ADGS5414BCPZ [ADI]

SPI Interface, Octal SPST Switches, 13.5 Ω RON, ±20 V/36 V, Mux;
ADGS5414BCPZ
型号: ADGS5414BCPZ
厂家: ADI    ADI
描述:

SPI Interface, Octal SPST Switches, 13.5 Ω RON, ±20 V/36 V, Mux

文件: 总30页 (文件大小:442K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SPI Interface, Octal SPST Switches,  
13.5 Ω RON, ± ±2 ꢀV/3ꢁ ꢀ, ꢂMu  
Data Sheet  
ADGS5414  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
SPI interface with error detection  
ADGS5414  
Includes CRC, invalid read/write address, and SCLK count  
error detection  
Supports burst and daisy-chain mode  
Industry-standard SPI Mode 0 and Mode 3 interface-  
compatible  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
Guaranteed break-before-make switching, allowing external  
wiring of switches to deliver multiplexer configurations  
V
SS to VDD analog signal range  
Fully specified at 1ꢀ V, 20 V, +12 V, and +36 V  
SPI  
INTERFACE  
SDO  
9 V to 40 V single-supply operation (VDD  
9 V to 22 V dual-supply operation (VDD/VSS  
)
SCLK SDI CS RESET/V  
)
L
8 kV HBM ESD rating  
Figure 1.  
Low on resistance  
1.8 V logic compatibility with 2.7 V ≤ VL ≤ 3.3 V  
APPLICATIONS  
Relay replacement  
Automatic test equipment  
Data acquisition  
Instrumentation  
Avionics  
Audio and video switching  
Communication systems  
GENERAL DESCRIPTION  
The ADGS5414 contains eight independent single-pole/single-  
throw (SPST) switches. An SPI interface controls the switches  
and has robust error detection features, including cyclic  
redundancy check (CRC) error detection, invalid read/write  
address error detection, and SCLK count error detection.  
PRODUCT HIGHLIGHTS  
1. The SPI interface removes the need for parallel conversion,  
logic traces, and reduces the general-purpose input/output  
(GPIO) channel count.  
2. Daisy-chain mode removes the need for additional logic  
traces when using multiple devices.  
3. CRC error detection, invalid read/write address error  
detenction, and SCLK count error detection ensures a  
robust digital interface.  
It is possible to daisy-chain multiple ADGS5414 devices together.  
This enables the configuration of multiple devices with a minimal  
amount of digital lines. The ADGS5414 can also operate in burst  
mode to decrease the time between SPI commands.  
4. CRC and error detection capabilities allow the use of the  
ADGS5414 in safety critical systems.  
Each switch conducts equally well in both directions when on, and  
each switch has an input signal range that extends to the supplies.  
In the off condition, signal levels up to the supplies are blocked.  
5. Break-before-make switching allows external wiring of the  
switches to deliver multiplexer configurations.  
6. The trench isolation analog switch section guards against  
latch-up. A dielectric trench separates the positive and  
negative channel transistors, preventing latch-up even under  
severe overvoltage conditions.  
The on-resistance profile is flat over the full analog input range,  
ensuring ideal linearity and low distortion when switching  
audio signals. The ADGS5414 exhibits break-before-make  
switching action, allowing the use of the device in multiplexer  
applications with external wiring.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibilityisassumedbyAnalogDevicesforitsuse,norforanyinfringementsofpatentsorother  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices.Trademarks and registered trademarks are theproperty of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2017 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
ADGS5414  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Error Detection Features........................................................... 22  
Clearing the Error Flags Register............................................. 23  
Burst Mode.................................................................................. 23  
Software Reset............................................................................. 23  
Daisy-Chain Mode..................................................................... 23  
Power-On Reset.......................................................................... 24  
Break-Before-Make Switching.................................................. 25  
Trench Isolation.......................................................................... 25  
Applications Information.............................................................. 26  
Power Supply Rails..................................................................... 26  
Power Supply Recommendations............................................. 26  
Register Summary .......................................................................... 27  
Register Details ............................................................................... 28  
Switch Data Register .................................................................. 28  
Error Configuration Register.................................................... 28  
Error Flags Register.................................................................... 29  
Burst Enable Register................................................................. 29  
Software Reset Register ............................................................. 29  
Outline Dimensions....................................................................... 3ꢁ  
Ordering Guide .......................................................................... 3ꢁ  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 1  
Specifications..................................................................................... 3  
15 ꢀ Dual Supply ....................................................................... 3  
2ꢁ ꢀ Dual Supply ....................................................................... 5  
12 ꢀ Single Supply........................................................................ 7  
36 ꢀ Single Supply........................................................................ 9  
Continuous Current per Channel, Sx or Dx Pins .................. 11  
Timing Characteristics .............................................................. 11  
Absolute Maximum Ratings.......................................................... 13  
Thermal Resistance .................................................................... 13  
ESD Caution................................................................................ 13  
Pin Configurations and Function Descriptions ......................... 14  
Typical Performance Characteristics ........................................... 15  
Test Circuits..................................................................................... 19  
Terminology .................................................................................... 21  
Theory of Operation ...................................................................... 22  
Address Mode ............................................................................. 22  
REVISION HISTORY  
10/2017—Revision 0: Initial Version  
Rev. 0 | Page 2 of 30  
Data Sheet  
ADGS5414  
SPECIFICATIONS  
1ꢀ V DUAL SUPPLY  
Digital logic voltage (ꢀDD) = +15 ꢀ 1ꢁ0, negative supply voltage (ꢀSS) = −15 ꢀ 1ꢁ0, positive supply voltage (ꢀL) = 2.7 ꢀ to 5.5 ,  
GND = ꢁ , unless otherwise noted.  
Table 1.  
Parameter  
+2ꢀ°C −40°C to +8ꢀ°C −40°C to +12ꢀ°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD to VSS  
V
13.5  
Ω typ  
Source voltage (VS) = ±10 V,  
IS = −10 mA; see Figure 29  
15  
0.3  
18  
22  
Ω max  
Ω typ  
VDD = +13.5 V, VSS = −13.5 V  
VS = ±10 V, source current  
(IS) = −10 mA  
On-Resistance Match Between Channels,  
∆RON  
0.8  
1.8  
2.2  
1.3  
2.6  
1.4  
3
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = ±10 V, IS = −10 mA  
LEAKAGE CURRENTS  
VDD = +16.5 V, VSS = −16.5 V  
Source Off Leakage, IS (Off)  
±0.1  
nA typ  
VS = ±10 V, VD = ±10 V;  
see Figure 32  
±0.25  
±0.1  
±1  
±±  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = ±10 V, VD = ±10 V;  
see Figure 32  
±0.25  
±0.15  
±0.4  
±1  
±2  
±±  
nA max  
nA typ  
nA max  
Channel On Leakage, ID (On), IS (On)  
VS = VD = ±10 V; see Figure 28  
±14  
DIGITAL OUTPUT  
Output Voltage  
Low, VOL  
0.4  
0.2  
V max  
V max  
μA typ  
Sink current (ISINK) = 5 mA  
ISINK = 1 mA  
Output voltage (VOUT) =  
Output Current, Low (IOL) or High (IOH  
)
0.001  
4
ground voltage (VGND)or VL  
±0.1  
μA max  
pF typ  
Digital Output Capacitance, COUT  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
2
V min  
V min  
3.3 V < VL ≤ 5.5 V  
2.± V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ 5.5 V  
2.± V ≤ VL ≤ 3.3 V  
VIN = VGND or VL  
1.35  
0.8  
0.8  
Low, VINL  
V max  
V max  
μA typ  
μA max  
pF typ  
Input Current, Low (IINL) or High (IINH  
)
0.001  
4
±0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS  
tON  
410  
ns typ  
Load resistance (RL) = 300 Ω,  
load capacitance (CL) = 35 pF  
420  
135  
140  
260  
250  
125  
515  
185  
515  
195  
210  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
VS = 10 V; see Figure 3±  
RL = 300 Ω, CL = 35 pF  
VS = 10 V; see Figure 3±  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 10 V; see Figure 36  
tOFF  
Break-Before-Make Time Delay, tD  
Charge Injection, QINJ  
VS = 0 V, RS = 0 Ω, CL = 1 nF;  
see Figure 38  
Rev. 0 | Page 3 of 30  
 
