ADG5421FBCPZ-RL7 [ADI]

±60 V Fault Protection and Detection, 11 Ω RON, Dual SPST Switch;
ADG5421FBCPZ-RL7
型号: ADG5421FBCPZ-RL7
厂家: ADI    ADI
描述:

±60 V Fault Protection and Detection, 11 Ω RON, Dual SPST Switch

文件: 总31页 (文件大小:587K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
60 V Fault Protection and Detection,  
11 Ω RON, Dual SPST Switch  
ADG5421F  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Overvoltage fault protection up to 60 V on S1 and S2 pins  
Power-off protection up to 60 V on S1 and S2 pins  
Known state without digital inputs present  
Low on resistance of 11 Ω typical  
ADG5421F  
D1  
D2  
S1  
S2  
Ultraflat, on resistance  
Latch-up immune under any circumstance  
3.5 kV human body model (HBM) ESD rating  
FAULT  
DETECTION  
AND SWITCH  
DRIVER  
FF  
VSS to VDD −2 V signal range  
IN1 IN2  
Fully specified at 15 V, 20 V, +12 V, and +36 V  
5 V to 22 V dual-supply operation  
8 V to 44 V single-supply operation  
Figure 1.  
10-lead, 3 mm × 2 mm, LFCSP  
APPLICATIONS  
Analog input and output modules  
Process control and distributed control systems  
Data acquisition  
COMPANION PRODUCTS  
Precision 24-Bit ADC: AD7768-1  
Precision 16-Bit, 2 MSPS SAR ADC: AD4000  
Instrumentation  
Avionics  
Automatic test equipment  
Communication systems  
Relay replacement  
GENERAL DESCRIPTION  
The ADG5421F is a dual SPST, low on resistance switch that  
features overvoltage protection, power-off protection, and  
overvoltage detection on the source pins.  
PRODUCT HIGHLIGHTS  
1. Source pins are protected against voltages greater than the  
supply rails, up to −60 V and +60 V in both powered and  
unpowered state.  
When no power supplies are present, the switch remains in the  
off condition, and the switch inputs are high impedance. When  
powered, if the analog input signal levels on either of the Sx pins  
exceed VDD or VSS by the threshold voltage, VT, both switches  
turn off together, and the open-drain fault flag (FF) pin pulls to a  
logic low. Input signal levels up to +60 V or −60 V relative to  
ground are blocked in both the powered and unpowered  
condition.  
2. Overvoltage detection with digital output indicates  
operating state of switches.  
3. Trench isolation guards against latch-up.  
4. The ADG5421F can operate from a dual supply of 5 V up  
to 22 V or a single power supply of +8 V up to +44 V.  
5. Negative channel metal oxide semiconductor (NMOS)  
only architecture requires 2 V headroom towards VDD and  
provides low RON and low RON flatness across the signal  
range of VSS to VDD − 2 V.  
The switches turn on with a Logic 1 input and conduct equally  
well in both directions. The digital input is compatible with  
1.8 V logic inputs over the full operating supply range.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for itsuse, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the propertyoftheir respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
 
ADG5421F  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Typical Performance Characteristics .......................................... 16  
Test Circuits.................................................................................... 21  
Terminology.................................................................................... 25  
Theory of Operation ...................................................................... 26  
Switch Architecture ................................................................... 26  
Overvoltage Fault Protection ................................................... 27  
Applications Information ............................................................. 28  
Power Supply Rails..................................................................... 28  
Power Supply Recommendations............................................ 28  
Power Supply Sequencing Protection ..................................... 28  
Signal Range................................................................................ 28  
Intelligent Fault Detection........................................................ 28  
Switch in a Known State............................................................ 28  
High Voltage Surge Suppression ............................................. 29  
Related Products......................................................................... 30  
Outline Dimensions....................................................................... 31  
Ordering Guide .......................................................................... 31  
Applications ...................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Companion Products....................................................................... 1  
Product Highlights........................................................................... 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
15 V Dual Supply....................................................................... 3  
20 V Dual Supply....................................................................... 5  
12 V Single Supply ....................................................................... 8  
36 V Single Supply ..................................................................... 11  
Continuous Current per Channel, S or D............................... 13  
Absolute Maximum Ratings ......................................................... 14  
Thermal Resistance.................................................................... 14  
Electrostatic Discharge (ESD) Ratings.................................... 14  
ESD Caution................................................................................ 14  
Pin Configuration and Function Descriptions .......................... 15  
REVISION HISTORY  
10/2020—Revision 0: Initial Version  
Rev. 0 | Page 2 of 31  
 
Data Sheet  
ADG5421F  
SPECIFICATIONS  
Table 1. Operating Supply Voltages  
Parameter  
SUPPLY VOLTAGE  
Dual  
Min  
Typ  
Max  
Unit  
±±  
8
±22  
44  
V
V
Single  
15 V DUAL SUPPLY  
VDD = 15 V 10%, VSS = −15 V 10%, and GND = 0 V, unless otherwise noted.  
Table 2.  
Parameter  
+25°C  
−40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
VDD = +13.± V, VSS = −13.± V  
VSS to  
VDD − 2  
V
On Resistance, RON  
11.±  
Ω typ  
Source voltage (VS) = VSS to 10 V,  
source current (IS) = 10 mA, see  
Figure 31  
14  
11  
13.±  
0.3  
0.7  
0.02  
0.06  
0.02  
0.2  
17.±  
17  
20.±  
20  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
VS = VSS to 10 V, IS = 10 mA  
VS = VSS to 9 V, IS = 10 mA  
VS = VSS to 9 V, IS = 10 mA  
VS = VSS to 10 V, IS = 10 mA  
VS = VSS to 10 V, IS = 10 mA  
VS = VSS to 9 V, IS = 10 mA  
VS = VSS to 9 V, IS = 10 mA  
VS = VSS to 10 V, IS = 10 mA  
VS = VSS to 10 V, IS = 10 mA  
VDD = +16.± V, VSS = −16.± V  
On-Resistance Flatness, RFLAT (ON)  
On-Resistance Matching, RMATCH (ON)  
0.8  
0.9  
0.1  
0.1  
0.3±  
0.4±  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
±0.0±  
±0.2  
nA typ  
VS = ±10 V, drain voltage (VD) = 
10 V,  
see Figure 32  
±2.±  
±22  
±8  
nA max  
nA max  
VS = ±10 V, drain voltage (VD) = 
10 V  
VS = ±10 V, drain voltage (VD) = 
10 V,  
−40°C to +10±°C  
Drain Off Leakage, ID (Off)  
±0.0±  
±0.2  
nA typ  
nA max  
nA max  
VS = ±10 V, VD =
10 V, see Figure 32  
VS = ±10 V, VD =
10 V  
±2.±  
±3.±  
±22  
±8  
VS = ±10 V, VD =
10 V,  
−40°C to +10±°C  
VS = ±10 V, VD = ±10 V, see Figure 33  
Channel On Leakage, ID (On), IS (On)  
±0.0±  
±0.3  
nA typ  
±30  
±14  
nA max VS = ±10 V, VD = ±10 V  
nA max VS = ±10 V, VD = ±10 V,  
−40°C to +10±°C  
FAULT  
Threshold Voltage, VT  
Source Leakage Current, IS  
With Overvoltage  
0.7  
V
See Figure 2±  
±30  
µA typ  
µA typ  
V
DD = +16.± V, VSS = −16.± V,  
GND = 0 V, VS = ±60 V, see Figure 34  
VDD = 0 V or floating, VSS = 0 V or  
Power Supplies Grounded or  
Floating  
±±.±  
floating, GND = 0 V, IN = 0 V or  
floating, VS = ±60 V, see Figure 3±  
Rev. 0 | Page 3 of 31  
 
 
 
