ADG792ABCPZ-500RL7 [ADI]

IC-Compatible, Wide Bandwidth, Triple 4:1 Multiplexer; IC兼容,宽带宽,三重4 : 1多路复用器
ADG792ABCPZ-500RL7
型号: ADG792ABCPZ-500RL7
厂家: ADI    ADI
描述:

IC-Compatible, Wide Bandwidth, Triple 4:1 Multiplexer
IC兼容,宽带宽,三重4 : 1多路复用器

复用器
文件: 总24页 (文件大小:582K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
I2C-Compatible, Wide Bandwidth,  
Triple 4:1 Multiplexer  
ADG792A/ADG792G  
FEATURES  
Bandwidth: 190 MHz  
FUNCTIONAL BLOCK DIAGRAMS  
V
V
DD  
DD  
GND  
GND  
Low insertion loss and on resistance: 2.6 Ω typical  
On resistance flatness: 0.3 Ω typical  
Single 3 V/5 V supply operation  
3.3 V analog signal range (5 V supply, 75 Ω load)  
Low quiescent supply current: 1 nA typical  
Fast switching times: tON 185 ns, tOFF 181 ns  
I2C®-compatible interface  
Compact, 24-lead, LFCSP package  
Two I2C-controllable logic outputs  
ESD protection  
ADG792A  
ADG792G  
S1A  
S1B  
S1C  
S1D  
S1A  
S1B  
S1C  
S1D  
D1  
D2  
D3  
D1  
D2  
S2A  
S2B  
S2C  
S2D  
S2A  
S2B  
S2C  
S2D  
S3A  
S3B  
S3C  
S3D  
S3A  
S3B  
S3C  
S3D  
D3  
4 kV human body model  
200 V machine model  
1 kV field-induced charged device model  
2
2
GPO1  
GPO2  
I C SERIAL  
I C SERIAL  
INTERFACE  
INTERFACE  
APPLICATIONS  
A0 A1 A2 SDA SCL  
A0 A1 A2 SDA SCL  
RGB/YPbPr video switches  
HDTV  
Figure 1.  
Projection TV  
DVD-R/RW  
AV receivers  
GENERAL DESCRIPTION  
arrays, the user can set the three I2C address pins allowing as  
many as eight devices to connect to the same bus.  
The ADG792A/ADG792G are monolithic CMOS devices, each  
comprising three 4:1 multiplexer/demultiplexers that are con-  
trollable through a standard I2C serial interface. The CMOS  
process provides ultralow power dissipation yet delivers high  
switching speed and low on resistance.  
The ADG792A/ADG792G operate from a single 3 V or 5 V  
supply voltage and is available in a compact 4 mm × 4 mm  
body, 24-lead, Pb-free, LFCSP package.  
The on resistance profile is very flat over the full analog input  
range, and wide bandwidth ensures excellent linearity and low  
distortion. These features, combined with a wide input signal  
range, make the ADG792A/ADG792G the ideal switching  
solution for a wide range of TV applications, including RGB  
and YPbPr video switches.  
PRODUCT HIGHLIGHTS  
1. Wide bandwidth: 190 MHz.  
2. Ultralow power dissipation.  
3. Extended input signal range.  
4. Integrated I2C serial interface.  
When turned on, the switches conduct equally well in both  
directions. In the off condition, signal levels, up to the supplies,  
are blocked. The ADG792A/ADG792G switches exhibit break-  
before-make switching action. The ADG792G also has two  
general-purpose logic output pins controllable through the I2C  
interface to control other non-I2C-compatible devices, such as  
video filters. The integrated I2C interface provides a large degree  
of flexibility in the system design. To build larger switching  
5. Compact 4 mm × 4 mm, 24-lead, Pb-free LFCSP package.  
6. ESD protection tested as per ESD Association Standards:  
4 kV HBM (ANSI/ESD STM5.1-2001)  
200 V MM (ANSI/ESD STM5.2-1999)  
1 kV FICDM (ANSI/ESDSTM5.3.1-1999)  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADG792A/ADG792G  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Terminology.................................................................................... 16  
Theory of Operation ...................................................................... 17  
I2C Serial Interface ..................................................................... 17  
I2C Address.................................................................................. 17  
Write Operation.......................................................................... 17  
LDSW Bit..................................................................................... 19  
Power On/Software Reset.......................................................... 19  
Read Operation........................................................................... 19  
Evaluation Board ............................................................................ 20  
Using the ADG792G Evaluation Board .................................. 20  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
I2C Timing Specifications............................................................ 7  
Absolute Maximum Ratings............................................................ 9  
ESD Caution.................................................................................. 9  
Pin Configurations and Function Descriptions ......................... 10  
Typical Performance Characteristics ........................................... 11  
Test Circuits..................................................................................... 14  
REVISION HISTORY  
7/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
ADG792A/ADG792G  
SPECIFICATIONS  
VDD = 5 V 10ꢀ, GND = 0 V, TA = −40°C to +85°C, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ1  
Max  
Unit  
ANALOG SWITCH  
Analog Signal Range2  
VS = VDD, RL = 1 MΩ  
VS = VDD, RL = 75 Ω  
VD = 0 V, IDS = −10 mA, see Figure 22  
VD = 0 V to 1 V, IDS = −10 mA, see  
Figure 22  
0
0
4
V
V
Ω
Ω
3.3  
3.5  
4
On Resistance, RON  
2.6  
On Resistance Matching Between Channels, ∆RON VD = 0 V IDS = −10 mA  
VD = 1 V IDS = −10 mA  
0.15  
0.3  
0.5  
0.6  
0.55  
Ω
Ω
Ω
On Resistance Flatness, RFLAT(ON)  
LEAKAGE CURRENTS  
VD = 0 V to 1 V, IDS = −10 mA  
Source Off Leakage (IS(OFF)  
)
VD = 4 V/1 V, VS = 1 V/4 V, see  
Figure 23  
VD = 4 V/1 V, VS = 1 V/4 V, see  
Figure 23  
0.25  
0.25  
0.25  
nA  
nA  
nA  
Drain Off Leakage (ID(OFF)  
)
Channel On Leakage (ID(ON), IS(ON)  
DYNAMIC CHARACTERISTICS3  
tON, tENABLE  
)
VD = VS = 4 V/1 V, see Figure 24  
CL = 35 pF, RL = 50 Ω, VS = 2 V, see  
Figure 28  
CL = 35 pF, RL = 50 Ω, VS = 2 V, see  
Figure 28  
CL = 35 pF, RL = 50 Ω, VS1 = VS2 = 2 V,  
see Figure 29  
185  
181  
3
240  
235  
ns  
ns  
ns  
tOFF, tDISABLE  
Break-Before-Make Time Delay, tD  
1
I2C to GPO Propagation Delay, tH, tL  
Off Isolation  
Channel-to-Channel Crosstalk  
Same Multiplexer  
Different Multiplexer  
−3 dB Bandwidth  
THD + N  
ADG792G only  
f = 10 MHz, RL = 50 Ω, see Figure 26  
f = 10 MHz, RL = 50 Ω, see Figure 27  
130  
ns  
dB  
−60  
−55  
−75  
190  
0.14  
5
dB  
dB  
MHz  
%
pC  
RL = 50 Ω, see Figure 25  
RL = 100 Ω  
CL = 1 nF, VS = 0 V, see Figure 30  
Charge Injection  
CS(OFF)  
10  
pF  
CD(OFF)  
26  
pF  
CD(ON), CS(ON)  
37  
pF  
Power Supply Rejection Ratio, PSRR  
Differential Gain Error  
Differential Phase Error  
LOGIC INPUTS (A0, A1, A2)3  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
Input Capacitance, CIN  
LOGIC INPUTS (SCL, SDA)3  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Leakage Current, IIN  
Input Hysteresis  
f = 20 kHz  
CCIR330 test signal  
CCIR330 test signal  
70  
0.58  
0.81  
dB  
%
Degrees  
2.0  
V
V
μA  
pF  
0.8  
1
VIN = 0 V to VDD  
0.005  
3
0.7 × VDD  
−0.3  
VDD + 0.3  
+0.3 × VDD  
1
V
V
μA  
V
pF  
VIN = 0 V to VDD  
+0.005  
0.05 × VDD  
3
Input Capacitance, CIN  
Rev. 0 | Page 3 of 24  
 