 
ADGS5414  
Data Sheet  
Parameter  
+2ꢀ°C −40°C to +8ꢀ°C −40°C to +12ꢀ°C Unit  
Test Conditions/Comments  
Off Isolation  
−60  
dB typ  
RL = 50 Ω, CL = 5 pF,  
frequency (f) = 1 MHz; see  
Figure 32  
Channel to Channel Crosstalk  
−±5  
0.01  
200  
−0.9  
dB typ  
% typ  
RL = 50 Ω, CL = 5 pF, f =  
1 MHz; see Figure 30  
RL = 1 kΩ, 15 V p-p, f = 20  
Hz to 20 kHz; see Figure 33  
RL = 50 Ω, CL = 5 pF; see  
Figure 34  
RL = 50 Ω, CL = 5 pF, f =  
1 MHz; see Figure 34  
Total Harmonic Distortion + Noise  
(THD + N)  
−3 dB Bandwidth  
MHz typ  
dB typ  
Insertion Loss  
Source Capacitance (CS) (Off)  
Drain Capacitance(CD) (Off)  
CD (On), CS (On)  
11  
11  
30  
pF typ  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
POWER REQUIREMENTS  
Positive Supply Current (IDD  
VDD = +16.5 V, VSS = −16.5 V  
All switches open  
All switches open  
All switches closed, VL = 5.5 V  
All switches closed, VL = 5.5 V  
All switches closed, VL = 2.± V  
All switches closed, VL = 2.± V  
)
45  
μA typ  
μA max  
μA typ  
μA max  
μA typ  
μA max  
±0  
45  
±0  
310  
430  
IL  
Inactive  
6.3  
14  
μA typ  
μA max  
μA typ  
Digital inputs = 0 V or VL  
8.0  
SCLK = 1 MHz  
SCLK = 50 MHz  
SDI = 1 MHz  
CS and SDI = 0 V or VL, VL = 5  
V
CS and SDI = 0 V or VL, VL =  
3 V  
CS = VL and SDI = 0 V or VL,  
VL = 5 V  
CS = VL and SDI = 0 V or VL,  
VL = 3 V  
CS and SCLK = 0 V or VL, VL  
= 5 V  
CS and SCLK = 0 V or VL, VL  
= 3 V  
CS and SCLK = 0 V or VL, VL  
= 5 V  
CS and SCLK = 0 V or VL, VL  
= 3 V  
Digital inputs toggle  
between 0 V and VL, VL =  
5.5 V  
±
μA typ  
μA typ  
μA typ  
μA typ  
μA typ  
μA typ  
μA typ  
mA typ  
390  
210  
15  
±.5  
230  
120  
1.8  
SDI = 25 MHz  
Active at 50 MHz  
2
2.1  
1.0  
mA max  
mA typ  
0.±  
Digital inputs toggle  
between 0 V and VL, VL = 2.± V  
mA max  
μA typ  
μA max  
V min  
Negative Supply Current (ISS)  
0.05  
Digital inputs = 0 V or VL  
1.0  
±9  
Dual-Supply Operation (VDD/VSS)  
GND = 0 V  
GND = 0 V  
±22  
V max  
Rev. 0 | Page 4 of 30  
 
Data Sheet  
ADGS5414  
20 V DUAL SUPPLY  
DD = +2ꢁ ꢀ 1ꢁ0, ꢀSS = −2ꢁ ꢀ 1ꢁ0, ꢀL = 2.7 ꢀ to 5.5 , GND = ꢁ , unless otherwise noted.  
Table 2.  
Parameter  
+2ꢀ°C −40°C to +8ꢀ°C −40°C to +12ꢀ°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD to VSS  
V
12.5  
Ω typ  
VS = ±15 V, IS = −10 mA;  
see Figure 29  
14  
0.3  
1±  
21  
Ω max  
Ω typ  
VDD = +18 V, VSS = −18 V  
VS = ±15 V, IS = −10 mA  
On-Resistance Match Between  
Channels, ∆RON  
0.8  
2.3  
2.±  
1.3  
3.1  
1.4  
3.5  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = ±15 V, IS = −10 mA  
VDD = +22 V, VSS = −22 V  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
±0.1  
nA typ  
VS = ±15 V, VD = ±15 V;  
see Figure 32  
±0.25  
±0.1  
±1  
±±  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = ±15 V, VD = ±15 V;  
see Figure 32  
±0.25  
±0.15  
±0.4  
±1  
±2  
±±  
nA max  
nA typ  
nA max  
Channel On Leakage, ID (On), IS (On)  
VS = VD = ±15 V; see Figure 28  
±14  
DIGITAL OUTPUT  
Output Voltage  
Low, VOL  
0.4  
0.2  
V max  
V max  
μA typ  
μA max  
pF typ  
ISINK = 5 mA  
ISINK = 1 mA  
VOUT = VGND or VL  
Output Current, IOL or IOH  
0.001  
4
±0.1  
Digital Output Capacitance, COUT  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
2
V min  
V min  
3.3 V < VL ≤ 5.5 V  
2.± V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ 5.5 V  
2.± V ≤ VL ≤ 3.3 V  
VIN = VGND or VL  
1.35  
0.8  
0.8  
Low, VINL  
V max  
V max  
μA typ  
μA max  
pF typ  
Input Current, IINL or IINH  
0.001  
4
±0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS  
tON  
410  
418  
135  
144  
255  
245  
160  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
RL = 300 Ω, CL = 35 pF  
VS = 10 V; see Figure 3±  
RL = 300 Ω, CL = 35 pF  
VS = 10 V; see Figure 3±  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 10 V; see Figure 36  
VS = 0 V, RS = 0 Ω, CL = 1 nF;  
see Figure 38  
RL = 50 Ω, CL = 5 pF, f = 1 MHz; see  
Figure 34  
485  
185  
495  
195  
205  
tOFF  
Break-Before-Make Time Delay, tD  
Charge Injection, QINJ  
Off Isolation  
−60  
dB typ  
dB typ  
% typ  
Channel to Channel Crosstalk  
(THD + N)  
−±5  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 30  
RL = 1 kΩ, 20 V p-p, f = 20 Hz to  
20 kHz; see Figure 33  
0.012  
Rev. 0 | Page 5 of 30  
ADGS5414  
Data Sheet  
Parameter  
+25°C −40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
−3 dB Bandwidth  
Insertion Loss  
200  
−0.8  
MHz typ  
dB typ  
RL = 50 Ω, CL = 5 pF; see Figure 34  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 34  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
POWER REQUIREMENTS  
IDD  
11  
11  
30  
pF typ  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VDD = +22 V, VSS = −22 V  
All switches open  
All switches open  
All switches closed, VL = 5.5 V  
All switches closed, VL = 5.5 V  
All switches closed, VL = 2.7 V  
All switches closed, VL = 2.7 V  
50  
μA typ  
μA max  
μA typ  
μA max  
μA typ  
μA max  
110  
110  
450  
50  
320  
IL  
Inactive  
6.3  
μA typ  
μA max  
μA typ  
μA typ  
μA typ  
Digital inputs = 0 V or VL  
8.0  
SCLK = 1 MHz  
SCLK = 50 MHz  
14  
7
CS and SDI = 0 V or VL, VL = 5 V  
CS and SDI = 0 V or VL, VL = 3 V  
390  
CS = VL and SDI = 0 V or VL,  
VL = 5 V  
210  
μA typ  
CS = VL and SDI = 0 V or VL,  
VL = 3 V  
SDI = 1 MHz  
SDI = 25 MHz  
15  
μA typ  
μA typ  
μA typ  
μA typ  
mA typ  
CS and SCLK = 0 V or VL, VL = 5 V  
7.5  
230  
120  
1.8  
CS and SCLK = 0 V or VL, VL = 3 V  
CS and SCLK = 0 V or VL, VL = 5 V  
CS and SCLK = 0 V or VL, VL = 3 V  
Active at 50 MHz  
Digital inputs toggle between  
0 V and VL, VL = 5.5 V  
2
2.1  
1.0  
mA max  
mA typ  
0.7  
Digital inputs toggle between  
0 V and VL, VL = 2.7 V  
mA max  
μA typ  
μA max  
V min  
ISS  
0.05  
Digital inputs = 0 V or VL  
1.0  
9
Dual-Supply Operation (VDD/VSS)  
GND = 0 V  
GND = 0 V  
22  
V max  
Rev. 0 | Page 6 of 30  
Data Sheet  
ADGS5414  
12 V SINGLE SUPPLY  
DD = 12 ꢀ 1ꢁ0, ꢀSS = ꢁ , L = 2.7 ꢀ to 5.5 , GND = ꢁ , unless otherwise noted.  
Table 3.  
Parameter  
+2ꢀ°C −40°C to +8ꢀ°C −40°C to +12ꢀ°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
0 V to VDD  
42  
V
26  
Ω typ  
VS = 0 V to 10 V, IS = −10 mA;  
see Figure 29  
VDD = 10.8 V, VSS = 0 V  
30  
0.3  
36  
Ω max  
Ω typ  
On-Resistance Match Between Channels,  
∆RON  
VS = 0 V to 10 V, IS = −10 mA  
1
5.5  
6.5  
1.5  
8
1.6  
12  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT (ON)  
VS = 0 V to 10 V, IS = −10 mA  
VDD = 13.2 V, VSS = 0 V  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
±0.1  
nA typ  
VS = 1 V/10 V, VD = 10 V/1 V;  
see Figure 32  
±0.25  
±0.1  
±1  
±1  
±2  
±±  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = 1 V/10 V, VD = 10 V/1 V;  
see Figure 32  
±0.25  
±0.15  
±±  
nA max  
nA typ  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 1 V/10 V; see  
Figure 28  
±0.4  
±14  
nA max  
DIGITAL OUTPUT  
Output Voltage  
Low, VOL  
0.4  
0.2  
V max  
V max  
μA typ  
μA max  
pF typ  
ISINK = 5 mA  
ISINK = 1 mA  
VOUT = VGND or VL  
Output Current, IOL or IOH  
0.001  
4
±0.1  
Digital Output Capacitance, COUT  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
2
V min  
V min  
3.3 V < VL ≤ 5.5 V  
2.± V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ 5.5 V  
2.± V ≤ VL ≤ 3.3 V  
VIN = VGND or VL  
1.35  
0.8  
0.8  
Low, VINL  
V max  
V max  
μA typ  
μA max  
pF typ  
Input Current, IINL or IINH  
0.001  
4
±0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS  
tON  
450  
455  
135  
141  
285  
2±5  
55  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
RL = 300 Ω, CL = 35 pF  
VS = 8 V; see Figure 3±  
RL = 300 Ω, CL = 35 pF  
VS = 8 V; see Figure 3±  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 8 V; see Figure 36  
VS = 6 V, RS = 0 Ω, CL = 1 nF;  
see Figure 38  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 31  
555  
195  
5±5  
205  
225  
tOFF  
Break-Before-Make Time Delay, tD  
Charge Injection, QINJ  
Off Isolation  
−60  
−±5  
dB typ  
dB typ  
Channel to Channel Crosstalk  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 30  
Rev. 0 | Page ± of 30  
 
