V to VDD + 0.3 V or  
30 mA, whichever occurs first  
VSS − 0.3 V to VDD + 0.3 V or  
30 mA, whichever occurs first  
278 mA (pulsed at ± ms, ±0%  
duty cycle maximum)  
Data + ±5%  
VDD to GND  
VSS to GND  
Analog Inputs±  
Digital Inputs±  
Only one absolute maximum rating can be applied at any  
one time.  
Peak Current, Sx or Dx Pins  
ESD CAUTION  
Continuous Current, Sx or Dx2  
Temperature Range  
Operating  
Storage  
Junction Temperature  
Thermal Impedance, θJA  
−40°C to +±25°C  
−65°C to +±50°C  
±50°C  
±6-Lead TSSOP (4-Layer  
Board)  
±6-Lead LFCSP (4-Layer  
Board)  
±±2.6°C/W  
30.4°C/W  
Reflow Soldering Peak  
Temperature, Pb Free  
260(+0/−5)°C  
± Overvoltages at the INx, Sx, and Dx pins are clamped by internal diodes.  
Limit current to the maximum ratings given.  
2 See Table 5.  
Rev. 0 | Page 8 of 20  
 
 
 
ADG5412/ADG5413  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
IN1  
D1  
S1  
1
2
3
4
5
6
7
8
16 IN2  
15 D2  
14 S2  
PIN 1  
ADG5412/  
ADG5413  
TOP VIEW  
(Not to Scale)  
INDICATOR  
12 S2  
11 V  
S1  
1
2
3
4
V
13 V  
DD  
SS  
ADG5412/  
ADG5413  
V
DD  
SS  
GND  
12 NC  
11 S3  
10 D3  
GND  
10 NC  
9 S3  
S4  
D4  
TOP VIEW  
S4  
(Not to Scale)  
IN4  
9
IN3  
NC = NO CONNECT  
NOTES  
1. EXPOSED PAD TIED TO SUBSTRATE, V  
.
SS  
2. NC = NO CONNECT.  
Figure 3. LFCSP Pin Configuration  
Figure 2. TSSOP Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
LFCSP  
TSSOP  
Mnemonic  
Description  
±
2
3
4
±5  
±6  
±
2
3
IN±  
D±  
S±  
VSS  
Logic Control Input ±.  
Drain Terminal ±. This pin can be an input or output.  
Source Terminal ±. This pin can be an input or output.  
Most Negative Power Supply Potential.  
Ground (0 V) Reference.  
5
GND  
6
7
8
4
5
6
S4  
D4  
IN4  
Source Terminal 4. This pin can be an input or output.  
Drain Terminal 4. This pin can be an input or output.  
Logic Control Input 4.  
9
7
IN3  
Logic Control Input 3.  
±0  
±±  
±2  
±3  
±4  
±5  
±6  
8
9
D3  
S3  
NC  
VDD  
S2  
D2  
Drain Terminal 3. This pin can be an input or output.  
Source Terminal 3. This pin can be an input or output.  
No Connection.  
Most Positive Power Supply Potential.  
Source Terminal 2. This pin can be an input or output.  
Drain Terminal 2. This pin can be an input or output.  
Logic Control Input 2.  
±0  
±±  
±2  
±3  
±4  
EP  
IN2  
Exposed Pad  
The exposed pad is connected internally. For increased reliability of the solder joints  
and maximum thermal capability, it is recommended that the pad be soldered to the  
substrate, VSS.  
Table 8. ADG5412 Truth Table  
INx  
Switch Condition  
±
0
On  
Off  
Table 9. ADG5413 Truth Table  
INx  
S1, S4  
S2, S3  
On  
Off  
0
±
Off  
On  
Rev. 0 | Page 9 of 20  
 