ADG792A/ADG792G  
Parameter  
LOGIC OUTPUTS3  
Conditions  
Min  
Typ1  
Max  
Unit  
SDA Pin  
Output Low Voltage, VOL  
ISINK = 3 mA  
ISINK = 6 mA  
0.4  
0.6  
±±  
±0  
V
V
μA  
pF  
Floating State Leakage Current  
Floating State Output Capacitance  
GPO± and GPO2 Pins  
Output Low Voltage, VOL  
Output High Voltage, VOH  
POWER REQUIREMENTS  
IDD  
ILOAD = +2 mA  
ILOAD = −2 mA  
0.4  
V
V
2.0  
Digital inputs = 0 V or VDD, I2C interface  
inactive  
0.00±  
±
μA  
I2C interface active, fSCL = 400 kHz  
I2C interface active, fSCL = 3.4 MHz  
0.2  
0.7  
mA  
mA  
± All typical values are at TA = +25°C, unless otherwise stated.  
2 Guaranteed by initial characterization, not subject to production test.  
3 Guaranteed by design, not subject to production test.  
Rev. 0 | Page 4 of 24  
 
 
ADG792A/ADG792G  
VDD = 3 V ꢀ1%, GND = 1 V, TA = −41°C to +85°C, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ1  
Max  
Units  
ANALOG SWITCH  
Analog Signal Range2  
VS = VDD, RL = 1 MΩ  
VS = VDD, RL = 75 Ω  
VD = 0 V, IS = −10 mA, see Figure 22  
VD = 0 V to 1 V, IS = −10 mA, see Figure 22  
0
0
2.2  
1.7  
4
V
V
On Resistance, RON  
3
Ω
Ω
Ω
Ω
Ω
6
On Resistance Matching Between Channels, ∆RON VD = 0 V IS = −10 mA  
VD = 1 V IS = −10 mA  
On Resistance Flatness, RFLAT(ON)  
LEAKAGE CURRENTS  
0.15  
0.8  
0.6  
0.8  
2.8  
VD = 0 V to 1 V, IS = −10 mA  
Source Off Leakage (IS(OFF)  
)
VD = 2 V/1 V, VS = 1 V/2 V, see Figure 23  
VD = 2 V/1 V, VS = 1 V/2 V, see Figure 23  
VD = VS = 2 V/1 V, see Figure 24  
0.25  
0.25  
0.25  
nA  
nA  
nA  
Drain Off Leakage (ID(OFF)  
)
Channel On Leakage (ID(ON), IS(ON)  
DYNAMIC CHARACTERISTICS3  
tON, tENABLE  
tOFF, tDISABLE  
Break-Before-Make Time Delay, tD  
)
CL = 35 pF, RL = 50 Ω, VS = 2 V, see Figure 28  
CL = 35 pF, RL = 50 Ω, VS = 2 V, see Figure 28  
CL = 35 pF, RL = 50 Ω, VS1 = VS2 = 2 V,  
see Figure 29  
200  
197  
3
260  
255  
ns  
ns  
ns  
1
I2C to GPO propagation delay, tH, tL  
Off Isolation  
Channel-to-Channel Crosstalk  
Same Multiplexer  
Different Multiplexer  
−3 dB Bandwidth  
THD + N  
ADG792G only  
f = 10 MHz, RL = 50 Ω, see Figure 26  
f = 10 MHz, RL = 50 Ω, see Figure 27  
121  
ns  
dB  
−60  
−55  
−75  
180  
0.14  
3.5  
dB  
dB  
MHz  
%
pC  
RL = 50 Ω, see Figure 25  
RL = 100 Ω  
CL = 1 nF, VS = 0 V, see Figure 30  
Charge Injection  
CS(OFF)  
10  
pF  
CD(OFF)  
26  
pF  
CD(ON), CS(ON)  
37  
pF  
Power Supply Rejection Ratio, PSRR  
Differential Gain Error  
Differential Phase Error  
LOGIC INPUTS (A0, A1, A2)3  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
Input Capacitance, CIN  
LOGIC INPUTS (SCL, SDA)3  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Leakage Current, IIN  
Input Hysteresis  
f = 20 kHz  
CCIR330 test signal  
CCIR330 test signal  
70  
0.49  
0.56  
dB  
%
Degrees  
2.0  
V
V
μA  
pF  
0.8  
1
VIN = 0 V to VDD  
+0.005  
3
0.7 × VDD  
−0.3  
VDD + 0.3  
+0.3 × VDD  
1
V
V
μA  
V
pF  
VIN = 0 V to VDD  
+0.005  
0.05 × VDD  
3
Input Capacitance, CIN  
LOGIC OUTPUTS3  
SDA Pin  
Output Low Voltage, VOL  
ISINK = 3 mA  
ISINK = 6 mA  
0.4  
0.6  
1
V
V
μA  
pF  
Floating State leakage Current  
Floating State Output Capacitance  
3
Rev. 0 | Page 5 of 24  
ADG792A/ADG792G  
Parameter  
Conditions  
Min  
Typ1  
Max  
Units  
GPO1 and GPO2 Pins  
Output Low Voltage, VOL  
Output High Voltage, VOH  
POWER REQUIREMENTS  
IDD  
ILOAD = +2 mA  
ILOAD = −2 mA  
0.4  
V
V
2.0  
Digital inputs = 0 V or VDD,  
I2C interface inactive  
0.001  
1
μA  
I2C interface active, fSCL = 400 kHz  
I2C interface active, fSCL = 3.4 MHz  
0.1  
0.2  
mA  
mA  
1All typical values are at TA = +25°C, unless otherwise stated.  
2 Guaranteed by initial characterization, not subject to production test.  
3 Guaranteed by design, not subject to production test.  
Rev. 0 | Page 6 of 24  
 