ADGS5414  
Data Sheet  
Parameter  
+2ꢀ°C −40°C to +8ꢀ°C −40°C to +12ꢀ°C Unit  
Test Conditions/Comments  
THD +N  
0.1  
% typ  
RL = 1 kΩ, 6 V p-p, f = 20 Hz  
to 20 kHz; see Figure 33  
−3 dB Bandwidth  
Insertion Loss  
220  
MHz typ  
dB typ  
RL = 50 Ω, CL = 5 pF; see  
Figure 34  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 34  
−1.55  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
POWER REQUIREMENTS  
IDD  
12  
12  
30  
pF typ  
pF typ  
pF typ  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
VDD = 13.2 V  
All switches open  
All switches open  
All switches closed, VL = 5.5 V  
All switches closed, VL = 5.5 V  
All switches closed, VL = 2.± V  
All switches closed, VL = 2.± V  
40  
μA typ  
μA max  
μA typ  
μA max  
μA typ  
μA max  
65  
40  
65  
300  
420  
IL  
Inactive  
6.3  
μA typ  
μA max  
μA typ  
μA typ  
μA typ  
Digital inputs = 0 V or VL  
8.0  
SCLK = 1 MHz  
SCLK = 50 MHz  
14  
±
CS and SDI = 0 V or VL, VL = 5 V  
CS and SDI = 0 V or VL, VL = 3 V  
390  
CS = VL and SDI = 0 V or VL,  
VL = 5 V  
210  
15  
μA typ  
μA typ  
μA typ  
μA typ  
μA typ  
mA typ  
CS = VL and SDI = 0 V or VL,  
VL = 3 V  
CS and SCLK = 0 V or VL, VL =  
5 V  
CS and SCLK = 0 V or VL, VL =  
3 V  
CS and SCLK = 0 V or VL, VL =  
5 V  
CS and SCLK = 0 V or VL, VL =  
3 V  
Digital inputs toggle  
between 0 V and VL, VL =  
5.5 V  
SDI = 1 MHz  
SDI = 25 MHz  
±.5  
230  
120  
1.8  
Active at 50 MHz  
2
2.1  
mA max  
mA typ  
0.±  
Digital inputs toggle  
between 0 V and VL, VL =  
2.± V  
1.0  
9
40  
mA max  
V min  
V max  
Single-Supply Operation (VDD  
)
GND = 0 V, VSS = 0 V  
GND = 0 V, VSS = 0 V  
Rev. 0 | Page 8 of 30  
Data Sheet  
ADGS5414  
36 V SINGLE SUPPLY  
DD = 36 ꢀ 1ꢁ0, ꢀSS = ꢁ , L = 2.7 ꢀ to 5.5 , GND = ꢁ , unless otherwise noted.  
Table 4.  
Parameter  
+2ꢀ°C −40°C to +8ꢀ°C −40°C to +12ꢀ°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
0 V to VDD  
23  
V
14.5  
Ω typ  
VS = 0 V to 30 V, IS = −10 mA;  
see Figure 29  
VDD = 32.4 V, VSS = 0 V  
16  
0.3  
19  
Ω max  
Ω typ  
On-Resistance Match Between Channels,  
∆RON  
VS = 0 V to 30 V, IS = −10 mA  
0.8  
3.5  
4.3  
1.3  
5.5  
1.4  
6.5  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT(ON)  
VS = 0 V to 30 V, IS = −10 mA  
VDD = 39.6 V, VSS = 0 V  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
±0.1  
nA typ  
VS = 1 V/30 V, VD = 30 V/1 V;  
see Figure 32  
±0.25  
±0.1  
±1  
±1  
±2  
±±  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = 1 V/30 V, VD = 30 V/1 V;  
see Figure 32  
±0.25  
±0.15  
±±  
nA max  
nA typ  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 1 V/30 V; see  
Figure 28  
±0.4  
±14  
nA max  
DIGITAL OUTPUT  
Output Voltage  
Low, VOL  
0.4  
0.2  
V max  
V max  
μA typ  
μA max  
pF typ  
ISINK = 5 mA  
ISINK = 1 mA  
VOUT = VGND or VL  
Output Current, IOL or IOH  
0.001  
4
±0.1  
Digital Output Capacitance, COUT  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
2
V min  
V min  
3.3 V < VL ≤ 5.5 V  
2.± V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ 5.5 V  
2.± V ≤ VL ≤ 3.3 V  
VIN = VGND or VL  
1.35  
0.8  
0.8  
Low, VINL  
V max  
V max  
μA typ  
μA max  
pF typ  
Input Current, IINL or IINH  
0.001  
4
±0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS  
tON  
425  
435  
145  
151  
260  
245  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
RL = 300 Ω, CL = 35 pF  
VS = 18 V; see Figure 3±  
RL = 300 Ω, CL = 35 pF  
VS = 18 V; see Figure 3±  
RL = 300 Ω, CL = 35 pF  
515  
195  
515  
195  
205  
tOFF  
Break-Before-Make Time Delay, tD  
VS1 = VS2 = 18 V; see Figure  
36  
Charge Injection, QINJ  
Off Isolation  
145  
−60  
−±5  
pC typ  
dB typ  
dB typ  
VS = 18 V, RS = 0 Ω, CL = 1 nF;  
see Figure 38  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 31  
RL = 50 Ω, CL = 5 pF, f = 1  
MHz; Figure 30  
Channel to Channel Crosstalk  
Rev. 0 | Page 9 of 30  
 
ADGS5414  
Data Sheet  
Parameter  
+2ꢀ°C −40°C to +8ꢀ°C −40°C to +12ꢀ°C Unit  
Test Conditions/Comments  
THD + N  
0.04  
% typ  
RL = 1 kΩ, 18 V p-p, f = 20 Hz  
to 20 kHz; see Figure 33  
−3 dB Bandwidth  
Insertion Loss  
200  
MHz typ  
dB typ  
RL = 50 Ω, CL = 5 pF; see  
Figure 34  
RL = 50 Ω, CL = 5 pF, f = 1  
MHz;  
−0.85  
see Figure 34  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
POWER REQUIREMENTS  
IDD  
11  
11  
26  
pF typ  
pF typ  
pF typ  
VS = 18 V, f = 1 MHz  
VS = 18 V, f = 1 MHz  
VS = 18 V, f = 1 MHz  
VDD = 39.6 V  
All switches open  
All switches open  
All switches closed, VL = 5.5 V  
All switches closed, VL = 5.5 V  
All switches closed, VL = 2.± V  
All switches closed, VL = 2.± V  
80  
μA typ  
μA max  
μA typ  
μA max  
μA typ  
μA max  
130  
130  
490  
80  
330  
IL  
Inactive  
6.3  
14  
μA typ  
μA max  
μA typ  
Digital inputs = 0 V or VL  
8.0  
SCLK = 1 MHz  
SCLK = 50 MHz  
SDI = 1 MHz  
CS and SDI = 0 V or VL, VL = 5  
V
CS and SDI = 0 V or VL, VL = 3  
V
CS = VL and SDI = 0 V or VL,  
VL = 5 V  
CS = VL and SDI = 0 V or VL,  
VL = 3 V  
CS and SCLK = 0 V or VL, VL =  
5 V  
CS and SCLK = 0 V or VL, VL =  
3 V  
CS and SCLK = 0 V or VL, VL =  
5 V  
CS and SCLK = 0 V or VL, VL =  
3 V  
Digital inputs toggle  
±
μA typ  
μA typ  
μA typ  
μA typ  
μA typ  
μA typ  
μA typ  
mA typ  
390  
210  
15  
±.5  
230  
120  
1.8  
SDI = 25 MHz  
Active at 50 MHz  
between 0 V and VL, VL = 5.5 V  
2
2.1  
mA max  
mA typ  
0.±  
Digital inputs toggle  
between 0 V and VL, VL = 2.± V  
1.0  
9
40  
mA max  
V min  
V max  
Single-Supply Operation (VDD  
)
GND = 0 V, VSS = 0 V  
GND = 0 V, VSS = 0 V  
Rev. 0 | Page 10 of 30  
Data Sheet  
ADGS5414  
CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx Pins  
Table 5. Eight Channels On  
Parameter  
25°C  
85°C  
125°C  
Unit  
CONTINUOUS CURRENT, Sx OR Dx PINS  
VDD = +15 V, VSS = −15 V (θJA = 50°C/W)  
VDD = +20 V, VSS = −20 V (θJA = 50°C/W)  
VDD = 12 V, VSS = 0 V JA = 50°C/W)  
VDD = 36 V, VSS = 0 V (θJA = 50°C/W)  
82  
86  
63  
85  
61  
63  
47  
62  
38  
41  
29  
40  
mA maximum  
mA maximum  
mA maximum  
mA maximum  
Table 6. One Channel On  
Parameter  
25°C  
85°C  
125°C  
Unit  
CONTINUOUS CURRENT, Sx OR Dx PINS  
VDD = +15 V, VSS = −15 V (θJA = 50°C/W)  
VDD = +20 V, VSS = −20 V (θJA = 50°C/W)  
VDD = 12 V, VSS = 0 V (θJA = 50°C/W)  
VDD = 36 V, VSS = 0 V (θJA = 50°C/W)  
199  
210  
157  
206  
124  
129  
104  
127  
75  
77  
68  
76  
mA maximum  
mA maximum  
mA maximum  
mA maximum  
TIMING SPECIFICATIONS  
VL = 2.7 V to 5.5 V; GND = 0 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 7.  
Parameter  
Limit  
Unit  
Test Conditions/Comments  
TIMING CHARACTRISTICS  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
20  
8
8
10  
6
8
10  
20  
20  
20  
20  
8
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns max  
ns max  
ns min  
ns min  
ns min  
SCLK period  
SCLK high pulse width  
SCLK low pulse width  
CS falling edge to SCLK active edge  
Data setup time  
Data hold time  
SCLK active edge to CS rising edge  
CS falling edge to SDO data available  
SCLK falling edge to SDO data available  
CS rising edge to SDO returns to high impedance  
CS high time between SPI commands  
CS falling edge to SCLK becomes stable  
CS rising edge to SCLK becomes stable  
1
t9  
t10  
t11  
t12  
t13  
8
1 Measured with the 1 kΩ pull-up resistor to VL and a 20 pF load. t9 determines the maximum SCLK frequency when using SDO.  
Rev. 0 | Page 11 of 30  
 