ADG5421F  
Data Sheet  
Parameter  
Drain Leakage Current, ID  
With Overvoltage  
+25°C  
−40°C to +85°C −40°C to +125°C Unit  
nA typ  
Test Conditions/Comments  
±0.1  
±0.2  
±0.1  
±0.2  
V
DD = +16.± V, VSS = −16.± V,  
GND = 0 V, VS = ±60 V, see Figure 34  
DD = +16.± V, VSS = −16.± V,  
GND = 0 V, VS = ±60 V  
DD = 0 V, VSS = 0 V, GND = 0 V,  
±2  
±20  
nA max  
nA typ  
nA max  
µA typ  
V
Power Supplies Grounded  
Power Supplies Floating  
V
VS = ±60 V, IN = 0 V, see Figure 3±  
VDD = 0 V, VSS = 0 V, GND = 0 V,  
VS = ±60 V, IN = 0 V  
±2  
±20  
±0.1  
VDD = floating, VSS = floating, GND =  
0 V, VS = ±60 V, IN = 0 V, see Figure 3±  
DIGITAL INPUTS AND OUTPUTS  
Input Voltage High, VINH  
Input Voltage Low, VINL  
1.3  
0.8  
V min  
V max  
µA typ  
µA max  
pF typ  
V max  
Input Low or High Current, IINL or IINH  
0.7  
Input voltage (VIN) = 0 V or ± V  
VIN = 0 V or ± V  
1
Digital Input Capacitance, CIN  
Output Voltage Low, VOL  
DYNAMIC CHARACTERISTICS  
On Time, tON  
±
0.4  
Fault flag current (IFF) = 2 mA  
11.2  
µs typ  
Load resistance (RL) = 300 Ω,  
load capacitance (CL) = 3± pF,  
VS = 10 V, see Figure 4±  
14.1  
140  
14.1  
14.1  
µs max  
ns typ  
RL = 300 Ω, CL = 3± pF, VS = 10 V  
RL = 300 Ω, CL = 3± pF, VS = 10 V, see  
Figure 4±  
Off Time, tOFF  
170  
10  
7.7  
170  
7.6  
170  
7.6  
ns max  
µs typ  
µs min  
RL = 300 Ω, CL = 3± pF, VS = 10 V  
RL = 300 Ω, CL = 3± pF, VS = 10 V  
RL = 300 Ω, CL = 3± pF, VS = 10 V  
Break-Before-Make Time Delay, tD  
Overvoltage Response Time, tRESPONSE  
Positive  
160  
180  
420  
±10  
9.8  
ns typ  
ns max  
ns typ  
ns max  
µs typ  
µs max  
ns typ  
RL = 1 kΩ, CL = ± pF, see Figure 40  
RL = 1 kΩ, CL = ± pF  
RL = 1 kΩ, CL = ± pF, see Figure 41  
RL = 1 kΩ, CL = ± pF  
RL = 1 kΩ, CL = ± pF, see Figure 42  
RL = 1 kΩ, CL = ± pF  
Pull-up resistor (RPULLUP) = 1 kΩ, CL =  
12 pF, pull-up voltage (VPULL_UP) = ± V,  
see Figure 43  
190  
±40  
12.8  
190  
±70  
12.8  
Negative  
Overvoltage Recovery Time, tRECOVERY  
Interrupt Flag Response Time, tDIGRESP  
12.8  
110  
130  
1.8  
140  
2.6  
140  
2.6  
ns max  
µs typ  
µs max  
pC typ  
dB typ  
dB typ  
% typ  
RPULLUP = 1 kΩ, CL = 12 pF,  
VPULL_UP = ± V  
RPULLUP = 1 kΩ, CL = 12 pF,  
VPULL_UP = ± V, see Figure 44  
RPULLUP = 1 kΩ, CL = 12 pF,  
VPULL_UP = ± V  
VS = 0 V, source resistor (RS) = 0 Ω,  
CL = 1 nF, see Figure 46  
RL = ±0 Ω, CL = ± pF,  
frequency (f) = 1 MHz, see Figure 36  
RL = ±0 Ω, CL = ± pF, f = 1 MHz, see  
Figure 37  
Interrupt Flag Recovery Time, tDIGREC  
2.4  
Charge Injection, QINJ  
Off Isolation  
−13±  
−8±  
−78  
0.001  
Channel to Channel Crosstalk  
Total Harmonic Distortion Plus Noise,  
THD + N  
RL = 10 kΩ, VS = 10 V p-p,  
f = 20 Hz to 20 kHz, see Figure 39  
Rev. 0 | Page 4 of 31  
Data Sheet  
ADG5421F  
Parameter  
−3 dB Bandwidth  
Insertion Loss  
+25°C  
630  
−0.9±  
−40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
MHz typ RL = ±0 Ω, CL = ± pF, see Figure 38  
dB typ  
RL = ±0 Ω, CL = ± pF, f = 1 MHz, see  
Figure 38  
Source Off Capacitance, CS (Off)  
Drain Off Capacitance, CD (Off)  
Drain On Capacitance and Source On  
Capacitance, CD (On) and CS (On)  
7
±
11  
pF typ  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
Drain On Capacitance and Source On  
Capacitance Flatness, CDFLAT (On)  
and CSFLAT (On)  
Capacitance Matching, CMATCH (On)  
POWER REQUIREMENTS  
2.±  
0.3  
pF typ  
pF typ  
VS = VSS to VDD − 2 V, f = 1 MHz  
VS = VSS to VDD − 2 V, f = 1 MHz  
VDD = +16.± V, VSS = −16.± V, GND = 0 V,  
digital inputs = 0 V or +± V  
Normal Mode  
Positive Supply Current, IDD  
130  
20±  
±±  
90  
7±  
µA typ  
µA max  
µA typ  
µA max  
µA typ  
µA max  
20±  
90  
GND Current, IGND  
Negative Supply Current, ISS  
11±  
11±  
Fault Mode  
IDD  
VS = ±60 V  
18±  
270  
1±±  
210  
±±  
µA typ  
µA max  
µA typ  
µA max  
µA typ  
µA max  
270  
210  
90  
IGND  
ISS  
90  
20 V DUAL SUPPLY  
VDD = 20 V 10%, VSS = −20 V 10%, and GND = 0 V, unless otherwise noted.  
Table 3.  
Parameter  
+25°C  
−40°C to +85°C  
−40°C to +125°C  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
VDD = +18 V, VSS = −18 V  
VSS to  
VDD − 2  
V
RON  
11.±  
Ω typ  
VS = VSS to 1± V, IS = 10 mA,  
see Figure 31  
14  
11  
13.±  
0.6  
0.7  
0.02  
0.06  
0.02  
0.2  
17.±  
17  
20.±  
20  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
VS = VSS to 1± V, IS = 10 mA  
VS = VSS to 13.± V, IS = 10 mA  
VS = VSS to 13.± V, IS = 10 mA  
VS = VSS to 1± V, IS = 10 mA  
VS = VSS to 1± V, IS = 10 mA  
VS = VSS to 13.± V, IS = 10 mA  
VS = VSS to 13.± V, IS = 10 mA  
VS = VSS to 1± V, IS = 10 mA  
VS = VSS to 1± V, IS = 10 mA  
RFLAT (ON)  
0.8  
0.9  
0.1  
0.1  
RMATCH (ON)  
0.3±  
0.4±  
Rev. 0 | Page ± of 31  
 