ADG5412/ADG5413  
TYPICAL PERFORMANCE CHARACTERISTICS  
16  
12  
10  
8
T
= 25°C  
V
V
= +10V  
= –10V  
T = 25°C  
A
A
DD  
V
V
= +9V  
= –9V  
DD  
SS  
SS  
14  
12  
10  
8
V
V
= 32.4V  
= 0V  
DD  
SS  
V
V
= 36V  
= 0V  
DD  
SS  
V
V
= +11V  
= –11V  
DD  
SS  
6
V
V
= 39.6V  
= 0V  
DD  
SS  
V
V
=+13.5V  
= –13.5V  
DD  
SS  
V
V
= +16.5V  
= –16.5V  
DD  
SS  
V
V
= +15V  
= –15V  
6
DD  
SS  
4
4
2
2
0
0
–20  
–15  
–10  
–5  
0
V , V (V)  
5
10  
15  
20  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
V , V (V)  
S
D
S
D
Figure 4. RON as a Function of VS, VD (Dual Supply)  
Figure 7. RON as a Function of VS, VD (Single Supply)  
12  
10  
8
18  
16  
14  
12  
10  
8
V
V
= +18V  
= –18V  
DD  
SS  
T
= +125°C  
= +85°C  
A
V
V
= +22V  
= –22V  
T
DD  
SS  
A
V
= +20V  
= –20V  
DD  
SS  
V
6
T
= +25°C  
= –40°C  
A
T
A
4
6
4
2
2
V
V
= +15V  
= –15V  
DD  
SS  
T
= 25°C  
A
0
0
–15  
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
–10  
–5  
0
5
10  
15  
V , V (V)  
V , V (V)  
S
D
S
D
Figure 5. RON as a Function of VS, VD (Dual Supply)  
Figure 8. RON as a Function of VS (VD) for Different Temperatures,  
15 V Dual Supply  
16  
14  
12  
25  
20  
15  
10  
5
T
= 25°C  
A
V
V
= +10V  
= 0V  
DD  
SS  
V
V
= 10.8V  
= 0V  
DD  
SS  
V
V
= +9V  
= 0V  
DD  
SS  
T
= +125°C  
= +85°C  
A
10  
8
T
A
T
= +25°C  
= –40°C  
A
V
V
= 11V  
= 0V  
DD  
SS  
V
V
= 12V  
= 0V  
6
DD  
SS  
T
A
V
V
= 13.2V  
= 0V  
DD  
SS  
4
2
V
V
= +20V  
= –20V  
DD  
SS  
0
–20  
0
–15  
–10  
–5  
0
5
10  
15  
20  
0
2
4
6
8
10  
12  
14  
V , V (V)  
V , V (V)  
S
D
S
D
Figure 6. RON as a Function of VS, VD (Single Supply)  
Figure 9. RON as a Function of VS (VD) for Different Temperatures,  
20 V Dual Supply  
Rev. 0 | Page ±0 of 20  
 