 
 
 
ADGS5414  
Data Sheet  
Timing Diagrams  
t1  
SCLK  
CS  
t2  
t7  
t4  
t3  
t6  
t5  
SDI  
R/W  
A6  
A5  
1
D2  
D2  
D1  
D1  
D0  
D0  
t10  
t9  
SDO  
0
0
t8  
Figure 2. Addressable Mode Timing Diagram  
t1  
SCLK  
CS  
t2  
t3  
t4  
t7  
t6  
t5  
SDI  
D7  
D6  
D0  
D7  
D6  
D1  
D0  
INPUT BYTE FOR DEVICE N + 1  
INPUT BYTE FOR DEVICE N  
t9  
t10  
SDO  
0
0
0
D7  
D6  
D1  
D0  
ZERO BYTE  
INPUT BYTE FOR DEVICE N  
t8  
Figure 3. Daisy Chain Timing Diagram  
t11  
CS  
SCLK  
t13  
t12  
CS  
Figure 4. SCLK/ Timing Diagram  
Rev. 0 | Page 12 of 30  
Data Sheet  
ADGS5414  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 8.  
Parameter  
Rating  
VDD to VSS  
48 V  
VDD to GND  
VSS to GND  
VL to GND  
−0.3 V to +48 V  
+0.3 V to −48 V  
−0.3 V to +5.75 V  
VSS − 0.3 V to VDD + 0.3 V or  
30 mA, whichever occurs first  
−0.3 V to +5.75 V  
422 mA (pulsed at 1 ms, 10%  
duty cycle maximum)  
Data (see Table 5 and Table 6) +  
15%  
Analog Inputs1  
Only one absolute maximum rating can be applied at any  
one time.  
Digital Inputs1  
Peak Current, Sx or Dx Pins  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Close attention to  
PCB thermal design is required.  
Continuous Current, Sx or Dx  
Pins2  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
Reflow Soldering Peak  
Temperature, Pb Free  
−40°C to +125°C  
−65°C to +150°C  
150°C  
θJA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure. θJC is  
the junction to case thermal resistance.  
260(+0 or −5)°C  
Table 9. Thermal Resistance  
Package Type  
Human Body Model (HBM)  
Electrostatic Discharge (ESD)  
8 kV  
2
θJA  
θJC  
Unit  
CP-24-171  
50  
3.28  
°C/W  
1 Overvoltages at the Sx and Dx pins are clamped by internal diodes. Limit  
current to the maximum ratings given.  
1 Thermal impedance simulated values are based on a JEDEC 2S2P thermal  
test board. See JEDEC JESD51.  
2 See Table 5 and Table 6.  
2 θJCB is the junction to the bottom of the case value.  
ESD CAUTION  
Rev. 0 | Page 13 of 30  
 
 
 
ADGS5414  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
18 V  
SS  
V
DD  
S1 2  
3
17  
16  
S8  
D
8
D1  
S2  
D2  
S3  
ADGS5414  
TOP VIEW  
15 S7  
4
5
6
(Not to Scale)  
14  
13  
D7  
S6  
NOTES  
1. EXPOSED PAD. THE EXPOSED PAD IS CONNECTED  
INTERNALLY. FOR INCREASED RELIABILITY OF THE  
SOLDER JOINTS AND MAXIMUM THERMAL CAPABILITY,  
IT IS RECOMMENDED THAT THE EXPOSED PAD BE  
SOLDERED TO THE SUBSTRATE, V  
.
SS  
Figure 5. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
VDD  
S1  
Description  
1
2
Most Positive Power Supply Potential.  
Source Terminal 1. This pin can be an input or output.  
Drain Terminal 1. This pin can be an input or output.  
Source Terminal 2. This pin can be an input or output.  
Drain Terminal 2. This pin can be an input or output.  
Source Terminal 3. This pin can be an input or output.  
Drain Terminal 3. This pin can be an input or output.  
Source Terminal 4. This pin can be an input or output.  
Drain Terminal 4. This pin can be an input or output.  
Drain Terminal 5. This pin can be an input or output.  
Source Terminal 5. This pin can be an input or output.  
Drain Terminal 6. This pin can be an input or output.  
Source Terminal 6. This pin can be an input or output.  
Drain Terminal ±. This pin can be an input or output.  
Source Terminal ±. This pin can be an input or output.  
Drain Terminal 8. This pin can be an input or output.  
Source Terminal 8. This pin can be an input or output.  
3
4
5
6
±
8
9
10  
11  
12  
13  
14  
15  
16  
1±  
18  
19  
D1  
S2  
D2  
S3  
D3  
S4  
D4  
D5  
S5  
D6  
S6  
D±  
S±  
D8  
S8  
VSS  
Most Negative Power Supply Potential. In single-supply applications, tie this pin to ground.  
SDO  
Serial Data Output. This pin can daisy-chain a numeral ADGS5414 devices together or for reading  
back the data stored in a register for diagnostic purposes. The serial data is propagated on the  
falling edge of SCLK. Pull this open-drain output to VL with an external resistor.  
20  
21  
22  
RESET/VL  
CS  
RESET/Logic Power Supply Input (VL). Under normal operation, drive the RESET/VL pin with a 2.± V  
to 5.5 V supply. Pull the pin low to complete a hardware reset. All switches are opened, and the  
appropriate registers are set to their default.  
Active Low Control Input. This is the frame synchronization signal for the input data. When CS goes  
low, it powers on the SCLK buffers and enables the input shift register. Data is transferred in on the  
falling edges of the following clocks. Taking CS high updates the switch condition.  
SCLK  
Serial Clock Input. Data is captured on the positive edge of SCLK . Data can be transferred at rates  
of up to 50 MHz.  
23  
24  
GND  
SDI  
Ground (0 V) Reference.  
Serial Data Input. Data is captured on the positive edge of the serial clock input.  
Exposed Pad  
The exposed pad is connected internally. For increased reliability of the solder joints and maximum  
thermal capability, it is recommended that the pad be soldered to the substrate, VSS.  
Rev. 0 | Page 14 of 30  
 