 
ADG792A/ADG792G  
I2C TIMING SPECIFICATIONS  
VDD = 2.7 V to 5.5 V; GND = 0 V; TA = −40°C to +85°C, unless otherwise noted. See Figure 2 for timing diagram.  
Table 3.  
Parameter1 Conditions  
Min  
Max  
100  
400  
Unit Description  
fSCL  
Standard mode  
Fast mode  
kHz  
kHz  
Serial clock frequency  
High speed mode  
CB = 100 pF max  
CB = 400 pF max  
Standard mode  
Fast mode  
High speed mode  
CB = 100 pF max  
CB = 400 pF max  
Standard mode  
Fast mode  
3.4  
1.7  
MHz  
MHz  
μs  
t1  
4
0.6  
tHIGH, SCL high time  
tLOW, SCL low time  
μs  
60  
ns  
ns  
μs  
μs  
120  
4.7  
1.3  
t2  
High speed mode  
CB = 100 pF max  
CB = 400 pF max  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
Fast mode  
160  
320  
250  
100  
10  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
t3  
tSU;DAT, data setup time  
tHD;DAT, data hold time  
2
t4  
0
0
3.45  
0.9  
High speed mode  
CB = 100 pF max  
CB = 400 pF max  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
Fast mode  
0
0
703  
150  
ns  
ns  
μs  
μs  
ns  
μs  
μs  
ns  
μs  
μs  
μs  
μs  
ns  
t5  
t6  
4.7  
0.6  
160  
4
0.6  
160  
4.7  
1.3  
4
tSU;STA, setup time for a repeated start condition  
tHD;STA, hold time (repeated) start condition  
High speed mode  
Standard mode  
Fast mode  
t7  
t8  
tBUF, bus free time between a stop and a start condition  
tSU;STO, setup time for stop condition  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
Fast mode  
High speed mode  
CB = 100 pF max  
CB = 400 pF max  
Standard mode  
Fast mode  
High speed mode  
CB = 100 pF max  
CB = 400 pF max  
Standard mode  
Fast mode  
0.6  
160  
t9  
1000 ns  
tRDA, rise time of SDA signal  
tFDA, fall time of SDA signal  
tRCL, rise time of SCL signal  
20 + 0.1 CB 300  
ns  
10  
20  
80  
160  
300  
ns  
ns  
ns  
ns  
t10  
20 + 0.1 CB 300  
10  
20  
80  
160  
ns  
ns  
t11  
1000 ns  
20 + 0.1 CB 300  
ns  
High speed mode  
CB = 100 pF max  
CB = 400 pF max  
10  
20  
40  
80  
ns  
ns  
Rev. 0 | Page 7 of 24  
 
ADG792A/ADG792G  
Parameter1 Conditions  
Min  
Max  
Unit Description  
t11A  
Standard mode  
Fast mode  
1000 ns  
tRCL1, rise time of SCL signal after a repeated start condition and after  
an acknowledge bit  
20 + 0.1 CB 300  
ns  
High speed mode  
CB = 100 pF max  
CB = 400 pF max  
Standard mode  
Fast mode  
10  
20  
80  
160  
300  
ns  
ns  
ns  
ns  
t12  
tFCL, fall time of SCL signal  
20 + 0.1 CB 300  
High speed mode  
CB = 100 pF max  
CB = 400 pF max  
Fast mode  
10  
20  
0
40  
80  
50  
10  
ns  
ns  
ns  
ns  
tSP  
Pulse width of suppressed spike  
High speed mode  
0
1
Guaranteed by initial characterization. CB refers to capacitive load on the bus line, tr and tf measured between 0.3 VDD and 0.7 VDD  
2 A device must provide a data hold time for SDA in order to bridge the undefined region of the SCL falling edge.  
.
Timing Diagram  
t11  
t12  
t6  
t2  
t6  
SCL  
t1  
t3  
t5  
t10  
t8  
t4  
t9  
SDA  
t7  
P
S
S
P
Figure 2. Timing Diagram for 2-Wire Serial Interface  
Rev. 0 | Page 8 of 24  
 
 
 
ADG792A/ADG792G  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to GND  
−0.3 V to +6 V  
Analog, Digital Inputs  
−0.3 V to VDD + 0.3 V or 30 mA,  
whichever occurs first  
Continuous Current, S or D Pins 100 mA  
Peak Current, S or D Pins  
300 mA (pulsed at 1 ms, 10%  
duty cycle max)  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Junction Temperature  
θJA Thermal Impedance  
24-Lead LFCSP  
Only one absolute maximum rating can be applied at any  
one time.  
−40°C to +85°C  
−65°C to +150°C  
150°C  
30°C/W  
300°C  
Lead Temperature, Soldering  
(10 sec)  
IR Reflow, Peak Temperature  
(<20 sec)  
260°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 9 of 24  
 