ADG5421F  
Data Sheet  
Parameter  
+25°C  
−40°C to +85°C  
−40°C to +125°C  
Unit  
Test Conditions/Comments  
LEAKAGE CURRENTS  
IS (Off)  
VDD = +22 V, VSS = −22 V  
±0.0±  
±0.2  
nA typ  
nA max  
nA max  
VS = ±1± V, VD =
1± V, see Figure 32  
±2.±  
±22  
±8  
VS = ±1± V, VD =
1± V  
VS = ±1± V, VD =
1± V,  
−40°C to +10±°C  
ID (Off)  
±0.0±  
±0.2  
nA typ  
nA max  
nA max  
VS = ±1± V, VD =
1± V, see Figure 32  
VS = ±1± V, VD =
1± V  
±2.±  
±3.±  
±22  
±8  
VS = ±1± V, VD =
1± V,  
−40°C to +10±°C  
VS = ±1± V, VD = ±1± V, see Figure 33  
VS = ±1± V, VD = ±1± V  
VS = ±1± V, VD = ±1± V,  
−40°C to +10±°C  
ID (On), IS (On)  
±0.0±  
±0.3  
nA typ  
nA max  
nA max  
±30  
±14  
FAULT  
VT  
0.7  
V typ  
See Figure 2±  
IS  
With Overvoltage  
±30  
µA typ  
µA typ  
VDD = +22 V, VSS = −22 V,  
GND = 0 V, VS = ±60 V, see Figure 34  
VDD = 0 V or floating, VSS = 0 V or  
floating, GND = 0 V, IN = 0 V or  
floating, VS = ±60 V, see Figure 3±  
Power Supplies Grounded or  
Floating  
±±.±  
ID  
With Overvoltage  
±0.1  
±0.2  
±0.1  
±0.2  
nA typ  
nA max  
nA typ  
nA max  
µA typ  
VDD = +22 V, VSS = −22 V,  
GND = 0 V, VS = ±60 V, see Figure 34  
VDD = +22 V, VSS = −22 V,  
GND = 0 V, VS = ±60 V  
VDD = 0 V, VSS = 0 V, GND = 0 V,  
±2  
±2  
±20  
Power Supplies Grounded  
Power Supplies Floating  
VS = ±60 V, IN = 0 V, see Figure 3±  
±20  
V
DD = 0 V, VSS = 0 V, GND = 0 V,  
VS = ±60 V, IN = 0 V  
DD = floating, VSS = floating, GND =  
±0.1  
V
0 V, VS = ±60 V, IN = 0 V, see Figure 3±  
DIGITAL INPUTS AND OUTPUTS  
VINH  
VINL  
IINL or IINH  
1.3  
0.8  
V min  
V max  
µA typ  
µA max  
pF typ  
V max  
0.7  
VIN = 0 V or ± V  
VIN = 0 V or ± V  
1
CIN  
VOL  
±
0.4  
IFF = 2 mA  
DYNAMIC CHARACTERISTICS  
tON  
12.6  
µs typ  
RL = 300 Ω, CL = 3± pF, VS = 10 V,  
see Figure 4±  
1±.9  
140  
1±.9  
1±.9  
µs max  
ns typ  
RL = 300 Ω, CL = 3± pF, VS = 10 V  
RL = 300 Ω, CL = 3± pF, VS = 10 V,  
see Figure 4±  
tOFF  
160  
11.±  
8.9  
160  
8.8  
160  
8.8  
ns max  
µs typ  
µs min  
RL = 300 Ω, CL = 3± pF, VS = 10 V  
RL = 300 Ω, CL = 3± pF, VS = 10 V  
RL = 300 Ω, CL = 3± pF, VS = 10 V  
tD  
Rev. 0 | Page 6 of 31  
Data Sheet  
ADG5421F  
Parameter  
tRESPONSE  
+25°C  
−40°C to +85°C  
−40°C to +125°C  
Unit  
Test Conditions/Comments  
Positive  
160  
190  
360  
440  
11.7  
14.8  
120  
ns typ  
ns max  
ns typ  
ns max  
µs typ  
µs max  
ns typ  
RL = 1 kΩ, CL = ± pF, see Figure 40  
RL = 1 kΩ, CL = ± pF  
RL = 1 kΩ, CL = ± pF, see Figure 41  
RL = 1 kΩ, CL = ± pF  
RL = 1 kΩ, CL = ± pF, see Figure 42  
RL = 1 kΩ, CL = ± pF  
RPULLUP = 1 kΩ, CL = 12 pF,  
VPULL_UP = ± V, see Figure 43  
190  
460  
14.8  
190  
490  
14.9  
Negative  
tRECOVERY  
tDIGRESP  
140  
2.2  
140  
3
140  
3
ns max  
µs typ  
µs max  
pC typ  
dB typ  
dB typ  
% typ  
RPULLUP = 1 kΩ, CL = 12 pF,  
VPULL_UP = ± V  
tDIGREC  
R
PULLUP = 1 kΩ, CL = 12 pF,  
VPULL_UP = ± V, see Figure 44  
PULLUP = 1 kΩ, CL = 12 pF,  
2.8  
R
VPULL_UP = ± V  
VS = 0 V, RS = 0 Ω, CL = 1 nF,  
see Figure 46  
RL = ±0 Ω, CL = ± pF, f = 1 MHz,  
see Figure 36  
RL = ±0 Ω, CL = ± pF, f = 1 MHz,  
see Figure 37  
QINJ  
−1±0  
−8±  
−78  
0.001  
Off Isolation  
Channel to Channel Crosstalk  
THD + N  
RL = 10 kΩ, VS = 10 V p-p,  
f = 20 Hz to 20 kHz, see Figure 39  
−3 dB Bandwidth  
Insertion Loss  
630  
−0.9±  
MHz typ RL = ±0 Ω, CL = ± pF, see Figure 38  
dB typ  
RL = ±0 Ω, CL = ± pF, f = 1 MHz,  
see Figure 38  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
CDFLAT (On), CSFLAT (On)  
CMATCH (On)  
6
±
11  
2.±  
0.3  
pF typ  
pF typ  
pF typ  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VS = VSS to VDD − 2 V, f = 1 MHz  
VS = VSS to VDD − 2 V, f = 1 MHz  
POWER REQUIREMENTS  
VDD = +22 V, VSS = −22 V, GND = 0 V,  
digital inputs = 0 V or +± V  
Normal Mode  
IDD  
130  
20±  
±±  
90  
7±  
µA typ  
µA max  
µA typ  
µA max  
µA typ  
µA max  
20±  
90  
IGND  
ISS  
11±  
11±  
Fault Mode  
IDD  
VS = ±60 V  
18±  
270  
1±±  
210  
±±  
µA typ  
µA max  
µA typ  
µA max  
µA typ  
µA max  
270  
210  
90  
IGND  
ISS  
90  
Rev. 0 | Page 7 of 31  
ADG5421F  
Data Sheet  
12 V SINGLE SUPPLY  
VDD = 12 V 10%, VSS = 0 V 10%, and GND = 0 V, unless otherwise noted.  
Table 4.  
Parameter  
+25°C  
−40°C to +85°C  
−40°C to +125°C  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
VDD = 10.8 V, VSS = 0 V  
VSS to  
VDD − 2  
V
RON  
11.±  
Ω typ  
VS = 0 V to 7.± V, IS = 10 mA,  
see Figure 31  
14.±  
11  
13.±  
0.7  
1.2±  
0.01  
0.04  
0.02  
0.2  
18  
21.±  
20  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
VS = 0 V to 7.± V, IS = 10 mA  
VS = 0 V to 6 V, IS = 10 mA  
VS = 0 V to 6 V, IS = 10 mA  
VS = 0 V to 7.± V, IS = 10 mA  
VS = 0 V to 7.± V, IS = 10 mA  
VS = 0 V to 6 V, IS = 10 mA  
VS = 0 V to 6 V, IS = 10 mA  
VS = 0 V to 7.± V, IS = 10 mA  
VS = 0 V to 7.± V, IS = 10 mA  
VDD = 13.2 V, VSS = 0 V  
17  
RFLAT (ON)  
1.3  
0.06  
0.3±  
1.3±  
0.06  
0.4±  
RMATCH (ON)  
LEAKAGE CURRENTS  
IS (Off)  
±0.0±  
±0.2  
nA typ  
VS = 1 V to 10 V, VD = 10 V to 1 V,  
see Figure 32  
VS = 1 V to 10 V, VD = 10 V to 1 V  
VS = 1 V to 10 V, VD = 10 V to 1 V,  
−40°C to +10±°C  
VS = 1 V to 10 V, VD = 10 V to 1 V,  
see Figure 32  
VS = 1 V to 10 V, VD = 10 V to 1 V  
VS = 1 V to 10 V, VD = 10 V to 1 V,  
−40°C to +10±°C  
VS = 1 V to 10 V, VD = 10 V to 1 V,  
see Figure 33  
VS = 1 V to 10 V, VD = 10 V to 1 V  
±2.±  
±2.±  
±3.±  
±22  
±8  
nA max  
nA max  
ID (Off)  
±0.0±  
±0.2  
nA typ  
±22  
±8  
nA max  
nA max  
ID (On), IS (On)  
±0.0±  
±0.3  
nA typ  
±30  
±14  
nA max  
nA max  
VS = 1 V to 10 V, VD = 10 V to 1 V,  
−40°C to +10±°C  
FAULT  
VT  
0.7  
V typ  
See Figure 2±  
IS  
With Overvoltage  
±30  
µA typ  
µA typ  
VDD = 13.2 V, VSS = 0 V, GND = 0 V,  
VS = ±60 V, see Figure 34  
VDD = 0 V or floating, VSS = 0 V or  
floating, GND = 0 V, IN = 0 V or  
floating, VS = ±60 V, see Figure 3±  
Power Supplies Grounded or  
Floating  
±±.±  
ID  
With Overvoltage  
±0.1  
±0.2  
±0.1  
±0.2  
nA typ  
nA max  
nA typ  
nA max  
µA typ  
V
DD = +13.2 V, VSS = 0 V, GND = 0 V,  
VS = ±60 V, see Figure 34  
DD = +13.2 V, VSS = 0 V, GND = 0 V,  
VS = ±60 V  
DD = 0 V, VSS = 0 V, GND = 0 V,  
VS = ±60 V, IN = 0 V, see Figure 3±  
DD = 0 V, VSS = 0 V, GND = 0 V,  
±2  
±2  
±20  
V
Power Supplies Grounded  
Power Supplies Floating  
V
±20  
V
VS = ±60 V, IN = 0 V  
VDD = floating, VSS = floating, GND = 0 V,  
VS = ±60 V, IN = 0 V, see Figure 3±  
±0.1  
Rev. 0 | Page 8 of 31  
 