ADG5412/ADG5413  
30  
25  
20  
15  
10  
5
0.8  
0.6  
V
V
= 12V  
= 0V  
V
V
V
= +20V  
= –20V  
BIAS  
DD  
SS  
DD  
SS  
= +15V/–15V  
I
, I (ON) + +  
S
D
I
, I (ON) – –  
S
D
T
= +125°C  
0.4  
A
I
(OFF) + –  
S
T
= +85°C  
A
0.2  
I
(OFF) – +  
D
T
= +25°C  
= –40°C  
A
0
T
A
–0.2  
–0.4  
–0.6  
I
(OFF) – +  
S
I
(OFF) + –  
D
0
0
2
4
6
8
10  
12  
0
25  
50  
75  
100  
125  
V , V (V)  
TEMPERATURE (°C)  
S
D
Figure 10. RON as a Function of VS (VD) for Different Temperatures,  
12 V Single Supply  
Figure 13. Leakage Currents vs. Temperature, 20 V Dual Supply  
16  
14  
12  
0.6  
V
V
V
= 12V  
= 0V  
BIAS  
DD  
SS  
I
, I (ON) + +  
S
D
= 1V/10V  
0.4  
0.2  
0
T
= +125°C  
= +85°C  
A
T
I
, I (ON) – –  
S
A
10  
8
D
I
(OFF) + –  
S
T
= +25°C  
= –40°C  
A
I
(OFF) – +  
D
T
6
A
4
2
I
(OFF) + –  
D
V
V
= 36V  
= 0V  
DD  
SS  
I
(OFF) – +  
S
0
–0.2  
0
5
10  
15  
20  
25  
30  
35  
40  
0
25  
50  
75  
100  
125  
V , V (V)  
TEMPERATURE (°C)  
S
D
Figure 11. RON as a Function of VS (VD) for Different Temperatures,  
36 V Single Supply  
Figure 14. Leakage Currents vs. Temperature, 12 V Single Supply  
0.8  
0.8  
V
V
V
= +15V  
= –15V  
BIAS  
V
V
V
= 36V  
= 0V  
BIAS  
DD  
SS  
DD  
SS  
I
, I (ON) + +  
S
D
= +10V/–10V  
= 1V/30V  
0.6  
0.4  
I
, I (ON) + +  
S
D
0.6  
0.4  
0.2  
0
I
, I (ON) – –  
S
D
I
, I (ON) – –  
S
D
I
(OFF) – +  
D
I
(OFF) + –  
S
0.2  
0
I
(OFF) + –  
S
–0.2  
–0.4  
–0.6  
I
(OFF) – +  
S
I
(OFF) – +  
D
–0.2  
–0.4  
I
(OFF) + –  
D
I
(OFF) – +  
S
I
(OFF) + –  
D
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Leakage Currents vs. Temperature, 15 V Dual Supply  
Figure 15. Leakage Currents vs. Temperature, 36 V Single Supply  
Rev. 0 | Page ±± of 20  
ADG5412/ADG5413  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
V
V
= 25°C  
= +15V  
SS  
T
V
V
= 25°C  
= +15V  
DD  
A
DD  
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
= –15V  
= –15V  
SS  
NO DECOUPLING  
CAPACITORS  
DECOUPLING  
CAPACITORS  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
1G  
40  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (Hz)  
Figure 16. Off Isolation vs. Frequency, 15 V Dual Supply  
Figure 19. ACPSRR vs. Frequency, 15 V Dual Supply  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
LOAD = 1k  
A
T
= 25°C  
= +15V  
SS  
A
DD  
T
= 25°C  
V
V
= –15V  
V
= 12V, V = 0V, V = 6V p-p  
SS  
DD  
S
V
= 36V, V = 0V, V = 18V p-p  
SS  
DD  
S
V
V
= 15V, V = 15V, V = 15V p-p  
SS  
DD  
S
= 20V, V = 20V, V = 20V p-p  
SS  
DD  
S
0
5
10  
FREQUENCY (MHz)  
15  
20  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 17. Crosstalk vs. Frequency, 15 V Dual Supply  
Figure 20. THD + N vs. Frequency, 15 V Dual Supply  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
T
V
V
= 25°C  
T
= 25°C  
A
A
= +15V  
= –15V  
DD  
SS  
V
V
= +20V  
= –20V  
DD  
SS  
V
V
= +36V  
= 0V  
DD  
SS  
V
DD  
= +15V  
= –15V  
V
V
= +12V  
= 0V  
DD  
SS  
V
SS  
0
–20  
–10  
0
10  
(V)  
20  
30  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
V
FREQUENCY (Hz)  
S
Figure 18. Charge Injection vs. Source Voltage  
Figure 21. Bandwidth  
Rev. 0 | Page ±2 of 20  
ADG5412/ADG5413  
350  
300  
250  
200  
150  
100  
50  
tON (12V)  
tON (±20V)  
tOFF (±15V)  
tON (±15V)  
tON (36V)  
tOFF (12V)  
tOFF (36V)  
tOFF (±20V)  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
Figure 22. tON, tOFF Times vs. Temperature  
Rev. 0 | Page ±3 of 20  
ADG5412/ADG5413  
TEST CIRCUITS  
I
(OFF)  
A
I
(OFF)  
A
S
D
Sx  
Dx  
I
(ON)  
A
D
Sx  
Dx  
V
V
D
V
S
S
V
D
Figure 23. On Leakage  
Figure 27. Off Leakage  
V
V
SS  
DD  
0.1µF  
0.1µF  
AUDIO PRECISION  
V
V
DD  
SS  
R
S
I
DS  
Sx  
Dx  
INx  
V
S
V p-p  
V1  
V
OUT  
V
IN  
R
L
1k  
Sx  
Dx  
GND  
V
S
R
= V /I  
DS  
ON  
1
Figure 24. On Resistance  
Figure 28. THD + Noise  
V
V
DD  
SS  
V
V
SS  
0.1µF  
0.1µF  
DD  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
NETWORK  
ANALYZER  
V
V
DD  
SS  
V
V
V
OUT  
DD  
SS  
S1  
R
L
50  
Sx  
Dx  
50ꢀ  
Dx  
R
50Ω  
L
INx  
S2  
V
S
V
V
S
OUT  
V
IN  
GND  
R
L
50ꢀ  
GND  
V
OUT  
V
WITH SWITCH  
CHANNEL-TO-CHANNEL CROSSTALK = 20 log  
OUT  
V
S
INSERTION LOSS = 20 log  
V
WITHOUT SWITCH  
OUT  
Figure 25. Channel-to-Channel Crosstalk  
Figure 29. Bandwidth  
V
V
DD  
SS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
DD  
SS  
Sx  
Dx  
50Ω  
50Ω  
INx  
IN  
V
S
V
OUT  
V
R
L
50Ω  
GND  
V
OUT  
OFF ISOLATION = 20 log  
V
S
Figure 26. Off Isolation  
Rev. 0 | Page ±4 of 20  
 