ADG792A/ADG792G  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
PIN 1  
PIN 1  
INDICATOR  
INDICATOR  
S1A 1  
S1B 2  
D1 3  
S1D 4  
S1C 5  
GPO2 6  
18 A2  
S1A  
S1B  
D1  
S1D  
S1C  
NC  
1
2
3
4
5
6
18 A2  
17 S3C  
16 S3D  
15 D3  
14 S3B  
13 S3A  
17 S3C  
16 S3D  
15 D3  
14 S3B  
13 S3A  
ADG792G  
ADG792A  
TOP VIEW  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
NOTES  
NOTES  
1. THE EXPOSED PAD  
MUST BE TIED TO GND.  
1. NC = NO CONNECT.  
2. THE EXPOSED PAD  
MUST BE TIED TO GND.  
Figure 4. ADG792G Pin Configuration  
Figure 3. ADG792A Pin Configuration  
Table 5. Pin Function Descriptions  
Pin  
No.  
1
2
3
Mnemonic  
ADG792A/ADG792G Function  
S1A  
S1B  
D1  
A Side Source Terminal for Mux 1. Can be an input or output.  
B Side Source Terminal for Mux 1. Can be an input or output.  
Drain Terminal for Mux 1. Can be an input or output.  
4
5
6
7
8
9
S1D  
S1C  
NC/GPO2  
S2A  
S2B  
D2  
D Side Source Terminal for Mux 1. Can be an input or output.  
C Side Source Terminal for Mux 1. Can be an input or output.  
Not internally connected for ADG792A/General-Purpose Logic Output 2 for ADG792G.  
A Side Source Terminal for Mux 2. Can be an input or output.  
B Side Source Terminal for Mux 2. Can be an input or output.  
Drain Terminal for Mux 2. Can be an input or output.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
S2D  
S2C  
NC/GPO1  
S3A  
S3B  
D3  
S3D  
S3C  
A2  
D Side Source Terminal for Mux 2. Can be an input or output.  
C Side Source Terminal for Mux 2. Can be an input or output.  
Not internally connected for ADG792A/General-Purpose Logic Output 1 for ADG792G.  
A Side Source Terminal for Mux 3. Can be an input or output.  
B Side Source Terminal for Mux 3. Can be an input or output.  
Drain Terminal for Mux 3. Can be an input or output.  
D Side Source Terminal for Mux 3. Can be an input or output.  
C Side Source Terminal for Mux 3. Can be an input or output.  
Logic Input. Sets Bit A2 from the least significant bits of the 7-bit slave address.  
Logic Input. Sets Bit A1 from the least significant bits of the 7-bit slave address.  
Logic Input. Sets Bit A0 from the least significant bits of the 7-bit slave address.  
A1  
A0  
SCL  
Digital Input, Serial Clock Line. Open-drain input that is used in conjunction with SDA to clock data into the  
device. External pull-up resistor required.  
22  
23  
24  
SDA  
VDD  
GND  
Digital Input/Output. Bidirectional open-drain data line. External pull-up resistor required.  
Positive Power Supply Input.  
Ground (0 V) Reference.  
Rev. 0 | Page 10 of 24  
 
ADG792A/ADG792G  
TYPICAL PERFORMANCE CHARACTERISTICS  
3.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
V
= 3.3V, R = 1M  
L
T
= 25°C  
A
DD  
A
V
= 5.0V  
= 5.5V  
DD  
1 CHANNEL  
1 CHANNEL  
V
= 3V, R = 1MΩ  
L
V
= 4.5V  
DD  
DD  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= 2.7V, R = 1MΩ  
DD  
DD  
L
V
= 3.3V, R = 75Ω  
DD  
L
V
= 3V, R = 75Ω  
L
DD  
V
= 2.7V, R = 75Ω  
DD  
L
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
0.5  
1.0  
1.5  
(V ) (V)  
2.0  
2.5  
3.0  
INPUT SIGNAL (V)  
V
D
S
Figure 5. Analog Signal Range (3 V Supply)  
Figure 8. On Resistance vs. VD (VS) with 5 V Supply  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
7
6
5
4
3
2
1
0
T
= 25°C  
V
= 5.5V, R = 1MΩ  
L
A
V
= 5V, R = 1MΩ  
DD  
DD  
L
1 CHANNEL  
= 3V  
V
= 5.5V, R = 75Ω  
DD  
L
V
DD  
V
= 4.5V, R = 1MΩ  
L
DD  
T
= +85°C  
A
V
= 5V, R = 75Ω  
L
DD  
V
= 4.5V, R = 75Ω  
DD  
L
T
= –40°C  
A
T
= +25°C  
A
T
= 25°C  
A
1 CHANNEL  
0
1
2
3
4
5
6
0
0.2  
0.4  
0.6  
0.8  
(V ) (V)  
1.0  
1.2  
1.4  
1.6  
INPUT SIGNAL (V)  
V
D
S
Figure 6. Analog Signal Range (5 V Supply)  
Figure 9. On Resistance vs. VD (VS) for Various Temperatures  
with 3 V Supply  
6
5
4
3
2
1
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
T
= +25°C  
A
T
= +85°C  
A
A
1 CHANNEL  
1 CHANNEL  
= 5V  
V
= 3.0V  
DD  
V
DD  
T
T
= +25°C  
= –40°C  
A
V
= 2.7V  
DD  
A
V
= 3.3V  
DD  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V ) (V)  
1.2  
1.4  
1.6  
1.8  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
V
D
V
(V ) (V)  
S
S
D
Figure 7. On Resistance vs. VD (VS) with 3 V Supply  
Figure 10. On Resistance vs. VD (VS) for Various Temperatures  
with 5 V Supply  
Rev. 0 | Page 11 of 24  
 