Data Sheet  
ADG5421F  
Parameter  
+25°C  
−40°C to +85°C  
−40°C to +125°C  
Unit  
Test Conditions/Comments  
DIGITAL INPUTS AND OUTPUTS  
VINH  
VINL  
IINL or IINH  
1.3  
0.8  
V min  
V max  
µA typ  
µA max  
pF typ  
V max  
0.7  
VIN = 0 V or ± V  
VIN = 0 V or ± V  
1
CIN  
VOL  
±
0.4  
IFF = 2 mA  
DYNAMIC CHARACTERISTICS  
tON  
±.3  
µs typ  
RL = 300 Ω, CL = 3± pF, VS = 8 V,  
see Figure 4±  
6.3  
200  
6.3  
6.3  
µs max  
ns typ  
RL = 300 Ω, CL = 3± pF, VS = 8 V  
RL = 300 Ω, CL = 3± pF, VS = 8 V,  
see Figure 4±  
tOFF  
240  
4.±  
3.±  
240  
3.4  
240  
3.4  
ns max  
µs typ  
µs min  
RL = 300 Ω, CL = 3± pF, VS = 8 V  
RL = 300 Ω, CL = 3± pF, VS = 8 V  
RL = 300 Ω, CL = 3± pF, VS = 8 V  
tD  
tRESPONSE  
Positive  
210  
2±0  
600  
700  
±.3  
ns typ  
ns max  
ns typ  
ns max  
µs typ  
µs max  
ns typ  
RL = 1 kΩ, CL = ± pF, see Figure 40  
RL = 1 kΩ, CL = ± pF  
RPULLUP = 1 kΩ, CL = ± pF, see Figure 41  
RPULLUP = 1 kΩ, CL = ± pF  
RL = 1 kΩ, CL = ± pF, see Figure 42  
RL = 1 kΩ, CL = ± pF  
RPULLUP = 1 kΩ, CL = 12 pF, VPULL_UP = ± V,  
2±0  
700  
6.±  
2±0  
700  
6.6  
Negative  
tRECOVERY  
6.2  
110  
tDIGRESP  
see Figure 43  
130  
1.6  
130  
2.4  
130  
2.4  
ns max  
µs typ  
RPULLUP = 1 kΩ, CL = 12 pF, VPULL_UP = ± V  
RPULLUP = 1 kΩ, CL = 12 pF, VPULL_UP = ± V,  
see Figure 44  
RPULLUP = 1 kΩ, CL = 12 pF, VPULL_UP = ± V  
VS = 6 V, RS = 0 Ω, CL = 1 nF,  
see Figure 46  
tDIGREC  
2.1  
−7±  
µs max  
pC typ  
QINJ  
Off Isolation  
−69  
dB typ  
dB typ  
% typ  
RL = ±0 Ω, CL = ± pF, f = 1 MHz, see  
Figure 36  
RL = ±0 Ω, CL = ± pF, f = 1 MHz,  
see Figure 37  
Channel to Channel Crosstalk  
THD + N  
−78  
0.0018  
RL = 10 kΩ, VS = 6 V p-p,  
f = 20 Hz to 20 kHz, see Figure 39  
−3 dB Bandwidth  
Insertion Loss  
±70  
−0.9±  
MHz typ RL = ±0 Ω, CL = ± pF, see Figure 38  
dB typ  
RL = ±0 Ω, CL = ± pF, f = 1 MHz,  
see Figure 38  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
CDFLAT (On), CSFLAT (On)  
CMATCH (On)  
8
7
11  
2
0.4  
pF typ  
pF typ  
pF typ  
pF typ  
pF typ  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
VS = VSS to VDD − 2 V, f = 1 MHz  
VS = VSS to VDD − 2 V, f = 1 MHz  
Rev. 0 | Page 9 of 31  
ADG5421F  
Data Sheet  
Parameter  
POWER REQUIREMENTS  
+25°C  
−40°C to +85°C  
−40°C to +125°C  
Unit  
Test Conditions/Comments  
DD = 13.2 V, VSS = 0 V, GND = 0 V,  
digital inputs = 0 V or ± V  
V
Normal Mode  
IDD  
12±  
200  
4±  
80  
80  
µA typ  
µA max  
µA typ  
µA max  
µA typ  
µA max  
200  
80  
IGND  
ISS  
120  
120  
Fault Mode  
IDD  
VS = ±60 V  
18±  
270  
1±±  
210  
±±  
µA typ  
µA max  
µA typ  
µA max  
µA typ  
µA max  
270  
210  
90  
IGND  
ISS  
90  
Rev. 0 | Page 10 of 31  
Data Sheet  
ADG5421F  
36 V SINGLE SUPPLY  
VDD = 36 V 10%, VSS = 0 V 10%, and GND = 0 V, unless otherwise noted.  
Table 5.  
Parameter  
+25°C  
−40°C to +85°C  
−40°C to +125°C  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
VDD = 32.4 V, VSS = 0 V  
VSS to  
VDD − 2  
V
RON  
12  
Ω typ  
VS = 0 V to 29.± V, IS = 10 mA, see  
Figure 31  
14.±  
11  
13.±  
1.1  
1.2±  
0.01  
0.04  
0.02  
0.2  
18  
21.±  
20  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
VS = 0 V to 29.± V, IS = 10 mA  
VS = 0 V to 27 V, IS = 10 mA  
VS = 0 V to 27 V, IS = 10 mA  
VS = 0 V to 29.± V, IS = 10 mA  
VS = 0 V to 29.± V, IS = 10 mA  
VS = 0 V to 27 V, IS = 10 mA  
VS = 0 V to 27 V, IS = 10 mA  
VS = 0 V to 29.± V, IS = 10 mA  
VS = 0 V to 29.± V, IS = 10 mA  
VDD = 39.6 V, VSS = 0 V  
17  
RFLAT (ON)  
1.3  
0.06  
0.3±  
1.3±  
0.06  
0.4±  
RMATCH (ON)  
LEAKAGE CURRENTS  
IS (Off)  
±0.0±  
±0.2  
nA typ  
VS = 1 V to 30 V, VD = 30 V to 1 V,  
see Figure 32  
VS = 1 V to 30 V, VD = 30 V to 1 V  
VS = 1 V to 30 V, VD = 30 V to 1 V,  
−40°C to +10±°C  
VS = 1 V to 30 V, VD = 30 V to 1 V,  
see Figure 32  
VS = 1 V to 30 V, VD = 30 V to 1 V  
VS = 1 V to 30 V, VD = 30 V to 1 V,  
−40°C to +10±°C  
VS = 1 V to 30 V, VD = 30 V to 1 V,  
see Figure 33  
VS = 1 V to 30 V, VD = 30 V to 1 V  
±2.±  
±2.±  
±3.±  
±22  
±8  
nA max  
nA max  
ID (Off)  
±0.0±  
±0.2  
nA typ  
±22  
±8  
nA max  
nA max  
ID (On), IS (On)  
±0.0±  
±0.3  
nA typ  
±30  
±14  
nA max  
nA max  
VS = 1 V to 30 V, VD = 30 V to 1 V,  
−40°C to +10±°C  
FAULT  
VT  
0.7  
V typ  
See Figure 2±  
IS  
With Overvoltage  
±30  
µA typ  
µA typ  
VDD = +39.6 V, VSS = 0 V, GND = 0 V,  
VS = +60 V, and VS = −40 V, see Figure 34  
VDD = 0 V or floating, VSS = 0 V or  
floating, GND = 0 V, IN = 0 V or  
floating, VS = ±60 V, see Figure 3±  
Power Supplies Grounded or  
Floating  
±±.±  
ID  
With Overvoltage  
±0.1  
±0.2  
±0.1  
±0.2  
nA typ  
nA max  
nA typ  
nA max  
µA typ  
V
DD = +39.6 V, VSS = 0 V, GND = 0 V,  
VS = +60 V and VS = −40 V, see Figure 34  
DD = +39.6 V, VSS = 0 V, GND = 0 V,  
VS = +60 V and VS = −40 V  
DD = 0 V, VSS = 0 V, GND = 0 V,  
VS = ±60 V, IN = 0 V, see Figure 3±  
DD = 0 V, VSS = 0 V, GND = 0 V,  
±2  
±2  
±20  
V
Power Supplies Grounded  
Power Supplies Floating  
V
±20  
V
VS = ±60 V, IN = 0 V  
VDD = floating, VSS = floating, GND = 0 V,  
VS = ±60 V, IN = 0 V, see Figure 3±  
±0.1  
Rev. 0 | Page 11 of 31  
 
ADG5421F  
Data Sheet  
Parameter  
+25°C  
−40°C to +85°C  
−40°C to +125°C  
Unit  
Test Conditions/Comments  
DIGITAL INPUTS AND OUTPUTS  
VINH  
VINL  
IINL or IINH  
1.3  
0.8  
V min  
V max  
µA typ  
µA max  
pF typ  
V max  
0.7  
VIN = 0 V or ± V  
VIN = 0 V or ± V  
1
CIN  
VOL  
±
0.4  
IFF = 2 mA  
DYNAMIC CHARACTERISTICS  
tON  
7.2  
µs typ  
RL = 300 Ω, CL = 3± pF, VS = 18 V,  
see Figure 4±  
8.7  
200  
8.7  
8.7  
µs max  
ns typ  
RL = 300 Ω, CL = 3± pF, VS = 18 V  
RL = 300 Ω, CL = 3± pF, VS = 18 V,  
see Figure 4±  
tOFF  
240  
6
4.7  
2±0  
4.6  
2±0  
4.6  
ns max  
µs typ  
µs min  
RL = 300 Ω, CL = 3± pF, VS = 18 V  
RL = 300 Ω, CL = 3± pF, VS = 18 V  
RL = 300 Ω, CL = 3± pF, VS = 18 V  
tD  
tRESPONSE  
Positive  
240  
290  
600  
700  
6.6  
ns typ  
ns max  
ns typ  
ns max  
µs typ  
µs max  
ns typ  
RL = 1 kΩ, CL = ± pF, see Figure 40  
RL = 1 kΩ, CL = ± pF  
RPULLUP = 1 kΩ, CL = ± pF, see Figure 41  
RPULLUP = 1 kΩ, CL = ± pF  
RL = 1 kΩ, CL = ± pF, see Figure 42  
RL = 1 kΩ, CL = ± pF  
RPULLUP = 1 kΩ, CL = 12 pF, VPULL_UP = ± V,  
290  
700  
10.8  
290  
700  
11.3  
Negative  
tRECOVERY  
10.7  
120  
tDIGRESP  
see Figure 43  
1±0  
4.1  
1±0  
8
1±0  
8.±  
ns max  
µs typ  
RPULLUP = 1 kΩ, CL = 12 pF, VPULL_UP = ± V  
RPULLUP = 1 kΩ, CL = 12 pF, VPULL_UP = ± V,  
see Figure 44  
RPULLUP = 1 kΩ, CL = 12 pF, VPULL_UP = ± V  
VS = 18 V, RS = 0 Ω, CL = 1 nF,  
see Figure 46  
tDIGREC  
7.8  
−11±  
µs max  
pC typ  
QINJ  
Off Isolation  
−70  
dB typ  
dB typ  
% typ  
RL = ±0 Ω, CL = ± pF, f = 1 MHz,  
see Figure 36  
RL = ±0 Ω, CL = ± pF, f = 1 MHz,  
see Figure 37  
Channel to Channel Crosstalk  
THD + N  
−78  
0.0008  
RL = 10 kΩ, VS = 18 V p-p,  
f = 20 Hz to 20 kHz, see Figure 39  
−3 dB Bandwidth  
Insertion Loss  
630  
−0.9±  
MHz typ RL = ±0 Ω, CL = ± pF, see Figure 38  
dB typ  
RL = ±0 Ω, CL = ± pF, f = 1 MHz,  
see Figure 38  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
CDFLAT (On), CSFLAT (On)  
CMATCH (On)  
6
±
10  
3.3  
0.3  
pF typ  
pF typ  
pF typ  
pF typ  
pF typ  
VS = 18 V, f = 1 MHz  
VS = 18 V, f = 1 MHz  
VS = 18 V, f = 1 MHz  
VS = VSS to VDD − 2 V, f = 1 MHz  
VS = VSS to VDD − 2 V, f = 1 MHz  
Rev. 0 | Page 12 of 31  
Data Sheet  
ADG5421F  
Parameter  
POWER REQUIREMENTS  
+25°C  
−40°C to +85°C  
−40°C to +125°C  
Unit  
Test Conditions/Comments  
DD = 39.6 V, VSS = 0 V, GND = 0 V,  
digital inputs = 0 V or ± V  
V
Normal Mode  
IDD  
12±  
200  
4±  
80  
80  
µA typ  
µA max  
µA typ  
µA max  
µA typ  
µA max  
200  
80  
IGND  
ISS  
120  
120  
Fault Mode  
IDD  
VS = +60 V and VS = −40 V  
18±  
270  
1±±  
210  
±±  
µA typ  
µA max  
µA typ  
µA max  
µA typ  
µA max  
270  
210  
90  
IGND  
ISS  
90  
CONTINUOUS CURRENT PER CHANNEL, S OR D  
Table 6.  
Parameter  
25°C  
85°C  
125°C  
Unit  
Test Conditions/Comments  
CONTINUOUS CURRENT, S OR D  
θJA = 170°C/W  
88  
81  
61  
±7  
41  
39  
mA max  
mA max  
VS = VSS to VDD − ± V  
VS = VSS to VDD − 2 V  
Rev. 0 | Page 13 of 31  
 