Data Sheet  
ADGS5414  
TYPICAL PERFORꢂANCE CHARACTERISTICS  
25  
16  
14  
12  
10  
8
T
= 25°C  
T
= 25°C  
A
A
V
V
= +10V  
= –10V  
V
V
= +9V  
= –9V  
DD  
SS  
DD  
SS  
20  
15  
10  
5
V
V
= +11V  
= –11V  
DD  
SS  
V
V
= 32.4V  
= 0V  
DD  
SS  
V
V
= 39.6V  
DD  
= 0V  
SS  
V
V
= 36V  
= 0V  
DD  
SS  
V
V
= +13.5V  
= –13.5V  
DD  
SS  
6
V
V
= +15V  
= –15V  
DD  
SS  
V
V
= +16.5V  
= –16.5V  
DD  
SS  
4
2
0
0
–18  
–14  
–10  
–6  
–2  
2
6
10  
14  
18  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
V , V (V)  
V , V (V)  
S
D
S
D
Figure 6. RON as a Function of VS and VD (Dual Supply)  
Figure 9. RON as a Function of VS and VD (Single Supply)  
16  
14  
12  
10  
8
25  
20  
15  
10  
5
T
= 25°C  
A
V
V
= +18V  
= –18V  
DD  
SS  
T
= +125°C  
= +85°C  
A
T
A
A
A
V
V
= +20V  
= –20V  
V
V
= +22V  
= –22V  
DD  
SS  
DD  
T
T
= +25°C  
= –40°C  
SS  
6
4
2
V
V
= +15V  
= –15V  
DD  
SS  
0
0
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
–15  
–10  
–5  
0
5
10  
15  
V , V (V)  
V , V (V)  
S
D
S
D
Figure 10. RON as a Function of VS and VD for Different Temperatures, 15 V Dual  
Supply  
Figure 7. RON as a Function of VS and VD (Dual Supply)  
25  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
V
V
= +20V  
= –20V  
T
= 25°C  
DD  
SS  
A
V
V
= 10V  
= 0V  
DD  
SS  
V
V
= 10.8V  
= 0V  
DD  
SS  
V
V
= 9V  
= 0V  
20  
15  
10  
5
DD  
SS  
T
= +125°C  
= +85°C  
A
T
A
A
A
V
V
= 11V  
= 0V  
DD  
SS  
V
V
= 12V  
= 0V  
DD  
SS  
T
T
= +25°C  
= –40°C  
V
V
= 13.2V  
= 0V  
DD  
SS  
0
0
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
0
–2  
–4  
–6  
–8  
V , V (V)  
–10  
–12  
–14  
S
D
V , V (V)  
S
D
Figure 8. RON as a Function of VS and VD (Single Supply)  
Figure 11. RON as a Function of VS and VD for Different Temperatures, 20 V Dual  
Supply  
Rev. 0 | Page 15 of 30  
 
ADGS5414  
Data Sheet  
40  
35  
30  
25  
20  
15  
10  
5
0.20  
0.15  
0.10  
0.05  
0
I
I
(OFF) +, –  
(OFF) –, +  
I
(OFF) +, –  
I (OFF) –, +  
S
S
D
D
I , I (ON) +, +  
I , I (ON) –, –  
S
D
S D  
T
= +125°C  
= +85°C  
A
T
A
T
T
= +25°C  
= –40°C  
A
–0.05  
–0.10  
–0.15  
–0.20  
A
V
V
V
= +20V  
= –20V  
DD  
SS  
V
V
= 12V  
= 0V  
DD  
SS  
= +10V, –10V  
BIAS  
0
0
2
4
6
8
10  
12  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
V
, V (V)  
D
S
Figure 15. Leakage Currents vs. Temperature, 20 V Dual Supply  
Figure 12. RON as a Function of VS and VD for Different Temperatures, 12 V Single  
Supply  
0.20  
25  
I
I
(OFF) +, –  
(OFF) –, +  
I
(OFF) +, –  
I (OFF) –, +  
S
V
V
= 36V  
= 0V  
S
D
D
DD  
SS  
I , I (ON) +, +  
I , I (ON) –, –  
S
D
S D  
0.15  
0.10  
0.05  
0
20  
15  
10  
5
T
= +125°C  
= +85°C  
A
T
A
A
A
T
T
= +25°C  
= –40°C  
–0.05  
–0.10  
–0.15  
–0.20  
V
V
V
= +12V  
= 0V  
DD  
SS  
= +1V, –1V  
BIAS  
0
0
5
10  
15  
20  
, V (V)  
25  
30  
35  
40  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
V
S
D
Figure 16. Leakage Currents vs. Temperature, 12 V Single Supply  
Figure 13. RON as a Function of VS and VD for Different Temperatures, 36 V Single  
Supply  
0.3  
0.20  
I
I
(OFF) +, –  
(OFF) –, +  
I
(OFF) +, –  
I (OFF) –, +  
S
S
D
D
I
I
(OFF) +, –  
(OFF) –, +  
I
(OFF) +, –  
I (OFF) –, +  
S
S
D
D
I , I (ON) +, +  
I , I (ON) –, –  
S
D
S D  
I , I (ON) +, +  
I , I (ON) –, –  
S
D
S D  
0.15  
0.10  
0.05  
0
0.2  
0.1  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.1  
–0.2  
–0.3  
V
V
V
= 36V  
= 0V  
V
V
V
= +15V  
= –15V  
DD  
SS  
DD  
SS  
= 1V, 30V  
= +10V, –10V  
BIAS  
BIAS  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Leakage Currents vs. Temperature, 36 V Single Supply  
Figure 14. Leakage Currents vs. Temperature, 15 V Dual Supply  
Rev. 0 | Page 16 of 30  
Data Sheet  
ADGS5414  
0
10  
–10  
T
V
V
= 25°C  
= +15V  
T
V
V
= 25°C  
= +15V  
DD  
100nF DECOUPLING CAP  
10µF + 100nF DECOUPLIG CAP  
NO DECOUPLING  
A
A
DD  
= –15V  
= –15V  
–20  
–40  
SS  
SS  
–30  
–60  
–50  
–80  
–70  
–100  
–120  
–140  
–90  
–110  
–130  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
10G  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. Off Isolation vs. Frequency, 15 V Dual Supply  
Figure 21. ACPSRR vs. Frequency, 15 V Dual Supply  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0
–20  
T
V
V
= 25°C  
A
= +15V  
= –15V  
DD  
SS  
V
= 12V, V = 0V, V = 6V p-p  
SS S  
DD  
LOAD = 1k  
= 25°C  
T
–40  
A
–60  
V
= 36V, V = 0V, V = 18V p-p  
SS S  
–80  
DD  
–100  
–120  
–140  
V
= 15V, V = 15V, V = 15V p-p  
SS S  
DD  
V
= 20V, V = 20V, V = 20V p-p  
SS S  
DD  
0
5
10  
FREQUENCY (kHz)  
15  
20  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 22. THD + N vs. Frequency, Dual Supply  
Figure 19. Crosstalk vs. Frequency, 15 V Dual Supply  
0
300  
250  
200  
150  
100  
50  
T
V
V
= 25°C  
A
T
= 25°C  
V
V
V
V
= +20V, V = –20V  
SS  
A
DD  
DD  
DD  
DD  
= +15V  
= –15V  
= +15V, V = –15V  
DD  
SS  
SS  
= +12V, V = 0V  
SS  
= +36V, V = 0V  
SS  
–1  
–2  
–3  
–4  
–5  
0
–20  
–10  
0
10  
(V)  
20  
30  
40  
10k  
100k  
1M  
10M  
100M  
1G  
V
FREQUENCY (Hz)  
S
Figure 23. Bandwidth vs. Frequency  
Figure 20. Charge Injection vs. VS  
Rev. 0 | Page 1± of 30  
ADGS5414  
Data Sheet  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.5  
0.4  
SCLK = 2.5MHz  
SCLK IDLE  
15V DS, tON  
15V DS, tOFF  
20V DS, tON  
20V DS, tOFF  
12V SS, tON  
12V SS, tOFF  
36V SS, tON  
36V SS, tOFF  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
2
4
6
8
TEMPERATURE (°C)  
TIME (µs)  
Figure 24. tON and tOFF Times vs. Temperature  
Figure 26. Digital Feedthrough  
120  
100  
80  
60  
40  
20  
0
450  
T
= 25°C  
V
L
A
T
= 25°C  
A
I
WITH ONE SWITCH CLOSED  
+12V  
±15V  
±20V  
+36V  
DD  
400  
350  
300  
250  
200  
150  
100  
50  
V
V
= 5V  
= 3V  
L
L
0
2.7  
3.0  
3.5  
4.0  
V
4.5  
5.0  
5.5  
0
10  
20  
30  
40  
50  
(V)  
SCLK FREQUENCY (MHz)  
L
Figure 25. IDD vs. VL  
CS  
Figure 27. IL vs. SCLK Frequency when is High  
Rev. 0 | Page 18 of 30  
Data Sheet  
ADGS5414  
TEST CIRCUITS  
I
(ON)  
A
I
(ON)  
A
D
D
Sx  
Dx  
Sx  
Dx  
V
S
V
V
S
V
D
D
Figure 28. On Leakage  
Figure 32. Off Leakage  
V
V
DD  
SS  
0.1µF  
0.1µF  
I
DS  
AUDIO PRECISION  
V
V
DD  
SS  
V1  
R
S
Sx  
Sx  
Dx  
V
S
V p-p  
V
S
Dx  
R
= V /I  
1 DS  
ON  
V
OUT  
R
L
GND  
1k  
Figure 29. On Resistance  
Figure 33. THD + Noise  
V
V
DD  
SS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
DD  
SS  
V
V
0.1µF  
DD  
0.1µF  
SS  
V
NC  
OUT  
S1  
D1  
R
L
50  
NETWORK  
ANALYZER  
V
V
DD  
SS  
S2  
D2  
R
L
50Ω  
Sx  
50  
V
S
GND  
V
S
Dx  
V
OUT  
R
L
GND  
50Ω  
V
OUT  
CHANNEL TO CHANNEL CROSSTALK = 20 log  
V
S
V
WITH SWITCH  
OUT  
Figure 30. Channel to Channel Crosstalk  
INSERTION LOSS = 20 log  
V
WITHOUT SWITCH  
S
Figure 34. Bandwidth  
V
V
DD  
SS  
0.1µF  
0.1µF  
V
SS  
NETWORK  
ANALYZER  
V
V
NETWORK  
ANALYZER  
DD  
SS  
Sx  
50  
INTERNAL  
BIAS  
50Ω  
V
V
DD  
SS  
R
50  
L
V
S
Dx  
V
S
V
OUT  
R
L
GND  
50Ω  
V
NC  
OUT  
S1  
D1  
R
50ꢀ  
L
GND  
V
OUT  
OFF ISOLATION = 20 log  
V
S
V
V
OUT  
ACPSRR = 20 log  
S
Figure 31. Off Isolation  
NOTES  
1. BOARD AND COMPONENT EFFECTS ARE NOT DE-EMBEDDED  
FROM THE ACPSRR MEASUREMENT.  
Figure 35. ACPSRR  
Rev. 0 | Page 19 of 30  
 