 
 
 
 
 
ADG5412/ADG5413  
V
V
DD  
SS  
V
0.1µF  
0.1µF  
IN  
50%  
50%  
0V  
0V  
V
S1  
V
SS  
D1  
90%  
DD  
90%  
V
V
OUT1  
OUT2  
V
V
V
S1  
OUT1  
C
35pF  
R
300  
L
L
S2  
D2  
V
S2  
OUT2  
C
35pF  
R
300ꢀ  
L
L
90%  
90%  
IN1,  
IN2  
0V  
ADG5413  
GND  
tD  
tD  
Figure 30. Break-Before-Make Time Delay, tD  
V
V
DD  
DD  
SS  
0.1µF  
0.1µF  
ADG5412  
V
50%  
50%  
IN  
V
V
SS  
V
L
OUT  
Sx  
Dx  
R
300ꢀ  
C
L
V
S
35pF  
INx  
90%  
90%  
V
OUT  
GND  
tOFF  
tON  
Figure 31. Switching Times  
V
V
DD  
DD  
SS  
V
V
SS  
V
ADG5412  
IN  
V
R
S
OUT  
Sx  
Dx  
ON  
OFF  
C
1nF  
L
V
S
IN  
V
OUT  
ΔV  
OUT  
Q
= C × ΔV  
L
OUT  
INJ  
GND  
Figure 32. Charge Injection  
Rev. 0 | Page ±5 of 20  
 
 
 
ADG5412/ADG5413  
TERMINOLOGY  
IDD  
CIN  
I
DD represents the positive supply current.  
CIN is the digital input capacitance.  
ISS  
tON  
t
I
SS represents the negative supply current.  
ON represents the delay between applying the digital control  
input and the output switching on.  
VD, VS  
VD and VS represent the analog voltage on Terminal D and  
tOFF  
Terminal S, respectively.  
tOFF represents the delay between applying the digital control  
input and the output switching off.  
RON  
RON represents the ohmic resistance between Terminal D and  
tD  
Terminal S.  
tD represents the off time measured between the 80% point of  
both switches when switching from one address state to  
another.  
ΔRON  
ΔRON represents the difference between the RON of any two  
channels.  
Off Isolation  
Off isolation is a measure of unwanted signal coupling through  
an off switch.  
RFLAT (ON)  
Flatness that is defined as the difference between the maximum  
and minimum value of on resistance measured over the specified  
Charge Injection  
analog signal range is represented by RFLAT (ON)  
.
Charge injection is a measure of the glitch impulse transferred  
from the digital input to the analog output during switching.  
IS (Off)  
IS (Off) is the source leakage current with the switch off.  
Crosstalk  
Crosstalk is a measure of unwanted signal that is coupled  
through from one channel to another as a result of parasitic  
capacitance.  
ID (Off)  
ID (Off) is the drain leakage current with the switch off.  
ID (On), IS (On)  
ID (On) and IS (On) represent the channel leakage currents with  
the switch on.  
Bandwidth  
Bandwidth is the frequency at which the output is attenuated  
by 3 dB.  
VINL  
On Response  
V
INL is the maximum input voltage for Logic 0.  
VINH  
INH is the minimum input voltage for Logic 1.  
INL, IINH  
On response is the frequency response of the on switch.  
Insertion Loss  
V
Insertion loss is the loss due to the on resistance of the switch.  
I
Total Harmonic Distortion + Noise (THD + N)  
The ratio of the harmonic amplitude plus noise of the signal to  
the fundamental is represented by THD + N.  
IINL and IINH represent the low and high input currents of the  
digital inputs.  
CD (Off)  
AC Power Supply Rejection Ratio (ACPSRR)  
CD (Off) represents the off switch drain capacitance, which is  
measured with reference to ground.  
ACPSRR is the ratio of the amplitude of signal on the output to the  
amplitude of the modulation. This is a measure of the ability of  
the part to avoid coupling noise and spurious signals that appear  
on the supply voltage pin to the output of the switch. The dc voltage  
on the device is modulated by a sine wave of 0.62 V p-p.  
CS (Off)  
CS (Off) represents the off switch source capacitance, which is  
measured with reference to ground.  
CD (On), CS (On)  
CD (On) and CS (On) represent on switch capacitances, which  
are measured with reference to ground.  
Rev. 0 | Page ±6 of 20  
 