ADG792A/ADG792G  
0
–20  
0
T = 25°C  
A
T
= 25°C  
A
V
= 3V/5V  
DD  
–1  
–2  
–3  
–4  
–5  
–6  
–40  
SAME  
MULTIPLEXER  
V
= 3V  
V
= 5V  
DD  
DD  
–60  
DIFFERENT  
MULTIPLEXER  
–80  
–100  
–120  
0.01  
0.1  
1
10  
100  
1000  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
FREQUENCY (MHz)  
SOURCE VOLTAGE (V)  
Figure 11. Charge Injection vs. Source Voltage  
Figure 14. Crosstalk vs. Frequency  
220  
210  
200  
190  
180  
170  
160  
0
–2  
–4  
tON (3V)  
–6  
tOFF (3V)  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
tON (5V)  
tOFF (5V)  
T
V
= 25°C  
A
= 5V  
DD  
–40  
–20  
0
20  
40  
60  
80  
0.01  
0.1  
1
10  
100  
1000  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
Figure 12. tON/tOFF vs. Temperature  
Figure 15. Bandwidth  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–20  
T
= 25°C  
T
V
= 25°C  
A
A
1 CHANNEL  
= 3V/5V  
= 3V/5V  
DD  
V
DD  
NO DECOUPLING CAPACITORS USED  
–40  
–60  
–80  
–100  
–120  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. PSRR vs. Frequency  
Figure 13. Off Isolation vs. Frequency  
Rev. 0 | Page 12 of 24  
ADG792A/ADG792G  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
6
5
4
3
2
1
0
T
= 25°C  
T = 25°C  
A
A
V
= 5V  
DD  
V
= 5V  
DD  
V
= 3V  
DD  
V
= 3V  
DD  
0.1  
0.6  
1.1  
1.6  
2.1  
2.6  
3.1  
–20 –18 –16 –14 –12 –10  
–8  
–6  
–4  
–2  
0
LOAD CURRENT (mA)  
fCLK FREQUENCY (MHz)  
Figure 20. GPO VOH vs. Load Current  
Figure 17. IDD vs. fCLK Frequency  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
T
= 25°C  
A
A
V
= 3V  
V
= 5V  
DD  
DD  
V
= 5V  
DD  
V
= 3V  
DD  
–0.2  
0
5
10  
15  
20  
25  
30  
35  
0
1
2
3
4
5
6
LOAD CURRENT (mA)  
2
I C LOGIC INPUT VOLTAGE (V)  
Figure 18. IDD vs.I2C Logic Input Voltage (SDA, SCL)  
Figure 21. GPO VOL vs. Load Current  
120  
115  
110  
105  
100  
95  
tPHL (5V)  
tPHL (3V)  
tPLH (5V)  
tPLH (3V)  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 19. I2C to GPO Propagation Delay vs. Temperature  
Rev. 0 | Page 13 of 24  
ADG792A/ADG792G  
TEST CIRCUITS  
V
DD  
I
0.1µF  
DS  
NETWORK  
ANALYZER  
V1  
S
D
50  
50Ω  
SA  
SB  
50Ω  
V
S
V
S
R
= V1/I  
ON  
DS  
D
V
OUT  
50Ω  
GND  
Figure 22. On Resistance  
Figure 25. Bandwidth  
V
DD  
0.1µF  
I
(OFF)  
A
I
(OFF)  
A
S
D
NETWORK  
ANALYZER  
S
D
50Ω  
50Ω  
S
V
V
D
S
50Ω  
50Ω  
V
S
D
V
OUT  
50Ω  
GND  
Figure 26. Off Isolation  
Figure 23. Off Leakage  
V
DD  
0.1µF  
NETWORK  
ANALYZER  
I
(ON)  
A
D
S
D
50  
NC  
50Ω  
SX  
V
D
V
S
NC = NO CONNECT  
50Ω  
SY  
V
OUT  
R
L
50Ω  
DY  
DX  
GND  
5050Ω  
Figure 24. On Leakage  
Figure 27. Channel-to-Channel Crosstalk  
Rev. 0 | Page 14 of 24  
 
 
 
 
 
ADG792A/ADG792G  
5V  
CLOCK PULSES  
CORRESPONDING  
TO THE LDSW BITS  
CLOCK PULSES  
CORRESPONDING  
TO THE LDSW BITS  
0.1µF  
V
DD  
V
OUT  
S
D
SCL  
SCL  
50%  
50%  
50%  
50%  
R
50  
C
L
35pF  
L
V
S
2
I C  
INTERFACE  
90%  
90%  
V
V
GPO  
OUT  
10%  
10%  
tOFF  
tON  
tH  
tL  
SDA  
SCL  
GND  
Figure 28. Switching Times  
5V  
CLOCK PULSE CORRESPONDING  
TO THE LDSW BIT  
0.1µF  
V
DD  
SCL  
SA  
SB  
V
OUT  
D
V
V
S
80%  
OUT  
R
50Ω  
C
L
35pF  
L
V
S
2
I C  
INTERFACE  
tD  
SDA  
SCL  
GND  
Figure 29. Break-Before-Make Time Delay  
5V  
V
DD  
SWITCH ON  
R
ΔV  
S
SWITCH OFF  
OUT  
S
D
V
OUT  
Q
= C × ΔV  
OUT  
C
1nF  
INJ  
L
L
V
S
GND  
Figure 30. Charge Injection  
Rev. 0 | Page 15 of 24  
 
 
 