 
 
 
 
 
 
 
ADGS5414  
Data Sheet  
V
V
V
V
DD  
SS  
0.1µF  
0.1µF  
SCLK  
50%  
50%  
0V  
0V  
DD  
SS  
80%  
80%  
V
V
OUT1  
OUT2  
S1  
D1  
V
V
S1  
V
OUT1  
R
300  
C
L1  
35pF  
L1  
S2  
D2  
S2  
V
OUT2  
R
300ꢀ  
C
L2  
35pF  
L2  
80%  
80%  
INPUT LOGIC  
GND  
0V  
tD  
tD  
Figure 36. Break-Before-Make Time Delay, tD  
V
V
V
DD  
SS  
0.1µF  
0.1µF  
V
DD  
SS  
SCLK  
V
OUT  
50%  
50%  
Sx  
Dx  
R
300  
C
L
35pF  
L
90%  
V
S
V
INPUT LOGIC  
GND  
OUT  
10%  
tON  
tOFF  
Figure 37. Switching Times  
V
V
DD  
SS  
SS  
3V  
V
V
DD  
SCLK  
R
V
S
Sx  
Dx  
V
OUT  
C
1nF  
L
S
Q
= C × V  
L OUT  
INJ  
INPUT LOGIC  
GND  
V
OUT  
V  
OUT  
SWITCH OFF  
SWITCH ON  
Figure 38. Charge Injection  
Rev. 0 | Page 20 of 30  
 
 
 
Data Sheet  
ADGS5414  
TERꢂINOLOGY  
IDD  
CIN  
I
DD is the positive supply current.  
CIN is the digital input capacitance.  
ISS  
tON  
I
SS is the negative supply current.  
tON is the delay between applying the digital control input and  
the output switching on.  
VD, VS  
D and ꢀS are the analog voltages on Terminal D and Terminal  
tOFF  
S, respectively.  
tOFF is the delay between applying the digital control input and  
the output switching off.  
RON  
RON represents the ohmic resistance between Terminal D and  
tD  
Terminal S.  
tD is the off time measured between the 8ꢁ0 point of both  
switches when switching from one address state to another.  
ΔRON  
ΔRON is the difference between the RON of any two channels.  
Off Isolation  
Off isolation is a measure of unwanted signal coupling through  
an off switch.  
RFLAT(ON)  
RFLAT(ON) is defined as the difference between the maximum and  
minimum value of on resistance measured over the specified  
analog signal range.  
Charge Injection  
Charge injection is a measure of the glitch impulse transferred  
from the digital input to the analog output during switching.  
IS (Off)  
IS (Off) is the source leakage current with the switch off.  
Crosstalk  
Crosstalk is a measure of unwanted signal that is coupled  
through from one channel to another as a result of parasitic  
capacitance.  
ID (Off)  
ID (Off) is the drain leakage current with the switch off.  
ID (On), IS (On)  
ID (On) and IS (On) are the channel leakage currents with the  
switch on.  
Bandwidth  
Bandwidth is the frequency at which the output is attenuated  
by 3 dB.  
VINL  
On Response  
INL is the maximum input voltage for Logic ꢁ.  
On response is the frequency response of the on switch.  
VINH  
Insertion Loss  
INH is the minimum input voltage for Logic 1.  
Insertion loss is the loss due to the on resistance of the switch.  
IINL, IINH  
Total Harmonic Distortion + Noise (THD + N)  
The ratio of the harmonic amplitude plus noise of the signal to  
the fundamental.  
I
INL and IINH are the low and high input currents of the digital  
inputs.  
CD (Off)  
AC Power Supply Rejection Ratio (ACPSRR)  
CD (Off) is the off switch drain capacitance, which is measured  
with reference to GND.  
ACPSRR is the ratio of the amplitude of signal on the output to the  
amplitude of the modulation. ACPSRR is a measure of the ability of  
the device to avoid coupling noise and spurious signals that appear  
on the supply voltage pin to the output of the switch. The dc voltage  
on the device is modulated by a sine wave of ꢁ.62 ꢀ p-p.  
CS (Off)  
CS (Off) is the off switch source capacitance, which is measured  
with reference to GND.  
CD (On), CS (On)  
CD (On) and CS (On) are the on switch capacitances, which are  
measured with reference to GND.  
Rev. 0 | Page 21 of 30  
 
ADGS5414  
Data Sheet  
THEORY OF OPERATION  
A register write occurs on the 16th SCLK rising edge during SPI  
writes.  
The ADGS5414 is a set of SPI controlled, octal SPST switches with  
error detection features. SPI Mode 0 and Mode 3 can be used  
with the device, and it operates with SCLK frequencies up to 50  
MHz. The default mode for the ADGS5414 is address mode in  
which the registers of the device are accessed by a 16-bit SPI  
During any SPI command, SDO sends out eight alignment bits  
on the first eight SCLK falling edges. The alignment bits observed  
at SDO are 0x25.  
CS  
command that is bounded by . The SPI command becomes  
ERROR DETECTION FEATURES  
24 bits long if the user enables CRC error detection. Other error  
detection features include SCLK count error detection and invalid  
read/write error detection. If any of these SPI interface errors occur,  
they are detectable by reading the error flags register. The  
ADGS5414 can also operate in two other modes: burst mode  
and daisy-chain mode.  
Protocol and communication errors on the SPI interface are  
detectable. There are three detectable errors: incorrect SCLK error  
detection, invalid read and write address error detection, and  
CRC error detection. Each of these errors has a corresponding  
enable bit in the error configuration register. In addition, there  
is an error flag bit for each of these errors in the error flags  
register.  
CS  
The interface pins of the ADGS5414 are , SCLK, SDI, and SDO.  
CS  
Hold  
low when using the SPI interface. Data is captured on  
CRC Error Detection  
SDI on the rising edge of SCLK, and data is propagated out on SDO  
on the falling edge of SCLK. SDO has an open-drain output;  
thus, connect a pull-up to this output. When not pulled low by  
the ADGS5414, SDO is in a high impedance state.  
The CRC error detection feature extends a valid SPI frame by  
eight SCLK cycles. These eight extra cycles send the CRC byte for  
that SPI frame. The CRC byte is calculated by the SPI block using  
W
the 16-bit payload: the R/ bit, a selected register address,  
ADDRESS MODE  
Bits[6:0], and selected Register Data Bits[7:0]. The CRC  
polynomial used in the SPI block is x8 + x2 + x1 + 1 with a seed  
value of 0. For a timing diagram with CRC enabled, see Figure 40.  
Register writes occur at the 24th SCLK rising edge with CRC  
error checking enabled.  
Address mode is the default mode for the ADGS5414 upon  
power-up. A single SPI frame in address mode is bounded by  
CS  
CS  
a
falling edge and the succeeding rising edge. The SPI frame  
is comprised of 16 SCLK cycles. The timing diagram for address  
mode is shown in Figure 39. The first SDI bit indicates if the SPI  
command is a read or write command. When the first bit is set  
to 0, a write command is issued, and if the first bit is set to 1, a  
read command is issued. The next seven bits determine the target  
register address. The remaining eight bits provide the data to the  
addressed register. The last eight bits are ignored during a read  
command, because, during these clock cycles, SDO propagates  
out the data contained in the addressed register.  
During an SPI write, the microcontroller or computer processing  
unit (CPU) provides the CRC byte through SDI. The SPI block  
checks the CRC byte just before the 24th SCLK rising edge. On this  
same edge, the register write is prevented if an incorrect CRC byte  
is received by the SPI interface. The CRC error flag is asserted  
in the error flags register in the case of the incorrect CRC byte  
being detected.  
During an SPI read, the CRC byte is provided to the  
microcontroller through SDO.  
The target register address of an SPI command is determined on  
the eighth SCLK rising edge. Data from this register propagates out  
on SDO from the ninth to the 16th SCLK falling edge during SPI  
reads.  
The CRC error detection feature is disabled by default and can  
be configured by the user through the error configuration register.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CS  
SCLK  
SDI  
R/W A6  
0
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDO  
0
1
0
0
1
0
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 39. Address Mode Timing Diagram  
Rev. 0 | Page 22 of 30  
 
 
 