ADG5421F  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 7.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
VDD to VSS  
VDD to GND  
VSS to GND  
Sx Pins  
Value  
60 V  
−0.3 V to +48 V  
−28 V to +0.3 V  
−60 V to +60 V  
80 V  
θ
JA is the natural convection, junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure.  
JC is the junction to case thermal resistance.  
Sx to VDD  
Sx to VSS  
θ
80 V  
VS to VD  
80 V  
Table 8. Thermal Resistance  
Package Type1  
CP-10-16  
Dx Pins1  
VSS − 0.7 V to VDD + 0.7 V or  
30 mA, whichever occurs first  
GND − 0.7 V to 6 V or 30 mA,  
whichever occurs first  
278 mA (pulsed at 1 ms,  
10% duty cycle maximum)  
θJA  
170  
θJC  
±8.2  
Unit  
°C/W  
Digital Inputs  
1 Thermal impedance simulated values are based on a JEDEC 2S2P thermal  
test board with four thermal vias. See JEDEC JESD-±1.  
Peak Current, Sx or Dx Pins  
Digital Output  
GND − 0.7 V to 6 V or 30 mA,  
whichever occurs first  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
The following ESD information is provided for handling of  
ESD-sensitive devices in an ESD protected area only.  
Temperature  
Operating Range  
Storage Range  
Junction  
Reflow Soldering Peak, Pb-Free  
−40°C to +12±°C  
−6±°C to +1±0°C  
1±0°C  
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.  
ESD Ratings for ADG5421F  
As per JEDEC J-STD-020  
Table 9. ADG5421F, 10-Lead LFCSP  
ESD Model Withstand Threshold (kV)  
HBM1  
3.±  
1 Overvoltages at the Dx pins are clamped by the internal diodes. Limit  
current to the maximum ratings given.  
Class  
2
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
1 This is the HBM for the input and output port to supplies, the input and  
output port to the input and output port, and for all other pins.  
ESD CAUTION  
Rev. 0 | Page 14 of 31  
 
 
 
 
Data Sheet  
ADG5421F  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADG5421F  
TOP VIEW  
(Not to Scale)  
1
2
3
4
5
10  
9
S1  
S2  
D1  
D2  
8
IN1  
IN2  
FF  
7
GND  
6
V
V
SS  
DD  
Figure 2. Pin Configuration  
Table 10. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
S1  
S2  
FF  
Overvoltage Protected Source Terminal. S1 can be an input or an output.  
Overvoltage Protected Source Terminal. S2 can be an input or an output.  
Fault Flag Digital Output. The FF pin is an open-drain output that requires an external pull-up resistor. This digital  
output pulls low when a fault condition occurs on either of the Sx inputs.  
4
±
6
7
8
9
10  
GND  
VDD  
VSS  
IN2  
IN1  
D2  
Ground (0 V) Reference.  
Most Positive Power Supply Potential.  
Most Negative Power Supply Potential.  
Logic Control Input.  
Logic Control Input.  
Drain Terminal. D1 can be an input or an output.  
Drain Terminal. D2 can be an input or an output.  
D1  
Rev. 0 | Page 1± of 31  
 
ADG5421F  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
12.0  
20  
V
V
= +15V  
= –15V  
T
= 25°C  
DD  
A
V
V
= +20V  
= –20V  
DD  
SS  
SS  
11.8  
11.6  
11.4  
11.2  
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
18  
16  
14  
+125°C  
V
V
= +18V  
= –18V  
DD  
SS  
+105°C  
+85°C  
V
V
= +16.5V  
= –16.5V  
DD  
SS  
V
V
= +15V  
= –15V  
DD  
12  
10  
SS  
+25°C  
V
V
= +13.5V  
= –13.5V  
DD  
SS  
8
6
V
V
= +22V  
= –22V  
DD  
SS  
–40°C  
0
–15  
–10  
–5  
5
10  
V , V (V)  
S
D
V , V (V)  
S
D
Figure 3. On Resistance as a Function of VS, VD (Dual Supply)  
Figure 6. On Resistance as a Function of VS, VD for Different Temperatures,  
15 V Dual Supply  
12.0  
11.8  
11.6  
11.4  
11.2  
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
20  
V
V
= +20V  
= –20V  
T
= 25°C  
DD  
A
SS  
V
V
= 10.8V  
= 0V  
DD  
SS  
18  
16  
14  
+125°C  
+105°C  
+85°C  
V
V
= 12V  
= 0V  
DD  
SS  
12  
10  
+25°C  
8
6
V
V
= 13.2V  
= 0V  
DD  
SS  
–40°C  
0
0
1
2
3
4
5
6
7
8
9
10 11  
–20  
–15  
–10  
–5  
5
10  
15  
V , V (V)  
V , V (V)  
S D  
S
D
Figure 4. On Resistance as a Function of VS, VD (12 V Single Supply)  
Figure 7. On Resistance as a Function of VS, VD for Different Temperatures,  
20 V Dual Supply  
12.0  
20  
V
V
= 12V  
= 0V  
T
= 25°C  
DD  
SS  
A
11.8  
11.6  
11.4  
11.2  
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
18  
16  
14  
+125°C  
V
V
= 32.4V  
= 0V  
DD  
SS  
+105°C  
+85°C  
V
V
= 36V  
= 0V  
DD  
SS  
12  
10  
+25°C  
8
6
V
V
= 39.6V  
= 0V  
DD  
SS  
–40°C  
4
0
5
10  
15  
20  
V , V (V)  
25  
30  
35  
0
1
2
3
5
6
7
8
V , V (V)  
S
D
S
D
Figure 5. On Resistance as a Function of VS, VD (36 V Single Supply)  
Figure 8. On Resistance as a Function of VS, VD for Different Temperatures,  
12 V Single Supply  
Rev. 0 | Page 16 of 31  
 
Data Sheet  
ADG5421F  
20  
6
5
V
V
= 36V  
= 0V  
V
V
= 12V  
= 0V  
DD  
SS  
DD  
SS  
18  
16  
14  
+125°C  
I
(OFF) –+  
I
I
(OFF) –+  
(OFF) +–  
S
D
D
4
I (OFF) +–  
S
+105°C  
+85°C  
I , I (ON) –  
I , I (ON) ++  
S
D
S D  
3
2
12  
10  
+25°C  
–40°C  
1
0
8
6
–1  
0
5
10  
15  
20  
25  
30  
V , V (V)  
S
D
TEMPERATURE (°C)  
Figure 9. On Resistance as a Function of VS, VD for Different Temperatures,  
36 V Single Supply  
Figure 12. Leakage Current vs. Temperature, 12 V Single Supply  
9
10  
V
V
= +15V  
= –15V  
V
V
= 36V  
= 0V  
DD  
SS  
DD  
SS  
8
7
8
6
4
2
I
(OFF) –+  
I
I
(OFF) –+  
(OFF) +–  
I
(OFF) –+  
I
I
(OFF) –+  
(OFF) +–  
6
S
D
D
S
D
D
I (OFF) +–  
I (OFF) +–  
S
S
5
I , I (ON) –  
I , I (ON) ++  
I , I (ON) –  
I , I (ON) ++  
S
D
S
D
S
D
S D  
4
3
2
1
0
0
–1  
–2  
–2  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. Leakage Current vs. Temperature, 15 V Dual Supply  
Figure 13. Leakage Current vs. Temperature, 36 V Single Supply  
10  
10  
V
V
= +20V  
= –20V  
V
V
= +15V  
= –15V  
DD  
SS  
DD  
SS  
9
8
8
6
4
2
V
V
= –60V  
= +60V  
I
(OFF) –+  
I
I
(OFF) –+  
(OFF) +–  
S
S
7
S
D
D
I (OFF) +–  
S
6
I , I (ON) –  
I , I (ON) ++  
S
D
S D  
5
4
3
2
1
0
0
–2  
–1  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Leakage Current vs. Temperature, 20 V Dual Supply  
Figure 14. Dx Leakage Current vs. Temperature During Overvoltage,  
15 V Dual Supply  
Rev. 0 | Page 17 of 31  
ADG5421F  
Data Sheet  
10  
0
V
V
= +20V  
= –20V  
V
V
= +15V  
= –15V  
= 25°C  
DD  
SS  
DD  
9
8
SS  
–20  
–40  
T
A
V
V
= –60V  
= +60V  
S
S
7
6
–60  
5
–80  
4
–100  
–120  
3
2
1
–140  
–160  
0
–1  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 15. Dx Leakage Current vs. Temperature During Overvoltage,  
20 V Dual Supply  
Figure 18. Off Isolation vs. Frequency, 15 V Dual Supply  
8
0
V
V
= 12V  
= 0V  
T
= 25°C  
DD  
SS  
A
7
6
–20  
–40  
V
V
= 12V,  
= 0V  
DD  
SS  
V
V
= –60V  
= +60V  
S
S
5
–60  
4
–80  
V
V
= +15V,  
= –15V  
3
–100  
–120  
–140  
–160  
DD  
SS  
2
1
V
V
= 36V,  
= 0V  
DD  
SS  
0
V
V
= +20V,  
= –20V  
DD  
SS  
–1  
–2  
–180  
–200  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
V
(V)  
S
TEMPERATURE (°C)  
Figure 16. Dx Leakage Current vs. Temperature During Overvoltage,  
12 V Single Supply  
Figure 19. QINJ vs. VS  
6
0
V
V
= 36V  
= 0V  
V
V
= +15V  
= –15V  
= 25°C  
DD  
SS  
DD  
SS  
5
–20  
–40  
T
A
4
3
V
S
= –60V  
= +60V  
V
S
–60  
2
–80  
1
–100  
–120  
0
–1  
–2  
–140  
–160  
–3  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 17. Dx Leakage Current vs. Temperature During Overvoltage,  
36 V Single Supply  
Figure 20. AC Power Supply Rejection Ratio (PSRR) vs. Frequency,  
15 V Dual Supply  
Rev. 0 | Page 18 of 31  
 