ADG792A/ADG792G  
TERMINOLOGY  
On Resistance (RON)  
Total Harmonic Distortion + Noise (THD + N)  
The ratio of the harmonic amplitudes plus noise of a signal to  
the fundamental.  
The series on-channel resistance measured between the  
S and D pins.  
On Resistance Match (ΔRON)  
−3 dB Bandwidth  
The channel-to-channel matching of on resistance when  
channels are operated under identical conditions.  
The frequency at which the output is attenuated by 3 dB.  
Off Isolation  
On Resistance Flatness (RFLAT(ON)  
)
The measure of unwanted signal coupling through an off switch.  
The variation of on resistance over the specified range produced  
by the specified analog input voltage change with a constant  
load current.  
Crosstalk  
The measure of an unwanted signal that is coupled through  
from one channel to another as a result of parasitic capacitance.  
Channel Off Leakage (IOFF  
The sum of leakage currents into or out of an off channel input.  
)
Charge Injection  
The measure of the glitch impulse transferred from the digital  
input to the analog output during on/off switching.  
Channel On Leakage (ION)  
The current loss/gain through an on-channel resistance,  
creating a voltage offset across the device.  
Differential Gain Error  
The measure of how much color saturation shift occurs when  
the luminance level changes. Both attenuation and amplification  
can occur; therefore, the largest amplitude change between any  
two levels is specified and expressed in ꢀ.  
Input Leakage Current (IIN, IINL, IINH  
)
The current flowing into a digital input when a specified low  
level or high level voltage is applied to that input.  
Input/Output Off Capacitance (COFF  
The capacitance between an analog input and ground when the  
switch channel is off.  
)
Differential Phase Error  
The measure of how much hue shift occurs when the luminance  
level changes. It can be a negative or positive value and is  
expressed in degrees of subcarrier phase.  
Input/Output On Capacitance (CON)  
The capacitance between the inputs or outputs and ground  
when the switch channel is on.  
Input High Voltage (VINH  
The minimum input voltage for Logic 1.  
)
Digital Input Capacitance (CIN)  
The capacitance between a digital input and ground.  
Input Low Voltage (VINL  
The maximum input voltage for Logic 0.  
)
Output On Switching Time (tON)  
Output High Voltage (VOH  
The minimum output voltage for Logic 1.  
)
The time required for the switch channel to close. The time is  
measured from 50ꢀ of the falling edge of the LDSW bit to the  
time the output reaches 90ꢀ of the final value.  
Output Low Voltage (VOL)  
The maximum output voltage for Logic 0.  
Output Off Switching Time (tOFF  
)
The time required for the switch to open. The time is measured  
from 50ꢀ of the falling edge of the LDSW bit to the time the  
output reaches 10ꢀ of the final value.  
IDD  
Positive supply current.  
I2C to GPO Propagation Delay (tH, tl)  
The time required for the logic value at the GPO pin to settle  
after loading a GPO command. The time is measured from 50ꢀ  
of the falling edge of the LDSW bit to the time the output  
reaches 90ꢀ of the final value for high and 10ꢀ for low.  
Rev. 0 | Page 16 of 24  
 
ADG792A/ADG792G  
THEORY OF OPERATION  
The transitions on the SDA line must occur during the low  
period of the clock signal, SCL, and remain stable during  
the high period of SCL, because a low-to-high transition  
when the clock signal is high can be interpreted as a stop  
event which ends the communication between the master  
and the addressed slave device.  
The ADG792A/ADG792G are monolithic CMOS devices, each  
comprising three 4:1 multiplexer/demultiplexers controllable  
via a standard I2C serial interface. The CMOS process provides  
ultralow power dissipation yet it delivers high switching speed  
and low on resistance.  
The on resistance profile is very flat over the full analog input  
range and the wide bandwidth ensures excellent linearity and  
low distortion. These features, combined with a wide input  
signal range, make the ADG792A/ADG792G the ideal switching  
solution for a wide range of TV applications.  
4. After transferring all data bytes, the master establishes a  
stop condition, defined as a low to high transition on the  
SDA line while SCL is high. In write mode, the master  
pulls the SDA line high during the tenth clock pulse to  
establish a stop condition. In read mode, the master issues  
a no acknowledge for the ninth clock pulse (the SDA line  
remains high). The master then brings the SDA line low  
before the tenth clock pulse, and then high during the  
tenth clock pulse to establish a stop condition.  
The switches conduct equally well in both directions when on.  
In the off condition, signal levels up to the supplies are blocked.  
The integrated serial I2C interface controls the operation of the  
multiplexers and general-purpose logic pins.  
I2C ADDRESS  
The ADG792A/ADG792G have many attractive features, such  
as the ability to individually control each multiplexer, the option  
of reading back the status of any switch, and two general-purpose  
logic output pins controllable through the I2C interface (available  
with the ADG792G only). The following sections describe these  
features in more detail.  
The ADG792A/ADG792G has a seven-bit I2C address. The four  
most significant bits are internally hardwired and the last three  
bits (A0, A1, and A2) are user-adjustable. This allows the user  
to connect up to eight ADG792A/ADG792Gs to the same bus.  
The I2C bit map shows the configuration of the seven-bit  
address.  
I2C SERIAL INTERFACE  
Seven-Bit I2C Address Bit Configuration  
The ADG792A/ADG792G are controlled via an I2C-compatible  
serial bus interface (refer to the I2C-Bus Specification available  
from Philips Semiconductor) that allows the part to operate as  
a slave device (no clock is generated by either the ADG792A or  
the ADG792G). The communication protocol between the I2C  
master and the device operates as follows:  
MSB  
LSB  
1
0
1
0
A2  
A1  
A0  
WRITE OPERATION  
When writing to the ADG792A/ADG792G, the user must  
1. The master initiates data transfer by establishing a start  
condition defined as a high to low transition on the SDA  
line while SCL is high. This indicates that an address/data  
stream follows. All slave devices connected to the bus  
respond to the start condition and shift in the next eight  
bits, consisting of a seven bit address (MSB first) plus an  
W
begin with an address byte and R/ bit, after which time  
the switch acknowledges that it is prepared to receive data  
by pulling SDA low. Data is loaded into the device as a 16-bit  
word under the control of a serial clock input, SCL. Figure 31  
illustrates the entire write sequence for the ADG792A/ADG792G.  
The first data byte (AX7 to AX0) controls the status of the  
switches and the LDSW and RESETB bits from the second byte  
control the operation mode of the device. Table 6 shows a list of  
all commands supported by the ADG792A/ADG792G with the  
corresponding byte that needs to be loaded during a write  
operation.  
W
R/ bit. This bit determines the direction of the data flow  
during the communication between the master and the  
addressed slave device.  
2. The slave device whose address corresponds to the  
transmitted address responds by pulling the SDA line  
low during the ninth clock pulse (this is termed the  
acknowledge bit).  
To achieve the desired configuration, one or more commands  
can be loaded into the device. Any combination of the commands  
listed in Table 6 can be used with the following restrictions:  
At this stage, all other devices on the bus remain idle while  
the selected device waits for data to be written to, or read  
Only one switch from a given multiplexer can be on at any  
given time.  
W
from, its serial register. If the R/ bit is set high, the master  
W
reads from the slave device. However, if the R/ bit is set  
low, the master writes to the slave device.  
When a sequence of successive commands affect the same  
element (that is, the switch or GPO pin), only the last  
command is executed.  
3. Data transmits over the serial bus in sequences of nine clock  
pulses (eight data bits followed by an acknowledge bit).  
Rev. 0 | Page 17 of 24  
 