 
Data Sheet  
ADGS5414  
1
2
8
9
10  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CS  
SCLK  
SDI  
R/W A6  
0
A0  
D7  
D6  
D0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
SDO  
0
1
D7  
D6  
D0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
Figure 40. Timing Diagram with CRC Enabled  
SCLK Count Error Detection  
BURST MODE  
SCLK count error detection allows the user to detect if an incorrect  
number of SCLK cycles are sent by the microcontroller or CPU.  
When in address mode, with CRC disabled, 16 SCLK cycles are  
expected. If 16 SCLK cycles are not detected, the SCLK count  
error flag asserts in the error flags register. When less than 16 SCLK  
cycles are received by the device, a write to the register map does  
not occur. When the ADGS5414 receives more than 16 SCLK  
cycles, a write to the memory map still occurs at the 16th SCLK  
rising edge, and the flag asserts in the error flags register. With  
CRC enabled, the expected number of SCLK cycles becomes 24.  
SCLK count error detection is enabled by default and can be  
configured by the user through the error configuration register.  
The SPI interface can accept consecutive SPI commands  
CS  
without the need to deassert the  
line, which is called burst  
mode. Burst mode is enabled through the burst enable register  
(Address 0x05). This mode uses the same 16-bit command to  
communicate with the device. In addition, the response of  
the device at SDO is still aligned with the corresponding SPI  
command. Figure 41 shows an example of SDI and SDO during  
burst mode.  
The invalid read/write address and CRC error checking functions  
operate similarly during burst mode as they do during address  
mode. However, SCLK count error detection operates in a  
slightly different manner. The total number of SCLK cycles  
Invalid Read/Write Address Error  
CS  
within a given  
frame is counted, and if the total is not a  
An invalid read/write address error detects when a nonexistent  
register address is a target for a read or write. In addition, this  
error asserts when a write to a read only register is attempted.  
The invalid read/write address error flag asserts in the error  
flags register when an invalid read/write address error occurs.  
The invalid read/write address error is detected on the ninth  
SCLK rising edge, which means a write to the register does not  
occur when an invalid address is targeted. Invalid read/write  
address error detection is enabled by default and can be disabled  
by the user through the error configuration register.  
multiple of 16, or a multiple of 24 when CRC is enabled, the  
SCLK count error flag asserts.  
CS  
SDI  
COMMAND0[15:0] COMMAND1[15:0] COMMAND2[15:0] COMMAND3[15:0]  
SDO  
RESPONSE0[15:0] RESPONSE1[15:0] RESPONSE2[15:0] RESPONSE3[15:0]  
Figure 41. Burst Mode Frame  
SOFTWARE RESET  
When in address mode, the user can initiate a software reset.  
To do so, write two consecutive SPI commands, namely 0xA3  
followed by 0x05, to Register 0x0B. After a software reset, all  
register values are set to default.  
CLEARING THE ERROR FLAGS REGISTER  
To clear the error flags register, write the 16-bit SPI frame (not  
included in the register map), 0x6CA9, to the device. This SPI  
DAISY-CHAIN MODE  
W
command does not trigger the invalid R/ address error. When  
The connection of several ADGS5414 devices in a daisy-chain  
configuration is possible, and Figure 42 shows this setup. All  
CRC is enabled, the user must send the correct CRC byte for a  
successful error clear command. At the 16th or 24th SCLK rising  
edge, the error flags register resets to zero.  
CS  
devices share the same and SCLK line, whereas the SDO of a  
device forms a connection to the SDI of the next device, creating a  
shift register. In daisy-chain mode, SDO is an eight cycle delayed  
version of SDI. When in daisy-chain mode, all commands target  
the switch data register (SW_DATA). Therefore, it is not  
possible to make configuration changes while in daisy-chain mode.  
Rev. 0 | Page 23 of 30  
 
 
 
 
 
 
ADGS5414  
Data Sheet  
ADGS5414  
DEVICE 1  
ADGS5414  
DEVICE 2  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
V
L
SDO  
SPI  
INTERFACE  
SPI  
INTERFACE  
SDO  
SDI  
SCLK  
CS  
V
L
Figure 42. Two SPI Controlled Switches Connected in a Daisy-Chain Configuration  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
0
CS  
SCLK  
SDI  
0
0
1
0
0
1
0
1
0
0
0
0
0
0
0
SDO  
0
0
1
0
0
1
0
1
0
0
0
0
0
0
0
0
Figure 43. SPI Command to Enter Daisy-Chain Mode  
CS  
SDI  
COMMAND3[7:0] COMMAND2[7:0] COMMAND1[7:0] COMMAND0[7:0]  
DEVICE 1  
DEVICE 2  
DEVICE 3  
DEVICE 4  
SDO  
8’h00  
8’h00  
8’h00  
COMMAND3[7:0] COMMAND2[7:0] COMMAND1[7:0]  
SDO2  
SDO3  
8’h00  
8’h00  
COMMAND3[7:0] COMMAND2[7:0]  
8’h00 COMMAND3[7:0]  
NOTES  
1. SDO2 AND SDO3 ARE THE OUTPUT COMMANDS FROM DEVICE 2 AND DEVICE 3, RESPECTIVELY.  
Figure 44. Example of an SPI Frame when Four ADGS5414 Devices are Connected in Daisy-Chain Mode  
The ADGS5414 can only enter daisy-chain mode when in  
address mode by sending the 16-bit SPI command, 0x2500  
(see Figure 43). When the ADGS5414 receives this command,  
the SDO of the device sends out the same command because  
the alignment bits at SDO are 0x25, which allows multiple  
daisy-connected devices to enter daisy-chain mode in a single  
SPI frame. A hardware reset is required to exit daisy-chain mode.  
An SCLK rising edge reads in data on SDI while data is  
propagated out on SDO on an SCLK falling edge. The expected  
CS  
goes high. If this is not the case, the SPI interface sends the last  
eight bits received to the switch data register.  
number of SCLK cycles must be a multiple of eight before  
POWER-ON RESET  
The digital section of the ADGS5414 goes through an initialization  
phase during VL power-up. This initialization also occurs after a  
hardware or software reset. After VL power-up or a reset, ensure  
a minimum of 120 μs from the time of power-up or reset before  
any SPI command is issued. Ensure VL does not drop out during  
the 120 μs initialization phase because it can result in the  
incorrect operation of the ADGS5414.  
For the timing diagram of a typical daisy-chain SPI frame, see  
CS  
Figure 44. For example, when  
goes high, Device 1 writes  
Command 0, SW_DATA, Bits[7:0] to its switch data register,  
Device 2 writes Command 1, SW_DATA, Bits[7:0] to its  
switches. The SPI block uses the last eight bits it receives  
through SDI to update the switches. After entering daisy-chain  
mode, the first eight bits sent out by SDO on each device in the  
CS  
chain are 0x00. When  
goes high, the internal shift register  
value does not reset back to zero.  
Rev. 0 | Page 24 of 30  
 
 
 
 
Data Sheet  
ADGS5414  
In junction isolation, the P-well and N-well of the PMOS and  
BREAK-BEFORE-MAKE SWITCHING  
NMOS transistors form a diode that is reverse-biased under  
normal operation. However, during overvoltage conditions, this  
diode can become forward-biased. A silicon controlled rectifier  
(SCR) circuit is formed by the two transistors, causing a significant  
amplification of the current that, in turn, leads to latch-up. With  
trench isolation, this diode is removed, and the result is a latch-  
up proof switch.  
The ADGS5414 exhibits break-before-make switching action,  
which allows the use of the device in multiplexer applications. A  
multiplexer function can be achieved by externally hardwiring the  
device in the required mux configuration, as shown in Figure 45.  
4:1 MUX  
4 × SPST  
S1  
The Analog Devices, Inc., high voltage latch-up proof family of  
switches and multiplexers provides a robust olution for  
instrumentation, industrial, aerospace, and other harsh  
environments that are prone to latch-up, which is an  
undesirable high current state that can lead to device failure and  
persists until the power supply is turned off. The ADGS5414  
high voltage switches allow single-supply operation from 9 V to  
40 V and dual-supply operation from 9 V to 22 V.  
S2  
Dx  
S3  
S4  
SPI  
INTERFACE  
NMOS  
PMOS  
SCLK SDI CS RESET/V  
L
Figure 45. An SPI Controlled Switch Configured in a 4:1 Mux  
TRENCH ISOLATION  
In the analog switch section of the ADGS5414, an insulating oxide  
layer (trench) is placed between the N-type metal-oxide semi-  
conductor (NMOS) and the P-type metal-oxide semiconductor  
(PMOS) transistors of each complementary metal-oxide semi-  
conductor CMOS switch. Parasitic junctions, which occur between  
the transistors in junction isolated switches, are eliminated, and  
the result is a completely latch-up proof switch.  
P-WELL  
N-WELL  
TRENCH  
BURIED OXIDE LAYER  
HANDLE WAFER  
Figure 46. Trench Isolation  
Rev. 0 | Page 25 of 30  
 
 
 