Data Sheet  
ADG5421F  
0.0030  
16  
14  
12  
10  
8
R
A
= 10kΩ  
L
T
= 25°C  
0.0025  
0.0020  
0.0015  
0.0010  
SINGLE SUPPLY = 12V  
tON (±15V)  
tOFF (±15V)  
tON (±20V)  
tOFF (±20V)  
tON (+12V)  
tOFF (+12V)  
tON (+36V)  
tOFF (+36V)  
DUAL SUPPLY = ±15V  
DUAL SUPPLY = ±20V  
6
4
0.0005  
0
SINGLE SUPPLY = 36V  
2
0
0
4
8
12  
16  
20  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
Figure 21. THD + N vs. Frequency  
Figure 24. tON, tOFF Times vs. Temperature for Various Supplies  
0
0.90  
V
V
= +15V  
= –15V  
DD  
SS  
–1  
–2  
–3  
–4  
–5  
–6  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
V
= +15V  
= –15V  
= 25°C  
DD  
–7  
–8  
V
SS  
T
A
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
–40  
0
15  
85  
125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 25. VT vs. Temperature, 15 V Dual Supply  
Figure 22. Insertion Loss vs. Frequency,  
15 V Dual Supply  
20  
18  
16  
14  
12  
10  
8
0
–20  
–40  
OFF SOURCE  
OFF DRAIN  
ON SOURCE DRAIN  
T
= 25°C  
V
= +15V  
= –15V  
= 25°C  
A
DD  
V
SS  
T
A
–60  
–80  
6
–100  
–120  
–140  
4
2
0
–15  
–10  
–5  
0
5
10  
15  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
V
(V)  
FREQUENCY (Hz)  
S
Figure 26. Pin Capacitance vs. VS  
Figure 23. Crosstalk vs. Frequency, 15 V Dual Supply  
Rev. 0 | Page 19 of 31  
 
ADG5421F  
Data Sheet  
1.0  
V
V
= +15V  
= −15V  
T
T
= 25°C  
V
V
V
V
= +15V, V = –15V  
SS  
DD  
SS  
A
DD  
DD  
DD  
DD  
0.8  
0.6  
0.4  
0.2  
0
= +20V, V = –20V  
SS  
= 36V, V = 0V  
SS  
= 12V, V = 0V  
SS  
FF  
Dx  
2
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
SS  
Sx  
A
–20  
–10  
0
10  
20  
30  
CH1 10.0V CH2 10.0V  
CH3 10.0V CH4 10.0V  
1.00µs  
T
CH1  
–15.0V  
–70.00000ns  
V
(V)  
S
Figure 27. Pin Capacitance Matching vs. VS  
Figure 29. Drain Output Response to Negative Overvoltage  
20  
16  
12  
8
Sx  
V
V
= +15V  
= −15V  
V
V
A
= +10V  
T
DD  
SS  
DD  
SS  
= −10V  
T
= 25°C  
V
DD  
FF  
Dx  
2
4
0
1
10  
100  
CH1 10.0V CH2 10.0V  
CH3 10.0V CH4 10.0V  
1.00µs  
A
CH1  
15.4V  
T
0.000000s  
FREQUENCY (MHz)  
Figure 30. Large Voltage Signal Voltage vs. Frequency  
Figure 28. Drain Output Response to Positive Overvoltage  
Rev. 0 | Page 20 of 31  
 
Data Sheet  
ADG5421F  
TEST CIRCUITS  
V
I
I
D
S
Sx  
Dx  
Sx  
Dx  
A
A
R
10kΩ  
I
L
DS  
V
S
|V | > |V | OR |V  
DD SS  
|
S
R
= V/I  
DS  
ON  
Figure 34. Switch Overvoltage Leakage  
Figure 31. On Resistance (IDS Is the Drain to Source Current.)  
V
= V = GND = 0V  
SS  
DD  
I
I
D
I
(OFF)  
A
I
(OFF)  
A
S
S
D
Sx  
Dx  
Sx  
Dx  
A
A
R
10kΩ  
L
V
V
D
S
V
S
Figure 32. Off Leakage  
Figure 35. Switch Unpowered Leakage  
I
(ON)  
D
Sx  
Dx  
A
NC  
V
D
NC = NO CONNECT  
Figure 33. On Leakage  
V
V
DD  
SS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
DD  
SS  
Sx  
50Ω  
INx  
V
S
Dx  
V
OUT  
V
IN  
R
L
50Ω  
GND  
V
OUT  
OFF ISOLATION = 20 log  
V
S
Figure 36. Off Isolation (VOUT Is the Output Voltage)  
V
V
DD  
SS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
DD  
SS  
V
OUT  
S1  
R
L
50Ω  
Dx  
R
L
50Ω  
S2  
V
S
GND  
V
OUT  
CHANNEL-TO-CHANNEL CROSSTALK = 20 log  
V
S
Figure 37. Channel to Channel Crosstalk  
Rev. 0 | Page 21 of 31  
 
 
 
 
 
 
 
 
ADG5421F  
Data Sheet  
V
V
SS  
DD  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
DD  
SS  
Sx  
50Ω  
INx  
V
S
Dx  
V
OUT  
V
IN  
R
L
50Ω  
GND  
V
WITH SWITCH  
OUT  
INSERTION LOSS = 20 log  
V
WITHOUT SWITCH  
OUT  
Figure 38. Bandwidth  
V
V
SS  
DD  
0.1µF  
0.1µF  
AUDIO  
PRECISION  
V
V
DD  
SS  
R
S
Sx  
V
INx  
S
V p-p  
Dx  
V
OUT  
V
R
IN  
L
10kΩ  
GND  
Figure 39. THD + N  
V
V
V
DD  
SS  
0.1µF  
0.1µF  
V
+ 0.5V  
DD  
V
DD  
SS  
SOURCE  
VOLTAGE  
V
Sx  
Dx  
D
(+V  
)
S
C *  
L
5pF  
R
L
V
S
1kΩ  
0V  
ADG5421F  
+tRESPONSE  
V
DD  
V
× 0.5  
DD  
OUTPUT  
(V  
GND  
)
D
0V  
*INCLUDES TRACK CAPACITANCE  
Figure 40. Positive Overvoltage Response Time, tRESPONSE  
Rev. 0 | Page 22 of 31  
 
 
 
Data Sheet  
ADG5421F  
V
V
V
V
DD  
SS  
0.1µF  
0.1µF  
SOURCE  
VOLTAGE  
5V  
(V )  
S
V
– 0.5V  
SS  
0V  
R
1kΩ  
PULLUP  
DD  
SS  
V
Sx  
Dx  
D
C *  
L
V
S
5pF  
ADG5421F  
tRESPONSE  
5V  
GND  
OUTPUT  
D
(V ) + 1V  
*INCLUDES TRACK CAPACITANCE  
Figure 41. Negative Overvoltage Response Time, Single-Supply, tRESPONSE  
V
V
DD  
DD  
SS  
SS  
0.1µF  
0.1µF  
V
+ 0.5V  
DD  
V
V
SOURCE  
VOLTAGE  
V
Sx  
Dx  
D
(V  
)
S
C *  
L
5pF  
R
L
1kΩ  
V
S
0V  
ADG5421F  
tRECOVERY  
OUTPUT  
(V  
GND  
)
D
1V  
0V  
*INCLUDES TRACK CAPACITANCE  
Figure 42. Overvoltage Recovery Time, tRECOVERY  
V
V
V
DD  
DD  
SS  
0.1µF  
0.1µF  
V
+ 0.5V  
DD  
V
SS  
SOURCE  
VOLTAGE  
Sx  
Dx  
(V  
)
S
V
S
0V  
5V  
ADG5421F  
R
PULLUP  
tDIGRESP  
1kΩ  
OUTPUT  
FF  
C *  
L
12pF  
OUTPUT  
(V  
)
GND  
FF  
0.1V  
OUT  
0V  
*INCLUDES TRACK CAPACITANCE  
Figure 43. Interrupt Flag Response Time, tDIGRESP (VFF Is the Fault Flag Voltage)  
Rev. 0 | Page 23 of 31  
 
 
 