ADG792A/ADG792G  
SCL  
A2  
A1  
A0 R/W  
AX7 AX6 AX5 AX4 AX3 AX2 AX1 AX0  
X
X
X
X
X
X
SDA  
STOP  
CONDITION  
BY MASTER  
START  
CONDITION  
BY MASTER  
ADDRESS BYTE  
RESETB  
LDSW  
ACKNOWLEDGE  
BY SWITCH  
ACKNOWLEDGE  
BY SWITCH  
ACKNOWLEDGE  
BY SWITCH  
Figure 31. Write Operation  
Table 6. ADG792A/ADG792G Command List  
AX7  
AX6  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
AX5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AX4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
AX3  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
AX2  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
AX1  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
1
0
0
0
0
1
1
AX0  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
1
0
0
1
1
1
1
Addressed Switch/GPO Pin  
S1A/D1, S2A/D2, S3A/D3 off  
S1A/D1, S2A/D2, S3A/D3 on  
S1B/D1,S2B/D2, S3B/D3 off  
S1B/D1,S2B/D2, S3B/D3 on  
S1C/D1, S2C/D2, S3C/D3 off  
S1C/D1, S2C/D2, S3C/D3 on  
S1D/D1, S2D/D2, S3D/D3 off  
S1D/D1, S2D/D2, S3D/D3 on  
S1A/D1 off  
0
1
0
1
0
1
0
1
0
1
S1A/D1 on  
0
S1B/D1 off  
1
S1B/D1 on  
0
S1C/D1 off  
1
S1C/D1 on  
0
S1D/D1 off  
1
S1D/D1 on  
0
S2A/D2 off  
1
S2A/D2 on  
0
S2B/D2 off  
1
S2B/D2 on  
0
S2C/D2 off  
1
S2C/D2 on  
0
S2D/D2 off  
1
S2D/D2 on  
0
S3A/D3 off  
1
S3A/D3 on  
0
S3B/D3 off  
1
S3B/D3 on  
0
S3C/D3 off  
1
S3C/D3 on  
0
S3D/D3 off  
1
S3D/D3 on  
X1  
X1  
X1  
0
Mux1 disabled (all switches connected to D1 are off)  
Mux2 disabled (all switches connected to D2 are off)  
Mux3 disabled (all switches connected to D3 are off)  
Reserved for ADG792A/ GPO1 low for ADG792G  
Reserved for ADG792A/ GPO1 high for ADG792G  
Reserved for ADG792A/ GPO2 low for ADG792G  
Reserved for ADG792A/ GPO2 high for ADG792G  
1
0
1
0
Reserved for ADG792A/ GPO1, GPO2 low for ADG792G  
Reserved for ADG792A/GPO1, GPO2 high for ADG792G  
All muxes disabled (all switches are off)  
Reserved  
1
0
1
1 X = logic state does not matter.  
Rev. 0 | Page 18 of 24  
 
 
 
 
ADG792A/ADG792G  
operation of the multiplexers and GPO pins, this bit should be  
set high. When RESETB = low, or after power-up, the switches  
from all multiplexers are turned off (open) and the GPO pins  
are set to low.  
LDSW BIT  
The LDSW bit allows the user to control the way the device  
executes the commands loaded during the write operations.  
The ADG792A/ADG792G execute all the commands loaded  
between two successive write operations that have set the  
LDSW bit high.  
READ OPERATION  
When reading data back from the ADG792A/ADG792G, the  
W
user must begin with an address byte and R/ bit. The switch  
Setting the LDSW high for every write cycle ensures that the  
device executes the command immediately after the LDSW bit  
is loaded into the device. This setting is used when the desired  
configuration can be achieved by sending a single command, or  
when the switches and/or GPO pin are not required to be updated  
at the same time. When the desired configuration requires  
multiple commands with a simultaneous update, the LDSW bit  
should be set low while loading the commands, except for the  
last one when the LDSW bit should be set high. Once the last  
command with LDSW = high is loaded, the device simultaneously  
executes all commands received since the last update.  
then acknowledges that it is prepared to transmit data by pulling  
SDA low. Following this acknowledgement, the ADG792A/  
ADG792G transmit two bytes on the next clock edges. These  
bytes contain the status of the switches, and each byte is followed  
by an acknowledge bit. A logic high bit represents a switch in  
the on (close) state, and a low represents a switch in the off  
(open) state. For the GPO pin (ADG792G only), the bit repre-  
sents the logic value of the pin. Figure 32 illustrates the entire  
read sequence.  
The bit maps accompanying Figure 32 show the relationship  
between the elements of the ADG792A and ADG792G (that is,  
the switches and GPO pins) and the bits that represent their  
status after a completed read operation.  
POWER ON/SOFTWARE RESET  
The ADG792A/ADG792G have a software reset function  
implemented by the RESETB bit from the second data byte  
loaded into the device during a write operation. For normal  
Bit Map ADG792A  
RB15  
RB14  
RB13  
RB12  
RB11  
RB10  
RB9  
RB8  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1 RB0  
RB1 RB0  
S1A/D1 S1B/D1 S1C/D1 S1D/D1 S2A/D2 S2B/D2 S2C/D2 S2D/D2 S3A/D3 S3B/D3 S3C/D3 S3D/D3  
Bit Map ADG792G  
RB15  
RB14  
RB13  
RB12  
RB11  
RB10  
RB9  
RB8  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
S1A/D1 S1B/D1 S1C/D1 S1D/D1 S2A/D2 S2B/D2 S2C/D2 S2D/D2 S3A/D3 S3B/D3 S3C/D3 S3D/D3 GPO1 GPO2  
SCL  
A2  
A1  
A0 R/W  
RB15 RB14 RB13 RB12 RB11 RB10 RB9 RB8  
RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0  
SDA  
STOP  
CONDITION  
START  
ADDRESS BYTE  
BY MASTER  
CONDITION  
BY MASTER  
ACKNOWLEDGE  
BY SWITCH  
ACKNOWLEDGE  
BY SWITCH  
ACKNOWLEDGE  
BY SWITCH  
Figure 32. Read Operation  
Rev. 0 | Page 19 of 24  
 