ADG5412/ADG5413  
TRENCH ISOLATION  
NMOS  
PMOS  
In the ADG5412 and ADG5413, an insulating oxide layer  
(trench) is placed between the NMOS and the PMOS transistors  
of each CMOS switch. Parasitic junctions, which occur between  
the transistors in junction isolated switches, are eliminated, and  
the result is a completely latch-up proof switch.  
In junction isolation, the N and P wells of the PMOS and NMOS  
transistors form a diode that is reverse-biased under normal  
operation. However, during overvoltage conditions, this diode  
can become forward-biased. A silicon controlled rectifier (SCR)  
type circuit is formed by the two transistors causing a significant  
amplification of the current that, in turn, leads to latch-up. With  
trench isolation, this diode is removed, and the result is a latch-  
up proof switch.  
P-WELL  
N-WELL  
TRENCH  
BURIED OXIDE LAYER  
HANDLE WAFER  
Figure 33. Trench Isolation  
Rev. 0 | Page ±7 of 20  
 
ADG5412/ADG5413  
APPLICATIONS INFORMATION  
The ADG54xx family of switches and multiplexers provide a  
robust solution for instrumentation, industrial, automotive,  
aerospace, and other harsh environments that are prone to  
latch-up, which is an undesirable high current state that can  
lead to device failure and persists until the power supply is  
turned off. The ADG5412/ADG5413 high voltage switches  
allow single-supply operation from 9 V to 40 V and dual-supply  
operation from 9 V to 22 V. The ADG5412/ADG5413 (as  
well as other select devices within the same family) achieve an  
8 kV human body model ESD rating, which provides a robust  
solution eliminating the need for separate protect circuitry  
designs in some applications.  
Rev. 0 | Page 18 of 20  
 
ADG5412/ADG5413  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 34. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
4.10  
4.00 SQ  
3.90  
0.35  
0.30  
0.25  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
1
0.65  
BSC  
12  
EXPOSED  
PAD  
2.70  
2.60 SQ  
2.50  
4
5
9
8
0.45  
0.40  
0.35  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.  
Figure 35. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-16-17)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADG54±2BRUZ  
ADG54±2BRUZ-REEL7  
ADG54±2BCPZ-REEL7  
ADG54±3BRUZ  
ADG54±3BRUZ-REEL7  
ADG54±3BCPZ-REEL7  
Temperature Range  
−40°C to +±25°C  
−40°C to +±25°C  
−40°C to +±25°C  
−40°C to +±25°C  
−40°C to +±25°C  
−40°C to +±25°C  
Package Description  
Package Option  
RU-±6  
RU-±6  
CP-±6-±7  
RU-±6  
RU-±6  
±6-Lead Thin Shrink Small Outline Package [TSSOP]  
±6-Lead Thin Shrink Small Outline Package [TSSOP]  
±6-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
±6-Lead Thin Shrink Small Outline Package [TSSOP]  
±6-Lead Thin Shrink Small Outline Package [TSSOP]  
±6-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
CP-±6-±7  
± Z = RoHS Compliant Part.  
Rev. 0 | Page ±9 of 20  
 
 
ADG5412/ADG5413  
NOTES  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09202-0-7/10(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADG5412WBRUZ-REEL7

High Voltage Latch-Up Proof, Quad SPST Switches
ADI

ADG5412_11

High Voltage Latch-Up Proof, Quad SPST Switches
ADI

ADG5413

High Voltage Latch-Up Proof, Quad SPST Switches
ADI

ADG5413BCPZ-REEL7

High Voltage Latch-Up Proof, Quad SPST Switches
ADI

ADG5413BF

Bidirectional Fault Protection and Detection, 10 ohm RON, Quad SPST Switches
ADI

ADG5413BFBCPZ-RL7

Bidirectional Fault Protection and Detection, 10 ohm RON, Quad SPST Switches
ADI

ADG5413BFBRUZ

Bidirectional Fault Protection and Detection, 10 &Omega; RON, Quad SPST Switches, 2 x NO, 2 x NC
ADI

ADG5413BFBRUZ-RL7

Bidirectional Fault Protection and Detection, 10 ohm RON, Quad SPST Switches
ADI

ADG5413BRUZ

High Voltage Latch-Up Proof, Quad SPST Switches
ADI

ADG5413BRUZ-REEL7

High Voltage Latch-Up Proof, Quad SPST Switches
ADI

ADG5413F

Fault Protection and Detection, 10 ohm RON, Quad SPST Switches
ADI

ADG5413FBCPZ-RL7

Fault Protection and Detection, 10 ohm RON, Quad SPST Switches
ADI