ADG5421F  
Data Sheet  
V
V
V
V
DD  
SS  
0.1µF  
0.1µF  
V
+ 0.5V  
DD  
DD  
SS  
SOURCE  
VOLTAGE  
Sx  
Dx  
(V )  
S
V
S
5V  
0V  
ADG5421F  
R
1kΩ  
PULLUP  
tDIGREC  
OUTPUT  
FF  
5V  
C *  
L
12pF  
3V  
OUTPUT  
GND  
(V  
)
FF  
0V  
*INCLUDES TRACK CAPACITANCE  
Figure 44. Interrupt Flag Recovery Time, tDIGREC  
V
V
DD  
SS  
0.1µF  
0.1µF  
ADG5421F  
V
50%  
50%  
IN  
V
V
SS  
DD  
V
L
OUT  
Sx  
Dx  
R
300Ω  
C
L
V
S
35pF  
INx  
90%  
V
OUT  
10%  
GND  
tOFF  
tON  
Figure 45. Switching Times, tON and tOFF  
V
V
V
DD  
SS  
0.1µF  
0.1µF  
ADG5421F  
V
DD  
SS  
V
IN  
V
R
OUT  
S
Sx  
Dx  
OFF  
ON  
C
1nF  
L
V
S
INx  
V
OUT  
ΔV  
OUT  
Q
= C × ΔV  
L
OUT  
INJ  
GND  
Figure 46. Charge Injection, QINJ  
Rev. 0 | Page 24 of 31  
 
 
 
Data Sheet  
ADG5421F  
TERMINOLOGY  
IDD  
tOFF  
tOFF represents the delay between applying the digital control  
I
DD represents the positive supply current.  
input and the output switching off.  
ISS  
ISS represents the negative supply current.  
tDIGRESP  
t
DIGRESP is the time required for the FF pin to go low (0.3 V),  
VD, VS  
measured with respect to voltage on the Sx pin exceeding the  
source voltage by 0.5 V.  
VD and VS represent the analog voltage on the Dx pins and the  
Sx pins, respectively.  
tDIGREC  
RON  
tDIGREC is the time required for the FF pin to return high,  
RON represents the ohmic resistance between the Dx pins and  
measured with respect to voltage on the Sx pin falling below  
the source voltage plus 0.5 V.  
the Sx pins.  
RFLAT (ON)  
tRESPONSE  
RFLAT (ON) is the flatness that is defined as the difference between  
the maximum and minimum value of on resistance measured  
over the specified analog signal range.  
tRESPONSE represents the delay between the source voltage  
exceeding the supply voltage by 0.5 V and the drain voltage  
falling to 90% of the supply voltage.  
IS (Off)  
tRECOVERY  
IS (Off) is the source leakage current with the switch off.  
tRECOVERY represents the delay between an overvoltage on the  
Sx pin falling below the supply voltage plus 0.5 V and the drain  
voltage rising from 0 V to 10% of the supply voltage.  
ID (Off)  
ID (Off) is the drain leakage current with the switch off.  
ID (On), IS (On)  
ID (On) and IS (On) represent the channel leakage currents with  
the switch on.  
Off Isolation  
Off isolation is a measure of unwanted signal coupling through  
an off switch.  
VINL  
Charge Injection  
Charge injection is a measure of the glitch impulse transferred  
from the digital input to the analog output during switching.  
VINL is the maximum input voltage for Logic 0.  
VINH  
VINH is the minimum input voltage for Logic 1.  
−3 dB Bandwidth  
Bandwidth is the frequency at which the output is attenuated  
by 3 dB.  
digital inputs.  
On Response  
On response is the frequency response of the on switch.  
CD (Off)  
CD (Off) represents the off switch Dx pin capacitance, which is  
measured with reference to ground.  
Insertion Loss  
Insertion loss is the loss due to the on resistance of the switch.  
CS (Off)  
THD + N  
CS (Off) represents the off switch Sx pin capacitance, which is  
measured with reference to ground.  
THD + N is the ratio of the harmonic amplitude plus noise of  
the signal to the fundamental.  
CD (On), CS (On)  
CD (On) and CS (On) represent on switch capacitances, which  
are measured with reference to ground.  
AC Power Supply Rejection Ratio (AC PSRR)  
AC PSRR is the ratio of the amplitude of signal on the output to  
the amplitude of the modulation. AC PSRR is a measure of the  
ability of the device to avoid coupling noise and spurious signals  
that appear on the supply voltage pins to the output of the switch  
(see Figure 20). The dc voltage on the device is modulated by a  
sine wave of 0.62 V p-p.  
CIN  
CIN is the digital input capacitance.  
tON  
tON represents the delay between applying the digital control  
VT  
input and the output switching on.  
VT is the voltage threshold at which the overvoltage protection  
circuitry engages.  
Rev. 0 | Page 25 of 31  
 
ADG5421F  
Data Sheet  
THEORY OF OPERATION  
During overvoltage conditions, the leakage current into and out  
of the Sx pins is limited to tens of microamperes and nanoamperes  
only for the Dx pins. This limit protects the switches and  
connected circuitry from overstresses and restricts the  
current drawn from the signal source.  
SWITCH ARCHITECTURE  
The ADG5421F consists of two switch channels of N channel  
diffused metal-oxide semiconductor (NDMOS) transistors.  
This construction provides excellent performance in a small  
area. The ADG5421F operates as a standard switch when input  
signals with a voltage between VSS and VDD − 2 V are applied.  
For example, the on resistance is 11 Ω typically, and the INx  
pins controls when the switches open or close.  
ESD Performance  
The ADG5421F has an ESD rating of 3.5 kV for the HBM.  
The Dx pins have ESD protection diodes to the rails, and the  
voltage at these pins must not exceed the supply voltage. The  
Sx pins have specialized ESD protection that allow the signal  
voltage to reach 60 V regardless of the supply voltage level.  
See Figure 47 for the switch channel overview.  
Additional internal circuitry enables the switches to detect  
overvoltage inputs by comparing the voltage on both the S1  
and S2 pins with the VDD and VSS pins. A signal is considered  
overvoltage when the signal exceeds the supply voltages by VT.  
VT is typically 0.7 V but can range from 0.76 V at −40°C down  
to 0.5 V at +125°C. See Figure 25 to see the change in VT with  
the operating temperature.  
V
DD  
ESD  
PROTECTION  
ESD  
DIODE  
Sx  
Dx  
ESD  
DIODE  
When an overvoltage condition is detected on either the S1 or  
S2 pins, both switches automatically open regardless of the  
digital logic state (INx). The S1 to D1 and S2 to D2 become  
high impedance and ensure that no current flows through  
the switches. In Figure 28, the voltage on the Dx pin follows the  
voltage on the Sx pins until the main channel switch turns off  
completely, and the drain voltage discharges through the load.  
The maximum voltage on the drain is limited by the internal  
ESD diodes and the rate at which the output voltage discharges  
is dependent on the load at the Dx pins.  
FAULT  
DETECTOR  
SWITCH  
DRIVER  
V
SS  
AND  
INx  
Figure 47. Switch Channel and Control Function  
Trench Isolation  
In the ADG5421F, an insulating oxide layer (trench) is placed  
between the NDMOS and the P-channel DMOS (PDMOS)  
transistors in the circuit. Parasitic junctions that occur between  
the transistors in the junction isolated switches are eliminated,  
and the result is a switch that is latch-up immune under all  
circumstances. These devices pass the JESD78D latch-up test.  
The maximum voltage that can be applied to any source input  
is +60 V or −60 V. When the ADG5421F is powered using a  
single supply of 25 V or greater, the maximum negative signal  
level reduces to remain within the 80 V maximum rating. For  
example, at VDD = +40 V, the maximum negative signal drops  
from −60 V to −40 V. Construction of the process allows the  
channel to withstand 80 V across either switch when the  
switches are open. Note that these overvoltage limits apply  
whether the power supplies are present or not.  
NDMOS  
PDMOS  
P WELL  
N WELL  
TRENCH  
BURIED OXIDE LAYER  
HANDLE WAFER  
Figure 48. Trench Isolation  
Rev. 0 | Page 26 of 31  
 
 
 
Data Sheet  
ADG5421F  
The switches respond to a voltage on either of the Sx pins that  
exceeds VDD or VSS by VT by turning off. The absolute input  
voltage limits are −60 V and +60 V, while maintaining an  
+80 V limit between the Sx pins and the supply rails. The  
switches remain off until the voltage at the Sx pins return to  
between VDD and VSS.  
OVERVOLTAGE FAULT PROTECTION  
When the voltage at the Sx inputs exceed VDD or VSS by VT, both  
switches turn off, or, if the device is unpowered, the switches  
remain off. Both switch inputs remain high impedance regardless  
of the digital input state or the load resistance, and the output  
acts as a virtual open circuit. Signal levels up to +60 V and −60 V  
are blocked in both the powered and unpowered condition as  
long as the +80 V absolute maximum rating limitation between  
the Sx pins and VDD or VSS pins is met (see Figure 49). For example  
with a +40 V single-supply, the overvoltage protection is +60 V  
and −40 V.  
When powered by the 15 V dual supply, the positive tRESPONSE  
is typically 160 ns, and tRECOVERY is 9.8 µs. These values vary with  
different supply voltage and output load conditions.  
Exceeding 60 V on either Sx input may damage the ESD  
protection circuitry on the ADG5421F.  
V
DD  
Power-Off Protection  
When no power supplies are present, the switches remain in an  
off state, and the switch inputs are high impedance. This state  
ensures that no current flows and prevents damage to the  
switches or downstream circuitry. The switch outputs are a  
virtual open circuit.  
80V  
80V  
ADG5421F  
Dx  
Sx  
The switches remain off regardless of whether the VDD and VSS  
supplies are 0 V or floating. A GND reference must always be  
present to ensure proper operation. Signal levels of up to 60 V  
are blocked when powered off.  
V
SS  
Figure 49. Sx to VDD or VSS Maximum Rating  
Overvoltage Interrupt Flag  
Power-On Protection  
The voltages on the Sx inputs of the ADG5421F are  
continuously monitored, and the active low digital output pin,  
FF, indicates the fault state.  
To activate the switches, the three following conditions must be  
meet:  
The voltage on the FF pin indicates if either of the Sx pins are  
experiencing a fault condition. The FF pin is an open-drain  
output that requires an external pull-up resistor. The output of  
the FF pin is high when both the Sx pins are within the normal  
operating range. If either of the Sx pin voltages exceeds the  
supply voltage (VDD or VSS) by VT, the FF output provides a low  
impedance path to GND.  
The minimum supply operating conditions in Table 1.  
The input signal must be between VSS − VT and VDD + VT.  
The digital logic control input, INx, is on.  
When the switches are on, signal levels from VSS up to VDD − 2 V  
are passed.  
Rev. 0 | Page 27 of 31  
 