ADGS5414  
Data Sheet  
APPLICATIONS INFORMATION  
Figure 47 also shows two optional low dropout regulators  
POWER SUPPLY RAILS  
(LDOs), ADP7118 and ADP7182, positive and negative LDOs  
respectively, that can reduce the output ripple of the ADP5070  
in ultralow noise sensitive applications.  
To guarantee correct operation of the ADGS5414, 0.1 μF  
decoupling capacitors are required.  
The ADGS5414 can operate with bipolar supplies between 9 V  
and 22 V. The supplies on VDD and VSS do not need to be  
symmetrical; however, the VDD to VSS range must not exceed 44 V.  
The ADGS5414 can also operate with single supplies between  
9 V and 40 V with VSS connected to GND.  
The ADM7160 can be used to generate the VL voltage that is  
required to power the digital circuitry within the ADGS5414.  
ADM7160  
+3.3V  
LDO  
+16.5V  
–16.5V  
ADP7118  
LDO  
+15V  
–15V  
+5V  
INPUT  
The voltage range that can be supplied to VL is from 2.7 V to 5.5 V.  
ADP5070  
ADP7182  
LDO  
The device is fully specified at 15 V, 20 V, +12 V, and +36 V,  
analog supply voltage ranges.  
Figure 47. Bipolar Power Solution  
POWER SUPPLY RECOMMENDATIONS  
Table 10. Recommended Power Management Devices  
Product Description  
Analog Devices has a wide range of power management  
products that meet the requirements of most high performance  
signal chains.  
ADP5070 1 A/0.6 A, dc-to-dc switching regulator with  
independent positive and negative outputs  
ADM7160 5.5 V, 200 mA, ultralow noise, linear regulator  
ADP7118 20 V, 200 mA, low noise, CMOS LDO linear regulator  
ADP7182 −28 V, −200 mA, low noise, LDO linear regulator  
An example of a bipolar power solution is shown in Figure 47.  
The ADP5070 dual switching regulator generates a positive and  
negative supply rail for the ADGS5414, an amplifier, and/or a  
precision converter in a typical signal chain.  
Rev. 0 | Page 26 of 30  
 
 
 
 
Data Sheet  
ADGS5414  
REGISTER SUMMARY  
Table 11. Register Summary  
Reg. Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default RW  
0x01 SW_DATA  
0x02 ERR_CONFIG  
0x03 ERR_FLAGS  
0x05 BURST_EN  
0x0B SOFT_RESETB  
SW8_EN SW7_EN SW6_EN SW5_EN SW4_EN SW3_EN  
SW2_EN  
SW1_EN  
0x00  
0x06  
R/W  
R/W  
R
Reserved  
Reserved  
RW_ERR_EN SCLK_ERR_EN CRC_ERR_EN  
RW_ERR_FLAG SCLK_ERR_FLAG CRC_ERR_FLAG 0x00  
BURST_MODE_EN 0x00  
Reserved  
R/W  
R/W  
SOFT_RESETB  
0x00  
Rev. 0 | Page 27 of 30  
 
ADGS5414  
Data Sheet  
REGISTER DETAILS  
SWITCH DATA REGISTER  
SW_DATA, Address 0x01, Reset: 0x00  
The switch data register controls the status of the eight switches of the ADGS5414.  
Table 12. Bit Descriptions for SW_DATA  
Bit  
Bit Name  
Setting  
Description  
Default Access  
7
SW8_EN  
Enable bit for Switch 8.  
Switch 8 open.  
Switch 8 closed.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
1
6
5
4
3
2
1
0
SW7_EN  
SW6_EN  
SW5_EN  
SW4_EN  
SW3_EN  
SW2_EN  
SW1_EN  
Enable bit for Switch 7.  
Switch 7 open.  
Switch 7 closed.  
0
1
Enable bit for Switch 6.  
Switch 6 open.  
Switch 6 closed.  
0
1
Enable bit for Switch 5.  
Switch 5 open.  
Switch 5 closed.  
0
1
Enable bit for Switch 4.  
Switch 4 open.  
Switch 4 closed.  
0
1
Enable bit for Switch 3.  
Switch 3 open.  
Switch 3 closed.  
0
1
Enable bit for Switch 2.  
Switch 2 open.  
Switch 2 closed.  
0
1
Enable bit for Switch 1.  
Switch 1 open.  
Switch 1 closed.  
0
1
ERROR CONFIGURATION REGISTER  
ERR_CONFIG, Address 0x02, Reset: 0x06  
The error configuration register allows the user to enable or disable the relevant error features as required.  
Table 13. Bit Descriptions for ERR_CONFIG  
Bit  
[7:3]  
2
Bit Name  
Setting  
Description  
Default Access  
Reserved  
These bits are reserved; set these bits to 0.  
0x0  
0x1  
R
RW_ERR_EN  
Enable bit for detecting an invalid read/write address.  
R/W  
0
1
Disabled.  
Enabled.  
1
0
SCLK_ERR_EN  
CRC_ERR_EN  
Enable bit for detecting the correct number of SCLK cycles in an SPI frame. 0x1  
16 SCLK cycles are expected when CRC is disabled and burst mode is  
disabled. 24 SCLK cycles are expected when CRC is enabled and burst  
mode is disabled. A multiple of 16 SCLK cycles is expected when CRC is  
disabled and burst mode is enabled. A multiple of 24 SCLK cycles is  
expected when CRC is enabled and burst mode is enabled.  
R/W  
R/W  
0
1
Disabled.  
Enabled.  
Enable bit for CRC error detection. SPI frames must be 24 bits wide when  
enabled.  
0x0  
0
1
Disabled.  
Enabled.  
Rev. 0 | Page 28 of 30  
 
 
 
Data Sheet  
ADGS5414  
ERROR FLAGS REGISTER  
ERR_FLAGS, Address 0x03, Reset: 0x00,  
The error flags register allows the user to determine if an error occurs. To clear the error flags register, write the special 16-bit SPI  
command, 0x6CA9, to the device. This SPI command does not trigger the invalid R/W address error. When CRC is enabled, the user  
must include the correct CRC byte during the SPI write for the clear Error Flags Register command to be successful.  
Table 14. Bit Descriptions for ERR_FLAGS  
Bit  
[7:3]  
2
Bit Name  
Setting  
Description  
Default Access  
RESERVED  
These bits are reserved and are set to 0.  
0x0  
0x0  
R
R
RW_ERR_FLAG  
Error flag for invalid read/write address. The error flag asserts during an  
SPI read if the target address does not exist. The error flag also asserts  
when the target address of a SPI write is does not exist or is read only.  
0
1
No Error.  
Error.  
1
0
SCLK_ERR_FLAG  
CRC_ERR_FLAG  
Error flag for the detection of the correct number of SCLK cycles in an SPI  
frame.  
No Error.  
0x0  
0x0  
R
R
0
1
Error.  
Error Flag that determines if a CRC error occurs during a register write.  
0
1
No Error.  
Error.  
BURST ENABLE REGISTER  
BURST_EN, Address 0x05, Reset: 0x00  
The burst enable register allows the user to enable/disable the burst mode. When enabled, the user can send multiple consecutive SPI  
commands without deasserting  
.
CS  
Table 15. Bit Descriptions for BURST_EN  
Bits  
[7:1]  
0
Bit Name  
Settings  
Description  
Default Access  
Reserved  
These bits are reserved; set these bits to 0.  
0x0  
0x0  
R
BURST_MODE_EN  
Burst mode enable bit.  
Disabled.  
Enabled.  
R/W  
0
1
SOFTWARE RESET REGISTER  
SOFT_RESETB, Address 0x0B, Reset: 0x00  
This register performs a software reset. Consecutively, write 0xA3 and 0x05 to this register and to reset the device registers to their default  
state.  
Table 15. Bit Descriptions for SOFT_RESETB  
Bits  
Bit Name  
Settings  
Description  
Default Access  
0x0  
[7:0]  
SOFT_RESETB  
To Perform a Software Reset, consecutively write 0xA3 followed by 0x05  
to this register.  
R
Rev. 0 | Page 29 of 30  
 
 
 
ADGS5414  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN  
1
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
24  
19  
18  
1
0.50  
BSC  
2.70  
2.60 SQ  
2.50  
EXPOSED  
PAD  
13  
12  
6
7
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
1.00  
0.95  
0.90  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8.  
Figure 48. 24-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.95 mm Package Height  
(CP-24-17)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADGS5414BCPZ  
ADGS5414BCPZ-RL7  
EVAL-ADGS5414SDZ  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
CP-24-17  
CP-24-17  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15902-0-10/17(0)  
Rev. 0 | Page 30 of 30  
 
 

相关型号:

ADGS5414BCPZ-RL7

SPI Interface, Octal SPST Switches, 13.5 &Omega; RON, ±20 V/+36 V, Mux
ADI

ADH-030-10-1

12-Bit Digital-to-Analog Converter
ETC

ADH-030-10-3

12-Bit Digital-to-Analog Converter
ETC

ADH-030-11-1

12-Bit Digital-to-Analog Converter
ETC

ADH-030-11-3

12-Bit Digital-to-Analog Converter
ETC

ADH-030-12-1

12-Bit Digital-to-Analog Converter
ETC

ADH-030-12-3

12-Bit Digital-to-Analog Converter
ETC

ADH-030-8-1

12-Bit Digital-to-Analog Converter
ETC

ADH-030-8-3

12-Bit Digital-to-Analog Converter
ETC

ADH-030II-10-1

12-Bit Digital-to-Analog Converter
ETC

ADH-030II-10-1-883B

12-Bit Digital-to-Analog Converter
ETC

ADH-030II-10-1-B

12-Bit Digital-to-Analog Converter
ETC