 
ADG792A/ADG792G  
EVALUATION BOARD  
1200 × 768. See Figure 33 and Figure 34 for schematics of the  
evaluation board.  
The ADG792G evaluation kit allows designers to evaluate the  
high performance of the devices with a minimum of effort.  
USING THE ADG792G EVALUATION BOARD  
The evaluation kit includes a printed circuit board populated  
with the ADG792G. The evaluation board can be used to  
evaluate the performance of both the ADG792A and  
ADG792G. It interfaces to the USB port of a PC, or it can be  
used as a standalone evaluation board.  
The ADG792G evaluation kit is a test system designed to  
simplify the evaluation of the device. Each input/output of the  
part comes with a socket specifically chosen for easy audio/video  
evaluation. An evaluation board data sheet is also available with  
the evaluation board and provides full instructions for operating  
the evaluation board.  
Software is available with the evaluation board that allows the  
user to easily program the ADG792G through the USB port. The  
software runs on any PC that has Microsoft® Windows® 2000 or  
Windows XP installed with a minimum screen resolution of  
Rev. 0 | Page 20 of 24  
 
ADG792A/ADG792G  
4 0 1 9 - 0 2 0 6  
D
D
D
D
D
D
D
G N  
G N  
G N  
G N  
G N  
G N  
G N  
5 6  
5 3  
4 1  
2 8  
2 6  
1 2  
1 0  
C
C
C
C
C
C
C
V C  
V C  
V C  
V C  
V C  
V C  
V C  
5 5  
4 3  
3 2  
2 7  
1 7  
1 1  
7
C C A V  
3
Figure 33. Eval-ADG792GEB Schematic, USB Controller Section  
Rev. 0 | Page 21 of 24  
 
ADG792A/ADG792G  
4 0 2 9 - 0 2 0 6  
1 0 k  
R 8  
J 8  
J 7  
J 3  
1 0 k  
R 4  
1 0 k  
R 3  
R 1 8  
K 1  
D
G N  
M O T T B O  
C A S  
1
2
E
E
4
5
P
T O  
3
C A S  
L A U D O _ O H N P  
R 3 0  
R 2 9  
R 2 8  
R 1 7  
R 1 6  
0  
R 3 5  
L A U D O _ O H N P  
E S C A  
5
K 2  
0  
R 3 4  
T O P  
E S C A  
3
4
D
G N  
M O T T B O  
C A S  
M O T T B O  
1 8  
1 7  
1 6  
1 5  
1 4  
1 3  
1
1
2
D
G N  
2
2
3
4
5
6
1
E
E
4
5
P
T O  
K 9  
3
C A S  
R 1 5  
R 1 4  
L A U D O _ O H N P  
L A U D O _ O H N P  
E S C A  
5
T O P  
E S C A  
3
2
4
M O T T B O  
K 3  
R 2 7  
R 2 6  
D
G N  
1
D
G N  
M O T T B O  
C A S  
K 8  
1
2
E
E
4
5
P
T O  
3
C A S  
L A U D O _ O H N P  
E S C A  
L A U D O _ O H N P  
R 1 3  
5
T O P  
E S C A  
M O T T B O  
3
4
R 2 5  
2
D
G N  
1
K 7  
Figure 34. Eval-ADG792GEB Schematic, Chip Section  
Rev. 0 | Page 22 of 24  
 
ADG792A/ADG792G  
OUTLINE DIMENSIONS  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
1
24  
19  
18  
0.50  
BSC  
PIN 1  
INDICATOR  
*
2.45  
2.30 SQ  
2.15  
TOP  
3.75  
EXPOSED  
VIEW  
BSC SQ  
PA D  
(BOTTOMVIEW)  
0.50  
0.40  
0.30  
6
13  
12  
7
0.23 MIN  
2.50 REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-2  
EXCEPT FOR EXPOSED PAD DIMENSION  
Figure 35. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-24-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
I2C Speed  
Package Description  
Package Option  
CP-24-2  
CP-24-2  
CP-24-2  
CP-24-2  
ADG792ABCPZ-REEL1  
ADG792ABCPZ-500RL71  
ADG792ACCPZ-REEL1  
ADG792ACCPZ-500RL71  
ADG792GBCPZ-REEL1  
ADG792GBCPZ-500RL71  
ADG792GCCPZ-REEL1  
ADG792GCCPZ-500RL71  
EVAL-ADG792GEB2  
100 kHz, 400 kHz  
100 kHz, 400 kHz  
100 kHz, 400 kHz, 3.4MHz  
100 kHz, 400 kHz, 3.4MHz  
100 kHz, 400 kHz  
100 kHz, 400 kHz  
100 kHz, 400 kHz, 3.4MHz  
100 kHz, 400 kHz, 3.4MHz  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
Evaluation Board  
CP-24-2  
CP-24-2  
CP-24-2  
CP-24-2  
1 Z = Pb-free part.  
2 The evaluation board is RoHS compliant.  
Rev. 0 | Page 23 of 24  
 
 
ADG792A/ADG792G  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips  
I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06029-0-7/06(0)  
Rev. 0 | Page 24 of 24  

相关型号:

ADG792ABCPZ-REEL

IC-Compatible, Wide Bandwidth, Triple 4:1 Multiplexer
ADI

ADG792ACCPZ-500RL7

IC-Compatible, Wide Bandwidth, Triple 4:1 Multiplexer
ADI

ADG792ACCPZ-REEL

IC-Compatible, Wide Bandwidth, Triple 4:1 Multiplexer
ADI

ADG792A_15

Wide Bandwidth, Triple 4:1 Multiplexer
ADI

ADG792G

IC-Compatible, Wide Bandwidth, Triple 4:1 Multiplexer
ADI

ADG792GBCPZ-500RL7

IC-Compatible, Wide Bandwidth, Triple 4:1 Multiplexer
ADI

ADG792GBCPZ-REEL

IC-Compatible, Wide Bandwidth, Triple 4:1 Multiplexer
ADI

ADG792GCCPZ-500RL7

IC-Compatible, Wide Bandwidth, Triple 4:1 Multiplexer
ADI

ADG792GCCPZ-REEL

IC-Compatible, Wide Bandwidth, Triple 4:1 Multiplexer
ADI

ADG792G_15

Wide Bandwidth, Triple 4:1 Multiplexer
ADI

ADG793A

I2C-Compatible, Wide Bandwidth, Triple 3:1 Multiplexer
ADI

ADG793ABCPZ-500RL7

I2C-Compatible, Wide Bandwidth, Triple 3:1 Multiplexer
ADI