 
ADG5421F  
Data Sheet  
APPLICATIONS INFORMATION  
POWER SUPPLY SEQUENCING PROTECTION  
The ADG5421F overvoltage protected switches provide a  
robust solution for instrumentation, industrial, aerospace, and  
other harsh environments where overvoltage signals can be  
present, and the system must remain operational both during  
and after an overvoltage occurs.  
When the ADG5421F is off, the switch channels remain open  
and signals from −60 V to +60 V can be applied without  
damaging the device. The switch channels only close when the  
supplies are connected, a suitable digital control signal is placed  
on the INx pins, and the signal is within the normal operating  
range. Note that placing the ADG5421F between external  
connectors and sensitive components offers protection in  
systems where a signal is presented to the Sx pins before the  
supply voltages are available.  
POWER SUPPLY RAILS  
To guarantee correct operation of the device, 0.1 µF decoupling  
capacitors are required on both VDD and VSS to GND.  
The ADG5421F can operate with bipolar supplies between 5 V  
and 22 V. Note that the VDD and VSS supplies do not have to be  
symmetrical, but the supply range must not exceed 44 V. The  
ADG5421F can also operate with single supplies between 8 V  
and 44 V with VSS connected to GND.  
SIGNAL RANGE  
The ADG5421F switches have overvoltage detection circuitry on  
the S1 and S2 pins that compares the voltage levels with VDD  
and VSS. To protect downstream circuitry from overvoltages,  
supply the ADG5421F with voltages that match the intended  
signal range. The NDMOS only architecture used in this switch  
allows signals up to VDD − 2 V to be passed with little distortion.  
A signal that exceeds the supply rail by VT is then blocked. This  
signal block offers protection to both the device and any  
downstream circuitry.  
The ADG5421F is fully specified at the 15 V, 20 V, +12 V,  
and +36 V supply ranges.  
POWER SUPPLY RECOMMENDATIONS  
Analog Devices, Inc., has a wide range of power management  
products to meet the requirements of most high performance  
signal chains.  
INTELLIGENT FAULT DETECTION  
An example of a bipolar power solution is shown in Figure 50.  
The ADP5070 (dual switching regulator) generates a positive and  
negative supply rail for the ADG5421F amplifier and/or a  
precision converter in a typical signal chain. Also shown in  
Figure 50 are two optional LDOs, ADP7118 and ADP7182,  
positive and negative low dropout (LDOs) regulators, respectively,  
that can be used to reduce the output ripple of the ADP5070 in  
ultralow noise sensitive applications.  
The ADG5421F digital output pin (FF) can interface with a  
microprocessor or control system and be used as an interrupt  
flag. This feature provides real-time diagnostic information on  
the state of the device and the system to which the device  
connects.  
The control system can use the digital interrupt to start a  
variety of actions, such as the following:  
+16.5V  
ADP7118  
+15V  
LDO  
Initiating investigation into the source of the overvoltage fault  
Shutting down critical systems in response to the overvoltage  
Data recorders marking data during these events as  
unreliable or out of specification  
+5V  
ADP5070  
INPUT  
–16.5V  
ADP7182  
–15V  
LDO  
Figure 50. Bipolar Power Solution  
For systems that are sensitive during a start-up sequence, the  
active low operation of the flag allows the system to ensure that  
the ADG5421F powers on and that all input voltages are within  
the normal operating range before initiating operation.  
Table 11. Recommended Power Management Devices  
Product  
Description  
ADP±070 1 A/0.6 A, dc-to-dc switching regulator with  
independent positive and negative outputs  
The FF pin is an open drain that requires an external pull-up  
resistor, which allows signals to be combined into a single  
interrupt for larger modules that contain multiple devices.  
ADP7118 20 V, 200 mA, low noise, CMOS LDO linear regulator  
ADP7182 −28 V, −200 mA, low noise, LDO linear regulator  
SWITCH IN A KNOWN STATE  
If no digital inputs are present on the switch control lines, INx,  
the switches remain in an off state to prevent any unwanted  
signals passing through the switch.  
Rev. 0 | Page 28 of 31  
 
 
 
 
 
 
 
 
Data Sheet  
ADG5421F  
Table 12 details the results achieved by using the discrete  
HIGH VOLTAGE SURGE SUPPRESSION  
protection circuit shown in Figure 51. To replicate the harshest  
environments, the surge test was performed by striking the  
Sx pins directly through a 40 Ω resistor and a 0.5 µF capacitor  
coupling network. The EFT test was performed by striking the  
Sx pins directly without any capacitive coupling through cables.  
To achieve protection from high voltage transients, such as  
IEC 61000-4-2 ESD, IEC 61000-4-4 electrical fast transient  
(EFT), and IEC 61000-4-5 surge, implement the circuit shown  
in Figure 51 by using discrete resistor and a transient voltage  
suppression (TVS) device.  
Table 12. High Voltage Transient Protection  
ADG5421F  
82Ω  
S1  
S2  
IEC 61000-4 Transient  
Protection Level (kV)  
D1  
D2  
V
IN  
ESD (Contact)  
EFT  
Surge  
±8  
±4  
±1  
60V  
TVS  
FAULT  
DETECTION  
AND SWITCH  
DRIVER  
FF  
IN1 IN2  
Figure 51. High Voltage Transient Protection  
Rev. 0 | Page 29 of 31  
 
 
 
ADG5421F  
Data Sheet  
RELATED PRODUCTS  
Table 13. Related Products to the ADG5421F  
Device(s)  
Configuration Fault Limit  
Fault Indicator Package  
Function  
ADG±401F  
SPST  
Voltage rails  
Voltage rails  
Voltage rails  
Voltage rails  
Voltage rails  
General flag  
General flag  
General flag  
LFCSP  
±60 V fault protection, 6 Ω RON,  
SPST switch with 0.6 kΩ feedback  
channel  
ADG±412F/ADG±413F  
Quad SPST  
TSSOP/LFCSP ±±± V fault protection and  
detection, 10 Ω RON, quad SPST  
switches  
TSSOP/LFCSP ±±± V bidirectional fault protection  
and detection, 10 Ω RON, quad SPST  
switches  
TSSOP/LFCSP ±±± V fault protection and  
detection, 10 Ω RON, 4-channel  
multiplexer  
TSSOP/LFCSP ±±± V fault protection and  
detection, 10 Ω RON, dual SPDT  
switch  
ADG±412BF/ADG±413BF Quad SPST  
ADG±404F  
ADG±436F  
ADG±462F  
4:1 mux  
General and  
specific flags  
Dual SPDT  
General and  
specific flags  
Quad channel  
protector  
Secondary  
supplies  
General flag  
TSSOP/LFCSP ±±± V fault protection and  
detection, 10 Ω RON, quad channel  
protector  
Rev. 0 | Page 30 of 31  
 
Data Sheet  
ADG5421F  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
0.30  
0.25  
0.20  
0.50 BSC  
6
10  
2.10  
2.00  
1.90  
0.45  
0.40  
0.35  
PIN 1  
CORNER  
1
5
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
PIN 1  
INDICATOR  
0.80  
0.75  
0.70  
0.55  
BSC  
0.050 MAX  
0.035 NOM  
COPLANARITY  
0.08  
0.203 REF  
SEATING  
PLANE  
Figure 52. 10-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 2 mm Body and 0.75 mm Package Height  
(CP-10-16)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
ADG±421FBCPZ-RL7  
EVAL-ADG±421FEBZ  
−40°C to +12±°C  
10-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
CP-10-16  
1 Z = RoHS Compliant Part.  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D25051-10/20(0)  
Rev. 0 | Page 31 of 31  
 
 

相关型号:

ADG5423

高压防闩锁型双通道SPST开关
ADI

ADG5423BRMZ

High Voltage Latch-Up Proof, Dual SPST Switches
ADI

ADG5423BRMZ-RL7

High Voltage Latch-Up Proof, Dual SPST Switches
ADI

ADG5433

High Voltage Latch-Up Proof, Triple/Quad SPDT Switches
ADI

ADG5433BCPZ-REEL7

High Voltage Latch-Up Proof, Triple/Quad SPDT Switches
ADI

ADG5433BRUZ

High Voltage Latch-Up Proof, Triple/Quad SPDT Switches
ADI

ADG5433BRUZ-REEL7

High Voltage Latch-Up Proof, Triple/Quad SPDT Switches
ADI

ADG5433WBRUZ

High Voltage Latch-Up Proof, Triple/Quad SPDT Switches
ADI

ADG5433WBRUZ-REEL7

IC SGL POLE DOUBLE THROW SWITCH, Multiplexer or Switch
ADI

ADG5434

High Voltage Latch-Up Proof, Triple/Quad SPDT Switches
ADI

ADG5434BCPZ-REEL7

High Voltage Latch-Up Proof, Triple/Quad SPDT Switches
ADI

ADG5434BRUZ

High Voltage Latch-Up Proof, Triple/Quad SPDT Switches
ADI